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Abstract

Recent empirical studies have demonstrated that diffusion models can effectively learn the
image distribution and generate new samples. Remarkably, these models can achieve this even
with a small number of training samples despite a large image dimension, circumventing the
curse of dimensionality. In this work, we provide theoretical insights into this phenomenon by
leveraging key empirical observations: (i) the low intrinsic dimensionality of image data, (ii)
a union of manifold structure of image data, and (iii) the low-rank property of the denoising
autoencoder in trained diffusion models. These observations motivate us to assume the under-
lying data distribution of image data as a mixture of low-rank Gaussians and to parameterize
the denoising autoencoder as a low-rank model according to the score function of the assumed
distribution. With these setups, we rigorously show that optimizing the training loss of diffusion
models is equivalent to solving the canonical subspace clustering problem over the training sam-
ples. Based on this equivalence, we further show that the minimal number of samples required
to learn the underlying distribution scales linearly with the intrinsic dimensions under the above
data and model assumptions. This insight sheds light on why diffusion models can break the
curse of dimensionality and exhibit the phase transition in learning distributions. Moreover, we
empirically establish a correspondence between the subspaces and the semantic representations
of image data, facilitating image editing. We validate these results with corroborated exper-
imental results on both simulated distributions and image datasets. The code is available at
https://github.com/huijieZH/Diffusion-Model-Generalizability.
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transition
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1 Introduction

Generative modeling is a fundamental task in deep learning, which aims to learn a data distribution
from training data to generate new samples. Recently, diffusion models have emerged as a pow-
erful family of generative models, demonstrating remarkable performance across diverse domains,
including image generation [1, 2, 3, 4], video content generation [5, 6], speech and audio synthesis
[7, 8], fine-tuning [9, 10, 11] and solving inverse problem [12, 13, 14, 15]. In general, diffusion models
learn a data distribution from training samples through a process that imitates the non-equilibrium
thermodynamic diffusion process [2, 16, 17]. Specifically, the training and sampling of diffusion
models involve two stages: (i) a forward diffusion process where Gaussian noise is incrementally
added to training samples at each time step, and (ii) a backward sampling process where the noise
is progressively removed through a neural network that is trained to approximate the score function
at all time steps. As described in prior works [18, 17], the generative capability of diffusion models
lies in their ability to learn the score function of the data distribution, i.e., the gradient of the
logarithm of the probability density function (pdf ). We refer the reader to [19, 20, 21] for a more
comprehensive introduction and survey on diffusion models.

Despite the significant empirical success and recent advances in understanding sampling con-
vergence [22, 23, 24], distribution approximation [25, 26], memorization [27, 28, 29, 30], and gen-
eralization [31, 32, 33] of diffusion models, the fundamental working mechanisms remain poorly
understood. One of the key questions is

When and why do diffusion models learn the underlying data distribution without suffering from
the curse of dimensionality?

In the existing literature, Oko et al. [26], Wibisono et al. [34] have demonstrated that learning an
ϵ-accurate score via score estimation in the ℓ2-norm requires the number of training samples to
grow at the rate of O(ϵ−n), where n is the ambient data dimension. This indicates that distribution
learning via diffusion models is theoretically subject to the curse of dimensionality. However, recent
empirical results in [31, 33] showed that the number of training samples for diffusion models to
learn the underlying distribution is significantly smaller than the worst-case scenario, breaking the
curse of dimensionality. Therefore, this discrepancy reveals a substantial gap between theory and
practice.

In this work, we aim to address the above question of learning the underlying distribution via
diffusion models by leveraging low-dimensional models. Our key observations are as follows: (i)
The intrinsic dimensionality of real image data is significantly lower than the ambient dimension,
a fact well-supported by extensive empirical evidence in [35, 36, 37]; (ii) Image data lies on a
disjoint union of manifolds of varying intrinsic dimensions, as empirically verified in [38, 39, 40] (see
Figure 1(a)); (iii) We empirically observe that the denoising autoencoder (DAE) [41, 42] of diffusion
models trained on real-world image datasets exhibit low-rank structures (see Figure 3). Based on
these observations, we conduct a theoretical investigation of distribution learning through diffusion
models by assuming that (i) the underlying data distribution is a mixture of low-rank Gaussians
(see Definition 1 and Figure 1(b)) and (ii) the denoising autoencoder is parameterized according to
the score function of the MoLRG. Notably, these assumptions will be carefully discussed based on the
existing literature and validated by our experiments on real image datasets.

1.1 Our Contributions

In this work, our contributions can be summarized as follows:
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(a) (b)

Figure 1: (a) Visualization of the union of manifold structure of image data. Here, different images
lie on different manifolds Mi ⊆ Rn of intrinsic dimension d with d ≪ n. (b) An illustration of
training samples that are generated according to the MoLRG model. This model is a local linearization
of a union of manifolds.

• Equivalence between training diffusion models and subspace clustering. Under the
above setup, we show that the training loss of diffusion models based on the denoising autoencoder
is equivalent to the unsupervised subspace clustering problem [43, 44, 45] (see Theorem 3). This
equivalence implies that training diffusion models is essentially learning low-dimensional manifolds
of the data distribution.

• Understanding phase transition from failure to success in learning distributions. By
leveraging the above equivalence and the data model, we further show that if the number of
samples exceed the intrinsic dimension of the subspaces, the optimal solutions of the training loss
can recover the underlying distribution. This explains why diffusion models can break the curse
of dimensionality. Conversely, if the number of samples is insufficient, it may learn an incorrect
distribution. This highlights a phase transition from failure to success in learning the underlying
distributions as the sample size increases.

• Correspondence between semantic representations and the subspaces. Interestingly,
we find that the discovered low-dimensional subspaces in pre-trained diffusion models possess
semantic meanings for natural images (see Figure 2). This motivates us to propose a training-free
method to edit images on a frozen-trained diffusion model.

We also conduct extensive numerical experiments on both synthetic and real-world data sets to
verify our assumptions and validate our theory. More broadly, the theoretical insights we gained in
this work provide practical guidance as follows. First, we have shown that the number of samples
for learning the underlying distribution via diffusion models scales proportionally with its intrinsic
dimension. This insight allows us to improve training efficiency by quantifying the number of
required training samples. Second, the identified correspondence between semantic representations
and subspaces provides valuable guidance on controlling data generation. By manipulating the
semantic representations within these subspaces, we can achieve more precise and targeted data
generation.

1.2 Related Works

Now, we review recent works on diffusion models closely related to our study and discuss their
connections to our work.
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Figure 2: Correspondence between the singular vectors of the Jacobian of the DAE and
semantic image attributes.

Learning a mixture of Gaussians via diffusion models. Recent works have extensively
studied distribution learning and generalizability of diffusion models for learning a mixture of full-
rank Gaussian (MoG) model [46, 47, 48, 49, 50]. Specifically, they assumed that there exist centers
µ1, . . . ,µK ∈ Rn such that image data approximately follows from the following distribution:

x ∼
K∑
k=1

πkN (µk, In), (1)

where πk ≥ 0 is the mixing proportion of the k-th mixture component satisfying
∑K

k=1 πk = 1. Shah
et al. [49] showed that gradient descent for optimizing denoising diffusion probabilistic objective
can efficiently locate the ground-truth centers of MoG. Later, Chen et al. [46] extended the above
analysis without assuming the separation condition on the underlying mixture components. Gatmiry
et al. [48] employed diffusion models to learn the MoG model and provided a time and sample
complexity analysis to achieve a targeted total variation error. Recently, Wu et al. [50] provided a
theoretical analysis of diffusion guidance in the MoG model. Moreover, Cole and Lu [47] analyzed
the approximation and generalization of score-based diffusion models for learning sub-Gaussian
distributions, which includes a mixture of Guassians as an example.

Notably, the MoLRG model studied in our work is distinct from the above MoG model that is widely
studied in the literature. Specifically, the MoG model consists of multiple Gaussians with varying
means and covariance spanning the full-dimensional space (see Equation (1)), while a MoLRG com-
prises multiple Gaussians with zero mean and low-rank covariance (see Equation (7)), lying in
a union of low-dimensional subspaces. As such, the MoLRG model, inspired by the inherent low-
dimensionality of image datasets [35, 36, 37], offers a deeper insight into how diffusion models
can learn underlying distributions in practice without suffering from the curse of dimensionality.
Along the direction of studying diffusion models for low-dimensional data, Chen et al. [25] studied
a general low-dimensional data distribution and showed that the underlying distribution can be
recovered via diffusion models. In contrast, we specifically studied a mixture of low-dimensional
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Gaussian distributions, enabling us to obtain a sharp bound for learning the underlying distribution.

Memorization and generalization in diffusion models. Recently, extensive studies [31, 32,
33] empirically revealed that diffusion models learn the score function across two distinct regimes
— memorization (i.e., learning the empirical distribution) and generalization (i.e., learning the
underlying distribution) — depending on the training dataset size vs. the model capacity. Notably,
for a model with a fixed number of parameters, there is a phase transition from memorization to
generalization as the number of training samples increases [31, 33]. In the memorization regime,
recent works [27, 51] showed that diffusion models learn the empirical optimal denoiser when the
network is highly over-parameterized. Yoon et al. [32] argued that diffusion models tend to generalize
when they fail to memorize training data. In the generalization regime, extensive works [47, 52,
53] studied the generalization performance of diffusion models in different settings. Interestingly,
Kadkhodaie et al. [31] observed that two distinct diffusion models can learn nearly identical score
functions even if they are trained on sufficiently large separate, non-overlapping portions of the
same dataset so that they can generate almost the same output from the same pure noise. Notably,
most existing studies on the memorization and generalization of diffusion models are empirical.
In contrast, our work provides rigorous theoretical explanations for these intriguing experimental
observations based on the MoLRG model. We demonstrate that diffusion models learn the underlying
data distribution with the number of training samples scaling linearly with the intrinsic dimension
of the data distribution. Our theory reveals a phase transition from failure to success in learning
the underlying distribution as the number of training samples increases, which sheds light on the
phase transition from memorization to generalization.

Subspace clustering. Subspace clustering is a fundamental problem in unsupervised learning,
which aims to identify and group data points that lie in a union of low-dimensional subspaces in a
high-dimensional space [43, 44, 54]. Over the past years, a substantial body of literature has explored
various approaches to the algorithmic development and theoretical analysis of subspace clustering.
These include techniques such as sparse representation [55, 56, 57], low-rank representation [45,
58, 59], and spectral clustering [60, 61]. In this work, we present a new interpretation of diffusion
models from the perspective of subspace clustering. This is the first time that diffusion models have
been analyzed through this lens, offering new insights into how these models can effectively learn
complex data distributions by leveraging the intrinsic low-dimensional subspaces within the data.

Notation. We write matrices in bold capital letters like A, vectors in bold lower-case letters like
a, and scalars in plain letters like a. Given a matrix, we use ∥A∥ to denote its largest singular value
(i.e., spectral norm), σi(A) its i-th largest singular value, and aij its (i, j)-th entry, rank(A) its
rank, ||A||F its Frobenius norm. Given a vector a, we use ∥a∥ to denote its Euclidean norm and ai
its i-th entry. Let On×d denote the set of all n×d orthonromal matrices. We simply write the score
function ∇x log p(x) of a distribution with probability density function (pdf) p(x) as ∇ log p(x).

Organization. In Section 2, we introduce the preliminaries on diffusion models and some assump-
tions on the data and model. In Section 3, we present the main results of this paper. In Section 4,
we conduct numerical experiments to support our theory and demonstrate its practical implications.
Finally, in Section 5, we summarize our work and discuss potential directions for future research.
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2 Problem Setup

In this work, we consider an image dataset consisting of samples {x(i)}Ni=1 ⊆ Rn, where each data
point is i.i.d. sampled from an underlying data distribution pdata(x). Instead of learning this pdf
directly, score-based diffusion models aim to learn the score of this distribution from the training
samples.

2.1 Preliminaries on Score-Based Diffusion Models

Forward and reverse SDEs of diffusion models. In general, diffusion models consist of for-
ward and reverse processes indexed by a continuous time variable t ∈ [0, 1]. Specifically, the forward
process progressively injects noise into the data. This process can be described by the following
stochastic differential equation (SDE):

dxt = f(t)xtdt+ g(t)dwt, (2)

where x0 ∼ pdata, the scalar functions f(t), g(t) : R→ R respectively denote the drift and diffusion
coefficients,1 and {wt}t∈[0,1] is the standard Wiener process. For ease of exposition, let pt(x) denote
the pdf of xt and pt(xt|x0) the transition kernel from x0 to xt. According to (2), we have

pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t In), where st = exp

(∫ t

0
f(ξ)dξ

)
, σt =

√∫ t

0

g2(ξ)

s2(ξ)
dξ. (3)

The reverse process gradually removes the noise from x1 via the following reverse-time SDE:

dxt =
(
f(t)xt − g2(t)∇ log pt(xt)

)
dt+ g(t)dw̄t, (4)

where {w̄t}t∈[0,1] is another standard Wiener process, independent of {wt}, running backward in
time from t = 1 to t = 0. It is worth noting that if x1 and ∇ log pt are provided, the reverse process
has exactly the same distribution as the forward process at each time t ≥ 0 [63].

Training loss of diffusion models. Unfortunately, the score function ∇ log pt is usually un-
known, as it depends on the underlying data distribution pdata. To enable data generation via the
reverse SDE (4), a common approach is to estimate the score function ∇ log pt using the training
samples {x(i)}Ni=1 based on the scoring matching [2, 17]. Because of the equivalence between the
score function ∇ log pt(xt) and the posterior mean E [x0|xt], i.e.,

stE [x0|xt] = xt + s2tσ
2
t∇ log pt(xt), (5)

according to Tweedie’s formula and (3), an alternative approach to estimating the score function
∇ log pt is to estimate the posterior mean E [x0|xt]. Consequently, extensive works [64, 31, 62, 42, 65]
have considered training a time-dependent function xθ(·, t) : Rn × [0, 1]→ Rn, known as denoising
autoencoder (DAE), parameterized by a neural network with parameters θ to estimate the posterior
mean E [x0|xt]. To determine the parameters θ, we can minimize the following empirical loss:

min
θ

ℓ(θ) :=
1

N

N∑
i=1

∫ 1

0
λtEϵ∼N (0,In)

[∥∥∥xθ(stx
(i) + γtϵ, t)− x(i)

∥∥∥2]dt, (6)

1In general, the functions f(t) and g(t) are chosen such that (i) xt for all t close to 0 approximately follows the
data distribution pdata and (ii) xt for all t close to 1 is nearly a standard Gaussian distribution; see, e.g., the settings
in [2, 62, 17].
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where λt : [0, 1] → R+ is a weighting function and γt := stσt. As shown in [42], training the DAE
is equivalent to performing explicit or implicit score matching under mild conditions. We refer the
reader to Section A.1 for the relationship between this loss and the score-matching loss in [17, 42].

2.2 Low-Dimensional Data and Models

Mixture of low-rank Gaussian data distribution. Although real-world image datasets are
high dimensional in terms of pixel count and overall data volume, extensive empirical works [35,
39, 36, 37] suggest that their intrinsic dimensions are much lower. For instance, Pope et al. [36]
employed a kernelized nearest neighbor method to estimate the intrinsic dimensionality of various
datasets, including MNIST [66], CIFAR-10 [67], and ImageNet [68]. Their findings indicate that
even for complex datasets like ImageNet, the intrinsic dimensionality is approximately 40, which is
significantly lower than its ambient dimension.

Recently, Brown et al. [38], Kamkari et al. [39] empirically validated the union of manifolds
hypothesis, demonstrating that high-dimensional image data often lies on a disjoint union of mani-
folds instead of a single manifold. Notably, the union of subspaces, a special case of this hypothesis,
has been widely used in the subspace clustering literature [55, 44, 45]. These observations motivate
us to model the underlying data distribution as a mixture of low-rank Gaussians, where the data
points are generated from a mixture of several Gaussian distributions with zero mean and low-rank
covariance matrices. We formally define the MoLRG distribution as follows:

Definition 1 (Mixtures of Low-Rank Gaussians). We say that a random vector x ∈ Rn follows a
mixture of K low-rank Gaussian distribution with parameters {πk}Kk=1 and {U⋆

k}Kk=1 if

x ∼
K∑
k=1

πkN (0,U⋆
kU

⋆T
k ), (7)

where U⋆
k ∈ On×dk denotes the orthonormal basis of the k-th component and πk ≥ 0 is the mixing

proportion of the k-th mixture component satisfying
∑K

k=1 πk = 1.

Before we proceed, we make some remarks on this data model. First, to study how diffusion
models learn the underlying data distribution, many recent works have studied a mixture of full-rank
Gaussian distributions (see Eq. (1)); see, e.g., [46, 48, 49, 69, 50]. However, compared to this model,
a MoLRG is a more suitable model for capturing the low-dimensionality in image data distribution.
Second, Brown et al. [38], Kamkari et al. [39] conducted extensive numerical experiments to validate
that image datasets such as MNIST and ImageNet approximately lie on a union of low-dimensional
manifolds. Because a nonlinear manifold can be well approximated by its tangent space (i.e., a
linear subspace) in a local neighborhood, the MoLRG model, which represents data as a union of
linear subspace, serves a good local approximation of a union of manifolds. Finally, assuming
Gaussian distributions in each subspace in the MoLRG model is to ensure theoretical tractability
while approximating the real-world image distributions, making it a practical starting point for
theoretical studies on real-world image datasets. Now, we compute the ground-truth posterior
mean E [x0|xt] when x0 satisfies the MoLRG model as follows.

Lemma 1. Suppose that x0 satisfies the MoLRG model. For each time t > 0, it holds that

E [x0|xt] =
st

s2t + γ2t

∑K
k=1 πk exp

(
ϕt∥U⋆T

k xt∥2
)
U⋆

kU
⋆T
k xt∑K

k=1 πk exp
(
ϕt∥U⋆T

k xt∥2
) , where ϕt :=

s2t
2γ2t (s

2
t + γ2t )

. (8)
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(a) Real image datasets (b) Mixture of low-rank Gaussians

Figure 3: Low-rank property of the denoising autoencoder of trained diffusion mod-
els. We plot the ratio of the numerical rank of the Jacobian of the denoising autoencoder, i.e.,
∇xtxθ(xt, t), over the total dimension against the signal-to-noise ratio (SNR) 1/σt by training dif-
fusion models on different datasets. (a) We train diffusion models on image datasets CIFAR-10 [67],
CelebA [70], FFHQ [71], and AFHQ [72]. The experimental details are provided in Section D.1.
(b) We respectively train diffusion models with the low-rank parameterization (9) and U-Net on a
mixture of low-rank Gaussian distributions. The experimental details are provided in Section D.2.

We defer the proof of this lemma to Section A.2. Notably, this lemma shows that the ground-
truth posterior mean is a convex combination of projections of xt onto each subspace, where the
weights are soft-max functions. Moreover, this lemma provides guidance on the network parame-
terization of the DAE xθ(·, t) as discussed below.

Low-rank network parameterization. In this work, we empirically observed that the DAE
xθ(·, t) trained on real-world image datasets exhibits a low-dimensional structure. Specifically,
when we train diffusion models with the U-Net architecture [73] on various image datasets, it is
observed that the numerical rank of the Jacobian of the DAE, i.e., ∇xtxθ(xt, t), is substantially
lower than the ambient dimension in most time steps; see Figure 3(a). Additionally, this pattern of
low dimensionality appears to be consistent across different datasets with different noise levels t.

When training diffusion models with U-Net on the samples generated according to the MoLRG model,
the Jacobian of the DAE also exhibits a similar low-rank pattern, as illustrated in Figure 3(b). For
the theoretical study based upon MoLRG, the above observations motivate us to consider a low-rank
parameterization of the network. According to the ground-truth posterior mean of the MoLRG model
in Lemma 1, a natural parameterization for the DAE is

xθ(xt, t) =
st

s2t + γ2t

K∑
k=1

wk(θ;xt)UkU
T
k xt, where wk(θ;xt) =

πk exp
(
ϕt∥UT

k xt∥2
)∑K

l=1 πl exp
(
ϕt∥UT

l xt∥2
) (9)

and the network parameters θ = {Uk}Kk=1 satisfy Uk ∈ On×dk . Although this approach may seem
idealized, it offers several practical insights:

• Resemblance to the U-Net architecture: If we consider a single low-rank Gaussian, the
network parameterization for approximating the score function takes the form x − st/(s

2
t +

9



γ2t )UUTx, which resembles the structure of a practical U-Net with a linear encoder, de-
coder, and skip connections. This provides theoretical insights into why U-Net is preferred
for training diffusion models.

• Capturing low-rank property of the DAE: As shown in Figure 3, the Jacobian of the
DAE of diffusion models trained on real image data is low-rank for most time steps, and our
parameterization captures this low-rank property.

• Providing practical guidance: The theoretical insights gained from this work offer prac-
tical guidance. First, to learn the underlying distribution, the number of samples should be
proportional to its intrinsic dimension. In practice, this informs us on how to use a minimal
number of samples to train diffusion models to achieve generalization. Second, in Section
4.2, we empirically showed that the subspace basis has semantic meanings. Based upon this,
our results shed light on how to control the data generation by manipulating the semantic
representation within the subspaces.

Similar simplifications have been widely used for theoretical analysis in various ideal data dis-
tributions; see, e.g., [25, 46, 48, 49]. Notably, under this specific network parameterization in (9),
learning the score function ∇ log pt(xt) reduces to learning the network parameters θ in (9) accord-
ing to Lemma 1 and Eq. (5).

3 Main Results

Based on the setups in Section 2.2, we are ready to conduct a theoretical analysis of distribution
learning using diffusion models. Specifically, when the underlying data distribution pdata(x) is
modeled as MoLRG and the DAE is approximately parameterized as Eq. (9), we show that

• The training loss (6) of diffusion models is equivalent to the subspace clustering
problem, which can be reduced to the PCA problem in a single low-rank Gaussian case.

• The MoLRG distribution can be learned by optimizing the training loss when the min-
imum number of samples scales linearly with the intrinsic dimensionality of the
data.

Note that minθ∈Θ ℓ(θ) is equivalent to minθ∈Θ f(θ) when we have f(θ) = aℓ(θ) + b, where
a > 0 and b are absolute constants that do not depend on θ. This equivalence applies to our results
in both Theorem 1 and Theorem 3.

3.1 A Warm-Up Study: A Single Low-rank Gaussian Case

To begin, we start from a simple case that the underlying distribution pdata is a single low-rank
Gaussian. Specifically, the training samples {x(i)}Ni=1 ⊆ Rn are generated according to

x(i) = U⋆ai + ei, (10)

10



where U⋆ ∈ On×d denotes an orthonormal basis, ai
i.i.d.∼ N (0, Id) is coefficients for each i ∈ [N ],

and ei ∈ Rn is noise for all i ∈ [N ].2 According to (9), we parameterize the DAE into

xθ(xt, t) =
st

s2t + γ2t
UUTxt, (11)

where θ = U ∈ On×d. Equipped with the above setup, we can show the following result.

Theorem 1. Suppose that the DAE xθ(·, t) in Problem (6) is parameterized into (11) for each
t ∈ [0, 1]. Then, Problem (6) is equivalent to the following principal component analysis (PCA)
problem:

max
U∈Rn×d

N∑
i=1

∥UTx(i)∥2 s.t. UTU = Id. (12)

We defer the proof to Section B.1. In the single low-rank Gaussian model, Theorem 1 demon-
strates that training diffusion models with a DAE of the form (11) to learn this distribution is
equivalent to performing PCA on the training samples. Leveraging this equivalence, we can further
characterize the number of samples required for learning underlying distribution under the data
model (10).

Theorem 2. Consider the setting of Theorem 1. Suppose that the training samples {x(i)}Ni=1 are
generated according to the noisy single low-rank Gaussian model defined in (10). Let Û denote an
optimal solution of Problem (6). The following statements hold:

i) If N ≥ d, it holds with probability at least 1−1/2N−d+1−exp (−c2N) that any optimal solution
Û satisfies ∥∥∥ÛÛT −U⋆U⋆T

∥∥∥
F
≤

c1

√∑N
i=1 ∥ei∥2√

N −
√
d− 1

, (13)

where c1, c2 > 0 are constants that depend polynomially only on the Gaussian moment.

ii) If N < d, there exists an optimal solution Û ∈ On×d such that with probability at least
1− 1/2d−N+1 − exp (−c′2d),

∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
≥
√

2min{d−N,n− d} −
c′1

√∑N
i=1 ∥ei∥2√

d−
√
N − 1

, (14)

where c′1, c
′
2 > 0 are constants that depend polynomially only on the Gaussian moment.

Remark 1. We defer the proof to Section B.2. Building on the equivalence in Theorem 1 and
the DAE parameterization (11), Theorem 2 clearly shows a phase transition from failure to success
in learning the underlying distribution as the number of training samples increases. This phase
transition is further corroborated by our experiments in Figures 4(a) and 4(b).

• When the number of training samples is larger than the dimension of the subspace, i.e., N ≥ d,
any optimal solution Û recovers the basis of underlying subspace with an approximation error
depending on the noise level. This, together with the fact that learning the underlying distri-
butions corresponds to learning the parameters U under the parameterization (11), implies that
optimizing the training loss of diffusion models can learn the underlying distribution. Conversely,
when N < d, optimizing the training loss fails to learn the underlying distribution.
2Since real-world images inherently contain noise due to various factors, such as sensor limitation, environment

conditions, and transition error, it is reasonable to add a noise term to this model.
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• Note that our theory cannot explain why diffusion models memorize training data (i.e., learning
the empirical distribution). This is because the parameterization (11) is not as sufficiently over-
parameterized as architectures like U-Net. We plan to explore this over-parameterized setting in
future work to better understand how diffusion models achieve memorization and to extend our
theoretical insights accordingly.

3.2 From Single Low-Rank Gaussian to Mixtures of Low-Rank Gaussians

In this subsection, we extend the above study to the MoLRG distribution. In particular, we consider
a noisy version of the MoLRG model as defined Definition 1. Specifically, the training samples are
generated by

x(i) = U⋆
kai + ei with probability πk, ∀i ∈ [N ], (15)

where U⋆
k ∈ On×dk denotes an orthonormal basis for each k ∈ [K], ai

i.i.d.∼ N (0, Idk) is coefficients,
and ei ∈ Rn is noise for each i ∈ [N ]. As argued by [38], image data lies on a disjoint union of
manifolds. This motivates us to assume that the basis matrices of subspaces satisfy U⋆T

k U⋆
l = 0

for each k ̸= l. To simplify our analysis, we assume that d1 = · · · = dK = d and the mixing weights
satisfy π1 = · · · = πK = 1/K. Moreover, we consider a hard-max counterpart of Eq. (9) for the
DAE parameterization as follows:

xθ(xt, t) =
st

s2t + γ2t

K∑
k=1

ŵk(θ,x0)UkU
T
k xt, (16)

where θ = {Uk}Kk=1 and the weights {ŵk(θ;x0)}Kk=1 are set as

ŵk(θ;x0) =

{
1, if k = k0,

0, otherwise,
(17)

where k0 ∈ [K] is an index satisfying ∥UT
k0
x0∥ ≥ ∥UT

l x0∥ for all l ̸= k0 ∈ [K]. We should point out
that we use two key approximations here. First, the soft-max weights {wk(θ,xt)} in Eq. (9) are
approximated by the hard-max weights {ŵk(θ;x0)}Kk=1. Second, ∥UT

k xt∥ is approximated by its
expectation, i.e., Eϵ[∥UT

k xt∥2] = Eϵ

[
∥UT

k (stx0 + γtϵ)∥2
]
= s2t ∥UT

k x0∥2 + γ2t d. We refer the reader
to Section C.1 for more details on these approximation. Now, we are ready to show the following
theorem.

Theorem 3. Suppose that the DAE xθ(·, t) in Problem (6) is parameterized into (16) for each
t ∈ [0, 1], where ŵk(θ,x0) is defined in (17) for each k ∈ [K]. Then, Problem (6) is equivalent to
the following subspace clustering problem:

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2 s.t. [U1, . . . ,UK ] ∈ On×dK , (18)

where Ck(θ) :=
{
i ∈ [N ] : ∥UT

k x(i)∥ ≥ ∥UT
l x(i)∥, ∀l ̸= k

}
for each k ∈ [K].

We defer the proof to Section C.2. When the DAE is parameterized into (16), Theorem 3 demon-
strates that optimizing the training loss of diffusion models is equivalent to solving the subspace
clustering problem [43, 44, 45]. Problem (18) seeks to maximize the sum of the squared norms of
each point’s projection onto its assigned subspace, subject to the constraint Ck(θ). Moreover, the
equivalence enables us to characterize the required minimum number of samples for learning the
underlying MoLRG distribution.
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Theorem 4. Consider the setting of Theorem 3. Suppose that the training samples {x(i)}Ni=1 are
generated by the MoLRG distribution in Definition 1. Suppose d ≳ logN and ∥ei∥ ≲

√
d/N for all

i ∈ [N ]. Let {Ûk}Kk=1 denote an optimal solution of Problem (6) and Nk denote the number of
samples from the k-th Gaussian component. Then, the following statements hold:

(i) If Nk ≥ d for each k ∈ [K], there exists a permutation Π : [K]→ [K] such that with probability
at least 1− 2K2N−1 −

∑K
k=1

(
1/2Nk−d+1 + exp (−c2Nk)

)
for each k ∈ [K],

∥∥∥ÛΠ(k)Û
T
Π(k) −U⋆

kU
⋆T
k

∥∥∥
F
≤

c1

√∑N
i=1 ∥ei∥2√

Nk −
√
d− 1

, (19)

where c1, c2 > 0 are constants that depend polynomially only on the Gaussian moment.

(ii) If Nk < d for some k ∈ [K], there exists a permutation Π : [K]→ [K] and k ∈ [K] such that
with probability at least 1− 2K2N−1 −

∑K
k=1

(
1/2d−Nk+1 + exp (−c′2Nk)

)
,

∥∥∥ÛΠ(k)Û
T
Π(k) −U⋆

kU
⋆T
k

∥∥∥
F
≥
√

2min{d−Nk, n− d} −
c′1

√∑N
i=1 ∥ei∥2√

d−
√
Nk − 1

, (20)

where c′1, c
′
2 > 0 are constants that depend polynomially only on the Gaussian

Remark 2. We defer the proof to Section C.3. We discuss the implications of our results below.

• Phase transition in learning the underlying distribution. This theorem demonstrates that when
the number of samples in each subspace exceeds the dimension of the subspace and the noise
is bounded, the optimal solution of the training loss (6) under the parameterization (16) can
recover the underlying subspaces up to the noise level. Conversely, when the number of samples
is insufficient, there exists an optimal solution that may recover wrong subspaces; see Figures
4(c) and 4(d).

• Connections to the phase transition from memorization to generalization. We should clarify the
difference between the phase transition described in Theorems 2 & 4 and the phase transition from
memorization to generalization. Our phase transition refers to the shift from failure to success
of learning the underlying distribution as the number of training samples increase, whereas the
latter concerns the shift from memorizing data to generalizing from it as the number of training
samples increases. Nevertheless, our theory still sheds light on the minimal number of samples
required for diffusion models to enter the generalized regime.

• Semantic meanings of the subspaces. More interestingly, we empirically discovered a correspon-
dence between the subspace bases and the semantics of images, as demonstrated by the exper-
iments in Section 4.2. Specifically, when we move xt along the direction of a singular vector of
the Jacobian of the DAE trained on real image data with step size, the corresponding semantics
of the generated images changes proportionally to the step size; see Figures 6 and 9(a, c). This
enables controlled image generation without the need for additional training.

4 Experiments & Practical Implications

In this section, we first investigate phase transitions of diffusion models in learning distributions
under both theoretical and practical settings in Section 4.1. Next, we demonstrate the practical
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(d) Diffusion Model

Figure 4: Phase transition of learning the MoLRG distribution. The x-axis is the number of
training samples and y-axis is the dimension of subspaces. Darker pixels represent a lower empirical
probability of success. When K = 1, we apply SVD and train diffusion models to solve Problems
(12) and (6), visualizing the results in (a) and (b), respectively. When K = 2, we apply a subspace
clustering method and train diffusion models for solving Problems (18) and (6), visualizing the
results in (c) and (d), respectively. Additional experiments for the case when K = 3 are presented
in Figure 8.

implications of our work by exploring the correspondence between low-dimensional subspaces and
semantic representations for controllable image editing in Section 4.2. Detailed experimental setups
are postponed to Section E.

4.1 Phase Transition in Learning Distributions

In this subsection, we conduct experiments on both synthetic and real datasets to study the phase
transition of diffusion models in learning distributions.

Learning the MoLRG distribution with the theoretical parameterizations. To begin, we
optimize the training loss (6) with the theoretical parameterization (9), where the data samples are
generated by the MoLRG distribution. First, we apply stochastic gradient descent (see Algorithm 1)
to solve Problem (6) with the DAE parameterized as (9). For comparison, according to Theorem 1
(resp., Theorem 3), we apply a singular value decomposition (resp., subspace clustering [45]) to
solve Problem (12) (resp, Problem (18)).

We conduct three sets of experiments, where the data samples are respectively generated ac-
cording to the single low-rank Gaussian distribution (10) with K = 1 and a mixture of low-rank
Gaussian distributions (15) with K = 2, 3. In each set, we set the total dimension n = 48 and
let the subspace dimension d and the number of training samples N vary from 2 to 8 and 2 to 15
with increments of 1, respectively. For every pair of d and N , we generate 20 instances, run the
above methods, and calculate the successful rate of recovering the underlying subspaces. Then, the
simulation results are visualized in Figure 4 and Figure 8. It is observed that all these methods
exhibit a phase transition from failure to success in learning the subspaces as the number of training
samples increases, which supports the results in Theorems 2 and 4.

Learning the MoLRG distribution with U-Net. Next, we optimize the training loss (6) with
parameterizing the DAE xθ(·, t) using U-Net, detailed experiment settings are in Section E.2. Since
U-Net is highly over-parameterized with about 54 million parameters and is different from the
posterior mean in Lemma 1, we measure the generalization ability of U-Net via generalization (GL)
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(a) MoLRG distribution (b) Real image data distribution

Figure 5: Phase transition of learning distributions via U-Net. In (a), the x-axis is the
number of training samples over the intrinsic dimension, while in (b), it is the total number of
training samples. The y-axis is the GL score. We train diffusion models with the U-Net architecture
on (a) the data samples generated by the MoLRG distribution with K = 2, n = 48 and dk varying
from 3 to 6 and (b) real image datasets CIFAR-10, CelebA, FFHQ and AFHQ. The GL score is low
when U-Net memorizes the training data and high when it learns the underlying distribution.

score [33] defined as follows:

GL score =
D(x(i)

gen)

D(x(i)
MoLRG)

, D(x(i)) :=
N∑
j=1

min
j ̸=i
||x(i) − x(j)||, (21)

where {x(i)
MoLRG}Ni=1 are samples generated from the MoLRG distribution and {x(i)

gen}Ni=1 are new samples
generated by the trained U-Net. Intuitively, D(x(i)

gen) reflects the uniformity of samples in the space:
its value is small when the generated samples cluster around the training data, while the value is
large when generated samples disperse in the entire space. Therefore, the trained diffsion model is
in memorization regime when D(x

(i)
gen) ≪ D(x(i)

MoLRG) and the GL score is close to 0, while it is in
generalization regime when D(x

(i)
gen) ≈ D(x(i)

MoLRG) and the GL score is close to 1.
In the experiments, we generate the data samples using the MoLRG distribution with K = 2,

n = 48, and dk ∈ {3, 4, 5, 6}. Then, we plot the GL score against the Nk/dk for each dk in
Figure 5(a). It is observed that for a fixed dk, the generalization performance of diffusion models
improves as the number of training samples increases. Notably, for different values of dk, the plot of
the GL score against the Nk/dk remains approximately consistent. This observation indicates that
the phase transition curve for U-Net learning the MoLRG distribution depends on the ratio Nk/dk
rather than on Nk and dk individually. When Nk/dk ≈ 60, GL score ≈ 1.0 suggesting that U-Net
generalizes when Nk ≥ 60dk. This linear relationship for the phase transition differs from Nk ≥ dk in
Theorem 4 due to training with U-Net instead of the optimal network parameterization in Eq. (9).
Nevertheless, Theorem 2 and Theorem 4 still provide valuable insights into learning distributions
via diffusion models by demonstrating a similar phase transition phenomenon and confirming a
linear relationship between Nk and dk.

Learning real image data distributions with U-Net. Finally, we train diffusion models using
U-Net on real image datasets AFHQ, CelebA, FFHQ, and CIFAR-10. The detailed experiment
settings are deferred to Section E.3. According to [33], we define the generalization (GL) score on
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real-world image dataset as follows:

GL score := 1− P
(
max
i∈[N ]

[MSSCD(x,yi)] > 0.6

)
.

Here, the SSCD similarity is first introduced in [74] to measure the replication between image pair
(x1,x2), which is defined as follows:

MSSCD(x1,x2) =
SSCD(x1) · SSCD(x2)

||SSCD(x1)||2 · ||SSCD(x2)||2

where SSCD(·) represents a neural descriptor for copy detection of images. We empirically sample
10K initial noises to estimate the probability. Intuitively, GL score measures the dissimilarity
between the generated sample x and all N samples yi from the training dataset {yi}Ni=1. Higher
GL score indicates stronger generalizability. For each data set, we train U-Net and plot the GL
score against the number of training samples in Figure 5(b).

The phase transition in the real dataset is illustrated in Figure 5(b). As observed, the order
in which the samples need to generalize follows the relationship: AFHQ > CelebA > FFHQ ≈
CIFAR-10. Additionally, from our previous observations in Figure 3, the relationship of the intrinsic
dimensions for these datasets is: AFHQ > FFHQ > CelebA ≈ CIFAR-10. Both AFHQ and CelebA
align well with our theoretical analysis, which indicates that more samples are required for the
model to generalize as the intrinsic dimension increases.

4.2 Semantic Meanings of Low-Dimensional Subspaces

In this subsection, we conduct experiments to verify the correspondence between the low-dimensional
subspaces of the data distribution and the semantics of images on real datasets. We denote the
Jacobian of the DAE xθ(xt, t) by Jt := ∇xtxθ(xt, t) ∈ Rn×n and let Jt = UΣV T be an singular
value decomposition (SVD) of Jt, where r = rank(Jt), U = [u1, · · · ,ur] ∈ On×r, V = [v1, · · · ,vr] ∈
On×r, and Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr being the singular values. To validate the
semantic meaning of the basis vectors vi, we vary the value of α from negative to positive and
visualize the resulting changes in the generated images.

In the experiments, we use a pre-trained diffusion denoising probabilistic model (DDPM) [2] on
the MetFaces dataset [75]. We randomly select an image x0 from this dataset and use the reverse
process of the diffusion denoising implicit model (DDIM) [76] to generate xt at t = 0.7T , where T
denote the total number of time steps. We respectively choose the changed direction as the leading
right singular vectors v1,v3,v4,v5,v6 and use x̃t = xt+αvi to generate new images with α ∈ [−4, 4]
shown in Figure 6. It is observed that these singular vectors enable different semantic edits in terms
of gender, hairstyle, and color of the image. For comparison, we generate a random unit vector s
and move xt along the direction of s, where the editing strength α is the same as the semantic edits
column-wise. The results are shown in the last column of Figure 6. Moving along random directions
provides minimal semantic changes in the generated images, indicating that the low-dimensional
subspace spanned by V is non-trivial and corresponds to semantic meaningful image attributes.
More experimental results can be found in Figure 9 in Section E.3.

5 Conclusion & Discussion

In this work, we studied the training loss of diffusion models to investigate when and why diffusion
models can learn the underlying distribution without suffering from the curse of dimensionality.
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Figure 6: Correspondence between the singular vectors of the Jacobian of the DAE and
semantic image attributes. We use a pre-trained DDPM with U-Net on the MetFaces dataset
[75]. We edit the original image x0 by changing xt into xt + αvi, where vi is a singular vector of
the Jacobian of the DAE xθ(xt, t).
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Motivated by extensive empirical observations, we assumed that the underlying data distribution is
a mixture of low-rank Gaussians. Specifically, we showed that minimizing the training loss is equiv-
alent to solving the subspace clustering problem under proper network parameterization. Based on
this equivalence, we further showed that the optimal solutions to the training loss can recover the
underlying subspaces when the number of samples scales linearly with the intrinsic dimensionality
of the data distribution. Moreover, we established the correspondence between the subspaces and
semantic representations of image data. Since our studied network parameterization is not suffi-
ciently over-parameterized, a future direction is to extend our analysis to an over-parameterized
case to fully explain the transition from memorization to generalization.
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Appendices
In the appendix, the organization is as follows. We first provide proof details for Section 2, Sec-
tion 3.1, and Section 3.2 in Section A, Section B, and Section C, respectively. Then, we present our
experimental setups for Figure 3 in Section D and for Section 4 in Section E. Finally, some auxiliary
results for proving the main theorems are provided in Section F.

To simplify our development, we introduce some further notation. We denote by N (µ,Σ) a
multivariate Gaussian distribution with mean µ ∈ Rn and covariance Σ ⪰ 0. Given a Gaussian
random vector x ∼ N (µ,Σ), if Σ ≻ 0, with abuse of notation, we write its pdf as

N (x;µ,Σ) :=
1

(2π)n/2 det1/2(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (22)

If a random vector x ∈ Rn satisfies x ∼ N (µ,UUT ) for some µ ∈ Rn and U ∈ On×d, we have

x = µ+Ua, (23)

where a ∼ N (0, Id). Therefore, a mixture of low-rank Gaussians in Definition 1 can be expressed
as

P (x = U⋆
kak) = πk, where ak ∼ N (0, Idk), ∀k ∈ [K]. (24)

A Proofs in Section 2

A.1 Relation between Score Matching Loss and Denoiser Autoencoder Loss

To estimate ∇ log pt(x), one can train a time-dependent score-based model sθ(x, t) via minimizing
the following objective [17]:

min
θ

∫ 1

0
ξtEx0∼pdataExt|x0

[
∥sθ(xt, t)−∇ log pt(xt|x0)∥2

]
dt, (25)

where ξt : [0, 1] → R+ is a positive weighting function. Let xθ(·, t) : Rd × [0, 1] → Rd denote a
neural network parameterized by parameters θ to approximate E[x0|xt]. According to the Tweedie’s
formula (5), sθ(xt, t) = (stxθ(xt, t)− xt) /γ

2
t can be used to estimate score functions. Substituting

this and ∇ log pt(xt|x0) = (stx0 − xt) /γ
2
t due to (3) yields

min
θ

∫ 1

0
ξtEx0∼pdataExt|x0

[∥∥∥∥ 1

γ2t
(stxθ(xt, t)− xt)−

1

γ2t
(stx0 − xt)

∥∥∥∥2
]
dt

=

∫ 1

0

ξt
s2tσ

4
t

Ex0∼pdataEϵ∼N (0,In)

[
∥xθ(stx0 + γtϵ, t)− x0∥2

]
dt,

where the equality follows from xt = stx0 + γtϵ due to (3). Then, we obtain

min
θ

∫ 1

0
λtEx0∼pdataEϵ∼N (0,In)

[
∥xθ(stx0 + γtϵ, t)− x0∥2

]
dt, (26)

where λt = ξt/(s
2
tσ

4
t ). However, only data points {x(i)}Ni=1 sampled from the underlying data

distribution pdata are available in practice. Therefore, we study the following empirical counterpart
of Problem (26) over the training samples, i.e., Problem (6). We refer the reader to [31, Section 2.1]
for more discussions on the denoising error of this problem.
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A.2 Proof of in Lemma 1

Assuming that the underlying data distribution follows a mixture of low-rank Gaussians as defined
in Definition 1, we first compute the ground-truth score function as follows.

Proposition 1. Suppose that the underlying data distribution pdata follows a mixture of low-rank
Gaussian distributions in Definition 1. In the forward process of diffusion models, the pdf of xt for
each t > 0 is

pt(x) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2t In), (27)

where γt = stσt. Moreover, the score function of pt(x) is

∇ log pt(x) = −
1

γ2t

(
x− s2t

s2t + γ2t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2t In)U

⋆
kU

⋆T
k x∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2t In)

)
. (28)

Proof. Let Y ∈ {1, . . . ,K} be a discrete random variable that denotes the value of components of
the mixture model. Note that γt = stσt. It follows from Definition 1 that P(Y = k) = πk for each
k ∈ [K]. We first compute

pt(x|Y = k) =

∫
pt (x|Y = k,ak)N (ak;0, Idk) dak =

∫
pt(x|x0 = U⋆

kak)N (ak;0, Idk) dak

=

∫
N (x; stU

⋆
kak, γ

2
t In)N (ak;0, Idk) dak

=
1

(2π)n/2(2π)dk/2γnt

∫
exp

(
− 1

2γ2t
∥x− stU

⋆
kak∥2

)
exp

(
−1

2
∥ak∥2

)
dak

=
1

(2π)n/2γnt

(
s2t + γ2t

γ2t

)−d/2

exp

(
− 1

2γ2t
xT

(
In −

s2t
s2t + γ2t

U⋆
kU

⋆T
k

)
x

)
∫

1

(2π)dk/2

(
γ2t

s2t + γ2t

)−d/2

exp

(
−s2t + γ2t

2γ2t

∥∥∥∥ak −
st

s2t + γ2t
U⋆T

k x

∥∥∥∥2
)
dak

=
1

(2π)n/2
1(

(s2t + γ2t )
dγ

2(n−d)
t

)1/2 exp(− 1

2γ2t
xT

(
In −

s2t
s2t + γ2t

U⋆U⋆T

)
x

)

=
1

(2π)n/2 det1/2(s2tU
⋆
kU

⋆T
k + γ2t In)

exp

(
−1

2
xT
(
s2tU

⋆
kU

⋆T
k + γ2t In

)−1
x

)
= N (x;0, s2tU

⋆
kU

⋆T
k + γ2t In),

where the second equality follows from (3), the third equality uses (22), the fourth equality is due to
the fact that < x,U⋆

ka > is an odd function, and the second to last equality uses det(s2tU
⋆
kU

⋆T
k +

γ2t In) = (s2t + γ2t )
dγ

2(n−d)
t and (s2tU

⋆
kU

⋆T
k + γ2t In)

−1 =
(
In − s2t /(s

2
t + γ2t )U

⋆
kU

⋆T
k

)
/γ2t due to the

matrix inversion lemma and U⋆T
k U⋆

k = Idk . This, together with P(Y = k) = πk for each k ∈ [K],
yields

pt(x) =

K∑
k=1

pt(x|Y = k)P(Y = k) =

K∑
k=1

πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2t In).
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Next, we directly compute

∇ log pt(x) =
∇pt(x)
pt(x)

=

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2t In)

(
− 1

γ2
t
x+

s2t
γ2
t (s

2
t+γ2

t )
U⋆

kU
⋆T
k x

)
∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2t In)

= − 1

γ2t

(
x− s2t

s2t + γ2t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2t In)U

⋆
kU

⋆T
k x)∑K

k=1 πkN (x;0, s2tU
⋆
kU

⋆T
k + γ2t In)

)
.

⊔⊓

Proof of Lemma 1. According to (5) and Proposition 1, we compute

E [x0|xt] =
xt + γ2t∇ log pt(xt)

st
=

st
s2t + γ2t

∑K
k=1 πkN (x;0, s2tU

⋆
kU

⋆T
k + γ2t In)U

⋆
kU

⋆T
k xt∑K

k=1 πkN (xt;0, s2tU
⋆
kU

⋆T
k + γ2t In)

=
st

s2t + γ2t

∑K
k=1 πk exp

(
− 1

2γ2t

(
∥xt∥2 − s2t

s2t+γ2
t
∥U⋆T

k xt∥2
))

U⋆
kU

⋆T
k xt∑K

k=1 πk exp

(
− 1

2γ2t

(
∥xt∥2 − s2t

s2t+γ2
t
∥U⋆T

k xt∥2
))

=
st

s2t + γ2t

∑K
k=1 πk exp

(
1

2γ2t

s2t
s2t + γ2t

∥U⋆T
k xt∥2

)
U⋆

kU
⋆T
k xt∑K

k=1 πk exp

(
1

2γ2t

s2t
s2t + γ2t

∥U⋆T
k xt∥2

) ,

where the third equality uses (22) and
(
s2tU

⋆
kU

⋆T
k + γ2t In

)−1
=
(
In − s2t /(s

2
t + γ2t )U

⋆
kU

⋆T
k

)
/γ2t due

to the matrix inversion lemma. ⊔⊓

B Proofs in Section 3.1

B.1 Proof of Theorem 1

Proof of Theorem 1. Plugging (11) into the integrand of (6) yields

Eϵ

[∥∥∥∥ st
s2t + γ2t

UUT
(
stx

(i) + γtϵ
)
− x(i)

∥∥∥∥2
]

=

∥∥∥∥ s2t
s2t + γ2t

UUTx(i) − x(i)

∥∥∥∥2 + (stγt)
2

(s2t + γt)2
Eϵ

[
∥UUT ϵ∥2

]
=

∥∥∥∥ s2t
s2t + γ2t

UUTx(i) − x(i)

∥∥∥∥2 + (stγt)
2d

(s2t + γt)2
,

where the first equality follows from Eϵ[⟨x, ϵ⟩] = 0 for any given x ∈ Rn due to ϵ ∼ N (0, In), and
the second equality uses Eϵ

[
∥UUT ϵ∥2

]
= Eϵ

[
∥UT ϵ∥2

]
=
∑d

i=1 Eϵ

[
∥uT

i ϵ∥2
]
= d due to U ∈ On×d

and ϵ ∼ N (0, In). This, together with γt = stσt and (6), yields

ℓ(U) =
1

N

N∑
i=1

∫ 1

0
λt

(
∥x(i)∥2 − 1 + 2σ2

t

(1 + σ2
t )

2
∥UTx(i)∥2 + σ2

t d

(1 + σ2
t )

2

)
dt,
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Obviously, minimizing the above function in terms of U amounts to

min
UTU=Id

−
∫ 1

0

(1 + 2σ2
t )λt

(1 + σ2
t )

2
dt

1

N

N∑
i=1

∥UTx(i)∥2,

which is equivalent to Problem (12). ⊔⊓

B.2 Proof of Theorem 2

Proof of Theorem 2. For ease of exposition, let

X =
[
x(1) . . . x(N)

]
∈ Rn×N , A =

[
a1 . . . aN

]
∈ Rd×N , E =

[
e1 . . . eN

]
∈ Rn×N .

Using this and (10), we obtain

X = U⋆A+E. (29)

Let rA := rank(A) ≤ min{d,N} and A = UAΣAV
T
A be an singular value decomposition (SVD) of

A, where UA ∈ Od×rA , VA ∈ ON×rA , and ΣA ∈ RrA×rA . It follows from Theorem 1 that Problem
(6) with the parameterization (11) is equivalent to Problem (12).

(i) Suppose that N ≥ d. Applying Lemma 3 with ε = 1/(2c1) to A ∈ Rd×N , it holds with
probability at least 1− 1/2N−d+1 − exp (−c2N) that

σmin(A) = σd(A) ≥
√
N −

√
d− 1

2c1
, (30)

where c1, c2 > 0 are constants depending polynomially only on the Gaussian moment. This implies
rA = d and UA ∈ Od. Since Problem (12) is a PCA problem, the columns of any optimal solution
Û ∈ On×d consist of left singular vectors associated with the top d singular values of X. This,
together with Wedin’s Theorem [77] and (29), yields∥∥∥ÛÛT −U⋆U⋆T

∥∥∥
F
=
∥∥∥ÛÛT − (U⋆UA)(U

⋆UA)
T
∥∥∥
F
≤ 2∥E∥F

σmin(A)
=

4c1∥E∥F√
N −

√
d− 1

.

This, together with absorbing 4 into c1, yields (13).
(ii) Suppose that N < d. According to Lemma 3 with ε = 1/(2c1), it holds with probability at

least 1− 1/2d−N+1 − exp (−c2d) that

σmin(A) = σN (A) ≥
√
d−
√
N − 1

2c1
, (31)

where c1, c2 > 0 are constants depending polynomially only on the Gaussian moment. This implies
rA = N and UA ∈ Od×N . This, together with the fact that A = UAΣAV

T
A is an SVD of A, yields

that U⋆A = (U⋆UA)ΣAV
T
A is an SVD of U⋆A with U⋆UA ∈ On×N . Note that rank(X) ≤ N .

Let X = UXΣXV T
X be an SVD of X, where UX ∈ On×N , VX ∈ ON , and ΣX ∈ RN×N . This,

together with Wedin’s Theorem [77] and (31), yields

∥∥UXUT
X −U⋆UAU

T
AU⋆T

∥∥
F
≤ 2∥E∥F

σmin(A)
=

4c1∥E∥F√
d−
√
N − 1

. (32)

Note that Problem (12) has infinite optimal solutions when N < d, which take the form of

Û =
[
UX ŪX

]
∈ On×d.
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Now, we consider that ŪX ∈ On×(d−N) is an optimal solution of the following problem:

min
V ∈On×(d−N),UT

XV =0
∥V TU⋆(I −UAU

T
A )∥2F . (33)

Then, one can verify that the rank of the following matrix is at most d:

B :=
[
UX U⋆(I −UAU

T
A )
]

Then, if n ≥ 2d−N , it is easy to see that the optimal value of Problem (33) is 0. If n < 2d−N , the
optima value is achieved at V ⋆ = [V ⋆

1 V ⋆
2 ] with V ⋆

1 ∈ Rn×(n−d) and V ⋆
2 ∈ Rn×(2d−N−n) satisfying

V ⋆T
1 B = 0, which implies

∥V ⋆TU⋆(I −UAU
T
A )∥2F = ∥V ⋆T

2 U⋆(I −UAU
T
A )∥2F ≤ 2d−N − n.

Consequently, the optimal value of Problem (33) is less than

max {0, 2d− (n+N)} (34)

Then, we obtain that∥∥∥ÛÛT −U⋆U⋆T
∥∥∥
F
=
∥∥UXUT

X + ŪXŪT
X −U⋆UAU

T
AU⋆T −U⋆(I −UAU

T
A )U⋆T

∥∥
≥ ∥ŪXŪT

X −U⋆(I −UAU
T
A )U⋆T ∥F −

∥∥UXUT
X −U⋆UAU

T
AU⋆T

∥∥
F

≥
√
2(d−N)− 2max {0, 2d− (n+N)} − 4c1∥E∥F√

d−
√
N − 1

≥
√

2min{d−N,n− d} − 4c1∥E∥F√
d−
√
N − 1

,

where the second inequality follows from ŪX = V ⋆ and (34). Then, we complete the proof.
⊔⊓

C Proofs in Section 3.2

C.1 Theoretical Justification of the DAE (16)

Since xt = stx0 + γtϵ, we compute

Eϵ

[
∥UT

k (stx0 + γtϵ)∥2
]
= s2t ∥UT

k x0∥2 + γ2t Eϵ[∥UT
k ϵ∥2] = s2t ∥UT

k x0∥2 + γ2t d,

where the first equality is due to ϵ ∼ N (0, In) and Eϵ[⟨UT
k x0,U

T
k ϵ⟩] = 0 for each k ∈ [K]. This

implies that when n is sufficiently large, we can approximate wk(θ;xt) in (9) well by

wk(θ;xt) ≈
exp

(
ϕt

(
s2t ∥UT

k x0∥2 + γ2t d
))∑K

l=1 exp
(
ϕt

(
s2t ∥UT

l x0∥2 + γ2t d
)) .

This soft-max function can be further approximated by the hard-max function. Therefore, we
directly obtain (17).
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C.2 Proof of Theorem 3

Equipped with the above setup, we are ready to prove Theorem 3.

Proof of Theorem 3. Plugging (16) into the integrand of (6) yields

Eϵ

∥∥∥∥∥ st
s2t + γ2t

K∑
k=1

ŵk(θ;x
(i))UkU

T
k (stx

(i) + γtϵ)− x(i)

∥∥∥∥∥
2


=

∥∥∥∥∥ s2t
s2t + γ2t

K∑
k=1

ŵk(θ;x
(i))UkU

T
k x(i) − x(i)

∥∥∥∥∥
2

+
(stγt)

2

(s2t + γ2t )
2
Eϵ

∥∥∥∥∥
K∑
k=1

ŵk(θ;x
(i))UkU

T
k ϵ

∥∥∥∥∥
2


=
s2t

s2t + γ2t

K∑
k=1

(
s2t

s2t + γ2t
ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
∥UT

k x(i)∥2 + ∥x(i)∥2 + (stγt)
2d

(s2t + γ2t )
2

K∑
k=1

ŵk(θ;x
(i)),

where the first equality follows from Eϵ[⟨x, ϵ⟩] = 0 for any fixed x ∈ Rn due to ϵ ∼ N (0, In), and
the last equality uses Uk ∈ On×d and UT

k Ul = 0 for all k ̸= l. This, together with (6) and γt = stσt,
yields

ℓ(θ) =
1

N

N∑
i=1

K∑
k=1

∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
dt∥UT

k x(i)∥2+

1

N

∫ 1

0
λtdt

N∑
i=1

∥x(i)∥2 +
(∫ 1

0

σ2
t λt

(1 + σ2
t )

2
dt

)
d

N

N∑
i=1

K∑
k=1

ŵ2
k(θ;x

(i)).

According to (16), we can partition [N ] into {Ck(θ)}Kk=1, where Ck(θ) for each k ∈ [K] is defined
as follows:

Ck(θ) :=
{
i ∈ [N ] : ∥UT

k x(i)∥ ≥ ∥UT
l x(i)∥, ∀l ̸= k

}
,∀k ∈ [K]. (35)

Then, we obtain
N∑
i=1

K∑
k=1

ŵ2
k(θ;x

(i)) =
K∑
k=1

∑
i∈Ck(θ)

1 = N.

This, together with plugging (35) into the above loss function, yields minimizing ℓ(θ) is equivalent
to minimizing

1

N

N∑
i=1

K∑
k=1

∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

ŵ2
k(θ;x

(i))− 2ŵk(θ;x
(i))

)
dt∥UT

k x(i)∥2

=

(∫ 1

0

λt

1 + σ2
t

(
1

1 + σ2
t

− 2

)
dt

)
1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2.

Since λt

1+σ2
t

(
1

1+σ2
t
− 2
)
< 0 for all t ∈ [0, 1], minimizing the above function is equivalent to

max
θ

1

N

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2 s.t. [U1 . . . UK ] ∈ On×dK .

Then, we complete the proof. ⊔⊓
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C.3 Proof of Theorem 4

Proof of Theorem 4. For ease of exposition, let δ := max{∥ei∥ : i ∈ [N ]},

f(θ) :=

K∑
k=1

∑
i∈Ck(θ)

∥UT
k x(i)∥2,

and for each k ∈ [K],
C⋆
k :=

{
i ∈ [N ] : x(i) = U⋆

kai + ei

}
.

Suppose that (50) and (51) hold with V = Ûk for all i ∈ [N ] and k ̸= l ∈ [K], which happens with
probability 1− 2K2N−1 according to Lemma 5. This implies that for all i ∈ [N ] and k ̸= l ∈ [K],

√
d− (2

√
logN + 2) ≤ ∥ai∥ ≤

√
d+ (2

√
logN + 2),

∥ÛT
k U⋆

l ∥F − (2
√

logN + 2) ≤ ∥ÛT
k U⋆

l ai∥ ≤ ∥ÛT
k U⋆

l ∥F + (2
√
logN + 2).

(36)

(37)

Recall that the underlying basis matrices are denoted by θ⋆ = {U⋆
k}Kk=1 and the optimal basis

matrices are denoted by θ̂ = {Ûk}Kk=1.
First, we claim that Ck(θ

⋆) = C⋆
k for each k ∈ [K]. Indeed, for each i ∈ C⋆

k , we compute

∥U⋆T
k x(i)∥ = ∥U⋆T

k (U⋆
kai + ei)∥ = ∥ai +U⋆T

k ei∥ ≥ ∥ai∥ − ∥ei∥,

∥U⋆T
l x(i)∥ = ∥U⋆T

l (U⋆
kai + ei)∥ = ∥U⋆T

l ei∥ ≤ ∥ei∥, ∀l ̸= k.

(38)

(39)

This, together with (36) and ∥ei∥ < (
√
d− 2

√
logN)/2, implies ∥U⋆T

k xi∥ ≥ ∥U⋆T
l xi∥ for all l ̸= k.

Therefore, we have i ∈ Ck(θ
⋆) due to (35). Therefore, we have C⋆

k ⊆ Ck(θ
⋆) for each k ∈ [K]. This,

together with the fact that they respectively denote a partition of [N ], yields Ck(θ
⋆) = C⋆

k for each
k ∈ [K]. Now, we compute

f(θ⋆) =
K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k x(i)∥2 =

K∑
k=1

∑
i∈C⋆

k

∥ai +U⋆T
k ei∥2

=
N∑
i=1

∥ai∥2 + 2

K∑
k=1

∑
i∈C⋆

k

⟨ai,U
⋆T
k ei⟩+

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k ei∥2. (40)

Next, we compute

f(θ̂) =
K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k x(i)∥2 =

K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

∥ÛT
k (U⋆

l ai + ei))∥2

=

K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

(
∥ÛT

k U⋆
l ai∥2 + 2⟨ai,U

⋆T
l ÛkÛ

T
k ei⟩

)
+

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k ei∥2.
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This, together with f(θ̂) ≥ f(θ⋆) and (40), yields

N∑
i=1

∥ai∥2−
K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

∥ÛT
k U⋆

l ai∥2 ≤
K∑
l=1

K∑
k=1

∑
i∈Ck(θ̂)∩C⋆

l

2⟨ai,U
⋆T
l ÛkÛ

T
k ei⟩+

K∑
k=1

∑
i∈Ck(θ̂)

∥ÛT
k ei∥2 − 2

K∑
k=1

∑
i∈C⋆

k

⟨ai,U
⋆T
k ei⟩ −

K∑
k=1

∑
i∈C⋆

k

∥U⋆T
k ei∥2

≤ 4δ
N∑
i=1

∥ai∥+Nδ2 ≤ 6δN
√
d+Nδ2, (41)

where the second inequality follows from ∥ei∥ ≤ δ for all i ∈ [N ] and U⋆
k , Ûk ∈ On×d for all k ∈ [K],

and the last inequality uses (36).
For ease of exposition, let Nkl := |Ck(θ̂) ∩ C⋆

l |. According to the pigeonhole principle, there
exists a permutation π : [K]→ [K] such that there exists k ∈ [K] such that Nπ(k)k ≥ N/K2. This,
together with (41), yields

6δN
√
d+Nδ2 ≥

∑
i∈Cπ(k)(θ̂)∩C⋆

k

(
∥ai∥2 − ∥ÛT

π(k)U
⋆
kai∥2

)
= ⟨I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k ,

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i ⟩. (42)

According to Lemma 6 and Nπ(k)k ≥ N/K2, it holds with probability at least 1− 2K4N−2 that∥∥∥∥∥∥∥
1

Nπ(k)k

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i − I

∥∥∥∥∥∥∥ ≤
9(
√
d+

√
log(Nπ(k)k)√

Nπ(k)k

.

This, together with the Weyl’s inequality, yields

λmin

 ∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i

 ≥ Nπ(k)k − 9
√
Nπ(k)k

(√
d+

√
log(Nπ(k)k)

)

≥ N

K2
− 9
√
N

K

(√
d+

√
logN

)
≥ N

2K2
,

where the second inequality follows from N/K2 ≤ Nπ(k)k ≤ N and the last inequality is due to√
N ≥ 18K(

√
d+
√
logN). Using this and Lemma 7, we obtain

⟨I −U⋆T
k Ûπ(k)Û

T
π(k)U

⋆
k ,

∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i ⟩

≥ λmin

 ∑
i∈Cπ(k)(θ̂)∩C⋆

k

aia
T
i

Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)

≥ N

2K2
Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
.
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This, together with (42), implies

Tr
(
I −U⋆T

k Ûπ(k)Û
T
π(k)U

⋆
k

)
≤ 2K2

(
6δ
√
d+ δ2

)
.

Using this and [U⋆
1 , . . . ,U

⋆
k ] ∈ On×dK , we obtain

∑
l ̸=k

∥ÛT
π(k)U

⋆
l ∥2F = Tr

∑
l ̸=k

ÛT
π(k)U

⋆
l U

⋆T
l Ûπ(k)

 ≤ Tr
(
I − ÛT

π(k)U
⋆
kU

⋆T
k Ûπ(k)

)
≤ 2K2

(
6δ
√
d+ δ2

)
≤ 3d

4
, (43)

where the last inequality follows δ ≤
√
d/(24K2). According to (41), we have

6δN
√
d+Nδ2 ≥

K∑
l ̸=k

∑
i∈Cπ(k)(θ̂)∩C⋆

l

(
∥ai∥2 − ∥ÛT

π(k)U
⋆
l ai∥2

)

≥
K∑
l ̸=k

Nπ(k)l

(
(
√
d− α)2 −

(
∥ÛT

π(k)U
⋆
l ∥F + α

)2)
≥ d

8

K∑
l ̸=k

Nπ(k)l,

where the second inequality uses (36) and (37), and the last inequality follows from d ≳ logN .
Therefore, we have for each k ∈ [K],

K∑
l ̸=k

Nπ(k)l ≤
48δN

√
d+ 8δ2N

d
< 1,

where the last inequality uses δ ≲
√
d/N . This implies Nπ(l)k = 0 for all l ̸= k, and thus Cπ(k)(θ̂) ⊆

C⋆
k . Using the same argument, we can show that Cπ(l)(θ̂) ⊆ C⋆

l for each l ̸= k. Therefore, we
have Cπ(k)(θ̂) = C⋆

k for each k ∈ [K]. In particular, using the union bound yields event holds with
probability at least 1− 2K2N−1. Based on the above optimal assignment, we can further show:

(i) Suppose that Nk ≥ d for each k ∈ [K]. This, together with (i) in Theorem 2 and Nk ≥ d,
yields (19).

(ii) Suppose that there exists k ∈ [K] such that Nk < d. This, together with (ii) in Theorem 2
and Nk ≥ d, yields (20).

Finally, applying the union bound yields the probability of these events. ⊔⊓

D Experimental Setups in Section 2.2

In this section, we provide detailed setups for the experiments in Section 2.2. These experiments
aim to validate the assumptions that real-world image data satisfies a mixture of low-rank Gaussians
and that the DAE is parameterized according to (9). To begin, we show that ∇xtE[x0|xt] is of low
rank when pdata follows a mixture of low-rank Gaussians and

∑K
k=1 dk ≤ n, where n is the ambient

dimension of training samples.
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D.1 Verification of Mixture of Low-Rank Gaussian Data Distribution

In this subsection, we demonstrate that a mixture of low-rank Gaussians is a reasonable and insight-
ful model for approximating real-world image data distribution. To begin, we show that∇xtE[x0|xt]
is of low rank when pdata follows a mixture of low-rank Gaussians with

∑K
k=1 dk ≤ n, where n is

the dimension of training samples.

Lemma 2. Suppose that the data distribution pdata follows a mixture of low-rank Gaussian distri-
butions as defined in Definition 1. For all t ∈ [0, 1], it holds that

min
k∈[K]

dk ≤ rank (∇xtE[x0|xt]) ≤
K∑
k=1

dk. (44)

Proof. For ease of exposition, let

hk(xt) := exp
(
ϕt∥U⋆T

k xt∥2
)
, ∀k ∈ [K].

Obviously, we have

∇hk(xt) := 2ϕt exp
(
ϕt∥U⋆T

k xt∥2
)
U⋆

kU
⋆T
k xt = 2ϕthk(xt)U

⋆
kU

⋆T
k xt. (45)

According to Lemma 1, we have

E[x0|xt] =
st

s2t + γ2t
f(xt), where f(xt) :=

∑K
k=1 πkhk(xt)U

⋆
kU

⋆T
k xt∑K

k=1 πkhk(xt)
.

Then, we compute
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2ϕt
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⋆
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T
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⋆
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⋆T
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K∑
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πkhk(xt)U
⋆
kU

⋆T
k

)

− 2ϕt(∑K
k=1 πkhk(xt)

)2
(

K∑
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πkhk(xt)U
⋆
kU

⋆T
k xt

)(
K∑
k=1

πkhk(xt)U
⋆
kU

⋆T
k xt

)T

=
1∑K

k=1 πkhk(xt)

K∑
k=1

πkhk(xt)
(
2ϕtU

⋆
kU

⋆T
k xtx

T
t + I

)
U⋆

kU
⋆T
k −

2ϕt(∑K
k=1 πkhk(xt)
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(
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πkhk(xt)U
⋆
kU

⋆T
k

)
xtx

T
t
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K∑
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πkhk(xt)U
⋆
kU

⋆T
k

)
.

This directly yields (44) for all t ∈ [0, 1]. ⊔⊓

Now, we conduct experiments to illustrate that diffusion models trained on real-world image
datasets exhibit similar low-rank properties to those described in the above proposition. Provided
that the DAE xθ(xt, t) is applied to estimate E[x0|xt], we estimate the rank of the Jacobian of
the DAE, i.e., ∇xtxθ(xt, t), on the real-world data distribution, where θ denotes the parameters
of U-Net architecture trained on the real dataset. Also, this estimation is based on the findings
in [78, 33] that under the training loss in Equation (6), the DAE xθ(xt, t) converge to E[x0|xt] as
the number of training samples increases on the real data. We evaluate the numerical rank of the
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(a) Numerical rank (b) Norm of gradient

Figure 7: (a) Numerical rank of ∇xtxθ(xt, t) at all time of diffusion models. Problem (6)
is trained with the DAE xθ(·, t) parameterized according to (9) and U-Net on the training samples
generated by the mixture of low-rank Gaussian distribution. The x-axis is the SNR and the y-axis is
the numerical rank of ∇xtxθ(xt, t) over the ambient dimension n, i.e., rank(∇xtxθ(xt, t))/n. Here,
kimgs denotes the number of samples used for training, which equals to training iterations times
batch size of training samples. (b) Convergence of gradient norm of the training loss: The
x-axis is kimgs (see Eq. (47)), and the y-axis is the gradient norm of the training loss.

Jacobian of the DAE on four different datasets: CIFAR-10 [67], CelebA [70], FFHQ [71] and AFHQ
[72], where the ambient dimension n = 3072 for all datasets.

Given a random initial noise x1 ∼ N (0, In), diffusion models generate a sequence of images
{xt} according to the reverse SDE in Eq. (4). Along the sampling trajectory {xt}, we calculate the
Jacobian ∇xtxθ(xt, t) and compute its numerical rank via

rank (∇xtxθ(xt, t)) := argmin

{
r ∈ [1, n] :

∑r
i=1 σ

2
i (∇xtxθ(xt, t))∑n

i=1 σ
2
i (∇xtxθ(xt, t))

> η2
}
. (46)

In our experiments, we set η = 0.99. In the implementation, we utilize the Elucidating Diffusion
Model (EDM) with the EDM noise scheduler [62] and DDPM++ architecture [76]. Moreover, we
employ an 18-step Heun’s solver for sampling and present the results for 12 of these steps. For
each dataset, we random sample 15 initial noise x1, calculate the mean of rank(∇xtxθ(xt, t)) along
the trajectory {xt}, and plot ratio of the numerical rank over the ambient dimension against the
signal-noise-ratio (SNR) 1/σt in Figure 3, where σt is defined in Eq. (3).

D.2 Verification of Low-Rank Network Parameterization

In this subsection, we empirically investigate the properties of U-Net architectures in diffusion
models and validate the simplification of the network architecture to Eq. (9). Based on the results
in Section D.1, we use a mixture of low-rank Gaussian distributions for experiments. Here, we set
K = 2, n = 48, d1 = d2 = 6, π1 = π2 = 0.5, and N = 1000 for the data model Definition 1.
Moreover, We use the EDM noise scheduler and 18-step Heun’s solver for both the U-Net and our
proposed parameterization (9). To adapt the structure of the U-Net, we reshape each training
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Algorithm 1 SGD for optimizing the training loss (6)

Input: Training samples {x(i)}Ni=1

for j = 0, 1, 2, . . . , J do
Randomly select {(im, tm)}Mm=1, where im ∈ [N ] and tm ∈ (0, 1) and a noise ϵ ∼ N (0, I)
Take a gradient step

θj+1 ← θj − η

M

∑
m∈[M ]

∇θ

∥∥∥xθj (stmx
(im) + γtmϵ, tm)− x(im)

∥∥∥2
end for

sample into a 3D tensor with dimensions 4× 4× 3, treating it as an image. Here, we use DDPM++
based diffusion models with a U-Net architecture. In each iteration, we randomly sampled a batch
of image {x(j)}bs

j=1 ⊆ {x(i)}Ni=1, along with a timestep t(j) and a noise ϵ(j) for each image in the
batch to optimize the training loss ℓ(θ). We define

kimgs = bs× training iterations
1000

(47)

to represent the total samples used for training. Here, we pick up the specific model trained under
500 kimgs, 1000 kimgs, 2000 kimgs, and 6000 kimgs for evaluation, as shown in Figure 7(a).

We plot the numerical ranks of ∇xtxθ(xt, t) for both our proposed parameterization in (9) and
for the U-Net architecture in Figure 3(b). According to Lemma 2, it holds that 6 ≤ rank(∇xtxθ(xt, t)) ≤
12. This corresponds to the blue curve in Figure 3(b). To supplement our result in Figure 3(b),
we further plot the numerical rank against SNR at different training iterations in Figure 7(a) and
gradient norm of the objective against training iterations in Figure 7(b). We observe that with the
training kimgs increases, the gradient for the U-Net ||∇θℓ||F decrease smaller than 10−1 and the
rank ratio of ∇xtxθ(xt, t) trained from U-Net gradually be close to the rank ratio from the low-rank
model in the middle of the SNR ([0.91, 10.0]).

E Experimental Setups in Section 4

We use a CPU to optimize Problem (6) for the setting in Section E.1. For the settings in Section E.2
and Section E.3, we employ a single A40 GPU with 48 GB memory to optimize Problem (6).

E.1 Learning the MoLRG distribution with the theoretical parameterzation

Here, we present the stochastic gradient descent (SGD) algorithm for solving Problem (6) as follows:

Now, we specify how to choose the parameters of the SGD in our implementation. We divide the
time interval [0, 1] into 64 time steps. When K = 1, we set the learning rate η = 10−4, batch size
M = 128Nk, and number of iterations J = 104. When K = 2, we set the learning rate η = 2×10−5,
batch size M = 1024, number of iterations J = 105. In particular, when K = 2, we use the following
tailor-designed initialization θ0 = {U0

k} to improve the convergence of the SGD:

U0
k = U⋆

k + 0.2∆, k ∈ {1, 2}, (48)
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(a) PCA (b) Diffusion model

Figure 8: Phase transition of learning the MoLRG distribution when K = 3. The x-axis is
the number of training samples and y-axis is the dimension of subspaces. We apply a subspace
clustering method and train diffusion models for solving Problems (18) and (6), visualizing the
results in (a) and (b), respectively.

where ∆ ∼ N (0, In). We calculate the success rate as follows. If the returned subspace basis
matrices {Uk}Kk=1 satisfy

1

K

∑K

k=1
||UΠ(k)U

T
Π(k) −U⋆

kU
⋆T
k || ≤ 0.5

for some permutation Π : [K]→ [K], it is considered successful.

E.2 Learning the MoLRG distribution with U-Net

In our implementation, we set the total dimension of MoLRG as n = 48 and the number of training
samples Neval = 1000. To train the U-Net, we use the stochastic gradient descent in Algorithm 1.
We use DDPM++ architecture [17] for the U-Net and EDM [62] noise scheduler. We set the learning
rate 10−3, batch size 64, and number of iterations J = 104.

E.3 Learning real-world image data distributions with U-Net

To train diffusion models for real-world image datasets, we use the DDPM++ architecture [17] for
the U-Net and variance preserving (VP) [17] noise scheduler. The U-Net is trained using the Adam
optimizer [79], a variant of SGD in Algorithm 1. We set the learning rate η = 10−3, batch size
M = 512, and the total number of iterations 105.

E.4 Correspondence between low-dimensional subspaces and image semantics

We denote the Jacobian of the DAE xθ(xt, t) by Jt := ∇xtxθ(xt, t) ∈ Rn×n and let Jt = UΣV T

be an singular value decomposition (SVD) of Jt, where r = rank(Jt), U = [u1, · · · ,ur] ∈ On×r,
V = [v1, · · · ,vr] ∈ On×r, and Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr being the singular values.
According to the results in Figure 3, it is observed that Jt is low rank, i.e., r ≪ n. Now, we compute
the first-order approximation of xθ(xt, t) along the direction of vi ∈ Rn, where vi is the i-th right
singular vector of Jt:

xθ(xt + αvi, t) ≈ xθ(xt, t) + αJtvi = xθ(xt, t) + ασiui,

where the last equality follows from Jtvi = UΣV Tvi = ασiui. To validate the semantic meaning
of the basis vi, we vary the value of α from negative to positive and visualize the resulting changes
in the generated images. Figures 6 and 9(a, c) illustrate some real examples.
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In the experiments, we use a pre-trained diffusion denoising probabilistic model (DDPM) [2]
on the MetFaces dataset [75]. We randomly select an image x0 from this dataset and use the
reverse process of the diffusion denoising implicit model (DDIM) [76] to generate xt at t = 0.7T
(ablation studies for t = 0.1T and 0.9T are shown in Figure 9(b)), where T denote the total number
of time steps. We respectively choose the changed direction as the leading right singular vectors
v1,v3,v4,v5,v6 and use x̃t = xt + αvi to generate new images with α ∈ [−6, 6] shown in Figures 6
and 9(a, c).

F Auxiliary Results

First, we present a probabilistic result to prove Theorem 2, which provides an optimal estimate of
the small singular values of a matrix with i.i.d. Gaussian entries. This lemma is proved in [80,
Theorem 1.1].

Lemma 3. Let A be an m × n random matrix, where m ≥ n, whose elements are independent
copies of a subgaussian random variable with mean zero and unit variance. It holds for every ε > 0
that

P
(
σmin(A) ≥ ε(

√
m−

√
n− 1)

)
≥ 1− (c1ε)

m−n+1 − exp (−c2m) ,

where c1, c2 > 0 are constants depending polynomially only on the subgaussian moment.

Next, we present a probabilistic bound on the deviation of the norm of weighted sum of squared
Gaussian random variables from its mean. This is a direct extension of [81, Theorem 5.2.2].

Lemma 4. Let x ∼ N (0, Id) be a Gaussian random vector and λ1, . . . , λd > 0 be constants. It
holds for any t > 0 that

P

∣∣∣∣∣∣
√√√√ d∑

i=1

λ2
ix

2
i −

√√√√ d∑
i=1

λ2
i

∣∣∣∣∣∣ ≥ t+ 2λmax

 ≤ 2 exp

(
− t2

2λ2
max

)
, (49)

where λmax = max{λi : i ∈ [d]}.

Based on the above lemma, we can further show the following concentration inequalities to
estimate the norm of the standard norm Gaussian random vector.

Lemma 5. Suppose that ai
i.i.d.∼ N (0, Id) is a Gaussian random vector for each i ∈ [N ]. The

following statements hold:
(i) It holds for all i ∈ [N ] with probability at least 1−N−1 that∣∣∣∥ai∥ −

√
d
∣∣∣ ≤ 2

√
logN + 2. (50)

(ii) Let V ∈ On×d be given. For all i ∈ C⋆
k and all k ∈ [K], it holds with probability at least 1−2N−1

that ∣∣∥V TU⋆
kai∥ − ∥V TU⋆

k∥F
∣∣ ≤ 2

√
logN + 2. (51)

Proof. (i) Applying Lemma 4 to ai ∼ N (0, Id), together with setting t = 2
√
logN and λj = 1 for

all j ∈ [d], yields
P
(∣∣∣∥ai∥ −

√
d
∣∣∣ ≥ 2

√
logN + 2

)
≤ 2N−2.

This, together with the union bound, yields that (50) holds with probability 1−N−1.
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(a) (b)

(c)

Figure 9: Correspondence between the singular vectors of the Jacobian of the DAE and
semantic image attributes. (a,c) Additional examples when t = 0.7T . (b) Ablation studies when
t = 0.1T and 0.9T .
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(ii) Let V TU⋆
k = PΣQT be a singular value decomposition of V TU⋆

k , where Σ ∈ Rd×d with the
diagonal elements 0 ≤ σd ≤ . . . σ1 ≤ 1 being the singular values of V TU⋆

k and P ,Q ∈ Od. This,
together with the orthogonal invariance of the Gaussian distribution, yields

∥V TU⋆
kai∥ = ∥ΣQTai∥

d
= ∥Σai∥ =

√√√√ d∑
j=1

σ2
ja

2
ij . (52)

Using Lemma 4 with setting t = 2σ1
√
logN and λj = σj ≤ 1 for all j yields

P
(∣∣∥V TU⋆

kai∥ − ∥V TU⋆
k∥F

∣∣ ≥ σ1α
)
= P

∣∣∣∣∣∣
√√√√ d∑

j=1

σ2
ja

2
ij −

√√√√ d∑
j=1

σ2
j

∣∣∣∣∣∣ ≥ σ1α

 ≤ 2N−2.

This, together with σ1 ≤ 1 and the union bound, yields (51). ⊔⊓

Next, We present a spectral bound on the covariance estimation for the random vectors generated
by the normal distribution.

Lemma 6. Suppose that a1, . . . ,aN ∈ Rd are i.i.d. standard normal random vectors, i.e., ai
i.i.d.∼

N (0, Id) for all i ∈ [N ]. Then, it holds with probability at least 1− 2N−2 that∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≤ 9(
√
d+
√
logN)√

N
, (53)

Proof. According to [81, Theorem 4.7.1], it holds that

P

(∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≥ 9(
√
d+ η)√
N

)
≤ 2 exp

(
−2η2

)
,

where η > 0. Plugging η =
√
logN into the above inequality yields

P

(∥∥∥∥∥ 1

N

N∑
i=1

aia
T
i − Id

∥∥∥∥∥ ≥ 9(
√
d+
√
logN)√

N

)
≤ 2N−2.

This directly implies (53). ⊔⊓

Lemma 7. Let A,B ∈ Rn×n be positive semi-definite matrices. Then, it holds that

⟨A,B⟩ ≥ λmin(A)Tr(B). (54)

Proof. Let UΛUT = A be an eigenvalue decompositon of A, where U ∈ On and Σ = diag(λ1, . . . , λn)
is a diagonal matrix with diagonal entries λ1 ≥ · · · ≥ λn ≥ 0 being the eigenvalues. Then, we com-
pute

⟨A,B⟩ = ⟨UΛUT ,B⟩ = ⟨Λ,UBUT ⟩ ≥ λmin(A)Tr(UBUT ) = λmin(A)Tr(B),

where the inequality follows from λi ≥ 0 for all i ∈ [N ] and B is a positive semidefinite matrix. ⊔⊓
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