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Abstract
Stepwise inference protocols, such as scratchpads
and chain-of-thought, help language models solve
complex problems by decomposing them into a
sequence of simpler subproblems. To unravel the
underlying mechanisms of stepwise inference we
propose to study autoregressive Transformer mod-
els on a synthetic task that embodies the multi-
step nature of problems where stepwise inference
is generally most useful. Specifically, we define
a graph navigation problem wherein a model is
tasked with traversing a path from a start to a goal
node on the graph. We find we can empirically re-
produce and analyze several phenomena observed
at scale: (i) the stepwise inference reasoning gap,
the cause of which we find in the structure of
the training data; (ii) a diversity-accuracy trade-
off in model generations as sampling temperature
varies; (iii) a simplicity bias in the model’s output;
and (iv) compositional generalization and a pri-
macy bias with in-context exemplars. Overall, our
work introduces a grounded, synthetic framework
for studying stepwise inference and offers mecha-
nistic hypotheses that can lay the foundation for a
deeper understanding of this phenomenon.

1. Introduction
Transformers, the backbone of large language models
(LLMs), have revolutionized several domains of machine
learning (OpenAI, 2023; Anil et al., 2023; Gemini et al.,
2023; Touvron et al., 2023). An intriguing capability that
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"Consider a Tower 
of Hanoi problem 
with three rods. At 
start, Rod A has two 
disks with radius 3
and 1; Rod B has a 
disk of radius 2. 
The goal is to move
all disks to rod C.
Think step-by-step."

(a) (b)

Figure 1. Examples of stepwise inference protocols and how
they can be cast as a graph navigation problem. (a) Zero-shot
chain-of-thought (Kojima et al., 2022) involves asking a model to
produce intermediate outputs to perform complex multi-step com-
putations, such as solving the Tower of Hanoi problem. Casting the
configurations of the rods in Tower of Hanoi as nodes of a graph,
we can see that the problem is essentially traversal over states
describing different configurations of the setup to reach the desired
configuration (the goal state). (b) Scratchpad (Nye et al., 2021) im-
proves LLMs’ ability to perform complex multi-step computations,
such as arithmetic, when they write intermediate computation steps
to a buffer called a scratchpad.

emerges with training of Transformers on large-scale lan-
guage modeling datasets is the ability to perform stepwise
inference, such as zero-shot chain-of-thought (CoT) (Ko-
jima et al., 2022), use of scratchpads (Nye et al., 2021),
few-shot CoT (Wei et al., 2022), and variants of these
protocols (Creswell et al., 2022; Yao et al., 2023; Besta
et al., 2023; Creswell & Shanahan, 2022; Press et al.,
2022). Specifically, in stepwise inference, the model is
asked to or shown exemplars describing how to decompose
a broader problem into multiple sub-problems. Solving
these sub-problems in a step-by-step manner simplifies the
overall task and significantly improves performance (see
Fig. 1). Arguably, stepwise inference protocols are the
workhorse behind the “sparks” of intelligence demonstrated
by LLMs (Bubeck et al., 2023; Suzgun et al., 2022; Lu et al.,
2023; Huang & Chang, 2022)—yet, their inner workings
are poorly understood.

Motivated by the above, we aim to design and study an
abstraction which enables a precise understanding of step-
wise inference in Transformers. Specifically, we argue that
tasks which see maximum benefit from stepwise inference
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can be cast as a graph navigation problem: given an input
describing the data to operate on and a goal to be achieved,
a sequence of primitive skills (e.g., ability to perform arith-
metic operations) is chained such that each skill acts on
the previous skill’s output, ultimately to achieve the given
goal. If the input data, the final goal, and the sequence of
intermediate outputs are represented as a sequence of nodes
of a graph, along with primitive skills as edges connecting
these nodes, the overall task can be re-imagined as navigat-
ing nodes of the graph via the execution of primitive skills.
Several logical reasoning problems come under the purview
of this abstraction (LaValle, 2006; Cormen et al., 2022; Mo-
mennejad et al., 2023; Dziri et al., 2023; Saparov & He,
2023): e.g., in Fig. 1a, we show how the problem of Tower
of Hanoi can be decomposed into simpler sub-problems.
See also Appendix B for several more examples.

This work. We design a suite of graph navigation tasks
wherein a Transformer is trained from scratch to predict
whether two nodes from a well-defined graph can be con-
nected via a path 1. The model can generate intermediate
outputs to solve the task, i.e., if it can generate a sequence of
nodes to infer a path connecting the two nodes. In other set-
tings exemplars demonstrating navigation paths connecting
different graphs are provided. Our framework assumes that
the model has to only produce nodes on the graph, edges,
which can be abstractly thought of as “skills", are implicit,
and their existence is inferred during evaluation through
successive nodes generated by the model. This is justified
because a skill-based failure is the most trivial mechanism
via which stepwise inference protocols can fail; in contrast,
inability to plan is an independent and underexplored axis
for understanding stepwise inference. Overall, we make the
following contributions.

• A Framework for Investigating Stepwise Inference.
We propose a synthetic graph navigation task as an ab-
straction of scenarios where stepwise inference protocols
help Transformers improve performance, showing that
we can replicate and explain behaviors seen with use of
stepwise inference in prior work. For instance, the struc-
ture of the data generating process (the graph) impacts
whether stepwise inference will yield any benefits (Prys-
tawski & Goodman, 2023). We identify further novel
behaviors of stepwise inference as well, such as the exis-
tence of a tradeoff between diversity of outputs generated
by the model and its accuracy with respect to inference
hyperparameters (e.g., sampling temperature).

• Demonstrating a Simplicity Bias in Stepwise Infer-
ence. When multiple solutions are possible for an input,
we demonstrate the existence of a simplicity bias: the
model prefers to follow the shortest path connecting two

1Code for this paper is available at https://github.com/
mikailkhona/stepwise_inference_icml24

nodes. We assess this result mechanistically by iden-
tifying the underlying algorithm learned by the model
to solve the task, showing the bias is likely a conse-
quence of a “pattern matching” behavior that has been
hypothesized to cause LLMs to fail in complex reasoning
problems (Dziri et al., 2023).

• Controllability via In-Context Exemplars. We show
the model’s preferred path to navigate between two nodes
can be controlled via use of in-context exemplars. We
use this setup to evaluate the model’s ability to generalize
to paths of longer length and the influence of exemplars
which conflict with each other, i.e., that steer the model
along different paths.

2. Stepwise Inference as Graph Navigation
In this section, we define our setup for studying how step-
wise inference aids Transformers in solving complex rea-
soning problems. Specifically, we define a graph navigation
task wherein, given a start and a goal node, a Transformer
is autoregressively trained to produce a sequence of nodes
that concludes at the goal node. In our experiments, we
consider two scenarios: one where in-context exemplars are
absent (see Fig. 2a) and another where they are present (see
Fig. 2b). The former scenario emulates protocols such as
the scratchpad and zero-shot Chain of Thought (CoT) (Ko-
jima et al., 2022; Nye et al., 2021), while the latter models
few-shot CoT (Wei et al., 2022). In Section 2.1, we set up
our experiment to explore these two scenarios. In the subse-
quent sections, we explicitly analyze the benefits of stepwise
inference in both scenarios: without in-context exemplars
(Section 2.2) and with in-context exemplars (Section 2.3).
We refer the reader to a detailed related work on stepwise
inference protocols in Appendix A and further discussion
on graph navigation as a model of stepwise inference which
is in Appendix B.

2.1. Preliminaries: Bernoulli and Hierarchical DAGs

We use directed acyclic graphs (DAGs) to define our
graph navigation tasks. DAGs are a natural mathemati-
cal abstraction to study multi-step, logical reasoning prob-
lems: e.g., as discussed in Dziri et al. (2023), the output of
any deterministic algorithm can be represented as a DAG.
Specifically, a DAG is defined as G := (N,E), where
N := {Xi}|N |

i=1 denotes the set of nodes in the graph and
E := {(Xi, Xj)}Xi,Xj∈N denotes the set of directed edges
across the nodes. The edges of a DAG are captured by its
adjacency matrix A, where Aij = 1 if (Xi, Xj) ∈ E. A
directed simple path is a sequence of distinct nodes of G
which are joined by a sequence of edges. If two nodes are
connected via a directed simple path, we call them path-
connected. The first node of a path is referred to as the start
node, which we denote as Xs, and the last node as the goal
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Figure 2. Data generating process. (a) In absence of exemplars. This figure illustrates the step-by-step process of generating a training
dataset using a single underlying graph. 1) A directed acyclic graph (DAG) is generated, which can be either hierarchically structured or
Bernoulli. 2) A start node and a goal node are selected. 3) All possible paths connecting the start and goal nodes are sampled, and one
path is randomly selected. 4) The chosen path is then represented in a task-specific format. (b) In presence of exemplars. The process of
generating a training dataset by combining multiple subgraphs (motifs) involves the following. (1.) Start by building a set of Bernoulli
directed acyclic graphs (DAGs). (2.) Pick a subset of K of these DAGs {gi1 , gi2 , ..giK} and connect them together using "ghost edges"
to create a chain of motifs gi1 7→ gi2 7→ · · · 7→ giK . (3.) Sample exemplars from every pair of motifs that have been connected by a
ghost edge to construct the context. (4.) Now choose a start node Xs ∈ gi1 and a goal node Xg ∈ giK and construct a sequence passing
through the whole chain of motifs.

node, which we denote as Xg .

We briefly discuss the process of construction of DAGs used
in our work and how paths are sampled from them; a more
thorough description is provided in Appendix C.1. We de-
fine a Bernoulli DAG of NB nodes, whose adjacency matrix
has an upper triangular structure with Bernoulli entries with
edge density p, such that p(Aij = 1) = p. We also define a
hierarchical DAG, wherein the nodes follow a feedforward,
layered structure such that all NH nodes at a given layer are
only connected to nodes in the following layer (see Fig. 2a).
In particular, for every node nl in layer l and nl+1 in layer
l+1, we draw a directed edge (nl, nl+1) with probability p,
which we refer to as edge density. On average, between any
two layers of a hierarchical DAG, there are pN2

H edges and
each node in an intermediate layer has an out-degree and
in-degree of pNH . The number of paths from a particular
node in layer l to layer l′ > l is exponential and given by
(pN)l

′−l, while for Bernoulli DAGs, it is bell-shaped; this is
quantified in the path length distribution shown in Appendix
Fig. 11. For both graph structures, source nodes are nodes
that do not have any parent nodes, and the nodes that do not
have any children nodes are sink nodes. We use rejection
sampling to ensure that graphs are connected.

2.2. Modeling stepwise inference without exemplars

Zero-shot CoT (Kojima et al., 2022) and scratchpads (Nye
et al., 2021) represent two examples of stepwise inference
protocols that do not rely on exemplars. For instance,
in the zero-shot CoT approach, the input of the model
is augmented with the phrase let’s think step by
step. This encourages the model to generate outputs that
elaborate on the intermediate steps required to solve the
target problem, thereby enhancing accuracy by breaking
down the target problem into several simpler problems.

To compare the model’s performance with stepwise infer-
ence and without stepwise inference (i.e., direct inference),
we create two datasets: one including intermediate steps and
the other without them. Each dataset is subsequently used
to train distinct models. During the test phase, we present
these trained models with pairs of nodes and task them to
determine the existence of a path between the nodes. A
model’s performance is assessed based on its accuracy in
classifying whether a path exists.

Fig. 2a shows how we generate the datasets above. First,
we define a DAG denoted as G. Within this graph, for each
dataset instance, we sample a start node Xs and a goal node
Xg and then identify all feasible paths between these two
nodes. From the identified paths, we select one to form a
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sequence of tokens, S. This procedure is iterated for other
node pairs within the graph G to compile the complete
dataset. For the dataset with stepwise inference, we use all
the intermediate steps, including the start node Xs and the
goal node Xg, to form S. For the dataset without stepwise
inference (i.e., direct inference), we only use the start node
Xs and the goal node Xg. We introduce a binary variable
path ∈ {p1, p0} to denote whether there is a path between
the start and goal nodes. We append the ‘path’ token p1
to the end of the sequence S if there is at least one path
between the start and goal nodes; otherwise, we append the
‘no path’ token p0.

Example: For the example path in Fig. 2a, in the
dataset with stepwise inference, the sequence of tokens
S includes the intermediate steps and takes the form
goal :X2 X4 X3 X6 X2 p1. For the dataset without step-
wise inference (i.e., direct inference), the sequence S
does not contain intermediate steps and has the form
goal :X2 X4 p1.

2.3. Modeling stepwise inference with exemplars

Here we examine the influence of stepwise inference on
model performance when in-context exemplars are present.
This scenario is prominently exemplified by protocols based
on few-shot CoT prompting (Wei et al., 2022; Creswell
et al., 2022). Specifically, we extend the setup with a sin-
gle DAG described in Section 2.2 by incorporating a set of
DAGs, which we call motifs. The data generation process
is shown in Fig. 2b. First, we generate a set of n Bernoulli
DAGs denoted by ĝ = {gi}ni=1 and randomly select a subset
of K motifs from this set {gj1 , gj2 , . . . , gjK} ⊂ ĝ. Then,
we add edges between the sink node of each motif gjk and
the source node of the subsequent motif gjk+1

, forming a
chain of motifs gi1 7→ gi2 7→ · · · 7→ giK . These intercon-
necting edges are termed ghost edges. We sample paths
from each pair of motifs linked by a ghost edge to establish
the context. We select a start node from the sink nodes of
one motif, Xs ∈ g, and a goal node from the source nodes
of a different motif, Xg ∈ g′, then sample a path between
them, denoted as egg′ . This procedure generates a sequence
of nodes spanning across motifs, g → g′, including exactly
one ghost edge. We refer to this as an exemplar sequence
and use them as in-context samples. Exemplars to model
few-shot CoT are represented as egg′ and denote a exemplar
sequence from the motif-pair g → g′. Finally, we select
a start node Xs ∈ gi1 and a goal node Xg ∈ giK . We
then prompt the model to either directly output a path that
connects the node pair Xs and Xg , or to provide exemplars
demonstrating traversal between motifs within the specified
context. Recall that our graph is constructed from a combi-
nation of K motifs. For the training dataset, we intentionally
exclude 20% of the combinations. For the test dataset, we
randomly select motifs from the remaining combinations

in ĝ, and sample sequences that illustrate how to navigate
between two nodes within this graph. From training data, a
model can learn the structure and interconnections of motifs;
yet, during testing, it faces unseen combinations of these
motifs. Correspondingly, the model must use the context to
infer the overall structure of the graph. In essence, an in-
context exemplar tells the model which motifs are connected
via ghost edges and hence can be navigated between.

Example: We directly study the path of navigation out-
putted by the model in this setup, i.e., no special tokens
are used. A sample is constructed by selecting motifs to
define in-context exemplars, say gi1 , gi2 , gi3 . For every
successive pair of motifs, we construct an exemplar and
put them together to create the context. To do this, we
select two (start, goal) pairs: Xs1 ∈ gi1 , Xg1 ∈ gi2 and
Xs2 ∈ gi2 , Xg2 ∈ gi3 . We sample exemplar sequences
starting and ending at these node pairs: one sequence
from gi1 to gi2 , goal :Xg1Xs1X1 . . . Xk1Xg1 , and another
from gi2 to gi3 , goal :Xg2Xs2X

′
1 . . . X

′
k2
Xg2 . These se-

quences act as exemplars to be provided in context to
the model when it is shown an input. The number of
exemplars can vary from two to four, which correspond
to chains of motifs of length three to five. The input it-
self is defined by choosing a goal node Xg ∈ gi3 , a start
node Xs ∈ gi1 , and a path through an intermediate node
Xinter ∈ gi2 ; e.g., goal :XgXsX

′′
1 . . . Xinter . . . X

′′
k1
Xg3 .

Here, XsX
′′
1 . . . Xinter is a path between motifs gi1 and gi2 ,

while Xinter . . . X
′′
kXg3 is a path between motifs gi2 and gi3 .

When exemplars are not provided, the model must rely on
its internalized knowledge to infer whether there exist two
connected motifs that can be used to move from the start to
goal node. The context exemplars simplify the problem by
telling the model the motifs above are connected.

3. Results: Stepwise Navigation
In this section, we discuss findings on how stepwise in-
ference affects the model’s ability to solve problems. We
investigate two scenarios: in the absence of in-context ex-
emplars (Section 3.1) and in the presence of them (Section
3.2). For all experiments, unless stated otherwise, we use a
2-layer Transformer defined by Karpathy (2021) to mimic
the GPT architecture (Brown et al., 2020). For more details
on the experimental setup, please refer to Appendix C.3 for
model architecture details and Appendix D for training data
generation and train/test split.

3.1. Navigation without exemplars

We assess the performance of the model by evaluating its
ability to classify whether there is a path given a pair of
nodes during the test phase. Specifically, we randomly
sample pairs of start and goal nodes that were not seen in
the training data and observe whether the model outputs
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Figure 3. Advantage of stepwise inference in graph navigation
tasks and stitching: (a) In the Bernoulli DAG, stepwise infer-
ence demonstrates an advantage over direct inference in predicting
whether given node pairs are connected. (b) This advantage is
further pronounced in hierarchical DAGs, where the distances be-
tween nodes are greater than in Bernoulli DAGs. (c) The stepwise
inference gap arises when to generalize, the model has to flexibly
recombine (sub)paths seen over pretraining, which we refer to as
stitching. (d) The stepwise inference is beneficial when the model
must connect paths seen during training: the red, green, and blue
paths represent subsets of paths seen during training; we find the
model produces paths that combine these subsets during the test
phase.

either the ‘path’ token p1 or the ‘no path’ token p0.

3.1.1. STEPWISE INFERENCE GAP

Fig. 3 shows the accuracy of classifying ‘path’ or ‘no path’
for two different types of graphs: a Bernoulli graph and
a hierarchical graph. We observe that for both types of
graphs, the use of stepwise inference significantly improves
the model’s performance compared to direct inference, with
more pronounced improvements noted for the hierarchical
graph. Following Prystawski & Goodman (2023), we re-
fer to the improvement in performance observed between
stepwise inference and direct inference as the “stepwise
inference gap”. We even simulate the effect of noisy or
ambiguous real-world labels by introducing random cor-
ruptions into the tokens and found that the results above
continue to hold, as detailed in Appendix Fig. 14.

To further probe the results above, we control for path
lengths in the hierarchical graph. Specifically, to set the
maximum path length in the training data to ∆, we choose
a starting layer l and a goal layer l′ such that l′ − l < ∆.
Then, we sample starting nodes from layer l and goal nodes
from layer l′. For the test data, we select node pairs with
l′ − l ≥ ∆. Results are shown in Fig. 3(c). We plot the clas-
sification accuracy across various values of ∆ and observe
that the smaller the value of ∆, the greater the stepwise
inference gap becomes. We hypothesize this happens be-
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Figure 4. Diversity vs. accuracy trade-off for different sampling
temperatures of the Transformer model: As the sampling tem-
perature increases, the diversity of paths generated by the model
also increases, while the accuracy decreases. This tradeoff is cap-
tured by measuring the number of unique valid paths (top panel),
indicating that there is an optimal temperature for sampling. The
dashed line represents the ground truth path diversity.

cause when the training data only includes short paths, the
model needs to more effectively ‘stitch’ the paths observed
during training, which, as a recursive task, is more feasible
via stepwise inference.

3.1.2. DIVERSITY-ACCURACY TRADEOFF WITH HIGHER
SAMPLING TEMPERATURES

Here, we investigate how the sampling temperature of the
autoregressive Transformer affects the diversity of the gener-
ations produced by the model and its accuracy. To this end,
we fixed the start and goal nodes and prompted the model
3,000 times, varying the sampling temperatures from 0.0 to
3.0. We define accuracy as the probability that a generated
path consists of valid edges and correctly terminates at the
designated goal node. Diversity is defined as the number
of unique paths generated. As shown in Fig. 4, there is a
clear trade-off between the diversity of the paths generated
by the model and their accuracy. We term this phenomenon
the diversity-accuracy tradeoff : at lower sampling temper-
atures, the model generates fewer but more accurate and
valid paths; in contrast, higher sampling temperatures result
in greater path diversity but reduced accuracy. Our result
provides the first explicit demonstration of a trade-off be-
tween the accuracy and diversity of Transformer outputs.
To the best of our knowledge, this phenomena has not been
quantitatively studied before.

3.1.3. PREFERENCE FOR SHORTER PATHS

Note that there are multiple possible paths the model can
choose from in the pursuit of inferring a path that connects
a start and goal node. We showed that by increasing the
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Figure 5. Model outputs are biased toward shorter paths. Com-
paring the average lengths of ground-truth paths for a specific set
of node pairs and the paths produced by the model for these same
pairs in the Bernoulli DAG, we observe that the model tends to
generate shorter paths than the actual ones. This observation points
to a “simplicity bias” in the trained model towards favoring shorter
over potentially more accurate or realistic paths.

sampling temperature, a diverse set of paths can be gen-
erated; however, by default, which path does the model
prefer? To evaluate this, we compare the true path lengths
in the Bernoulli graph between nodes in the test set with
those generated by trained model. In Fig. 5a, we observe
that the model consistently produces paths that are shorter,
on average, than the paths in the ground truth DAG. This
observation suggests that the model exhibits a simplicity
bias; this finding is likely an architectural bias of the trans-
former trained with gradient descent since it is not present
in the training data. However, simplicity biases have been
shown to yield oversimplification of a problem, forcing a
model to learn spurious features (Shah et al., 2020; Lubana
et al., 2023). In the context of stepwise inference, this can
amount to omission of important intermediate steps, similar
to ‘shortcut solutions’ arising from pattern-matching behav-
iors discussed in prior work on Transformers (Liu et al.,
2022; Dziri et al., 2023).

3.1.4. EVOLUTION OF FAILURES IN STEPWISE
INFERENCE OVER TRAINING

In the above discussion, we evaluated how stepwise infer-
ence assists a model in successfully completing a complex,
multi-step task. We now assess how it fails. Specifically,
assume that for a given graph G, the model produces a
sequence of nodes XsX1 . . . Xk . . . Xt starting at the start
node Xs. Following (Saparov & He, 2023; Momennejad
et al., 2023), we define two categories of potential failures.

• Misstep (Xk, Xk+1) /∈ G: An edge produced by the
model does not exist in the DAG (“hallucinations”).

• Planning failure Xt ̸= Xg: The model produces a path

1- P(misstep)
1- P(planning failure)

optimization step

ac
cu

ra
cy

Figure 6. Learning dynamics for two failure modes: misstep
and planning failure. Given the model-generated path in the
stepwise inference protocol, we measure the probability of mis-
steps and planning failures in the model’s outputs. A misstep
refers to an instance where the model generates an edge that is
not present in the graph, while a planning failure means that the
model outputs a path that fails to reach the intended goal node.
Initially, the model learns to avoid missteps. Subsequently, around
the 200th optimization step, it begins to effectively learn planning.
The accuracy curves are averaged over three models, each trained
with a distinct random seed.

that does not terminate at the goal node.

In Fig. 6, we examine the learning dynamics for each failure
mode. The figure indicates that the model initially acquires
the skill to circumvent missteps (the blue line). Subse-
quently, it develops the ability to plan effectively, which is
shown by a decrease in planning failures (the red line). By
integrating these abilities—avoiding missteps and minimiz-
ing planning failures—the model is finally able to generate
accurate paths for node pairs not seen during training.

3.1.5. MECHANISTIC BASIS OF THE LEARNED GRAPH
NAVIGATION ALGORITHM

Our results above elicit several intriguing behaviors at-
tributable to stepwise inference. We next take a more mech-
anistic lens to explain why these behaviors possibly occur.
We hypothesize that the model learns embeddings for the
nodes of the graph that enable easy computation of an ap-
proximate distance measure. This suggests that to move
closer to the goal node, one can simply transition to the
node that exhibits the least distance from the goal node. For
the detailed intuition guiding our analysis, see Appendix F.

To verify this, we first strip the model down to a single-
head, self-attention layer. We visualize the attention scores
for this minimal model in Fig. 7a, observing they are are
concentrated on the goal node and the current node. This
suggests that the model utilizes only the embedding values
of the goal Xg and the current nodes Xcurrent to select the
next token. Inspired by this observation, we develop a
simplified algorithm that mimics the behavior of the model,
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Figure 7. Mechanistic analysis of the graph navigation algorithm: Emergent linear representation. (a) Attention maps from the
1-layer, attention-only Transformer, highlighting the model’s attention on the goal token Xg and the current token Xcurrent. (b) Steps of our
simplified algorithm that emulates the 1-layer, attention-only Transformer are as follows. (1.) We extract value embeddings for Xg and
Xcurrent, ignoring other tokens for simplicity. (2.) Next, we compute the value embeddings of the goal vg and current vcurrent nodes and
add them together v = vg + vcurrent. (3.) We then compute the token embedding with the highest inner product with v, approximating
the token that receives the highest logit score after the single forward pass. (c) Comparison of the model’s accuracy on a set of 500
held-out node pairs (Xs, Xg) using our simplified algorithm (99.8%) versus the full trained model (99.6%). (d) The paths generated
by the simplified algorithm almost exactly match the paths generated by the full trained model. Path similarity on 2000 held-out node
pairs was compared by measuring the Levenshtein edit distance (Navarro, 2001) between paths generated by the full trained model and
the simplified algorithm for the same (Xs, Xg) pairs. (e) The short path bias can be attributed to the inner products between the token
embedding of the next chosen token Xnext and the value embedding of Xg and vg . We observe that nodes Xnext further away from Xg

have a lower inner product, indicating that the model’s embedding of nodes reflects the underlying graph topology. The red line denotes
the best least squares fit and has a slope of −0.106.

as outlined in detail in Fig. 7b. First, we extract the value
embeddings for Xg and Xcurrent using the weight matrix
WV from the self-attention layer, yielding vg and vcurrent,
respectively. We then merge these embeddings into a single
vector v, i.e., v = vg + vcurrent. Finally, we determine the
next token by identifying the node whose token embedding
has the highest inner product with v. This operation mimics
the logit computation in a full Transformer.

In Fig. 7c, we demonstrate the simplified algorithm re-
trieved via the process above matches the accuracy of the
full trained model. Furthermore, in Fig. 7d, we find that the
paths generated by our simplified algorithm and those pro-
duced by the full trained model are nearly identical. Herein,
we use a string edit distance metric (Navarro, 2001) to quan-
tify the similarity between the two sets of paths and find that
over 75% of paths are identical.

Given that accuracy is computed over test nodes not seen
in the training data, the model likely encodes a notion of
distance between two nodes on the graph in its embedding,
as we hypothesized. Indeed, in Fig. 7e, we find that the inner
product of the embedding of vg with the token embeddings
of Xnext is negatively correlated with the distance between
these two nodes in the ground truth DAG; here, we used the
average path length as a distance measure over the graph.

Since potential nodes with shorter paths to the goal node
have a higher logit value, this implies they will be more
likely to be predicted, thus showing the origin of the short
path bias we observed in Sec. 3.1.3. This is a mechanistic
explanation of the interpolative pattern-matching behavior
of Dziri et al. (2023) in the context of our task.

3.2. Navigation with exemplars

The single graph setting let us explore zero-shot navigation
and stepwise reasoning, where the model relied on knowl-
edge internalized over pretraining for stepwise navigation
towards a goal. Next, we study how context can influence
the model generated paths, how subgoals that are provided
in-context can guide the model’s navigation, and how the
content of the exemplars affects the navigation path chosen
by the model. Our results shed some light on and create
hypotheses for (1) compositional generalization, (2) length
generalization, and (3) impact of conflicting, long context.

3.2.1. COMPOSITIONAL GENERALIZATION

We find that the model can successfully follow the chain
defined by the in-context exemplars. An example output
produced by the model is in Fig. 2(b), highlighting the path
the model takes through the chain of motifs g3 → g4 →

7



Towards an Understanding of Stepwise Inference in Transformers

Su
cc

es
sf

ul
 s

te
er

in
g 

pr
ob

ab
ilit

y

Number of intermediate motifs

1.0

0.8

0.6

0.4

0.2

0.0

, ,
n

1 2 3 4 5 6

Figure 8. In-context steerability and length generalization. We
vary the number of intermediate motifs ginter in a chain of motifs
constructed for the particular context gi1 → {ginter →}n → giK .
The path generated by the model follows the path described by the
chain in context until n = 4, which is the maximum chain length
in the training data.

g2 → g9. We also find that the model generalizes to arbi-
trary orders of motifs strung out, including those that did
not occur consecutively in the training data, up to the length
in the training data (see Fig. 8). In other words, in-context
control is capable of eliciting compositional generaliza-
tion (Li et al., 2023), if appropriately trained. Further, we
see that the attentional patterns used by the model suggest
that while navigating across motifs, the model treats nodes
across ghost edges as subgoals (see Appendix Fig. 19).

3.2.2. NUMBER OF INTERMEDIATE MOTIFS

In Fig. 8, we vary the number of exemplars provided to the
model. This is equivalent to stringing together a longer chain
of exemplar sequences across motifs to navigate over. We
define successful steering via a product of indicator variables
that measure (i) whether the path ended at the specified goal
and (ii) that each ghost edge, and thus the intermediate
motif, was present in the path. We computed the probability
by averaging over distinct source nodes from gi1 and sink
nodes from giK . We find that the model can generalize
well to unseen orders of motifs up to the maximum number
chained together in the training data, after which the model
fails to navigate. We hypothesize that even when using
stepwise inference methods at scale, the model will fail to
generalize to reasoning chains longer than those present in
its training data.

3.2.3. PRIMACY BIAS TOWARDS THE FIRST EXEMPLAR
IN THE CASE OF CONFLICT

Language models are generally prompted with several ex-
emplars in context. Some of these exemplars may have
incorrect or even conflicting information with respect to
other exemplars, for example in a multiple choice Q&A
task (Hendrycks et al., 2020; Pal et al., 2022; Srivastava
et al., 2022). The model has to choose the relevant informa-
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Figure 9. How does the model handle conflicting exemplars?
To construct the context, we selected an initial motif gi1 , a ter-
minal motif giT and two intermediate motifs ginter and g′inter. We
string them together so that the motif has two possible paths:
gi1 → ginter → giT and gi1 → g′inter → giT . In this case of two
conflicting chains in-context, the model has a bias to pick the chain
that appears first in context.

tion between these exemplars to solve the specified task. Mo-
tivated by this, we quantitatively study the behavior of the
model when a noisy context with exemplars with conflict-
ing information are provided. Specifically, we study a case
where two chains of motifs are used to design exemplars for
our task, such that the exemplars start from the same set of
initial and terminal motifs gi1 and giT , but with distinct inter-
mediate motifs ginter and g′inter. The model is then prompted
with Xs ∈ gi1 and Xg ∈ giT , after in-context exemplars
in order: egi1 ,ginter , eginter,giT

, egi2 ,g′
inter

, eg′
inter,giT

. Results are
shown in Fig. 9. We find that the model does indeed navi-
gate to the goal, thus following the prompt, but has a strong
bias toward choosing a path defined by the first chain over
the second, i.e., gi1 → ginter → giT . This result is simi-
lar to what happens at scale with large context windows,
where content in the middle of a long context window is
ignored (Liu et al., 2023).

4. Conclusion and Limitations
In this work, we introduced a synthetic graph navigation
task to investigate the behavior, training dynamics, and
mechanisms of Transformers under stepwise inference pro-
tocols. We have adopted the model-experimental systems
approach, an empirical strategy to precisely characterize
and understand smaller, more steerable model systems with
the ultimate goal of transferring this understanding to larger-
scale systems. It is important to clarify the trade-offs and
limitations inherent in our approach. Drawing an analogy
to the study of biological neural networks, where neural
mechanisms identified in small-scale model organisms such
as fruit flies may not be directly applicable to medical appli-
cations involving the human brain, our observations should
not be taken as definitive conclusions directly applicable to
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large-scale generative models. Instead, our study seeks to es-
tablish a minimal synthetic framework, identify data-centric
control variables, and formulate mechanistic hypotheses.
This lays the groundwork for more in-depth theoretical and
empirical investigations of larger models.

Impact Statement
This paper provides a comprehensive scientific analysis of
a Transformer model that solves a small-scale synthetic
task. We believe that the scientific findings presented in
this paper will lay the groundwork for the development of
more reliable and interpretable AI systems for the benefit of
society.
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A. Detailed Related Work
Stepwise inference protocols Large language models (LLMs) have been shown to possess sophisticated and human-like
reasoning and problem-solving abilities (Srivastava et al., 2022). Chain-of-thought or scratchpad reasoning refers to many
similar and related phenomena involving multiple intermediate steps of reasoning generated internally and autoregressively
by the language model. First described by Nye et al. (2021); Kojima et al. (2022), adding prompts such as ‘think step
by step’ allows the LLM to autonomously generate intermediate steps of reasoning and computation, improving accuracy
and quality of its responses. This is referred to as zero-shot chain-of-thought. A related set of phenomena, few-shot
chain-of-thought prompting (Wei et al., 2022) occurs when the language model is shown exemplars of reasoning before
being prompted with a reasoning task. The model follows the structure of logic in these exemplars, solving the task with
higher accuracy. Further, there have been several prompting strategies developed, all of which rely on sampling intermediate
steps, such as tree-of-thoughts (Yao et al., 2023), graph-of-thoughts (Besta et al., 2023), program-of-thoughts (Chen et al.,
2022), self-ask (Press et al., 2022). There are also methods which use more than one LLM, such as STaR (Zelikman et al.,
2022), RAP (Hao et al., 2023), Selection-Inference (SI) (Creswell et al., 2022; Creswell & Shanahan, 2022).

Understanding stepwise inference Dziri et al. (2023) study how LLMs solve multi-step reasoning tasks and argue that
models likely fail because they reduce most multi-step reasoning tasks to linearized sub-graph matching, essentially learning
‘shortcut solutions’ (Liu et al., 2022). Momennejad et al. (2023) study in-context graph navigation in LLMs, finding that
they fail to do precise planning. Saparov & He (2023) introduce a synthetic dataset called PrOntoQA to systematically
study the failure modes of chain of thought in the GPT3 family fine-tuned on the dataset and find that misleading steps
of reasoning are a common cause of failure in the best-performing models. Chen et al. (2023) find that chain-of-thought
fails at compositional generalization and counterfactual reasoning. Wang et al. (2022a); Schaeffer et al. (2023) find that the
content of the exemplars is less relevant to accuracy than their syntactic structure. Razeghi et al. (2022) find that the accuracy
of reasoning is correlated with the frequencies of occurrence in the pretraining dataset. Recently, a few works have used
theoretical approaches to characterize and explain stepwise inference. Li et al. (2023) study in-context learning of random
MLPs and find that a Transformer that outputs the values of intermediate hidden layers achieves better generalization. Feng
et al. (2023) show that with stepwise reasoning, Transformers can solve dynamic programming problems, and Prystawski &
Goodman (2023) study reasoning traces in Transformers trained to learn the conditionals of a Bayes network. There are also
several puzzling phenomena in the prompts used to elicit few-shot chain-of-thought reasoning: chain-of-thought can be
improved by sampling methods such as self-consistency (Wang et al., 2022b); prompts might not reflect the true reasoning
process used by the language model, as identified by Turpin et al. (2023); and the accuracy of the model can be sensitive to
the order in which prompts are provided (Lu et al., 2021).

B. Why graph navigation?
In this section, we describe examples of various computational tasks that have been cast as graph navigation in literature to
study Transformers and LLMs.

• First order logic: Saparov & He (2023) study simple DAGs as models of first order logical reasoning. They construct
ontologies (see Fig. 10a) and prompt LLMs to do analogical reasoning.

• Mathematical expression evaluation: Dziri et al. (2023) study mathematical expression evaluation in large scale
LLMs as DAG navigation (see Fig. 10b). Any mathematical expression can be decomposed into elementary computa-
tions which are chained together.

• Planning and spatial navigation: Momennejad et al. (2023) evaluates many large scale LLMs such as ChatGPT-4
and Claude2 on synthetically designed planning and navigation tasks (see Fig. 10c).

• Formal grammars and natural language: Allen-Zhu & Li (2023) studies Transformers trained on context-free
grammars (CFGs) which are DAGs. Another motivation for the study of graph navigation comes from linguistics and
natural language syntax (Chomsky, 2002). Every sentence in a language can broken down into its syntactic or parse
tree, a special case of a directed acyclic graph. For example, the sentence ‘I drive a car to my college’ can be parsed
as the following graph: (‘I’: Noun phrase, ‘drive a car to my college’: Verb Phrase)→ (‘drive’: Verb, ‘a car’: Noun
Phrase, ‘to my college’: Prepositional Phrase)→ (‘a’: Determiner, ‘car’: Noun), (‘to’: Preposition, ‘my college’: Noun
Phrase)→ (‘my’: Determiner, ‘college’: Noun).
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Figure 10. Examples of stepwise inference as graph navigation in LLM evaluations: [Figures taken from respective papers] (a) An
example graph created for a prompt (left) from the ProntoQ&A dataset (Saparov & He, 2023) (b) (Dziri et al., 2023) studies how simple
algorithms such as multiplication of digits can be represented as a graph (c) CogEval (Momennejad et al., 2023) studies many large scale
LLMs such as ChatGPT-4 and Claude2 on planning and navigation tasks. (d) Mathematical expression evaluation in the case of additionof
two numbers can be visualized as a series of steps of a digit-wise addition algorithm.

Effective stepwise reasoning consists of several elementary logical steps put together in a goal-directed path that terminates
at a precise state (LaValle, 2006). We argue that graph navigation problems provide such a fundamental framework for
studying stepwise inference. Graphs provide a universal language for modeling and solving complex problems across
various domains. Whether it is optimizing network traffic, analyzing social networks, sequencing genetic data, or solving
puzzles like the Travelling Salesman Problem, the underlying structure can often be mapped onto a graph (Cormen et al.,
2022; Momennejad et al., 2023; Dziri et al., 2023; Saparov & He, 2023).

C. Setup and construction of graph and model
C.1. Graph structures

Here we describe the properties of the DAGs we use, the training setup, model architecture, and hyperparameters.

We use two DAG structures, as shown in Fig. 11. Specifically, Bernoulli DAGs are constructed by randomly generating an
upper-triangular matrix where each entry has probability p of existing. Hierarchical DAGs are generated by predefining L
sets of nodes and drawing an edge between a node nl in layer l and nl+1 in layer l + 1 with probability p; we constrain the
graph to be connected. These generation processes lead to different path diversity and path length distributions, which affect
the efficacy of stepwise inference, as shown in our results. Below, we provide algorithms to generate our graph structures.
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Figure 11. Construction and properties of Hierarchical and Bernoulli DAGs: (top) Schematic of hierarchical and Bernoulli graphs.
Hierarchical graphs are organized into layers with connections only between nodes of successive layers but Bernoulli graphs have no
such structure. (middle) Path diversity is defined as the number of paths between any two path connected nodes. (bottom) Path length
distributions: Owing to the hierarchical nature, the path length distribution is exponential in hierarchical graphs whereas it is more
Gaussian-like for Bernoulli graphs.

Algorithm 1 Generate Bernoulli connected DAG

Require: numNodes > 0, probability p for edges
1: nodeNames← [‘X’ + str(i) for i in range(numNodes)]
2: Function CreateUpperTriangularMask(n, p)
3: matrix← random binary matrix with size n× n and probability p for 1s
4: upperTriangular← extract upper triangular part of matrix
5: return upperTriangular
6: repeat
7: adjMatrix← CreateUpperTriangularMask(numNodes, p)
8: dag← create directed graph in NetworkX from adjMatrix and nodeNames
9: until dag is connected
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Figure 12. Properties of Hierarchical DAGs with varying connection probability: As the probability of connections between nodes
increases, the path length distribution becomes more exponential (left column) while the path diversity distribution becomes more uniform
(right column).
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Algorithm 2 Generate Hierarchical Connected DAG

1: p← [probability of connection between layers]
2: nodesPerLayer← [number of nodes in each layer]
3: numLayers← [total number of layers]
4: numNodes← nodesPerLayer× numLayers
5: Function CreateLayeredDAG(nodesPerLayer, numLayers, p)
6: Initialize an empty directed graph G in NetworkX
7: for currentLayer← 1 to numLayers− 1 do
8: for each node j in currentLayer do
9: for each node k in currentLayer+ 1 do

10: if random number ≤ p then
11: Add edge from node Xj to node Xk in G
12: end if
13: end for
14: end for
15: end for
16: return G
17: End Function
18: repeat
19: dag← CreateLayeredDAG(nodesPerLayer, numLayers, p)
20: until dag is connected

C.2. Motif construction

In the multi-graph scenario, we first construct a set of n graphs (in our experiments, we use Bernoulli DAGs with n = 10)
denoted by G = {g1, g2, ..., gn}. To construct the training data, we first create all pairwise motif orders {(gi → gj)}. For
test evaluations, we held out 10 out of these 45 motif orders.

C.2.1. CONSTRUCTION OF EXEMPLAR SEQUENCES

To provide examples in-context, we create exemplar sequences connecting motifs, say gi1 and gi2 . In our construction,
we select Xs to be source node in gi1 and Xg to be a sink node in gi2 . Further, we choose a sink of gi1 , Xsink(gi1) and
a source of gi2 , Xsource(gi2) and connect them via a ghost edge: (Xsink(gi1), Xsource(gi2)). These intermediate nodes are
subgoals for the path that the model has to produce. Finally putting everything together, the exemplar sequence has the
following form: goal: Xg Xs . . . Xsink (gi1)Xsource(gi2) . . . Xg. Here, Xs . . . Xsink is a path from a source to a sink in gi1
and Xsource(gi2) . . . Xg is a path from a source to a sink in gi2 . To be precise, we summarize this process into the algorithm
below.

Algorithm 3 Generate In-context Exemplars

Require: {gi1 , gi2}, two motifs across which a ghost edge will be placed.
1: Xs← Sample sources(gi1 )
2: Xg ← Sample sinks(gi2 )
3: (Xghost edge

pre , Xghost edge
post )← (Sample sinks(gi1),Sample sources(gi2))

4: (Xs . . . X
ghost edge
pre )← Sample path (gi1)

5: (Xghost edge
post . . . Xg)← Sample path (gi2)

6: return egi1 ,gi2 ← Xs . . . X
ghost edge
pre Xghost edge

post . . . Xg

After providing a set of exemplar sequences in-context, we chain them together to create a longer sequence. To be
precise, given a set of K motifs {gi1 , gi2 , gi3 , . . . giK}, we have the set of K − 1 ghost edges, one for each exemplar:
{(Xsink(gi1), Xsource(gi2)), (Xsink(gi2), Xsource(gi3)), . . . (Xsink(giK−1

), Xsource(giK ))}. To create the final path, we choose
goal Xg ∈ gi1 and start Xs ∈ giK . This path has every ghost edge from the list present in it.
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Figure 13. The architecture of GPT-style (Radford et al., 2019) decode-only Transformers. Note the presence of both pre and
post-LayerNorm in each Transformer block. Figure from methods section of Ramesh et al. (2023).

C.3. Architecture details and loss function

LOSS FUNCTION

For training, we tokenize every node and we use the standard language modeling objective, next-token prediction with a
cross entropy loss. Here targetn is the 1-shifted version of the training sequence and xn are the logit outputs of the model at
the nth timestep.

L(xn, target n) = − log
( exp(βxn, target n)∑#tokens

v=0 exp(βxn,v)

)
= − log

(
softmax(βxn)target n︸ ︷︷ ︸

prob(target n)

)
(1)

Hyperparameter Value
learning rate 10−4

Batch size 64
Context length 32
Optimizer Adam
Momentum 0.9, 0.95
Activation function GeLU
Number of blocks 2
Embedding dimension 64

Table 1. Hyperparameters of the Transformer models used for all experiments except mechanistic analyses

For model architecture, we use a GPT based decode-only Transformer with a causal self-attention mask. Our implementation
is based on the nanoGPT repository2.

The Transformer architecture consists of repeated blocks of pre-LayerNorm, causal multi-head self-attention, post-
LayerNorm, and an MLP with skip connections (see Fig. 13). The MLP contains two fully-connected layers with a

2available at https://github.com/karpathy/nanoGPT
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GELU non-linearity (Hendrycks & Gimpel, 2016). The dimensionality of the hidden layer of the MLP is 4x the embedding
dimensionality. We do not include any dropout in the model or biases in the linear layers. We use weight-tying (Press &
Wolf, 2016) in the embedding and un-embedding layers.

To do the mechanistic study, we consider a 1 layer attention-only Transformer without a few modifications: We remove
the MLP and post-LayerNorm and vary the embedding dimensionality from four to 64. This 1L Transformer is described
by the following model equations. Here Xtoken ∈ Rvocab size×T denotes the tokens, WE ∈ Rnembd×vocab size is the positional
embedding matrix, Wpos ∈ Rnembd×T is the token embedding matrix, and X ∈ Rnembd×T.

X = WE(Xtoken) +Wpos(Xtoken)

X = LN(X)

X = X+ softmax(XTWT
QWKX)WV X

z = softmax(WT
EX)

next token = argmaxall tokensz

D. Training protocol for experiments
For experiments in our setup without exemplars, we randomly generate either a hierarchical graph or a Bernoulli graph G
with N = 200 nodes. In the Bernoulli graph setting the probability of an edge p = 0.05; similarly, in the hierarchical graph,
the probability of an edge between a node in layer l and layer l + 1 is p = 0.05. We choose 10 layers with 20 nodes each to
match the number of nodes in the two graph types. We convert all the nodes to tokens, along with a special goal token
which corresponds to a [BOS] token and an end token which corresponds to an [EOS] token. We use another token, pad,
for padding as well.

Train-Test split To generate training data corresponding to path connected node pairs, we first put all edges (which are
simple paths of length one) into the training data. This procedure was done in all experiments to ensure that full knowledge
of the graph was presented to the model. Further, we generate all simple paths between every pair of nodes in the graph. A
variable fraction of these paths are included in the training data, depending on experimental conditions which we outline
below.

Navigation without exemplars: A single graph For experiments in Figs. 3a–b, we pick 20% of the path-connected nodes
and put all simple paths between them into the training data for each graph type. We also add an equal number of non-path
connected nodes to the training data.

In Fig. 3c, for each value of the path-length threshold parameter, which sets the maximum length of paths in the training
dataset, we pick paths corresponding to 20% of the allowed path-connected node pairs and put them into the training data,
while the remainder are held out evaluations. For the non-path connected pairs, we simply take all node pairs that are
not path-connected and add a fraction of these node pairs into the training data, chosen to roughly balance the number
of path-connected node pairs according to the experimental conditions. The remainder of the node pairs are held-out
for evaluation. for Fig. 4, we choose a single held out path-connected node pair and prompt the model 3000 times to
stochastically sample paths.

Navigation with exemplars: A set of motifs For the motif experiments in Fig. 8, we generate a set of 10 motifs, each
with a Bernoulli graph structure of 100 nodes with a bernoulli parameter p = 0.95. We then divide the 45 possible pairwise
motif orders (gi → gj for all pairs (i, j) of 10 motifs) into a set of 35 and 10 that we put into train and test respectively. For
generating the context, we combine 3-6 motifs in a linear chain according to the allowed orders, and then sample exemplars
as well as the final sequence that traverses the full motif chain by choosing start and goal nodes from the set of sources and
sinks respectively.

For experiments in Fig. 9, we choose an initial and terminal motif gi1 and giT , and distinct intermediate motifs ginter and g′inter.
We then construct the in-context exemplars in order: egi1 ,ginter , eginter,giT

, egi2 ,g′
inter

, eg′
inter,giT

. The model is then prompted with
Xs ∈ gi1 and Xg ∈ giT .
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Comparisons between natural language and our graph navigation setup

• Connecting concepts to token paths. The mapping of natural language semantics onto a latent graph is an important
piece of stepwise inference, but in our study we abstract this mapping away and study the capabilities of a transformer
architecture trained with next token prediction. However, in this (much) simplified setting, we still uncover analogs
of several phenomena at scale and also predict new phenomena, which is a valuable contribution and speaks to the
fundamental limitations and properties of this task.

• Long-range correlation in the token sequence. We included long-range correlation in our sequences in two ways. In
the single graph setting, the path produced by the model must end to the goal, which is the first token in the prompt.
This is exemplified in figure 5, where we tracked failure modes over training. To reiterate, what we found was that
edges (short-range correlation) are learnt before paths that end in the specified goal (long range correlation). In the
motif setting, the "ghost edge" in each exemplar must be identified and reproduced in the final produced path.

• Disambiguating correct word sense. We have incorporated a version of the ambiguity of natural language by including
label noise in a fraction of the tokens. Our Appendix figure 14 shows that the main results continue to hold in this
case. Further, given a (start, goal) node pair, there are several possible paths between them. This is another source
of stochasticity/ambiguity that models real language, Fig. 11. Further, in our motif setup, in each exemplar path, the
transition from one motif to another is not explicitly provided and thus the model has to infer this, this adds another
source of ambiguity.

Given these observations, there are several examples not captured by our simplified setup:

• A cyclic reasoning failure mode is not captured by the model since we have only included simple paths in the training
data.

• Further, the mapping from natural language semantics to a latent graph has been abstracted out and thus failures based
on a misidentification of the graph are not captured by the model.

• Another limitation of our work is that our graphs in both the single graph setting and motif setting are fixed over
pretraining. There are scenarios where generation of a step of reasoning or decision-making can change the underlying
graph dynamically. Real-world examples of this include: (1) a game-like environment where navigation can produce
new information, or question-answer format of reasoning where new information is provided (2) a scientific domain
where a new experimental result can introduce new entities or change existing relationships (e.g., discovering a new
gene-disease association), necessitating a dynamic update of the graph to guide future experiments.

E. Additional experimental results
Label noise in training data In Fig. 14, we mimic real-world language data, abundant in ambiguity and polysemy, by
corrupting (a) 5%, (b) 10% and (c) 20% of tokens in a single graph scenario. To achieve this, we replaced a randomly chosen
5% and 10% of the tokens in the training data with random tokens. We observe that the gap between stepwise inference and
direct inference persists in both scenarios. This finding indicates that stepwise inference remains effective in more realistic
settings with noise.

Varying edge density In Fig. 15, we swept the density of the graph from 0.08 to 0.12 on a hierarchical graph. We observe
a stepwise inference gap in all cases. The stepwise inference gap becomes smaller for larger densities. This is because
the more likely the nodes are to be connected, the more likely it is for shortest paths to exist between nodes and thus less
“stitching" is needed (Broadbent & Hammersley, 1957).

Short path bias Fig. 16 presents a density plot comparing the average lengths of actual paths with those generated by the
model in a Bernoulli graph. This observation verifies the model tends to produce shorter paths between a given pair of start
and goal nodes.
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Figure 14. Persistence of stepwise inference gap with corrupted tokens: In this experiment with setup identical to Fig. 3a-b, (a) 5%,
(b) 10% and (c) 20% of tokens were randomly corrupted to mimic real world language data. The stepwise-inference gap persists.

Figure 15. The effect of varying edge density in the single graph scenario: Here we vary p, the edge density of connectivity in the
graph, from 0.08 in the left-most plot to 0.12 in the right-most plot, in steps of 0.01. The stepwise inference gap persists in all cases.

Effect of varying embedding dimensionality in the single graph scenario Here we consider the 1-layer Transformer
without MLP and post-LayerNorm and ask the following question: for a fixed underlying graph size and training data, how
does the model performance vary as we sweep embedding dimensionality. Intuitively, if the embedding dimensionality is
large, the model should be able to generalize better by learning a better embedding of the node tokens. We see that beyond a
critical dimensionality (which is around 20 for a graph of 200 nodes), the model generalizes to all held out (start, goal) node
pairs with a fairly abrupt transition (see Fig. 18).

F. Intuition guiding the mechanistic analysis
In this section, we present the intuition that served as the hypothesis guiding our mechanistic analysis.

Consider the optimal maximum likelihood estimator designed to solve our graph navigation task. Given a start node Xs

and an incomplete sequence of predicted nodes X1, . . . , Xk in the pursuit of navigating to the goal node Xg , the estimator

Figure 16. Model outputs are biased toward shorter paths.
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(a) (b)

Figure 17. Varying number of layers: We find that there is no qualitative change in the learning dynamics as we vary the number of
layers in a transformer, keeping the data distribution fixed.
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Figure 18. Varying embedding dimensionality in 1 layer models: We find that there is a critical embedding dimensionality (around 20
for a Bernoulli graph of size 200 nodes and p = 0.05) above which the model can generalize to all held-out node pairs.
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works the following way:
Xnext = argmax

X′
P (X ′|Xs;X1, . . . , Xk;Xg)

Since the task is conditionally Markovian: the choice of the next step will be independent of the history when conditioned
on Xg and Xk. Accordingly, we have:

Xnext = argmaxX′P (X ′|Xk, Xg)

= argmax
X′

P (Xg|X ′, Xk)P (X ′, Xk)

P (Xg, Xk)

This decomposition leads to interpretable terms which shed light on what algorithm the model might use:

logP (X ′|Xk, Xg) = logP (Xg|X ′, Xk) + logP (X ′, Xk)− logP (Xg, Xk)

These terms can be interpreted as follows:

1. logP (Xg, Xk) describes the prompt.

2. logP (X ′, Xk) describes the knowledge of the world model: How well does the model know the ground truth structure
of the graph?

3. logP (Xg|X ′, Xk) corresponds to goal-directed behavior: What X ′ is most likely to lead to the goal?

Let C(Xk) denote the subset of nodes in the graph that are children of the node Xk. Then, while selecting the next token
that has the highest likelihood, note that terms (1) and (2) cannot be optimized over: the former does not depend on X ′ and
the latter, for the optimal predictor, will be 1/|C(Xk)| if X ′ ∈ C(Xk) and 0 otherwise. Accordingly, the only term that can be
optimized over is the third one, i.e., the one that measures how likely the goal is if the next state is X ′. However, due to term
(2), X ′ ∈ C(Xk)—that is, the possible set of next tokens is constrained to the set C(Xk).

Now, exploiting the task’s conditional Markovian nature again, we have P (Xg|X ′, Xk) = P (Xg|X ′ : X ′ ∈ C(Xk)).
Heuristically, assume that P (Xg|X ′) ∝ e−d(Xg,X

′) · I(X ′ ∈ C(Xk)), where d(Xi, Xj) is a measure that describes the
distance between nodes Xi and Xj , while respecting the topology of the graph, and I is an indicator function that is 1 if its
input is True, and 0 if not. Then, we have logP (Xg|X ′, Xk) ∝ −d(Xg, X

′) · I(X ′ ∈ C(Xk)).

The intuitive argument above, though likely to be approximate, suggests that a possible solution the model can learn via
autoregressive training in our graph navigation setup is (i) compute the distance between all neighboring nodes of the current
node and the goal node, (ii) move to the node that has the least distance, and (iii) repeat. The algorithm we uncover in our
analysis in Sec. 3.1.4 in fact functions in a similar way: the model is constantly computing a inner product between the
goal token’s representation and the embeddings of all tokens; we find this inner product is highest for the neighbors of the
current token. Then, the highest inner product token is outputted and the process is repeated. Since the embeddings are not
normalized, this inner product is not exactly the Euclidean distance—we expected as much, since the topology of the graph
will have to be accounted for and learning an inner product based metric will be easier for a model (because most operations
therein are inner products).

Further, in the case of motifs, we expect that the model contructs a path through checkpoints defined by ghost edges, which
act as subgoals. To explain, given a set of K motifs strung together in-context {gi1 , gi2 , gi3 , . . . giK}, we have the set of K-1
ghost edges, one for each exemplar: {(Xsink(gi1), Xsource(gi2)), (Xsink(gi2), Xsource(gi3)), . . . (Xsink(giK−1

), Xsource(giK ))}.
Thus, we hypothesize that the model identifies all K-1 ghost edges from its context and plans sub-paths to each ghost edge
in pursuit of the goal. Preliminary analyses of attention patterns in Fig. 19 provides evidence for this hypothesis.

F.1. Generalizing static word embeddings to 3-way relations

Static word embedding algorithms such as Word2vec are trained by sampling pairs of words (wi, wc) that appear in the
same context and adjusting their embeddings so that their inner product is higher than an inner product with the embedding
of word wi and a randomly sampled word from the vocabulary. The algorithm can be understood as performing a low-rank
factorization of the matrix of co-occurrence statistics. In the case of Word2vec, the matrix is factorized as P = I · C where
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Figure 19. Attention pattern after in-context exemplars: Here we visualize the portion of the attention map after prompting with four
in-context exemplar sequences. The model generates attentional patterns that treat the node across ghost edges as a subgoal.

I contains word vectors in its rows and C contains word covectors in its columns. Therefore, every word has two types of
embeddings. One is used when the word appears in the first position in the pair (which corresponds to center words), and
the second when it appears in the second position (which corresponds to context words).

Inspired by the interpretability results, we argue our graph navigation task can also be solved using a similar low-rank
factorization method that is generalized to 3-way relations. In this case, the tensor T to be factorized is third-order, and for
each node, we have three types of embeddings: one which is used when the node acts as a goal, one when it acts as the
current state, and one when it acts as the next possible state.

Since we do not deal with a natural corpus with different frequency of occurrence of individual nodes, we can we set the
numbers Tijk to be proportional to the length lijk of a path which goes through an ordered pair of neighbour nodes (i, j) to
a node k. If there is no such path, we set the length to infinity. The target value Tijk can be seen as a preference for a node j
when the goal is to reach the node k from the node i; it is equal to l−1

ijk/
∑

j′ l
−1
ij′k.

Inspired by the learned algorithm, we can use low-rank tensor factorization to approximate this matrix by the following
expression Tijk ≈ T̂ijk = (si + gk) · ni, where si, gk, ni are the three types of learnable embeddings. Therefore, by
interpreting the trained Transformer, we can obtain a simple algorithm that can be potentially useful in setups that deal with
3-way relationships. We leave this for future work.
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