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Abstract

Encoder-decoder models, which transform input data into latent variables, have1

achieved significant success in machine learning. While the generalization ability of2

these models has been theoretically analyzed in supervised learning focusing on the3

complexity of latent variables, the role of latent variables in generalization and data4

generation performances are less explored theoretically in unsupervised learning.5

To address this gap, our study leverages information-theoretic generalization error6

analysis (IT analysis). Using the supersample setting in recent IT analysis, we7

demonstrate that the generalization gap for reconstruction loss can be evaluated8

through mutual information related to the posterior distribution of latent variables9

conditional on the input data, without relying on the decoder’s information. We10

also introduce a novel permutation-symmetric supersample setting, which extends11

the existing IT analysis and shows that regularization of the encoder’s capacity12

leads to generalization. Finally, we guarantee the Wasserstein distance between the13

data distribution and the distribution of generated data, offering insights into the14

model’s data generation capabilities.15

1 Introduction16

Encoder-decoder models have achieved significant success in machine learning (Goodfellow et al.,17

2016). Typically, the encoder extracts information from input data to generate appropriate represen-18

tations, called latent variables, and the decoder uses these representations to output predictions. In19

supervised learning, these models are trained by minimizing empirical loss, and regularization of la-20

tent variables helps prevent overfitting, improving generalization performance. Many existing studies21

on encoder-decoder models have focused not only on learned parameters but also on the complexity22

of latent variables, through principles such as the minimum description length (MDL) (Grnwald23

et al., 2005), PAC-Bayes (McAllester, 1998), and the information bottleneck (IB) hypothesis (Tishby24

et al., 2000). More recently, Sefidgaran et al. (2023) theoretically studied latent variable models25

using the information-theoretic analysis demonstrating that generalization can be characterized by26

the complexity of the encoder and latent variables without relying on decoder information.27

Encoder-decoder models are also widely used in unsupervised learning, particularly in deep generative28

models. When learning these models, we minimize reconstruction loss, which measures the difference29

between the original data and the regenerated data obtained by compressing data into latent variables30

by the encoder and regenerating the data by the decoder. Similar to supervised learning, regularization31

of the latent variables plays a critical role. For example, in variational autoencoder (VAE) (Kingma,32

2013), in the case of a Gaussian likelihood, the reconstruction loss corresponds to the squared loss,33

and the regularization term is the Kullback–Leibler (KL) divergence between the prior and posterior34

distributions of the latent variables. There have been numerous empirical and qualitative studies to35

explore model performance using the IB hypothesis and rate-distortion theory (Cover & Thomas,36
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2012) (Alemi et al., 2018; Blau & Michaeli, 2019; Tschannen et al., 2020; Bond-Taylor et al., 2021),37

but theoretical advances remain limited. Most research has concentrated on encoder and decoder38

parameters (Epstein & Meir, 2019; Chérief-Abdellatif et al., 2022), leaving a limited understanding39

of how latent variables contribute to model performance. Although Mbacke et al. (2023) recently40

introduced PAC-Bayes bounds that use priors and posteriors over the latent variables, their work41

assumed fixed encoder and decoder parameters, without considering learning these parameters.42

Based on the existing research, we provide a theoretical analysis that guarantees unsupervised learning43

models’ generalization and data generation capabilities, focusing on latent variables. However, simply44

extending the analysis of VAEs (Mbacke et al., 2023) results in the bounds that depend on learned45

decoder parameters, obscuring the role of latent variables. Similarly, directly using the information-46

theoretic analysis from supervised learning (Harutyunyan et al., 2021; Hellström & Durisi, 2022) is47

challenging due to the difficulty in decoupling the encoder-decoder relationship.48

To address these challenges, we propose a novel information-theoretic generalization error bound49

(Theorem 2) for models with finite latent variables, such as VQ-VAEs (Van Den Oord et al., 2017)50

(detailed in Sec. 2.1), based on the supersample setting in existing IT analysis incorporating tech-51

niques from Mbacke et al. (2023) and Sefidgaran et al. (2023). Furthermore, we introduce a novel52

permutation-invariant supersample setting, ensuring the generalization gap vanishes as we increase the53

sample size (Theorem 3). Finally, we provide a guarantee for the data-generating ability by deriving54

the upper bound on the 2-Wasserstein distance between the data distribution and the distribution of55

generated data (Theorem 7). These findings provide the first comprehensive theoretical understanding56

of how encoders and latent variables contribute to generalization and data generation capabilities.57

2 Preliminaries58

For a random variable (RV) denoted in capital letters, we express its realization with corresponding59

lowercase letters. Let p(X) denote the distribution of X , and let p(Y |X) represent the conditional60

distribution of Y given X . We express the expectation of a random variable X as Ep(X) or EX . The61

symbol I(X;Y ) represents the mutual information (MI) between X and Y , while I(X;Y |Z) is the62

conditional MI (CMI) between X and Y given Z. The Kullback–Leibler (KL) divergence between63

p(X) and p(Y ) is denoted KL(p(X)∥p(Y )). We further define [n] = {1, . . . , n} for n ∈ N.64

2.1 Settings of the latent variable model65

This work focuses on encoder-decoder models for unsupervised learning, specifically those with66

discrete latent spaces, including models such as the vector quantized VAE (VQ-VAE) (Van Den Oord67

et al., 2017) and its stochastic extensions (Williams et al., 2020; Takida et al., 2022; Sønderby68

et al., 2017; Roy et al., 2018). Let X ⊂ Rd be the data space and we assume an unknown data69

generating distribution D. We express the latent space Z ⊂ Rdz , with both X and Z equipped with70

the Euclidean metric ∥ · ∥. In the discrete latent space, there are K distinct points, represented as71

e = {ej}Kj=1 ∈ ZK , which are collectively referred to as a codebook learned from the training72

data, as explained below. Encoder-decoder models consist of two components: an encoder network73

fϕ : X → Z and a decoder network gθ : Z → X , parameterized by ϕ ∈ Φ ⊂ Rde and θ ∈ Θ ⊂ Rdd ,74

respectively. For a given data point x, the encoder network transforms it into fϕ(x) and selects the75

corresponding discrete representation ej from the codebook e. The posterior categorical distribution76

over the index is given as q(J = j|e, ϕ, x) for j = 1, . . . ,K. We will introduce examples of this77

distribution later. Using selected latent representation eJ , the decoder network reconstructs the data78

as gθ(eJ). To generate new data, the index J is drawn from a prior distribution, such as a uniform79

distribution, and the decoder network returns gθ(eJ).80

Given a training dataset S = (S1, . . . , Sn) ∈ Xn, where each data point Sm ∈ X is drawn i.i.d from81

D, we jointly learn the parameters of the encoder, decoder, and the codebook. We denote the set of82

parameters as W := {e, ϕ, θ} ∈ W := ZK × Φ×Θ. We assume that these parameters are learned83

using a randomized algorithm and the learning process is represented by the conditional distribution84

e, ϕ, θ ∼ q(e, ϕ, θ|S). The learning algorithm typically minimizes the reconstruction loss. For a85

given data point x and the corresponding latent variable ej , the quality of the reconstructed data is86

measured by a loss function l(x, gθ(ej)), where l : X × X → R+. Then the reconstruction loss87

for input x and parameter w is defined as l0 : W × X → R, l0(w, x) := Eq(J|e,ϕ,x)l(x, gθ(eJ)).88

In this work, we focus on the squared distance for the loss function l, so we aim to minimize89

l0(w, x) := Eq(J|e,ϕ,x)∥x− gθ(eJ)∥2 over the training dataset x ∈ S.90
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Finally, we provide examples of q(J |e, ϕ, x). The original VQ-VAE (Van Den Oord et al., 2017)91

used the deterministic process92

q(J = j|e, ϕ, x) =
{

1 for j = argmink∈[K] ∥fϕ(x)− ek∥,
0 otherwise,

using the distance between the outputs of the encoder and the codebook. Recently, stochastic selection93

methods have gained popularity. For instance, Williams et al. (2020) proposed the distribution94

q(J = j|e, ϕ, x) ∝ exp
(
−β∥fϕ(x)− ej∥2

)
, (1)

where the softmax function is used, and β ∈ R+ is a temperature parameter that controls the level of95

stochasticity. Beyond this, using stochastic encoders has become common in several other works,96

including Sønderby et al. (2017); Roy et al. (2018); Takida et al. (2022).97

2.2 Information-theoretic generalization error analysis98

We now briefly outline the IT analysis using the supersample that we utilize in our study (Steinke99

& Zakynthinou, 2020; Harutyunyan et al., 2021; Hellström & Durisi, 2022). Note that the existing100

IT analysis is used for supervised learning, the notation of this section is slightly different from101

our main results in Sec.3. Let X be the domain of data and suppose D represents an unknown data102

distribution. Consider X̃ ∈ Xn×2 as an n × 2 matrix, where each entry is drawn i.i.d. from D.103

We refer to this matrix as a supersample. Each column of X̃ has indexes {0, 1} associated with104

U = (U1, . . . , Un) ∼ Uniform({0, 1}n) independent of X̃ . We denote the m-th row as X̃m with105

entries (X̃m,0, X̃m,1). In this setting, we consider X̃U := (X̃m,Um
)nm=1 as the training dataset and106

X̃Ū := (X̃m,Ūm
)nm=1 as the test dataset, where Ūm = 1−Um. We consider a randomized algorithm107

A : Xn → W , where w ∈ W ⊂ Rdw is a parameter. Given a training dataset S, the learning108

algorithm can be characterized by q(W |S). We evaluate the quality of the learning algorithm using109

the loss function l : W × X → [0, 1], where l(A(s), x) for fixed S = s and X = x. With these110

notations, l(A(X̃U ), X̃) denotes the n×2 loss matrix obtained by applying l(A(X̃U ), ·) elementwise111

to X̃ . In this setting, we can see that L̂X̃ := 1
n

∑n
m=1 l(A(X̃U ), X̃m,Um

) corresponds to the training112

error and LX̃ := 1
n

∑n
m=1 l(A(Z̃U ), X̃m,Ūm

) corresponds to the test error. The described settings113

called the supersample setting lead to the following generalization error bound:114

Theorem 1 (Hellström & Durisi (2022)). Under the supersample setting, we have115

|EX̃,U (LX̃ − L̂X̃)| ≤
√

2

n
I(l(A(X̃U ), X̃);U |X̃).

3 Generalization of the reconstruction loss116

This section aims to analyze the generalization capability of encoder-decoder models using IT117

analysis. We define the generalization error of the reconstruction loss as follows:118

gen(n,D) :=
∣∣∣ E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,ϕ,X)l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,ϕ,Sm)l(Sm, gθ(eJm
))
)∣∣∣.

To proceed with the analysis, we assume the following condition regarding the data space:119

Assumption 1. There exists a positive constant ∆ such that supx,x′∈X ∥x− x′∥ < ∆1/2.120

This assumption implies that for any x and ej and θ, the loss function l(x, gθ(ej)) is bounded by ∆.121

We now restate the settings from Sec. 2.1 under the supersample framework. Given a super-122

sample X̃ := (X̃0, X̃1) ∈ Xn×2, define X̃U := (X̃m,Um)nm=1 as the training dataset and123

X̃Ū := (X̃m,Ūm
)nm=1 as the test dataset. Then treating l0(w, x) := Eq(J|e,ϕ,x)∥x − gθ(eJ)∥2124

as l in Sec 2.2, we can directly apply the generalization bound in Theorem 1. We refer to this general-125

ization bound as the naive IT-bound (See Appendix B for the formal statement.). As discussed in126

Appendix B, the naive IT-bound does not clearly capture the role of the learned representation eJ127

in generalization because the CMI term is entangled with both the learning of W = {e, ϕ, θ} and128

posterior distribution q(J |e, ϕ, x). This section aims to extend the naive IT analysis to the bound that129

captures the role of representation.130
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3.1 The generalization error under the existing supersample setting131

We introduce the notations of the joint distributions. Given a super sample X̃ , we define132

q(J̄|e, ϕ, X̃Ū ) =
∏n

m=1 q(J̄m|e, ϕ, X̃m,Ūm
) and q(J|e, ϕ, X̃U ) =

∏n
m=1 q(Jm|e, ϕ, X̃m,Um

) and133

q(J̃|e, ϕ, X̃) = q(J̄,J|e, ϕ, X̃Ū , X̃U ) = q(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ).134

Following is our first main result, the proof is shown in Appendix C.135

Theorem 2. Under Assumption 1 and the supersample setting, we have136

gen(n,D) ≤ 2∆

√
I(J̃;U |e, ϕ, X̃) + EX̃,UEq(e,ϕ,θ|X̃U )KL(Q∥P)

n
+

∆√
n
,

where the CMI is defined as137

I(J̃;U |e, ϕ, X̃) = EX̃,UEq(e,ϕ|X̃U )KL(q(J̃|e, ϕ, X̃)∥EU ′q(J̄,J|e, ϕ, X̃Ū ′ , X̃U ′)).

The distributions of KL divergence are defined as138

Q := q(e, ϕ, θ|X̃U )

n∏
m=1

q(Jm|e, ϕ, X̃m,Um
), P := q(e, ϕ, θ|S)

n∏
m=1

q(Jm|e, ϕ),

and q(Jm|e, ϕ) is any prior distribution that does not depend on the training data.139

The bound does not depend on the decoder’s information; This means that even if a complex decoder140

network is used to reduce reconstruction loss, it does not worsen the generalization gap. The CMI141

and KL terms are influenced solely by the posterior distribution of the latent variables, conditioned142

on the learned ϕ and e.143

The role of the representation in our bound: Denoting X̃U = S = (S1, . . . , Sn), the KL144

divergence term can be rewritten as145

Eq(e,ϕ,θ|S)KL(Q|P)

n
=

1

n

n∑
m=1

Eq(e,ϕ|S)KL(q(Jm|e, ϕ, Sm)∥q(Jm|e, ϕ)).

This is referred to as the empirical KL divergence in Mbacke et al. (2023), which is often used as146

the regularization in the variational inference. For the CMI term, since X̃Ū are n i.i.d RVs from D,147

we express each X̃Ū as X and then, we have the following relation, see Appendix D.1 for its proof;148

I(J̃;U |e, ϕ, X̃) ≤ nI(eJ ;X|e, ϕ) + ESEq(e,ϕ|S)
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥q(Jm|e, ϕ)). (2)

This upper bound is characterized by the mutual information (MI), which is commonly used in the IB149

hypothesis, and the empirical KL divergence term. These are popular empirical evaluation metrics.150

However, as discussed in Sefidgaran et al. (2023), these tems do not vanish as n → ∞. Therefore,151

the following discussion suggests that utilizing the symmetry of the prior distribution (concerning the152

supersample) is important to address such issues.153

The dependency on the sample size: Next, we study the dependency of the CMI and KL term on n154

in Theorem 2. The CMI term is similar to the fCMI term from existing IT analysis (Harutyunyan et al.,155

2021), but here, the conditioning on all other parameters distinguishes it from typical fCMI bounds,156

see Sec. D.3 for the detailed discussion. Since the latent space is discrete, we have I(J̃;U |e, ϕ, X̃) ≤157

2n logK, ensuring that the bound is always finite, though it may be vacuous. When using the158

deterministic decoder fϕ : X → [K], we can directly use Theorem 8 in Hellström & Durisi (2022);159

if fϕ belongs to a class of functions that has a finite Natarajan-dimension, then I(J̃;U |e, ϕ, X̃) =160

O(log n), see Appendix D.2 for the details. Thus, by regularizing the encoder model’s capacity, the161

first term inside the square root in Theorem 2 scales as O(log n/n). Comparing this with Eq. (2),162

where I(eJ ;X|ϕ) does not vanish as n → ∞, this highlights the importance of using symmetry in163

the prior distribution for supersamples to achieve meaningful bounds, as discussed in Sefidgaran et al.164

(2023). For a stochastic encoder, like in Eq.(1), regularizing the encoder network’s capacity similarly165

bounds the CMI (see Appendix F and Theorem 4 in the below).166

Regarding the empirical KL term, it is larger than the CMI term as seen in Eq. (2), and it does not167

necessarily vanish as n → ∞, as pointed out in Geiger & Koch (2019) and Sefidgaran et al. (2023).168

As discussed in Appendix C.3, this arises from the limited flexibility of the supersample setting,169

which motivated the introduction of the novel supersample setting in Sec. 3.2.170
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3.2 Generalization under the permutation symmetry settings171

As discussed in Sec. 3.1, the existing supersample setting leads to an empirical KL term that does not172

necessarily vanish as n increases. As discussed in Sefidgaran et al. (2023), the existing supersample173

setting utilizes the specific symmetry of the test and training dataset (they referred to it as type-1174

symmetry) and demonstrated that such symmetry is insufficient to analyze latent variable models.175

We extend their results by introducing a new symmetry, which eliminates the empirical KL term.176

To establish this new symmetry, let us denote a random permutation of [2n] as T = {T1, . . . , T2n},177

where each permutation appears with uniform probability, P (T) = 1/(2n)!. Given a supersample178

X̃ = (X̃1, . . . , X̃2n) ∈ X 2n, a set of 2n random variables drawn i.i.d from D, we reorder the samples179

using T expressed as X̃T = (X̃T1
, . . . , X̃T2n

). The first n samples (X̃T1
, . . . , X̃Tn

) are used for180

the test dataset and the remaining n samples (X̃Tn+1
, . . . , X̃T2n

) are used for the training dataset.181

We further express T = {T0,T1} and X̃T0
= (X̃T1

, . . . , X̃Tn
) and X̃T1

= (X̃Tn+1
, . . . , X̃T2n

)182

represent the test and training dataset respectively. Unlike the existing supersample setting discussed183

in Sec. 2.2, where Um are independent, the components of T are dependent.184

We express the joint distibution as follows; q(J̄|e, ϕ, X̃T0
) =

∏n
m=1 q(J̄m|e, ϕ, X̃Tm

),185

q(J|e, ϕ, X̃T1
) =

∏n
m=1 q(Jm|e, ϕ, X̃Tn+m

), and q(J̃|e, ϕ, X̃) = q(J̄,J|e, ϕ, X̃T0
, X̃T1

) =186

q(J̄|e, ϕ, X̃T0
)q(J|e, ϕ, X̃T1

). We refer to these notations and assumptions as the permutation187

symmetric (supersample) setting. Following is our main result, the proof is shown in Appendix E;188

Theorem 3. Under Assumptions 1 and the permutation symmetric setting, we have189

gen(n,D) ≤ 4∆EX

√
I(J̃;T|e, ϕ, X̃)

n
+

2∆√
n
,

where the CMI is defined as190

I(J̃;T|e, ϕ, X̃)= Ẽ
X,T

E
q(e,ϕ|X̃T1

)

KL(q(J̃|e, ϕ, X̃)∥ E
P (T′)

q(J̄,J|e, ϕ, X̃T′
0
, X̃T′

1
)). (3)

As shown, the empirical KL term is eliminated, and a new CMI term, Eq. (3), emerges, which191

leverages the symmetry of index T in the prior distribution. We will show that this CMI term will192

vanish as n → ∞, thus Theorem 3 successfully characterizes the generalization. As discussed in193

Sec. 3.1, when using the sufficiently regularized deterministic decoder fϕ : X → [K], this CMI194

scales as O(log n), and thus, the bound behaves as O(
√
log n/n). See AppendixD.2 for more details.195

To analyze the role of the capacity of stochastic encoders like Eq. (1), we extend Theorem 3 by196

incorporating the concept of metric entropy. Assume q(J |e, ϕ, x) = q(J |e, fϕ(x)). Conditioned on ϕ,197

let F be the encoder function class equipped with the metric ∥ ·∥∞. Given xn := (x1, . . . , xn) ∈ Xn,198

define the pseudo-metric dn on F as dn(f, g) := maxi∈[n] ∥f(xi) − g(xi)∥∞ for f, g ∈ F . The199

δ-covering number of F with respect to dn is denoted as N (δ,F , xn), and we define N (δ,F , n) :=200

supxn∈Xn N (δ,F , xn).201

Theorem 4. Assume that there exists a positive constant ∆z such that supz,z′∈Z ∥z − z′∥ < ∆z .202

Then, when using Eq. (1) and under the same setting as Theorem 3, for any δ ∈ (0, 1], we have203

gen(n,D) ≤ ∆
√
8βnδ∆z + 4∆

√
logN (δ,F , 2n)

n
+

2∆√
n
.

In the proof, we first approximate fϕ(x) using δ-cover of F , leading to an approximation error in the204

first term. Then the CMI of the δ-cover is bounded by the metric entropy. See Appendix F for the205

complete proof, including a more general stochastic encoder beyond Eq. (1). When F is sufficiently206

regularized (such as with Natarajan dimension with margin, see AppendixF for details), the metric207

entropy scales as O(log(n/δ)), and by setting δ = O(1/n2), we achieve gen(n,D) = O(
√
log n/n).208

This result demonstrates that regularizing the encoder’s capacity leads to better generalization.209

We are often interested in the data generation capabilities rather than generalization under recon-210

struction loss. Specifically, the goal is to generate realistic data by sampling from the latent variable211

distribution and passing it through the decoder. We aim for the distribution of generated data to closely212
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approximate the true data distribution. In Theorem 7 of Appendix G, we provide an upper bound213

on the Wasserstein distance between the true data distribution and the generated data distribution214

obtained from the pushforward of the prior distribution over latent variables.215

Theorems 2, 3 (and 7) offer important insights into the roles of the encoder and decoder. To reduce216

the reconstruction loss on test data and improve data generation capabilities, it is desirable to use a217

complex decoder, as it can lower the reconstruction loss without increasing the KL or CMI terms,218

regardless of the sample size. However, using the complex encoder increases the KL and CMI,219

requiring careful adjustment according to the sample size. This characteristic is specific to latent220

variable models, highlighting the critical role of the latent variables as the regularization.221

3.3 Comparison with existing bounds222

Here we compare our bounds with existing work. Theorem 2 resembles the results of Mbacke et al.223

(2023) since both bounds include the empirical KL term in the upper bounds, and the posterior224

distribution corresponds to the variational posterior distribution. The key difference is that Mbacke225

et al. (2023) assumed fixed encoder and decoder parameters, whereas our analysis incorporates the226

learning process under the assumption of finite latent space and squared reconstruction loss. A further227

distinction is that their generalization bound does not go to 0 as n → ∞ due to two reasons; the228

presence of the empirical KL term, which we address in Theorem 3 using permutation symmetry.229

Our technique can be regarded as developing the appropriate prior distribution in PAC-Bayes bound.230

The second reason is the presence of the average distance 1
n

∑n
m=1 EX∥X − Sm∥, which is inherent231

to the data distribution and may not vanish as n → ∞. Our use of the squared loss in the analysis232

mitigates this problematic term, as detailed in Appendix, C. Our proof techniques are motivated from233

Sefidgaran et al. (2023). However, we could not directly apply their methods, as the reconstruction234

loss reuses input data, unlike in classification settings. We resolve this by combining the data235

regeneration technique in the proof of Mbacke et al. (2023). Additionally, we introduced a new236

permutation symmetric setting, leading to a bound that controls mutual information in Theorem 3.237

Existing analyses based related to the IB hypothesis (Vera et al., 2018; Hafez-Kolahi et al., 2020;238

Kawaguchi et al., 2023; Vera et al., 2023) assume both the latent variables and data are discrete,239

and their bounds explicitly depend on the latent space size or show exponential dependency on the240

MI. In contrast, we only assume discrete latent variables and the resulting bound does not explicitly241

depend on the number of discrete states nor exhibit exponential dependency on MI. We believe that242

our technique can be extended to continuous latent variables, which we leave for future research.243

4 Conclusion and limitations244

We provided the first comprehensive analysis of the generalization and data generation capabilities of245

encoder-decoder models in unsupervised learning based on the IT analysis. Our work highlights the246

role of encoder capacity and the posterior distribution of latent variables through the use of a novel247

permutation-symmetric supersample setting. However, our analysis has two key limitations. First, it248

assumes a discrete latent space, limiting its applicability to models like VAEs with continuous latent249

variables. Second, it relies on the squared loss for reconstruction. Addressing these limitations in250

future work will be crucial for developing a more accurate understanding of encoder-decoder models.251

References252

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing a253

broken elbo. In International conference on machine learning, pp. 159–168. PMLR, 2018.254

Noga Alon, Shai Ben-David, Nicolo Cesa-Bianchi, and David Haussler. Scale-sensitive dimensions,255

uniform convergence, and learnability. Journal of the ACM (JACM), 44(4):615–631, 1997.256

Peter L Bartlett and Wolfgang Maass. Vapnik-chervonenkis dimension of neural nets. The handbook257

of brain theory and neural networks, pp. 1188–1192, 2003.258

S. Bendavid, N. Cesabianchi, D. Haussler, and P.M. Long. Characterizations of learnability for classes259

of [0, ..., n)-valued functions. Journal of Computer and System Sciences, 50(1):74–86, 1995. ISSN260

0022-0000. doi: https://doi.org/10.1006/jcss.1995.1008. URL https://www.sciencedirect.261

com/science/article/pii/S0022000085710082.262

6

https://www.sciencedirect.com/science/article/pii/S0022000085710082
https://www.sciencedirect.com/science/article/pii/S0022000085710082
https://www.sciencedirect.com/science/article/pii/S0022000085710082


Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception263

tradeoff. In International Conference on Machine Learning, pp. 675–685. PMLR, 2019.264

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep generative modelling:265

A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.266

IEEE transactions on pattern analysis and machine intelligence, 44(11):7327–7347, 2021.267

Badr-Eddine Chérief-Abdellatif, Yuyang Shi, Arnaud Doucet, and Benjamin Guedj. On pac-bayesian268

reconstruction guarantees for vaes. In International conference on artificial intelligence and269

statistics, pp. 3066–3079. PMLR, 2022.270

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2012.271

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability and272

the erm principle. In Proceedings of the 24th Annual Conference on Learning Theory, pp. 207–232.273

JMLR Workshop and Conference Proceedings, 2011.274

Devdatt P Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence. BRICS275

Report Series, 3(25), 1996.276

Baruch Epstein and Ron Meir. Generalization bounds for unsupervised and semi-supervised learning277

with autoencoders. arXiv preprint arXiv:1902.01449, 2019.278

Bernhard C. Geiger and Tobias Koch. On the information dimension of stochastic processes. IEEE279

Transactions on Information Theory, 65(10):6496–6518, 2019. doi: 10.1109/TIT.2019.2922186.280

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:281

//www.deeplearningbook.org.282

Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient classification for metric283

data. IEEE Transactions on Information Theory, 60(9):5750–5759, 2014.284

Peter D. Grnwald, In Jae Myung, and Mark A. Pitt. Advances in Minimum Description Length: Theory285

and Applications (Neural Information Processing). The MIT Press, 2005. ISBN 0262072629.286

Yann Guermeur. Vc theory of large margin multi-category classifiers. Journal of Machine Learning287

Research, 8(85):2551–2594, 2007.288

Yann Guermeur. Lp-norm sauer–shelah lemma for margin multi-category classifiers. Journal of289

Computer and System Sciences, 89:450–473, 2017. ISSN 0022-0000.290

Yann Guermeur. Combinatorial and structural results for gamma-psi-dimensions. arXiv preprint291

arXiv:1809.07310, 2018.292

Hassan Hafez-Kolahi, Shohreh Kasaei, and Mahdiyeh Soleymani-Baghshah. Sample complexity of293

classification with compressed input. Neurocomputing, 415:286–294, 2020. ISSN 0925-2312.294

H. Harutyunyan, M. Raginsky, G. Ver Steeg, and A. Galstyan. Information-theoretic generalization295

bounds for black-box learning algorithms. In Advances in Neural Information Processing Systems,296

pp. 24670–24682, 2021.297

F. Hellström and G. Durisi. A new family of generalization bounds using samplewise evaluated CMI.298

In Advances in Neural Information Processing Systems, 2022.299

Ying Jin. Upper bounds on the natarajan dimensions of some function classes. In 2023 IEEE300

International Symposium on Information Theory (ISIT), pp. 1020–1025. IEEE, 2023.301

Kumar Joag-Dev and Frank Proschan. Negative association of random variables with applications.302

The Annals of Statistics, pp. 286–295, 1983.303

Kenji Kawaguchi, Zhun Deng, Xu Ji, and Jiaoyang Huang. How does information bottleneck help304

deep learning? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan305

Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine306

Learning, volume 202 of Proceedings of Machine Learning Research, pp. 16049–16096. PMLR,307

23–29 Jul 2023.308

7

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org


Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.309

Sokhna Diarra Mbacke, Florence Clerc, and Pascal Germain. Statistical guarantees for variational310

autoencoders using pac-bayesian theory. Advances in Neural Information Processing Systems, 36,311

2023.312

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual conference313

on Computational learning theory, pp. 230–234, 1998.314

Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments on315

vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.316

Milad Sefidgaran, Abdellatif Zaidi, and Piotr Krasnowski. Minimum description length and gen-317

eralization guarantees for representation learning. Advances in Neural Information Processing318

Systems, 36, 2023.319

Casper Kaae Sønderby, Ben Poole, and Andriy Mnih. Continuous relaxation training of discrete320

latent variable image models. In Beysian DeepLearning workshop, NIPS, volume 201, 2017.321

T. Steinke and L. Zakynthinou. Reasoning About Generalization via Conditional Mutual Information.322

In Proceedings of Thirty Third Conference on Learning Theory, volume 125, pp. 3437–3452, 2020.323

Yuhta Takida, Takashi Shibuya, Weihsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu Uesaka,324

Naoki Murata, Shusuke Takahashi, Toshiyuki Kumakura, and Yuki Mitsufuji. SQ-VAE: Variational325

Bayes on discrete representation with self-annealed stochastic quantization. In Kamalika Chaudhuri,326

Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of327

the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine328

Learning Research, pp. 20987–21012. PMLR, 17–23 Jul 2022.329

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv330

preprint physics/0004057, 2000.331

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic. On mutual332

information maximization for representation learning. In International Conference on Learning333

Representations, 2020.334

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in335

neural information processing systems, 30, 2017.336

Matias Vera, Pablo Piantanida, and Leonardo Rey Vega. The role of the information bottleneck in337

representation learning. In 2018 IEEE International Symposium on Information Theory (ISIT), pp.338

1580–1584, 2018. doi: 10.1109/ISIT.2018.8437679.339

Matias Vera, Leonardo Rey Vega, and Pablo Piantanida. The role of mutual information in variational340

classifiers. Machine Learning, 112(9):3105–3150, 2023.341

Will Williams, Sam Ringer, Tom Ash, David MacLeod, Jamie Dougherty, and John Hughes. Hi-342

erarchical quantized autoencoders. Advances in Neural Information Processing Systems, 33:343

4524–4535, 2020.344

A Auxiliary definitions and lemmas345

Here we define the Wasserstein distance. Given a metric d(·, ·) and probability distributions p and q346

on X , let Π(p, q) denote the set of all couplings of p and q. The 2-Wasserstein distance is defined as:347

W2(p, q) =

√
inf
ρ∈Π

∫
X×X

d(x, x′)2dρ(x, x′).

In this work, we use the Euclidean metric | · | as d(·, ·).348
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We also rely on the following type of exponential moment inequality, which is often used in the proof349

of McDiarmid’s inequality. A function f : Xn → R has the bounded differences property if for some350

nonnegative constants c1, . . . , cn, the following holds for all i:351

sup
x1,...,xn,x′

i∈X
|f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Assuming X1, . . . , Xn are independent random variables taking values in X , we have the following352

lemma:353

Lemma 1 (Used in the proof of McDiarmid’s inequality). Given a function f with the bounded354

differences property, for any t ∈ R, we have:355

E
[
et(f(X1,...,Xn)−E[f(X1,...,Xn)])

]
≤ e

t2

8

∑n
i=1 c2i .

B Discussion about the Naive IT bound356

As discussed in Sec 3, by applying the existing IT analysis bound in Theorem 1, we can derive a357

naive IT bound for the reconstruction loss as follows:358

Theorem 5. Under Assumption 1 and the supersample setting, we have359

gen(n,D) ≤ ∆

√
2

n
I(l0(W, X̃);U |X̃).

where l0(w, x) := Eq(J|e,ϕ,x)∥x− gθ(eJ)∥2 and W = {e, ϕ, θ} ∼ q(e, ϕ, θ|X̃U ).360

Proof. Given that the loss is bounded by [0,∆], it follows a ∆-subGaussian property. Thus, using361

Theorem 1, we obtain the result.362

It is important to note that this upper bound is characterized by the CMI I(l0(W, X̃);U |X̃). This363

CMI depends on the decoder and encoder information, distinguishing it from the results presented in364

our main Theorems 2 and 3, which do not require the decoder’s information.365

To clarify this distinction, let us introduce the necessary notation. Following the notation in Sec. 3.1,366

we define the regenerated data as:367

Ỹ := (gθ(eJ̄1), . . . , gθ(eJ̄n), gθ(eJ1), . . . , gθ(eJn)) = gθ(eJ̃),

which represents the elementwise application of the decoder gθ(e(·)) to the selected index J̃ on X̃368

(Recall that q(J̃|e, ϕ, X̃) = q(J̄,J|e, ϕ, X̃Ū , X̃U ) = q(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ) .).369

Under these notations, we have the following relations:370

I(l0(W, X̃);U |X̃) ≤ I(Ỹ ;U |X̃) ≤ I(θ;U |X̃) + I(eJ̃;U |X̃, θ)

where the first inequality is obtained by the data processing inequality (DPI) and the second inequality371

is obtained by the chain rule of CMI and the DPI. This result demonstrates that the decoder information372

cannot be eliminated from the naive IT bound, which clarifies the fundamental difference compared373

to our result (Theorems 2 and 3).374

C Proof of Theorem 2375

We express q(J̃|e, ϕ, X̃) = q(J̄,J|e, ϕ, X̃Ū , X̃U ) = q(J̄|e, ϕ, X̃Ū )q(J|e, ϕ, X̃U ). Hereinafter, we376

simplify the notation by expressing X̃ as X . For simplification in the proof, we omit the absolute value377

operation. The reverse bound can be proven in a similar manner. We first express the generalization378
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error of the reconstruction loss using the supersample as follows379

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)q(e,ϕ,θ|XU )l(Xm,Ūm

, gθ(ek))1k=J̄m

−
K∑

k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )q(e,ϕ,θ|XU )l((Xm,Um
, gθ(ek))1k=Jm

=

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)q(e,ϕ,θ|XU )∥Xm,Ūm

− gθ(ek)∥21k=J̄m

−
K∑

k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )q(e,ϕ,θ|XU )∥Xm,Um − gθ(ek)∥21k=Jm , (4)

where the first term corresponds to the test loss and the second term corresponds to the training loss.380

Recall the learning algorithm and posterior distribution:381

e, ϕ, θ ∼ q(e, ϕ, θ|XU ),

jk ∼ q(J|e, ϕ, xk).

Here e = {e1, . . . , eK} is the codebook, and j and J = {J1, . . . , jn} represents the index of the382

codebook that the test and training data are represented.383

Conditioned on X and U , we then decompose Eq. (4) as follows384

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(J̄m|e,ϕ,Xm,Ūm

)1k=J̄m

−
K∑

k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

+

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

−
K∑

k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Um
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

. (5)

We will separately upper bound these terms.385

C.1 Bounding first and second terms386

The decomposition of the generalization error, as shown in Eq. (5), allows us to bound the first and387

second terms as follows.388

We apply Donsker-Varadhan’s inequality between the following two distributions:389

Q := P (U)q(e, ϕ, θ|XU )q(J̄,J|e, ϕ,XŪ , XU )

PS := P (U)q(e, ϕ, θ|XU ) E
P (U ′)

q(J̄,J|e, ϕ,XŪ ′ , XU ′). (6)

Then, for any λ ∈ R+, we have390

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))

(
Eq(J̄m|e,ϕ,Xm,Ūm

)1k=J̄m
− Eq(Jm|e,ϕ,Xm,Um )1k=Jm

)
≤ 1

λ
KL(Q|PS) +

1

λ
logEPS

exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=J̄m

− 1k=Jm

))
.
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To simplify the notation, we express J̄ = J0, J̄m = Jm,0, J = J1, and Jm = Jm,1. Let U ′′ be a391

random variable taking 0, 1 with a uniform distribution. Since PS is symmetric with respect to the392

permutation of J0 and J1, we can bound the exponential moment as:393

logEP (U)q(e,ϕ,θ|XU ) E
P (U′)

q(J0,J1|e,ϕ,XŪ′ ,XU′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,0

− 1k=Jm,1

))

= logEP (U)q(e,ϕ,θ|XU )P (U ′′)n E
P (U′)

q(J0,J1|e,ϕ,XŪ′ ,XU′ )P (U ′′)N exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′ −1k=Jm,U′′

))

= logEP (U)q(e,ϕ,θ|XU ) E
P (U′)

q(J0,J1|e,ϕ,XŪ′ ,XU′ )EP (U ′′)n exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′ − 1k=Jm,U′′

))
.

In the final line, we apply McDiarmid’s inequality since U ′′n are n i.i.d random variables. To use394

McDiarmid’s inequality in Lemma 1, we use the stability caused by replacing one of the elements of n395

i.i.d random variables. To estimate the coefficients of stability in Lemma 1, let U ′′n = (U ′′
1 , . . . , U

′′
N ),396

then397

sup
{U ′′

m}n
m=1,U

′′′
m′

∣∣∣∣∣λn
K∑

k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′

m
− 1k=Jm,U′′

m

)
(7)

− λ

n

K∑
k=1

n∑
m ̸=m′

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,Ū′′

m
− 1k=Jm,U′′

m

)

− λ

n

K∑
k=1

l(Xm′,Ū ′
m
, gθ(ek))

(
1k=Jm′,Ū′′′

m′
− 1k=Jm′,U′′′

m′

) ∣∣∣∣∣
= sup

{U ′′
m}n

m=1,U
′′′
m′

∣∣∣∣∣λn
K∑

k=1

l(Xm′,Ū ′
m
, gθ(ek))

(
1k=Jm′,Ū′′

m′
− 1k=Jm′,U′′

m′

)
− λ

n

K∑
k=1

l(Xm′,Ū ′
m
, gθ(ek))

(
1k=Jm′,Ū′′′

m′
− 1k=Jm′,U′′′

m′

) ∣∣∣∣∣ ≤ 2λ∆

n

Here, the maximum change caused by replacing one element of U ′′ is 2λ∆/n, thus, its log of the398

exponential moment is bounded by (2λ∆/n)2/8× n = λ2∆2/2n. Thus from Lemma 1, we have399

logEP (U)q(e,ϕ,θ|XU ) E
P (U′)

q(J0,J1|e,ϕ,XŪ′ ,XU′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(Xm,Ūm
, gθ(ek))

(
1k=Jm,0

− 1k=Jm,1

))

≤ λ2∆2

2n
.

Finally, by noting that400

EXKL(Q|PS) = EX E
P (U)q(e,ϕ|XU )

KL(q(J̄,J|e, ϕ,XŪ , XU )|EU ′q(J̄,J|e, ϕ,XŪ ′ , XU ′)) = I(J̄,J;U |e, ϕ,X),

the first and second terms in Eq. (5) are upper bounded by401

1

λ
I(J̄,J;U |e, ϕ,X) +

λ∆2

2n
. (8)
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C.2 Bounding third and fourth terms402

Next, we upper bound the third and fourth terms in Eq.(5);403

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

−
K∑

k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Um
, gθ(ek))Eq(Jm|e,ϕ,Xm,Um )1k=Jm

. (9)

We simplify the notation by expressing Eq(Jm|e,ϕ,Xm,Um )1k=Jm
as Pk,m and use the square loss:404

EX,U

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Ūm
, gθ(ek))Pk,m −

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )l(Xm,Um , gθ(ek))Pk,m

= EX,U

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XU )

(
∥Xm,Ūm

∥2 − ∥Xm,Um
∥2
)
Pk,m

+ EX,U

K∑
k=1

2

n

n∑
m=1

Eq(e,ϕ,θ|XU )

(
Xm,Ūm

−Xm,Um

)
· gθ(ek)Pk,m

= EX,U
1

n

n∑
m=1

(
∥Xm,Ūm

∥2 − ∥Xm,Um
∥2
)
Eq(e,ϕ,θ|XU )

K∑
k=1

Pk,m

+ ES
2

n

n∑
m=1

(EXX −Xm) · Eq(e,ϕ,θ|S)

K∑
k=1

gθ(ek)Pk,m

= ES
2

n

n∑
m=1

(EXX −Xm) · Eq(e,ϕ,θ|S)

K∑
k=1

gθ(ek)Pk,m, (10)

where we express S = (X1,U1
, . . . , Xn,Un

) = (S1, . . . , Sn) as the training samples. In the last405

inequality, we used
∑K

k=1 Pk,m = 1 and EX,U
1
n

∑n
m=1

(
∥Xm,Ūm

∥2 − ∥Xm,Um∥2
)
= 0 since X406

and U are i.i.d.407

To evaluate the final line, we use the Donsker-Valadhan inequality between408

Q := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ, Sm),

PS := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ),

where q(Jm|e, ϕ) is the prior distribution, which never depends on the training data. Then we have409

ES
2

n

n∑
m=1

(EXX −Xm) · Eq(e,ϕ,θ|S)

K∑
k=1

gθ(ek)Pk,m

≤ ES
1

λ
KL(Q|PS) + ES

1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX −Xm) · Eq(e,ϕ,θ|S)

K∑
k=1

gθ(ek)1k=Jm

)

≤ ES
1

λ
KL(Q|PS)

+ ES
1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX −Xm) ·
K∑

k=1

gθ(ek)(1k=Jm
− P ′′

k,m)

)

+ ESEPS

2

n

n∑
m=1

(EXX −Xm) ·
K∑

k=1

gθ(ek)P
′′
k,m, (11)
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where P ′′
k,m = Eq(Jm|ϕ,e)1k=Jm . Clearly, this does not depend on the index m, so we express410

P ′′
k,m = P ′′

k . Then the last term becomes411

ESEPS

1

n

n∑
m=1

(EXX −Xm) ·
K∑

k=1

gθ(ek)P
′′
k ≤ ESEPS

∥∥∥∥∥EXX − 1

n

n∑
m=1

Xm

∥∥∥∥∥ ∥
K∑

k=1

gθ(ek)P
′′
k ∥

≤ ES

∥∥∥∥∥EXX − 1

n

n∑
m=1

Xm

∥∥∥∥∥√∆

≤

√√√√∆Var

(
1

n

n∑
m=1

Xm

)

≤
√

∆
Var (X)

n

≤
√

∆

4n

√
∆ =

∆

2
√
n
, (12)

where we used the fact that the variance of random variables with bounded in (a, b] is upper bounded412

by (b − a)2/4n (the extension to the d-dimensional random variable is straightforward) and thus,413

Var (X) ≤ ∆/4. Then the exponential moment term becomes414

ES
1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX −Xm) ·
K∑

k=1

gθ(ek)(1k=Jm
− P ′′

k,m)

)

= ES
1

λ
logEPS

exp

(
2λ

n

n∑
m=1

(EXX −Xm) ·
K∑

k=1

gθ(ek)(1k=J − P ′′
k )

)
.

Here we use the McDiarmid’s inequality for n random variables J. Then we estimate the stability415

coefficient similarly to Eq. (7), which is upper bounded by λ∆/n. Then from Lemma 1, the416

exponential moment is bounded by (2λ∆/n)2/8 × n = λ∆2/2n Thus, the second term is upper417

bounded by418

1

λ
KL(Q|PS) +

λ∆2

2n
+

∆√
n
. (13)

By optimizing the first and second terms of Eqs. (8) and (13), we have419

2∆

√
(I(J̄,J;U |e, ϕ,X) + ESEq(e,ϕ,θ|S)KL(Q|PS))

n
+

∆√
n
,

where we used the fact that Xm are i.i.d. Thus, we use McDiarmid’s inequality for n random variables420

of Xm to upper bound the exponential moment. We estimate the stability coefficient similarly to421

Eq. (7), which is upper bounded by as follows. where422

Q := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ, Sm),

PS := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ).

C.3 Discussion about the limitation of the existing supersample setting423

The empirical KL divergence in Theorem 2 originates from the third and fourth terms of Eq.(5), as424

discussed in Appendix C.2. After applying the Donsker-Valadhan lemma in the proof, it is crucial to425

ensure that the probability P ′′
k,m does not depend on the sample index m to control the exponential426

moment in Eq.(11). To achieve this, we employ the prior distribution q(Jm|e, ϕ), which eliminates427
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the sample index dependency and leads to P ′′
k,m = P ′′

k . As a result, we can use a distribution of the428

form:429

PS := q(e, ϕ, θ|S)
n∏

m=1

n∑
m′=1

1

N
q(Jm|e, ϕ, Sm′),

which provides an empirical approximation of the marginal distribution using available samples.430

Since this distribution does not explicitly depend on the sample index, we can bound the exponential431

moment similarly as done in Appendix C.2.432

However, using the prior distribution in Eq.(6) to bound the third and fourth terms of Eq.(5) is not433

feasible. The reason is that applying the Donsker-Valadhan lemma with Eq.(6) to these terms does434

not yield a bound of order O(1/
√
n) as achieved in Eq.(12). This is because the dependency on435

the sample index in Eq.(6) prevents us from leveraging the symmetry between the test and training436

datasets through the supersample index U . Consequently, the prior distribution’s symmetry cannot be437

exploited to simplify the bounds for these terms.438

D Proof of Lemmas and equations439

D.1 Proof of Eq. (2)440

We define q(J̄|e, ϕ) =
∏n

m=1 q(J̄m|e, ϕ), q(J|e, ϕ) =
∏n

m=1 q(Jm|e, ϕ), and q(J̃|e, ϕ, X̃) =441

q(J̄,J|e, ϕ) = q(J̄|e, ϕ)q(J|e, ϕ) where each q(J̄m|e, ϕ) is the marginal distribution of442

q(Jm|e, ϕ,Xm).443

Then by the definition of the CMI, we have444

I(J̃;U |e, ϕ, X̃)

= EX̃,UEq(e,ϕ|X̃U )KL(q(J̃|e, ϕ, X̃)∥EU ′q(J̄,J|e, ϕ, X̃Ū ′ , X̃U ′))

≤ EX̃,UEq(e,ϕ|X̃U )KL(q(J̃|e, ϕ, X̃)∥q(J̄,J|e, ϕ))

= EX̃,UEq(e,ϕ|X̃U )KL(q(J̄|e, ϕ, X̃Ū )∥q(J̄|e, ϕ)) + EX̃,UEq(e,ϕ|X̃U )KL(q(J|e, ϕ, X̃U )∥q(J|e, ϕ))

= EX̃,UEq(e,ϕ|X̃U )

n∑
m=1

KL(q(J̄m|e, ϕ, X̃m,Ūm
)∥q(J̄m|e, ϕ))

+ EX̃,UEq(e,ϕ|X̃U )

n∑
m=1

KL(q(Jm|e, ϕ, X̃m,Um)∥q(Jm|e, ϕ))

= nI(J ;X|e, ϕ) + ESEq(e,ϕ|S)
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥q(Jm|e, ϕ))

≤ nI(eJ ;X|e, ϕ) + ESEq(e,ϕ|S)
1

n

n∑
m=1

KL(q(Jm|e, ϕ, Sm)∥q(Jm|e, ϕ)).

D.2 Discussion about the CMI of the deterministic encoder445

Here, we consider the case where fϕ : X → [K] represents a deterministic encoder that maps446

input data to one of the K indices. This scenario can be interpreted as a K-class classification447

problem, allowing us to directly apply the results from Harutyunyan et al. (2021). In their work,448

they demonstrated that the CMI for multi-class classification problems can be upper-bounded using449

the Natarajan dimension. The Natarajan dimension is a combinatorial measure that generalizes the450

VC dimension to multiclass classification setting. Using this concept, we can derive the following451

characterization:452

When using a deterministic encoder network fϕ : X → [K], belonging to a class with finite Natarajan453

dimension dK , and assuming 2n > dK + 1, we have the following bound:454

I(J̃;U |e, ϕ, X̃) ≤ dK log

((
K

2

)
2en

dK

)
.
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The proof follows exactly as in Theorem 8 of Harutyunyan et al. (2021).455

Thus, by regularizing the capacity of the encoder model (via the Natarajan dimension), the CMI term456

scales as O(log n), ensuring controlled generalization behavior. Examples of models that satisfy the457

finite Natarajan dimension are shown in Jin (2023) and Daniely et al. (2011). Also, see Bendavid458

et al. (1995), which shows that the VC dimension of the multiclass loss function characterizes the459

graph dimension, and the graph dimension upper bounds the Natarajan dimension. For the discussion460

of the stochastic encoder that uses q(J |e, ϕ, x) = q(J |e, fϕ(x)), see Appendix F.2.461

D.3 Comparison with the fCMI462

Here, we examine the relationship between our CMI and existing forms of fCMI in more detail. As463

highlighted in the main paper, a key difference is that our CMI is conditioned on all model parameters,464

whereas existing fCMI approaches marginalize the parameters.465

To explore this further, we consider marginalizing over the encoder parameter, ϕ. In the proof of466

Theorem 2, we perform this marginalization over ϕ in Eq. (4), and obtain467

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,Xm,Ūm
)q(e,ϕ,θ|XU )l(Xm,Ūm

, gθ(ek))1k=J̄m

−
K∑

k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,Xm,Um )q(e,ϕ,θ|XU )l((Xm,Um , gθ(ek))1k=Jm

=

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|θ,e,Xm,Ūm
)q(e,θ|XU )∥Xm,Ūm

− gθ(ek)∥21k=J̄m

−
K∑

k=1

1

n

n∑
m=1

Eq(Jm|θ,e,Xm,Um )q(e,θ|XU )∥Xm,Um
− gθ(ek)∥21k=Jm

,

and proceed with the proof in the same way. We apply the Donsker-Varadhan inequality between the468

following distributions, instead of Eq.(6):469

Q := P (U)P (U ′)q(e, θ|XU )q(J̄,J|, e, θ,XŪ , XU )

P := P (U)q(e, θ|XU )EP (U ′)q(J̄,J|e, θ,XŪ ′ , XU ′).

This incorporates marginalization over ϕ in Eq.(6), resulting in the following KL divergence in the470

upper bound:471

EXKL(Q|P) = EX E
P (U)q(e,ϕ|XU )

KL(q(J̄,J|e, θ,XŪ , XU )|EP (U ′)q(J̄,J|e, θ,XŪ ′ , XU ′))

= I(J̄,J;U |e, θ,X).

Unlike Theorem 2, this CMI explicitly involves the decoder parameter θ. By marginalizing over ϕ,472

decoder information is integrated into the upper bound, making Theorem 2 distinct from existing473

fCMI bounds.474

E Proof of Theorem 3475

We define T = {T0,T1}, where X̃T0
= (X̃T1

, . . . , X̃Tn
) serves as the test dataset and X̃T1

=476

(X̃Tn+1
, . . . , X̃T2n

) serves as the training dataset. We further express X̃T0 = (X̃T1
, . . . , X̃Tn

) =477

(X̃T0,1
, . . . , X̃T0,n

) and X̃T1
= (X̃T1,1

, . . . , X̃T1,n
). To emphasize the dependence of the478

dataset on T, we write the posterior distribution as q(J̃|e, ϕ, X̃T) = q(J̄,J|e, ϕ, X̃T) =479

q(J̄,J|e, ϕ, X̃T0
, X̃T1

) = q(J̄|e, ϕ, X̃T0
)q(J|e, ϕ, X̃T1

).480
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Hereinafter, we express X̃ as X to simplify the notation. Under the permutation symmetric settings,481

the generalization error can be expressed as482

E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,ϕ,X)l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,ϕ,Sm)l(Sm, gθ(eJm
))

)

= EX,T

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)l((XT0,m
, gθ(ek))1k=J̄m

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)l(XT1,m
, gθ(ek))1k=Jm

= EX,T

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=J̄m

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m − gθ(ek)∥21k=Jm . (14)

We then decompose the loss as follows483

gen(n,D) (15)

= EX,T

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=J̄m

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=Jm

+ EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT0,m − gθ(ek)∥21k=Jm

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm

.

First, we upper bound the first two terms by applying the Donsker-Varadhan inequality. Consider the484

joint distribution and the prior distribution, defined as follows:485

Q := P (T)q(e, θ, ϕ|XT1
)q(J̄,J|e, ϕ,XT),

P := P (T)q(e, θ, ϕ|XT1) E
P (T′)

q(J̄,J|e, ϕ,XT′).

Then we then obtain486

EX,T

K∑
k=1

1

n

n∑
m=1

Eq(e,ϕ,θ|XT1
)∥XT0,m

− gθ(ek)∥2
(
Eq(J̄m|e,ϕ,XT1,m

)1k=J̄m
− Eq(Jm|e,ϕ,XT0,m

)1k=Jm

)
≤ EX

1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
λ

n

K∑
k=1

n∑
m=1

∥XT0,m − gθ(ek)∥2
(
1k=J̄m

− 1k=Jm

))
.

Note that E
P (T′)

q(J̄,J|e, ϕ,XT′) is symmetric with respect to the permutation of T. Thus, we have487

logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m , gθ(ek))
(
1k=J̄m

− 1k=Jm

))

= logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )P (T′′) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
− 1k=JT′′

1,m

))

= logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )EP (T′′) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
− 1k=JT′′

1,m

))
.

16



To simplify the notation, we define T′′ = {T′′
0 ,T

′′
1} = {T′′

0,1, . . . ,T
′′
0,n,T

′′
1,1, . . . ,T

′′
1,n}. Note488

that T′′
j,m for m = 1, . . . , n and j = 0, 1 are not independent of each other due to the permutation489

that generates them. Therefore, we cannot directly apply standard concentration inequalities, as is490

possible in the existing supersample setting.491

To address this, we use the results from Joag-Dev & Proschan (1983), which concern the negative492

association of permutation variables. From Theorem 2.11 in Joag-Dev & Proschan (1983), the493

distribution P (T) satisfies negative association. Additionally, as discussed in Section 3.3 of Joag-Dev494

& Proschan (1983) and further in Proposition 4 and 5 of Dubhashi & Ranjan (1996), we have that495

logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )EP (T′′) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
− 1k=JT′′

1,m

))

≤ logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )E∏n
m=1

∏
j=0,1P (T′′

j,m) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
−1k=JT′′

1,m

))
,

where P (T′′
j,m) is the marginal distribution, implying that T′′

j,m are now 2n independent random496

variables. Intuitively, the results in Joag-Dev & Proschan (1983) indicate that the elements of the497

permutation index, which follow the permutation distribution, are negatively correlated. As a result,498

the expectation of the marginal distribution is larger than that of the joint distribution.499

Since {T′′
j,m} are independent, we can apply McDiarmid’s inequality, which leads to the results in500

logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ ) exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=J̄m

− 1k=Jm

))

≤ logEP (T)q(e,θ,ϕ|XT1
) E
P (T′)

q(J̄,J|e,ϕ,XT′ )E∏n
m=1

∏
j=0,1P (T′′

j,m)exp

(
λ

n

K∑
k=1

n∑
m=1

l(XT0,m
, gθ(ek))

(
1k=JT′′

0,m
−1k=JT′′

1,m

))

≤ λ2∆2

n
. (16)

which is estimated similarly to Eq. (7). Note that there are 2n variables so the calculation of the upper501

bound is (2∆λ/n)2/8× 2n = λ2∆2/n.502

Next we focus on the third and fourth terms in Eq. (15). Similarly to Eq. (10), we have503

EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=Jm

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm

= EX,T
2

n

n∑
m=1

(
XT1,m −XT0,m

)
· Eq(Jm|e,ϕ,XT1,m

)q(e,ϕ,θ|XT1
)

K∑
k=1

gθ(ek)1k=Jm

≤ EX
1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
2λ

n

n∑
m=1

(
XT1,m

−XT0,m

)
·

K∑
k=1

gθ(ek)1k=Jm

)

≤ EX
1

λ
KL(Q|P)

+ EX
1

λ
logEP (T)q(e,θ,ϕ|XT1

) E
P (T′)

q(J̄,J|e,ϕ,XT′ )E∏n
m=1

∏
j=0,1P (T′′

j,m)

exp

(
2λ

n

n∑
m=1

(
XT1,m −XT0,m

)
·

K∑
k=1

gθ(ek)1k=Jm

)
. (17)
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We first evaluate the expectation of the exponential moment;504

Ω := EP (T)q(e,θ,ϕ|XT1
)
2

n

n∑
m=1

(
XT1,m

−XT0,m

)
· E E

P (T′)
q(J̄,J|e,ϕ,XT′ )

K∑
k=1

gθ(ek)1k=Jm
.(18)

Let us now focus on the expectation E
P (T′)

q(J̄,J|e, ϕ,XT′). Due to the permutation symmetry,505

E E
P (T′)

q(J̄,J|e,ϕ,XT′ )

∑K
k=1 gθ(ek)1k=Jm

is the same for all m.506

For instance, when n = 2, the possible permutations of T are T =507

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), . . . , resulting in 24 distinct patterns and thus508

Pk,1 = E E
P (T′)

q(J̄,J|e,ϕ,XT′ )1k=J̄1
= E 1

4 q(J1|e,ϕ,X1)+
1
4 q(J1|e,ϕ,X2)+

1
4 q(J1|e,ϕ,X3)+

1
4 q(J1|e,ϕ,X4)1k=J1

Pk,2 = E E
P (T′)

q(J̄,J|e,ϕ,XT′ )1k=J̄2
= E 1

4 q(J2|e,ϕ,X1)+
1
4 q(J2|e,ϕ,X2)+

1
4 q(J2|e,ϕ,X3)+

1
4 q(J2|e,ϕ,X4)1k=J2

....

Thus, all Pk,m does not depend on the index m. So we express509

E E
P (T′)

q(J̄,J|e,ϕ,XT′ )

∑K
k=1 gθ(ek)1k=Jm

as Pk. Then Eq. (18) can be written as510

EXEP (T)q(e,θ,ϕ|XT1
)

(
1

n

n∑
m=1

XT1,m − 1

n

n∑
m=1

XT0,m

)
·

K∑
k=1

gθ(ek)Pk

≤ EXEP (T)q(e,θ,ϕ|XT1
)

∥∥∥∥∥ 1n
n∑

m=1

XT1,m
− 1

n

n∑
m=1

XT0,m

∥∥∥∥∥EP (T)q(e,θ,ϕ|XT1
)

∥∥∥∥∥
K∑

k=1

gθ(ek)Pk

∥∥∥∥∥
≤ EXEP (T)

∥∥∥∥∥ 1n
n∑

m=1

XT1,m
− 1

n

n∑
m=1

XT0,m

∥∥∥∥∥√∆

≤ EXE∏n
m=1

∏
j=0,1 P (T′′

j,m)

∥∥∥∥∥ 1n
n∑

m=1

XT1,m
− 1

n

n∑
m=1

XT0,m

∥∥∥∥∥√∆,

where we used the negative association property of the permutation distribution. We bound the above511

exactly same ways as Eq. (12), that is, we can upper bound the above by the variance of bounded512

random variable and thus, we have513

EXE∏n
m=1

∏
j=0,1 P (T′′

j,m)

∥∥∥∥∥ 1n
n∑

m=1

XT1,m
− 1

n

n∑
m=1

XT0,m

∥∥∥∥∥ ≤ 2

√
∆

4n
.

Thus, we have514

Ω = EXEP (T)q(e,θ,ϕ|XT1
)

(
2

n

n∑
m=1

XT1,m − 2

n

n∑
m=1

XT0,m

)
·

K∑
k=1

gθ(ek)Pk ≤ 2∆√
n
,

Let us back to the evaluation of the exponential moment in Eq. (17), we will evaluate the following515

EX
1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
2λ

n

n∑
m=1

(
XT1,m −XT0,m

)
·

K∑
k=1

gθ(ek)1k=Jm − λΩ

)
+Ω.

We then evaluate this similarly to Eq. (16), which uses the negative association of the permuta-516

tion distribution and McDiarmid’s inequality. The the exponential moment is upper bounded by517
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(2∆λ/n)2/8× 2n = λ2∆2/n We then obtain518

EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT1,m
)q(e,ϕ,θ|XT1

)∥XT1,m − gθ(ek)∥21k=Jm

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,ϕ,XT0,m
)q(e,ϕ,θ|XT1

)∥XT0,m
− gθ(ek)∥21k=Jm

≤ EX
1

λ
KL(Q|P) + EX

1

λ
logEP exp

(
2λ

n

n∑
m=1

(
XT1,m

−XT0,m

)
·

K∑
k=1

gθ(ek)1k=Jm
− λΩ

)
+Ω

≤ EX
1

λ
KL(Q|P) +

λ∆2

n
+

2∆√
n
. (19)

In conclusion, from Eqs. (16) and (19) we have519

gen(n,D) ≤ EX
2

λ
KL(Q|P) +

2λ∆2

n
+

2∆√
n
,

and optimizing the λ, we have520

gen(n,D) ≤ 4∆EX

√
KL(Q|P)

n
+

2∆√
n
= 4∆

√
I(J̄,J;T|e, ϕ,X)

n
+

2∆√
n
.

F Proof of Theorem 4521

Here, we present the results for a general stochastic encoder. For fixed ϕ and e, assume that for522

all x ∈ X̃ , for any j ∈ [K], and for a fixed δ ∈ R+, the following holds: q(J = j|e, fϕ(x)) ≤523

eh(δ)q(J = j|e, f̂(x))) with h : R+ → R+.524

Theorem 6. Assume that there exists a positive constant ∆z such that supz,z′∈Z ∥z − z′∥ < ∆z .525

Then, when using Eq. (1) and under the same setting as Theorem 3, for any δ ∈ (0, 1], we have526

gen(n,D) ≤ ∆
√
nh(δ) + 4∆

√
logN (δ,F , 2n)

n
+

2∆√
n
.

To prove this lemma, we first replace the output of the encoder with that obtained using the δ-cover527

of the encoder network. Since we assumed that q(J = j|e, ϕ, x) = q(J = j|e, fϕ(x)), we need to528

approximate the error caused by q(J = j|e, f̂(x)) approximating q(J = j|e, ϕ, x). To evaluate this529

gap, we apply the Donsker-Valadhan lemma between the two distributions530

Q := q(J |e, fϕ(X))

n∏
m=1

q(Jm|e, fϕ(Sm)),

P := q(J |e, f̂(X))

n∏
m=1

q(Jm|e, f̂(Sm)). (20)
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Then we have531

gen(n,D)

= E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,fϕ(X))l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,fϕ(Sm))l(Sm, gθ(eJm))

)

≤ E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,f̂(X))l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,f̂(Sm))l(Sm, gθ(eJm
))

)

+ E
S,X

Eq(e,ϕ,θ|S)
1

λ
KL(Q∥P)

+ E
S,X

Eq(e,ϕ,θ|S)
1

λ
logEP exp

(
λl(X, gθ(eJ))−

λ

n

n∑
m=1

l(Sm, gθ(eJm
))

)

≤ E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,f̂(X))l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,f̂(Sm))l(Sm, gθ(eJm))

)

+
(n+ 1)h(δ)

λ
+

λ∆2

2
,

where we used the following relation532

KL(Q∥P) ≤ (n+ 1) log eh(δ) = (n+ 1)h(δ),

which is proved by the assumption of the stability. We also used the fact that −λ∆ ≤ λl(X, gθ(eJ))−533
λ
n

∑n
m=1 l(Sm, gθ(eJm

)) ≤ λ∆ to uuper bound the exponential moment.534

By optimizing λ, we have535

gen(n,D)

≤ E
S,X

Eq(e,ϕ,θ|S)

(
Eq(J|e,f̂(X))l(X, gθ(eJ))−

1

n

n∑
m=1

Eq(Jm|e,f̂(Sm))l(Sm, gθ(eJm
))

)

+∆

√
(n+ 1)h(δ)

2
.

This implies that the first term corresponds to the generalization bound when using the δ-cover of the536

encoder network. We can bound this term similarly to Theorem 3.537

When applying the result of Theorem 3, we utilize the Donsker-Valadhan inequality for Eq.(14).538

Instead of using Eq.(20), we consider the following distributions:539

Q := q(J̄,J|e, fϕ(XT)) =

n∏
m=1

q(J̄m|e, f̂(X̃Tm
))

n∏
m=1

q(Jm|e, f̂(X̃Tn+m
))

P := q(J̄,J|e, f̂(XT)) =

n∏
m=1

q(J̄m|e, f̂(X̃Tm
))

n∏
m=1

q(Jm|e, f̂(X̃Tn+m
)).

From assumption, we have540

KL(Q∥P) ≤ 2n log eh(δ) = 2nh(δ).

Then from Eq. (14), we have541

gen(n,D)

≤ EX,T

K∑
k=1

1

n

n∑
m=1

Eq(J̄m|e,f̂(XT0,m
))q(e,ϕ,θ|XT1

)∥XT0,m − gθ(ek)∥21k=J̄m

− EX,T

K∑
k=1

1

n

n∑
m=1

Eq(Jm|e,f̂(XT1,m
))q(e,ϕ,θ|XT1

)∥XT1,m
− gθ(ek)∥21k=Jm

+∆

√
2nh(δ)

2

≤ 4∆

√
I(J̄,J;T|e, f̂(X))

n
+

2∆√
n
+∆

√
2nh(δ)

2
,
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where542

I(J̄,J;T|e, ϕ,X) = Ẽ
X,T

E
q(e,ϕ|X̃T1

)

KL(q(J̃|e, f̂(X̃))∥ E
P (T′)

q(J̄,J|e, f̂(X̃T′
0
), f̂(X̃T′

1
))).

Note that we consider the CMI for the discrete variable, it is upper bounded by the entropy (Cover &543

Thomas, 2012), and we have544

I(J̄,J;T|e, f̂(X)) ≤ H[J̄,J|e, f̂(X)] ≤ logN (δ,F , 2n).

The first inequality follows from the fact that MI is defined as the difference between the entropy545

and the conditional entropy, and the entropy of discrete variables is always non-negative. The546

second inequality arises because J̄,J are outputs of a function evaluated at 2n points. Thus, we547

considered the covering number at 2n points, defined as N (δ,F , n) := supx2n∈X 2n N (δ,F , x2n).548

Since the entropy is bounded above by the logarithm of the maximum cardinality, we obtain the549

second inequality.550

Thus, we have551

gen(n,D) ≤ 4∆

√
logN (δ,F , 2n)

n
+

2∆√
n
+∆

√
nh(δ).

F.1 Behavior of Eq. (1)552

Finally, we show that Eq. (1) satisfies h(δ) = 8β∆zδ because553

q(J = j|e, fϕ(x))
q(J = j|e, f̂(x))

=
e−β∥fϕ(x)−ej∥2

e−β∥f̂(x)−ej∥2
×
∑K

k=1 e
−β∥f̂(x)−ek∥2∑K

k=1 e
−β∥fϕ(x)−ek∥2

= e−β∥fϕ(x)−ej∥2+β∥f̂(x)−ej∥2

×
∑K

k=1 e
β∥fϕ(x)−ek∥2∑K

k=1 e
β∥f̂(x)−ek∥2

≤ eβ(f̂(x)−fϕ(x))·(f̂(x)+fϕ(x))−2βej ·(f̂(x)−fϕ(x)) × sup
k∈[K]

e−β∥f̂(x)−ek∥2+β∥fϕ(x)−ek∥2

≤ e4β∆zδ × e4β∆zδ.

Thus we have h(δ) = 8β∆zδ and by substituting this into above Theorem, we obtain Theorem 4.554

F.2 Discussion about the metric entropy for regularized model555

Here we discuss the upper bound of metric entropy in our setting. Since the latent variable lies in556

Rdz , the encoder network operates as ffϕ : Rd → Rdz„ making it a multivariate function.557

To evaluate the complexity of the metric entropy for such multivariate functions, the concept of558

Natarajan dimension with margin has been employed (Guermeur, 2007). According to Lemma 39559

(and also Lemma 37 and 38), if a multivariate function has a finite Natarajan dimension with margin,560

then its metric entropy scales as O(log n). To explore the properties of the Natarajan dimension with561

margin, Guermeur (2018) demonstrated that it can be bounded by the fat-shattering dimension of562

each component of the original multivariate function (Lemma 10). Additionally, Guermeur (2017)563

showed in Lemma 1 that the covering number of the multivariate function can be bounded by the564

covering number of each of its components. To further bound the covering number of each dimension,565

one can rely on the fat-shattering dimension of each function, as discussed in Lemma 3.5 of Alon566

et al. (1997).567

Thus, it is essential to bound the fat-shattering dimension in both cases. Examples of fat-shattering568

dimension evaluations can be found, for instance, in Bartlett & Maass (2003), which discusses neural569

network models, and Gottlieb et al. (2014), which addresses the fat-shattering dimension of Lipschitz570

function classes. If our encoder network adheres to these properties, we can bound its covering571

number accordingly.572

In conclusion, if the log of the covering number satisfies O(log n), by setting δ = 1/n2, we obtain573

that gen(n,D) = O(
√
log n/n).574
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G Data generation guarantee for the encoder-decoder model575

The primary interest of latent variable models often lies in the data generation ability rather than576

their generalization under the reconstruction loss. Specifically, the aim is to generate realistic data by577

sampling from the latent variable distribution and transforming it via the decoder. We expect that the578

distribution of generated data is close to the true data distribution.579

Let p represent a distribution on the latent space Z , and assume that for any θ ∈ Θ, the decoder580

gθ(·) : Z → X is measurable. The pushforward of the distribution p by the decoder, denoted as581

gθ#p, defines a distribution on X as gθ#p(A) = p(g−1
θ (A)) for any measurable set A ⊆ X . When582

generating data, we first draw a index using prior distribution p(J |e, ϕ), which is typically independent583

of the training dataset. This corresponds to selecting a latent variable eJ from {e1, . . . , eK}, and we584

denote the associated prior distribution over Z as p(e|e, ϕ). The resulting distribution of the generated585

data is then represented as µ̂ := gθ#p(e|e, ϕ). Next, given the posterior distribution q(Jm|e, ϕ, Sm)586

conditioned on the m-th training data point Sm, we express the corresponding posterior distribution587

over Z as q(e(m)|e, ϕ, Sm), where we simply express eJm
as e(m). Here, our goal is to bound the588

2-Wasserstein distance (See Appendix A for the definition) between data distribution D and the589

data-generating distribution µ̂, denoted as W2(D, µ̂). Following is our main result:590

Theorem 7. Let S = (S1, . . . , Sn) ∈ Xn be a training dataset, where Sm ∈ X are drawn i.i.d from591

D. Under Assumption 1 and for any prior q(e|e, ϕ) that does not depend on S, we have:592

ESEq(e,ϕ,θ|S)W
2
2 (D, µ̂) ≤ ESEq(e,ϕ,θ|S)

2

n

n∑
m=1

Eq(e(m)|e,ϕ,Sm)∥Sm − gθ(e(m))∥2

+ 2∆

√√√√ 2

n

n∑
m=1

ESEq(e,ϕ|S)KL(q(e(m)|e, ϕ, Sm)∥q(e(m)|e, ϕ)) +
2∆√
n
.

This theorem shows that the 2-Wasserstein distance is upper-bounded by the reconstruction loss on593

the training dataset and an empirical KL term. The result is similar to the bound in Mbacke et al.594

(2023), which assumes the fixed parameters, that is, learning is not considered. In contrast, our bound595

incorporates the learning process of parameters. If the marginal distribution of q(e|e, ϕ, x)were used596

as the prior distribution, the empirical KL term would become the empirical MI as discussed in597

Sec. 3.1. Furthermore, if a prior distribution with the symmetry introduced in Sec. 3.2 were used,598

the empirical KL term would become the CMI appearing in Theorem 3. However, such priors are599

impractical in real-world scenarios, where uniform distributions are typically used to sample latent600

variables.601

H Proof of Theorem 7602

Define the distribution obtained by the training dataset as follows; conditioned on e, ϕ, S, we have603

µ̂S =
1

n

n∑
m=1

gθ#q(e(m)|e, ϕ, Sm)

From the triangle inequality, we have604

W2(D, µ̂) ≤ W2(D, µ̂S) +W2(µ̂S , µ̂) (21)

The first term of Eq. (21) is bounded as follows;605

ESEq(e,ϕ,θ|S)W
2
2 (D, µ̂S) ≤ ESEq(e,ϕ,θ|S)

1

n

n∑
m=1

EXEq(e(m)|e,ϕ,Sm)∥x− gθ(e(m))∥2

= ESEq(e,ϕ,θ|S)
1

n

n∑
m=1

K∑
k=1

∥x− gθ(ek)∥2Eq(Jm|e,ϕ,Sm)1k=Jm .(22)

The first inequality is obtained by the definition of the Wasserstein distance.606

The expression inside the square root corresponds to the first term of Eq.(9). We can verify this by607

noting that Eq.(22) represents the squared error at the test data point x under the prediction ek, which608
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is derived using the training dataset. Meanwhile, the first term of Eq. (9) represents this error when609

the test data is replaced by the supersample Ū .610

Therefore, Eq.(22) can be upper-bounded by applying Eq.(13), which serves as the upper bound for611

Eq. (9).612

ESEq(e,ϕ,θ|S)W
2
2 (D, µ̂S) (23)

≤ ESEq(e,ϕ,θ|S)
1

n

n∑
m=1

Eq(e(m)|e,ϕ,Sm)∥Sm − gθ(e(m))∥2 +
1

λ
KL(Q|P) +

λ∆2

2n
+

∆√
n
,

where613

Q := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ, Sm) = q(e, ϕ, θ|S)
n∏

m=1

q(e(m)|e, ϕ, Sm),

P := q(e, ϕ, θ|S)
n∏

m=1

q(Jm|e, ϕ) = q(e, ϕ, θ|S)
n∏

m=1

q(e(m)|e, ϕ).

Next, the second term of Eq. (21) is bounded as follows; We express
∏n

m=1 q(e(m)|e, ϕ) = q(e) for614

simplicity, then we have615

ESEq(e,ϕ,θ|S)W
2
2 (µ̂S , µ̂) (24)

≤ ESEq(e,ϕ,θ|S)
1

n

n∑
m=1

Eq(e)Eq(e(m)|e,ϕ,Sm)∥gθ(e)− gθ(e(m))∥2

= ESEq(e,ϕ,θ|S)
1

n

n∑
m=1

Eq(e)∥gθ(e)∥2 + Eq(e(m)|e,ϕ,Sm)∥gθ(e(m))∥2 − 2Eq(e)gθ(e) · Eq(e(m)|e,ϕ,Sm)gθ(e(m))

≤ 1

λ
KL(Q|P) +

λ∆2

2n
,

where we used the Donsker Valadhan lemma for the first and third terms, changing the expectation616

from Q to P.617

Combining Eqs. (23) and (24), we have618

ESEq(e,ϕ,θ|S)W
2
2 (D, µ̂)

≤ 2

(
ESEq(e,ϕ,θ|S)

1

n

n∑
m=1

Eq(e(m)|e,ϕ,Sm)∥Sm − gθ(e(m))∥2 +
2

λ
KL(Q|P) +

λ∆2

n
+

∆√
n

)
.

Then by optimizing λ, we have619

ESEq(e,ϕ,θ|S)W
2
2 (D, µ̂) ≤ ESEq(e,ϕ,θ|S)

2

n

n∑
m=1

Eq(e(m)|e,ϕ,Sm)∥Sm − gθ(e(m))∥2 + 2∆

√
2

n
KL(Q|P) +

2∆√
n
.
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