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Abstract

Recent advancements in anomaly detection have seen the efficacy of CNN- and
transformer-based approaches. However, CNNs struggle with long-range depen-
dencies, while transformers are burdened by quadratic computational complex-
ity. Mamba-based models, with their superior long-range modeling and linear
efficiency, have garnered substantial attention. This study pioneers the applica-
tion of Mamba to multi-class unsupervised anomaly detection, presenting Mam-
baAD, which consists of a pre-trained encoder and a Mamba decoder featuring
(Locality-Enhanced State Space) LSS modules at multi-scales. The proposed
LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and
multi-kernel convolutions operations, effectively captures both long-range and
local information. The HSS block, utilizing (Hybrid Scanning) HS encoders,
encodes feature maps into five scanning methods and eight directions, thereby
strengthening global connections through the (State Space Model) SSM. The
use of Hilbert scanning and eight directions significantly improves feature se-
quence modeling. Comprehensive experiments on six diverse anomaly detec-
tion datasets and seven metrics demonstrate state-of-the-art performance, sub-
stantiating the method’s effectiveness. The code and models are available at
https://lewandofskee.github.io/projects/MambaAD.

1 Introduction

The advent of smart manufacturing has markedly increased the importance of industrial visual
Anomaly Detection (AD) in production processes. This technology promises to enhance efficiency,
diminish the costs of manual inspections, and elevate product quality along with the stability of
production lines. Presently, most methods predominantly utilize a single-class setting [12, 30, 55],
where a separate model is trained and tested for each class, leading to considerable increases in training
and memory usage. Despite recent progress in introducing multi-class AD techniques [47, 18], there
is still significant potential for advancement in terms of both accuracy and efficiency trade-off.

The current unsupervised anomaly detection algorithms can be broadly categorized into three ap-
proaches [50, 9, 51]: Embedding-based [36, 11, 4, 12, 8], Synthesizing-based [48, 24, 55, 30], and
Reconstruction-based [27, 18, 6]. Despite the promising results of both Synthesizing and Embedding-
based methods in AD, these approaches often require extensive design and inflexible frameworks.
Reconstruction-based methods, such as RD4AD [12] and UniAD [47], exhibit superior performance
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and better scalability. RD4AD, as depicted in Fig. 1 (a), employs a pre-trained teacher-student model,
comparing anomalies across multi-scale feature levels. While CNN-based RD4AD captures local
context effectively, it lacks the ability to establish long-range dependencies. UniAD, the first multi-
class AD algorithm, relies on a pre-trained encoder and transformer decoder architecture as illustrated
in Fig. 1 (b). Despite their superior global modeling capabilities, transformers are hampered by
quadratic computational complexity, which confines UniAD to anomaly detection on the smallest
feature maps, potentially impacting its performance.

Recently, Mamba [15] has demonstrated exceptional performance in large language models, offering
significantly lower linear complexity compared to transformers while maintaining comparable ef-
fectiveness. Numerous recent studies have incorporated Mamba into the visual domain, sparking a
surge of research [29, 57, 40, 22, 37, 43]. This paper pioneers the application of Mamba into the
anomaly detection area, introducing MambaAD, as illustrated in Fig. 1 (c). MambaAD combines
global and local modeling capabilities, leveraging its linear complexity to compute anomaly maps
across multiple scales. Notably, it boasts a lower parameter count and computational demand, making
it well-suited for practical applications.

Specifically, MambaAD employs a pyramid-structured auto-encoder to reconstruct multi-scale fea-
tures, utilizing a pre-trained encoder and a novel decoder based on the Mamba architecture. This
Mamba-based decoder consists of Locality-Enhanced State Space (LSS) modules at varying scales
and quantities. Each LSS module comprises two components: a series of Hybrid State Space (HSS)
blocks for global information capture and parallel multi-kernel convolution operations for estab-
lishing local connections. The resulting output features integrate the global modeling capabilities
of the mamba structure with the local correlation strengths of CNNs. The proposed HSS module
investigates five distinct scanning methods and eight scanning directions, with the (Hybrid Scanning)
HS encoder and decoder encoding and decoding feature maps into sequences of various scanning
methods and directions, respectively. The HSS module enhances the global receptive field across
multiple directions, and its use of the Hilbert scanning method [19, 23] is particularly suited to the
central concentration of industrial product features. By computing and summing anomaly maps
across different feature map scales, MambaAD achieves SoTA performance on several representative
AD datasets with seven different metrics for both image- and pixel-level while maintaining a low
model parameter count and computational complexity. Our contributions are as follows:

• We introduce MambaAD, which innovatively applies the Mamba framework to address multi-
class unsupervised anomaly detection tasks. This approach enables multi-scale training and
inference with minimal model parameters and computational complexity.

• We design a Locality-Enhanced State Space (LSS) module, comprising cascaded Mamba-
based blocks and parallel multi-kernel convolutions, extracts both global feature correlations
and local information associations, achieving a unified model of global and local patterns.

• We have explored a Hybrid State Space (HSS) block, encompassing five methods and eight
multi-directional scans, to enhance the global modeling capabilities for complex anomaly
detection images across various categories and morphologies.

• We demonstrate the superiority and efficiency of MambaAD in multi-class anomaly detec-
tion tasks, achieving SoTA results on six distinct AD datasets with seven metrics while
maintaining remarkably low model parameters and computational complexity.

2 Related Work

2.1 Unsupervised Anomaly Detection

Unsupervised Anomaly Detection. Existing AD methods can be mainly categorized into three
types: 1) Embedding-based methods focus on encoding RGB images into multi-channel fea-
tures [36, 11, 4, 12, 10, 38]. These methods typically employ networks per-trained on ImageNet [13].
PatchCore [36] extracts nominal patch features with a memory bank for measuring the Mahalanobis
distance. [4] is based on a student-teacher framework where student networks are trained to regress
the output of a teacher network. However, the datasets used for these pre-trained models have a
significant distribution gap compared to industrial images. 2) Synthesizing-based methods synthesize
anomalies on normal images [48, 24, 39, 20]. The pseudo-anomalies in DREAM [48] are generated
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Figure 1: Compared with (a) local CNN-based RD4AD [12] and (b) global Transformer-based
UniAD [47], ours MambaAD with linear complexity is capable of integrating the advantages of both
global and local modeling, and multi-scale features endow it with more refined prediction accuracy.

utilizing Perlin noise and texture images. DREAM, taking anomaly mask as output, consists of
a reconstruction network and a discriminative network. Despite the decent performance of such
methods, the synthesized anomalies still have a certain gap compared to real-world anomalies. 3)
Reconstruction-based methods [12, 27, 52, 7] typically focus on self-training encoders and decoders
to reconstruct images, reducing reliance on pre-trained models. Autoencoder [35], Transformers[33],
Generative Adversarial Networks (GANs) [27, 46] and diffusion models [18, 45] can serve as the
backbone for reconstruction networks in anomaly detection. While the model’s generalization can
occasionally lead to inaccuracies in pinpointing anomalous areas.

Multi-class Anomaly Detection. Most current works are trained individually on separate categories,
which leads to increased time and memory consumption as the number of categories grows, and they
are uncongenial to situations with large intra-class diversity. Recently, to address these issues, multi-
class unsupervised anomaly detection (MUAD) methods have attracted a lot of interest. UniAD [47]
firstly crafts a unified reconstruction framework for anomaly detection. DiAD [18] investigates an
anomaly detection framework based on diffusion models, introducing a semantic-guided network to
ensure the consistency of reconstructed image semantics.ViTAD [50] further explores the effectiveness
of vanilla Vision Transformer (ViT) on multi-class anomaly detection.

2.2 State Space Models

State space models (SSMs) [17, 16, 41, 32, 14] have gained considerable attention due to their
efficacy in handling long language sequence modeling. Specifically, structure state-space sequence
(S4) [16] efficiently models long-range dependencies (LRDs) through parameterization with a
diagonal structure, addressing computational bottlenecks encountered in previous works. Building
upon S4, numerous models have been proposed, including S5 [41], H3 [14], and notably, Mamba [15].
Mamba introduces a data-dependent selection mechanism into S4, which provides a novel paradigm
distinct from CNNs or Transformers, maintaining linear scalability of long sequences processing.

The tremendous potential of Mamba has sparked a series of excellent works [29, 57, 37, 21, 22, 40,
44, 43, 31, 54, 26] in the vision domain. Vmamba [29] proposes a cross-scan module (CSM) to tackle
the direction sensitivity issue between non-causal 2D images and ordered 1D sequences. Moreover,
Mamba has found extensive use in the domain of medical image segmentation [37, 28, 44, 43, 25],
incorporating Mamba blocks to UNet-like architecture to achieve task-specific architecture. VL-
Mamba [34] and Cobra [56] explore the potential of SSMs in multimodal large language models.
Besides, ZigMa [21] addresses the spatial continuity in the scan strategy, and it incorporates Mamba
into the Stochastic Interpolation framework [1].

In this work, we develop MambaAD to exploit Mamba’s long-range modeling capacity and linear
computational efficiency for multi-class unsupervised anomaly detection. This approach innovatively
combines SSM’s global modeling capabilities with CNNs’ detailed local modeling prowess.

3



Figure 2: Overview of the proposed MambaAD, which employs pyramidal auto-encoder framework
to reconstruct multi-scale features by the proposed efficient and effective Locality-Enhanced State
Space (LSS) module. Specifically, each LSS consists of: 1) cascaded Hybrid State Space (HSS) blocks
to capture global interaction; and 2) parallel multi-kernel convolution operations to replenish local
information. Aggregated multi-scale reconstruction error serves as the anomaly map for inference.

3 Method

3.1 Preliminaries

State Space Models [16], inspired by control systems, map a one-dimensional stimulation x(t) ∈ RL

to response y(t) ∈ RL through a hidden state h(t) ∈ RN , which are formulated as linear ordinary
differential equations (ODEs):

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where the state transition matrix A ∈ RN×N , B ∈ RN×1 and C ∈ R1×N for a state size N .

S4 [16] and Mamba [15] utilize zero-order hold with a timescale parameter ∆ to transform the
continuous parameters A and B from the continuous system into the discrete parameters A and B:

A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B. (2)

After the discretization, the discretized model formulation can be represented as:

ht = Aht−1 +Bxt, yt = Cht. (3)

At last, from the perspective of global convolution, the output can be defined as:

K = (CB,CAB, . . . ,CA
L−1

B), y = x ∗K, (4)

where ∗ represents convolution operation, L is the length of sequence x, and K ∈ RL is a structured
convolutional kernel.

3.2 MambaAD

The MambaAD framework is proposed for multi-class anomaly detection as illustrated in Fig. 2(a).
It consists of three main components: a pre-trained CNN-based encoder, a Half-FPN bottleneck,
and a Mamba-based decoder. During training, the encoder extracts feature maps at three different
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（a）Hilbert scanning method with 8 directions （b）Other scanning methods

Figure 3: Hybrid Scanning directions and methods. (a) The Hilbert scanning method with 8 scanning
directions is used for HS Encoder and Decoder. (b) The other four scanning methods for comparison.

scales and inputs them into the H-FPN bottleneck for fusion. The fused output is then fed into the
Mamba Decoder with a depth configuration of [3,4,6,3]. The final loss function is the sum of the
mean squared error (MSE) computed across feature maps at three scales. Within the Mamba Decoder,
we introduce the Locality-Enhanced State Space (LSS) module. The LSS can be configured with
different stages Mi, where each stage represents the number N of Hybrid State Space (HSS) blocks
within the module. In this experiment, we employ LSS with Mi = 3 and Mi = 2 as the primary
modules. The LSS module processes the input Xi through HSS blocks that capture global information
and through two different scales of Depth-Wise Convolution (DWConv) layers that capture local
information. The original input feature dimension is restored through concatenation and convolution
operations. The proposed HSS block features a Hybrid Scanning (HS) Encoder and an HS Decoder,
which accommodates five distinct scanning methods and eight scanning directions.

3.3 Locality-Enhanced State Space Module

Transformers excel in global modeling and capturing long-range dependencies but tend to overlook lo-
cal semantic information and exhibit high computational complexity when processing high-resolution
features. Conversely, CNNs effectively model local semantics by capturing information from adjacent
positions but lack long-range modeling capabilities. To address these limitations, we propose the
LSS module in Fig. 2 (b), which incorporates both Mamba-based cascaded HSS blocks for global
modeling and parallel multi-kernel depth-wise convolution operations for local information capture.

Specifically, for an input feature Xi ∈ RH×W×C , global features Gi ∈ RH×W×C enter the HSS
blocks while local features Li ∈ RH×W×C proceed through a convolutional network. The global
features Gi pass through a series of N HSS blocks to obtain global information features Go.

Go = HSSn(...(HSS2(HSS1(Gi)))), (5)
where n ∈ N is the number of HSS blocks. In this study, we primarily use N = 2 and N = 3, with
further ablation experiments presented in Sec. 4.3.

Local features Li are processed by two parallel DWConv blocks, each comprising a 1 × 1 Conv
block, an k × k DWConv block, and another 1× 1 Conv block.

Lm = ConvB1×1(DWConvBk×k(ConvB1×1(Li)), (6)
where k is the kernel size for the DWConv. k = 5 and k = 7 are used in this experiment with
further ablations in Sec. 4.3. Each convolutional module includes a Conv 2D layer, an Instance
Norm 2D layer, and a SiLU as illustrated in Fig. 2 (d). Local and global features are aggregated by
concatenation along the channel dimension. The final output Xo of this block is obtained by a 1× 1
2D convolution to restore the channel count to match that of the input and a residual connection.

Xo = Conv2D1×1(Concat(Go, Lk5
, Lk7

)) +Xi. (7)

3.4 Hybrid State Space Block

Following the method outlined in [29, 37], the HSS block is designed for hybrid-method and hybrid-
directional scanning and fusion, as depicted in Fig. 2 (c). The HSS block primarily comprises Layer
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Normalization (LN), Linear Layer, depth-wise convolution, SiLU activation, Hybrid Scanning (HS)
encoder EHS , State Space Models (SSMs), HS decoder DHS , and residual connections.

G′
i = LN(DHS(SSMs(EHS(σ(DWConv3×3(Linear(LN(Gi)))))))),

Gi+1 = Linear(G′
i · σ(Linear(LN(Gi)))) +Gi

(8)

Hybrid Scanning methods. Inspired by space-filling curves [49, 53], as shown in Fig. 3, this study
explores five different scanning methods: (I) Sweep, (II) Scan, (III) Z-order, (IV) Zigzag, and (V)
Hilbert, to assess their impact on the SSM’s modeling capabilities. The Hilbert scanning method is
ultimately selected for its superior encoding and modeling of local and global information within
feature sequences, particularly in mitigating the challenges of modeling long-range dependencies.
Further experimental results will be presented in the ablation study. Assuming A is a matrix, AT is
the transpose of A, Alr is the left-right reversal of A, Aud is the up-down reversal of A. The Hilbert
curve can be obtained by an n-order Hilbert matrix:

Hn+1 =


(

Hn 4nEn +HT
n

(4n+1 + 1)En −Hud
n (3× 4n + 1)En − (H lr

n )T

)
, if n is even,(

Hn (4n+1 + 1)En −H lr
n

4nEn +HT
n (3× 4n + 1)En − (HT

n )
lr

)
, if n is odd,

(9)

where H1 =

(
1 2
4 3

)
and En is all-one matrix for n-order.

Hybrid Scanning directions. Following the setup of previous scanning directions, this study supports
eight Hilbert-based scanning directions: (i) forward, (ii) reverse, (iii) width-height (wh) forward,
(iv) wh reverse, (v) rotated 90 degrees forward, (vi) rotated 90 degrees reverse, (vii) wh rotated
90 degrees forward, and (viii) wh rotated 90 degrees reverse, as illustrated in Fig. 3 (a). Multiple
scanning directions enhance the encoding and modeling capabilities of feature sequences, enabling
the handling of various types of anomalous features with further ablations in Sec. 4.3.

The HS encoder aims to combine and encode input features according to different scanning methods
and directions before feeding them into the SSM to enhance the global modeling capacity of the
feature vectors. The HS decoder then decodes the feature vectors output by the SSM back to the
original input feature orientation, with the final output obtained by summation.

4 Experiments

4.1 Setups: Datasets, Metrics, and Details

MVTec-AD [3] encompasses a diverse collection of 5 types of textures and 10 types of objects, 5,354
high-resolution images in total. 3,629 normal images are designated for training. The remaining
1,725 images are reserved for testing and include both normal and abnormal samples.

VisA [58] features 12 different objects, incorporating three diverse types: complex structures, multiple
instances, and single instances. It consists of a total of 10,821 images, of which 9,621 are normal
samples, and 1,200 are anomaly samples.

Real-IAD [42] includes objects from 30 distinct categories, with a collection of 150K high-resolution
images, making it larger than previous anomaly detection datasets. It consists of 99,721 normal
images and 51,329 anomaly images.

More results on MVTec-3D [5], as well as newly proposed Uni-Medical [50, 2] and COCO-AD [52]
datasets, can be viewed in Appendix 5.

Metrics. For anomaly detection and segmentation, we report Area Under the Receiver Operating
Characteristic Curve (AU-ROC), Average Precision [48] (AP) and F1-score-max [58] (F1_max).
Additionally, for anomaly segmentation, we also report Area Under the Per-Region-Overlap [4]
(AU-PRO). We further calculate the mean value of the above seven evaluation metrics (denoted as
mAD) to represent a model’s comprehensive capability [50].

Implementation Details. All input images are resized to a uniform size of 256 × 256 without
additional augmentation for consistency. A pre-trained ResNet34 acts as the feature extractor, while a
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Table 1: Quantitative Results on different AD datasets for multi-class setting.

Dateset Method
Image-level Pixel-level

mAD
AU-ROC AP F1_max AU-ROC AP F1_max AU-PRO

MVTec-AD [3]

RD4AD [12] 94.6 96.5 95.2 96.1 48.6 53.8 91.1 82.3
UniAD [47] 96.5 98.8 96.2 96.8 43.4 49.5 90.7 81.7

SimpleNet [30] 95.3 98.4 95.8 96.9 45.9 49.7 86.5 81.2
DeSTSeg [55] 89.2 95.5 91.6 93.1 54.3 50.9 64.8 77.1

DiAD [18] 97.2 99.0 96.5 96.8 52.6 55.5 90.7 84.0
MambaAD (Ours) 98.6 ± 0.3 99.6 ± 0.2 97.8 ± 0.4 97.7 ± 0.4 56.3 ± 0.7 59.2 ± 0.6 93.1 ± 0.3 86.0 ± 0.3

VisA [58]

RD4AD [12] 92.4 92.4 89.6 98.1 38.0 42.6 91.8 77.8
UniAD [47] 88.8 90.8 85.8 98.3 33.7 39.0 85.5 74.6

SimpleNet [30] 87.2 87.0 81.8 96.8 34.7 37.8 81.4 72.4
DeSTSeg [55] 88.9 89.0 85.2 96.1 39.6 43.4 67.4 72.8

DiAD [18] 86.8 88.3 85.1 96.0 26.1 33.0 75.2 70.1
MambaAD (Ours) 94.3 ± 0.4 94.5 ± 0.5 89.4 ± 0.6 98.5 ± 0.3 39.4 ± 1.1 44.0 ± 1.3 91.0 ± 0.9 78.7 ± 0.5

Real-IAD [42]

RD4AD [12] 82.4 79.0 73.9 97.3 25.0 32.7 89.6 68.6
UniAD [47] 83.0 80.9 74.3 97.3 21.1 29.2 86.7 67.5

SimpleNet [30] 57.2 53.4 61.5 75.7 2.8 6.5 39.0 42.3
DeSTSeg [55] 82.3 79.2 73.2 94.6 37.9 41.7 40.6 64.2

DiAD [18] 75.6 66.4 69.9 88.0 2.9 7.1 58.1 52.6
MambaAD (Ours) 86.3 ± 0.4 84.6 ± 0.3 77.0 ± 0.4 98.5 ± 0.1 33.0 ± 0.6 38.7 ± 0.6 90.5 ± 0.3 72.7 ± 0.4

Mamba decoder of equivalent depth [3,4,6,3] to ResNet34 serves as the student model for training.
In the Mamba decoder, the number of cascaded HSS blocks in the second LSS module is set to 2,
while all other LSS modules employ 3 cascaded HSS blocks. This experiment employs the Hilbert
scanning technique, utilizing eight distinct scanning directions. The AdamW optimizer is employed
with a learning rate of 0.005 and a decay rate of 1× 10−4. The model undergoes a training period of
500 epochs for the multi-class setting, conducted on a single NVIDIA TESLA V100 32GB GPU.
During training, the sum of MSE across different scales is employed as the loss function. In the
testing phase, the sum of cosine similarities at various scales is utilized as the anomaly maps.

4.2 Comparison with SoTAs on Different AD datasets

We compared our method with current SoTA methods on a range of datasets utilizing both image-
level and pixel-level metrics (c.f., Sec. 4.1). This paper primarily compares with UniAD [47] and
DiAD [18] dedicated to MUAD. In addition, we also compare our MambaAD with Reconstruction-
based RD4AD [12] and Embedding-based DeSTSeg [55]/SimpleNet [30].

Quantitative Results. As shown in Tab. 1, on MVTec-AD dateset, our MambaAD outperforms all
the comparative methods and reaches a new SoTA to 98.6/99.6/97.6 and 97.7/56.3/59.2/93.1 in
multi-class anomaly detection and segmentation. Specifically, compared to DiAD [18], our proposed
MambaAD shows an improvement of 1.4 ↑/0.6 ↑/1.3 ↑ at image-level and 0.9 ↑/3.7 ↑/3.7 ↑/2.4 ↑
at pixel-level. Notably, for overall metric mAD of a model, our MambaAD improves by 2.0 ↑,
compared with SoTA DiAD. The VisA dataset is more complex and challenging, yet our method still
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Figure 4: Qualitative visualization for pixel-level anomaly segmentation on MVTec and VisA datasets.
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demonstrates excellent performance. As shown in Tab. 1, our MambaAD exceeds the performance
of DiAD [18] by 7.5 ↑/6.2 ↑/4.3 ↑ at image-level and by 2.5 ↑/13.3 ↑/11.0 ↑/15.8 ↑. Meanwhile,
we achieve an enhancement of 8.7 ↑ compared to advanced DiAD on the mAD metric. In addition,
the SoTA results on Real-IAD datasets, shown in Tab. 1, illustrate the scalability, versatility, and
efficacy of our method MambaAD. We also compared the results of MambaAD with state-of-the-art
(SoTA) methods for single-class anomaly detection in Tabs. A13 to A16 in the Appendix. In the
single-class tasks, we included a comparison with the PatchCore [36] method. On the MVTec-AD
dataset, SimpleNet and PatchCore achieved the best results at the image level, while our method
achieved the second-best results. At the pixel level, DeSTSeg achieved the best results in most
metrics, whereas our method achieved the best results in AUPRO. For the VisA dataset, our method
achieved the best results in two metrics each at both the image and pixel levels. This demonstrates
that our multi-class anomaly detection method can also achieve optimal or near-optimal results in
single-class tasks, indicating its effectiveness and robustness. In contrast, existing single-class SoTA
methods like SimpleNet and DeSTSeg, although effective in single-class tasks, show a significant
performance drop in multi-class tasks. The PatchCore method can only operate in single-class tasks;
for multi-class tasks, it encounters issues such as GPU and memory overflow due to the need to
store all features in the Memory Bank. In summary, MambaAD exhibits strong robustness and
effectiveness. More detailed results for each category are presented in the Appendix.

Qualitative Results. We conducted qualitative experiments on MVTev-AD and VisA datasets that
substantiated the accuracy of our method in anomaly segmentation. Fig. 4 demonstrates that our
method possesses more precise anomaly segmentation capabilities. Compared to DiAD, our method
delivers more accurate anomaly segmentation without significant anomaly segmentation bias.

4.3 Ablation and Analysis

Components IncrementalAblations. The ablation experiments for the proposed components are
summarized in Tab. 2. Using the most basic decoder purely based on Mamba and employing only
the simplest two-directional sweep scanning method, we achieve an mAD score of 82.1 on the
MVTec-AD dataset. Subsequently, by incorporating the proposed LSS module, which integrates the
global modeling capabilities of Mamba with the local modeling capabilities of CNNs, the mAD score
improves by +2.8%. Finally, replacing the original scanning directions and methods with HSS, which
combines features from different scanning directions and employs the Hilbert scanning method, better
aligns with the data distribution in most industrial scenarios where objects are centrally located in
the image. This results in an additional +1.1% point improvement in the mAD score. Overall, the
proposed MambaAD achieves an mAD score of 86.0 on the MVTec-AD dataset and 78.9 on the VisA
dataset, reaching the SoTA performance.

Table 2: Incremental Ablations.

Basic Mamba LSS HSS MVTec-AD VisA

✓ 82.1 72.9
✓ ✓ 84.9 78.0
✓ ✓ ✓ 86.0 78.9

Table 3: Ablation Study on the LSS Module.

Method Params(M) FLOPs(G) MVTec-AD VisA

Local 13.0 5.0 81.7 72.5
Global 22.5 7.5 82.1 72.9

Local + Global 25.7 8.3 86.0 78.9

Local/Global Branches of the LSS Module. We conducted three ablation experiments to verify the
impact of branches in the LSS module as shown in Tab. 3. The Local branch represents the use of
only the parallel CNN branch, without the Mamba-based HSS branch. The Global branch represents
the use of only the Mamba-based HSS branch, without the parallel CNN branch, making the decoder
in this structure purely Mamba-based. Finally, Global+Local represents the proposed LSS structure
used in MambaAD, which combines the serial Mamba-based HSS with parallel CNN branches of
different kernel sizes. The experimental results are shown in the table below. The Local branch,
which uses only CNNs, has the lowest parameter count and FLOPs but also the lowest mAD metric,
indicating high efficiency but suboptimal accuracy. The Global method, based on the pure Mamba
structure, consumes more parameters and FLOPs than the Local method but shows a significant
improvement in performance (+2.7%). Finally, the combined Global+Local method, which is the LSS
module used in MambaAD, achieves the best performance with a notable improvement of (+1.6%)
over the individual methods.

Effectiveness comparison of different pre-trained backbone and Mamba decoder depth. First,
we compared various pre-trained feature extraction networks, focusing on the popular ResNet series

8



Table 4: Ablation studies on the pre-trained backbone and Mamba decoder depth.

Backbone Decoder Depth
Image-level Pixel-level

Params(M) FLOPs(G)
AU-ROC AP F1_max AU-ROC AP F1_max AU-PRO

ResNet18
[2,2,2,2] 96.7 98.6 95.8 95.7 47.9 52.4 89.1 14.6 4.3
[3,4,6,3] 96.6 98.8 96.4 96.8 53.2 56.2 91.8 20.3 6.2

ResNet34
[2,2,2,2] 98.0 99.3 97.0 97.6 55.4 58.2 92.7 20.0 6.5
[2,9,2,2] 97.6 99.3 97.3 97.7 56.4 59.0 93.2 26.1 7.9
[3,4,6,3] 98.6 99.6 97.8 97.7 56.3 59.2 93.1 25.7 8.3

ResNet50 [3,4,6,3] 98.4 99.4 97.7 97.7 54.2 57.0 92.3 251.0 60.3

WideResNet50 [3,4,6,3] 98.6 99.5 98.0 98.0 57.9 60.3 93.8 268.0 68.1

as shown in Tab. 4. When maintaining a consistent Mamba decoder depth, we observed that ResNet18
performed the poorest, despite its minimal model size and computational complexity. ResNet50,
with approximately 8 times more parameters and computations. Although WideResNet surpassed
ResNet34 in certain metrics, it required nearly 10 times the parameters and computational cost.
Consequently, after considering all factors, we elected to use ResNet34 as the backbone feature
extractor. Then, we examined the impact of different Mamba decoder depths while keeping the
backbone network constant. The depths [2,2,2,2] and [3,4,6,3] corresponded to ResNet18 and
ResNet34 depths, respectively, while [2,9,2,2] was the prevalent choice in other methods. Our
experiments revealed that the [3,4,6,3] depth, despite a slight increase in parameters and computations,
consistently outperformed the other configurations.

Table 5: Ablations on different scanning methods and directions.

Index
HS Methods with Different Directions Image-level Pixel-level

Sweep Scan Zorder Zigzag Hilbert AU-ROC AP F1_max AU-ROC AP F1_max AU-PRO

1 8 - - - - 98.1 99.4 97.2 97.5 56.8 58.8 92.9
2 - 8 - - - 98.0 99.4 97.2 97.6 56.6 59.0 93.4
3 - - 8 - - 98.1 99.4 97.4 97.6 56.6 59.0 93.0
4 - - - 8 - 98.2 99.4 97.6 97.6 56.3 58.8 93.1
5 - - - - 2 97.9 99.3 97.1 97.7 56.5 59.2 93.1
6 - - - - 4 98.0 99.4 97.0 97.7 56.9 59.1 93.2
7 - - - - 8 98.6 99.6 97.8 97.7 56.3 59.2 93.1
8 - - - 4 4 96.8 99.0 97.0 97.4 54.4 57.0 92.8
9 - - 4 - 4 97.5 99.2 97.4 97.5 55.0 57.4 93.1

10 - 4 - - 4 97.4 99.1 96.8 97.5 55.5 57.9 93.3
11 4 - - - 4 98.0 99.3 97.4 97.6 56.2 58.5 93.3
12 - 2 2 2 2 97.5 99.2 97.1 97.5 55.4 57.9 92.9

Table 6: Efficiency comparison of SoTA
methods.

Method Params(M) FLOPs(G) mAD

RD4AD[12] 80.6 28.4 82.3
UniAD [47] 24.5 3.6 81.7

DeSTSeg [55] 35.2 122.7 81.2
SimpleNet [30] 72.8 16.1 77.1

DiAD [18] 1331.3 451.5 84.0
MambaAD (Ours) 25.7 8.3 86.0

Efficiency comparison of different SoTA methods. In
Tab. 6, we compared our model with five SoTA methods
in terms of model size and computational complexity.
MambaAD exhibits a minimal increase in parameters
compared to UniAD. However, MambaAD outperforms
it by 4.3 ↑ on the comprehensive metric mAD. More-
over, MambaAD significantly outperforms these other
approaches, demonstrating its effectiveness in model
lightweight design while maintaining high performance. Particularly, our method MambaAD has
achieved about 2.0 ↑ improvement with only 1/50 the parameters and flops of DiAD.

Effectiveness and efficiency comparison of different scanning methods and directions. In the
initial stage, we compared five distinct scanning methods with an 8-direction scan as shown in Tab. 5.
The results indicated that the other four methods produced similar outcomes as Index 1-4, albeit
marginally inferior to the Hilbert scanning technique at the image level. Subsequently, we examined
the impact of varying scan directions. As the number of scan directions increased as Index 5-7,
image-level metrics improved gradually, while pixel-level metrics remained consistent. This suggests
that augmenting the number of scan directions enhances the global modeling capability of SSM,
thereby decreasing the likelihood of image-level misclassification. Ultimately, our analysis revealed
that combining various scanning techniques while maintaining a total of eight scan directions led
to a decline in performance as as Index 8-12. This decrement could be attributed to the significant
disparities among the scanning approaches employed. Consequently, we opted for the Hilbert
scanning method, as it demonstrated better suitability for real-world industrial products.

Effectiveness comparison of different LSS designs. In Tab. 7, the design focuses on three distinct
design directions: the number of Mi in the LSS module, the configuration of parallel multi-kernel
convolution modules, and the kernel size selection for Depth-Wise Convolutions (DWConv). Initially,
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Table 7: Ablation studies on LSS module’s designs.

LSS Design Local Conv Kernel Size
Image-level Pixel-level

AU-ROC AP F1_max AU-ROC AP F1_max AU-PRO

Mi = 1

Only DWConv

k=1,3 94.6 98.0 96.2 96.7 49.5 52.4 91.3
k=3,5 94.6 98.0 96.4 96.6 50.1 53.5 91.3
k=5,7 96.5 98.9 96.7 96.6 51.0 53.8 91.4

k=1,3,5 94.8 98.2 96.1 95.9 47.7 51.6 89.8
k=3,5,7 96.5 98.8 96.5 97.2 51.6 55.2 92.2

k=1,3,5,7 95.2 98.3 96.5 96.5 49.1 52.6 90.8

DWConv + 1× 1 Conv
k=3,5 96.1 98.7 96.7 97.2 52.2 55.6 92.5
k=5,7 95.8 98.6 96.3 97.3 51.7 54.5 92.0

k=3,5,7 96.0 98.6 96.7 97.3 52.4 55.4 92.2

Mi = 1, noskip

Only DWConv
k=3,5 97.3 99.1 97.0 96.9 53.4 55.9 91.5
k=5,7 95.0 98.2 96.0 96.8 48.6 52.8 91.5

k=3,5,7 94.6 98.2 95.9 97.1 52.3 55.4 92.3

DWConv + 1× 1 Conv
k=3,5 95.4 98.4 96.6 97.0 51.6 54.4 91.7
k=5,7 95.0 98.3 96.3 97.1 50.1 53.9 91.8

k=3,5,7 96.0 98.7 96.3 97.2 52.3 55.4 92.2

Mi = 2, Mi = 3

Only DWConv
k=3,5 98.2 99.2 97.0 97.4 55.7 58.2 92.8
k=5,7 98.2 99.4 97.4 97.7 56.1 59.0 92.9

k=3,5,7 98.2 99.3 97.3 97.5 53.9 57.5 92.9

DWConv + 1× 1 Conv
k=3,5 98.6 99.5 97.6 97.5 55.3 58.3 92.7
k=5,7 98.6 99.6 97.8 97.7 56.3 59.2 93.1

k=3,5,7 98.1 99.3 97.4 97.5 55.1 57.6 92.8

we compare scenarios where Mi = 1, meaning each LSS module contains a single HSS block, and
we experiment with different kernel sizes for DWConv alone and configurations flanked by 1 × 1
convolutions. Subsequently, we contrast the results without residual connections against those with
identical settings but with Mi = 1. Finally, we examine the outcomes when Mi = 2 and Mi = 3
under otherwise consistent settings. Analysis reveals that with Mi = 1, regardless of the presence of
residual connections, the results are inferior to those with Mi = 2 and Mi = 3. Moreover, using only
DWConv blocks with Mi = 1, a comparison of parallel depth-wise convolutions with varying kernel
sizes indicates that smaller kernels, such as k = 1, significantly degrade performance. Therefore,
subsequent comparative experiments focus on larger convolution kernels. In the absence of residual
connections, some metrics may surpass those with residual connections, but the longer training time
and difficulty in convergence preclude their use in further experiments. In configurations with Mi = 2
and Mi = 3, we find that DWConv blocks augmented with 1 × 1 convolutions exhibit superior
performance. Additionally, kernels sized k = 5 and k = 7 are more suitable for extracting local
features and establishing local information associations. Consequently, in this study, we opt for a
quantity of HSS blocks with Mi = 2 and Mi = 3, and we employ parallel DWConv blocks with
kernels sized k = 5 andk = 7, complemented by 1× 1 convolutions before and after.

5 Conclusion

This paper introduces MambaAD, the first application of the Mamba framework to AD. MambaAD
consists of a pre-trained encoder and a Mamba decoder, with a novel LSS module employed at
different scales and depths. The LSS module, composed of sequential HSS modules and parallel
multi-core convolutional networks, combines Mamba’s global modeling prowess with CNN-based
local feature correlation. The HSS module employs HS encoders to encode input features into five
scanning patterns and eight directions, which facilitate the modeling of feature sequences in industrial
products at their central positions. Extensive experiments on six diverse AD datasets and seven
evaluation metrics demonstrate the effectiveness of our approach in achieving SoTA performance.

Limitations, Broader Impact and Social Impact. The model is not efficient enough and more
lightweight models need to be designed. This study marks our initial attempt to apply Mamba in AD,
laying a foundation for future research. We hope it can inspire lightweight designs in AD. MambaAD
exhibits significant practical implications in enhancing industrial production efficiency.
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Appendix

Overview

The supplementary material presents the following sections to strengthen the main manuscript:

— Sec. A shows more quantitative results for each category on the MVTec-AD dataset.

— Sec. B shows more quantitative results for each category on the VisA dataset.

— Sec. C shows more quantitative results for each category on the MVTec-3D dataset.

— Sec. D shows more quantitative results for each category on the Uni-Medical dataset.

— Sec. E shows more quantitative results for each category on the COCO-AD dataset.

— Sec. F shows more quantitative results for each category on the Real-IAD dataset.

— Sec. G shows more quantitative results for single-class results on the MVTec-AD dataset.

— Sec. H shows more quantitative results for single-class results on the VisA dataset.

A More Quantitative Results for Each Category on The MVTec-AD Dataset.

Tab. A1 and Tab. A2 respectively present the results of image-level anomaly detection and pixel-level
anomaly localization quantitative outcomes across all categories within the MVTec-AD dataset. The
results further demonstrate the superiority of our method over various SoTA approaches.

Table A1: Comparison with SoTA methods on MVTec-AD dataset for multi-class anomaly detection
with AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 ours

O
bjects

Bottle 99.6/99.9/98.4 99.7/100./100. 100./100./100. 98.7/99.6/96.8 99.7/96.5/91.8 100./100./100.
Cable 84.1/89.5/82.5 95.2/95.9/88.0 97.5/98.5/94.7 89.5/94.6/85.9 94.8/98.8/95.2 98.8/99.2/95.7

Capsule 94.1/96.9/96.9 86.9/97.8/94.4 90.7/97.9/93.5 82.8/95.9/92.6 89.0/97.5/95.5 94.4/98.7/94.9
Hazelnut 60.8/69.8/86.4 99.8/100./99.3 99.9/100./99.3 98.8/99.2/98.6 99.5/99.7/97.3 100./100./100.
Metal Nut 100./100./99.5 99.2/99.9/99.5 96.9/99.3/96.1 92.9/98.4/92.2 99.1/96.0/91.6 99.9/100./99.5

Pill 97.5/99.6/96.8 93.7/98.7/95.7 88.2/97.7/92.5 77.1/94.4/91.7 95.7/98.5/94.5 97.0/99.5/96.2
Screw 97.7/99.3/95.8 87.5/96.5/89.0 76.7/90.5/87.7 69.9/88.4/85.4 90.7/99.7/97.9 94.7/97.9/94.0

Toothbrush 97.2/99.0/94.7 94.2/97.4/95.2 89.7/95.7/92.3 71.7/89.3/84.5 99.7/99.9/99.2 98.3/99.3/98.4
Transistor 94.2/95.2/90.0 99.8/98.0/93.8 99.2/98.7/97.6 78.2/79.5/68.8 99.8/99.6/97.4 100./100./100.

Zipper 99.5/99.9/99.2 95.8/99.5/97.1 99.0/99.7/98.3 88.4/96.3/93.1 95.1/99.1/94.4 99.3/99.8/97.5

Textures
Carpet 98.5/99.6/97.2 99.8/99.9/99.4 95.7/98.7/93.2 95.9/98.8/94.9 99.4/99.9/98.3 99.8/99.9/99.4
Grid 98.0/99.4/96.6 98.2/99.5/97.3 97.6/99.2/96.4 97.9/99.2/96.6 98.5/99.8/97.7 100./100./100.

Leather 100./100./100. 100./100./100. 100./100./100. 99.2/99.8/98.9 99.8/99.7/97.6 100./100./100.
Tile 98.3/99.3/96.4 99.3/99.8/98.2 99.3/99.8/98.8 97.0/98.9/95.3 96.8/99.9/98.4 98.2/99.3/95.4

Wood 99.2/99.8/98.3 98.6/99.6/96.6 98.4/99.5/96.7 99.9/100./99.2 99.7/100./100. 98.8/99.6/96.6
Mean 94.6/96.5/95.2 96.5/98.8/96.2 95.3/98.4/95.8 89.2/95.5/91.6 97.2/99.0/96.5 98.6/99.6/97.8

Table A2: Comparison with SoTA methods on MVTec-AD dataset for multi-class anomaly localiza-
tion with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

O
bjects

Bottle 97.8/68.2/67.6/94.0 98.1/66.0/69.2/93.1 97.2/53.8/62.4/89.0 93.3/61.7/56.0/67.5 98.4/52.2/54.8/86.6 98.8/79.7/76.7/95.2
Cable 85.1/26.3/33.6/75.1 97.3/39.9/45.2/86.1 96.7/42.4/51.2/85.4 89.3/37.5/40.5/49.4 96.8/50.1/57.8/80.5 95.8/42.2/48.1/90.3

Capsule 98.8/43.4/50.1/94.8 98.5/42.7/46.5/92.1 98.5/35.4/44.3/84.5 95.8/47.9/48.9/62.1 97.1/42.0/45.3/87.2 98.4/43.9/47.7/92.6
Hazelnut 97.9/36.2/51.6/92.7 98.1/55.2/56.8/94.1 98.4/44.6/51.4/87.4 98.2/65.8/61.6/84.5 98.3/79.2/80.4/91.5 99.0/63.6/64.4/95.7
Metal Nut 93.8/62.3/65.4/91.9 94.8/55.5/66.4/81.8 98.0/83.1/79.4/85.2 84.2/42.0/22.8/53.0 97.3/30.0/38.3/90.6 96.7/74.5/79.1/93.7

Pill 97.5/63.4/65.2/95.8 95.0/44.0/53.9/95.3 96.5/72.4/67.7/81.9 96.2/61.7/41.8/27.9 95.7/46.0/51.4/89.0 97.4/64.0/66.5/95.7
Screw 99.4/40.2/44.7/96.8 98.3/28.7/37.6/95.2 96.5/15.9/23.2/84.0 93.8/19.9/25.3/47.3 97.9/60.6/59.6/95.0 99.5/49.8/50.9/97.1

Toothbrush 99.0/53.6/58.8/92.0 98.4/34.9/45.7/87.9 98.4/46.9/52.5/87.4 96.2/52.9/58.8/30.9 99.0/78.7/72.8/95.0 99.0/48.5/59.2/91.7
Transistor 85.9/42.3/45.2/74.7 97.9/59.5/64.6/93.5 95.8/58.2/56.0/83.2 73.6/38.4/39.2/43.9 95.1/15.6/31.7/90.0 96.5/69.4/67.1/87.0

Zipper 98.5/53.9/60.3/94.1 96.8/40.1/49.9/92.6 97.9/53.4/54.6/90.7 97.3/64.7/59.2/66.9 96.2/60.7/60.0/91.6 98.4/60.4/61.7/94.3

Textures

Carpet 99.0/58.5/60.5/95.1 98.5/49.9/51.1/94.4 97.4/38.7/43.2/90.6 93.6/59.9/58.9/89.3 98.6/42.2/46.4/90.6 99.2/60.0/63.3/96.7
Grid 99.2/46.0/47.4/97.0 96.5/23.0/28.4/92.9 96.8/20.5/27.6/88.6/ 97.0/42.1/46.9/86.8 96.6/66.0/64.1/94.0 99.2/47.4/47.7/97.0

Leather 99.3/38.0/45.1/97.4 98.8/32.9/34.4/96.8 98.7/28.5/32.9/92.7 99.5/71.5/66.5/91.1 98.8/56.1/62.3/91.3 99.4/50.3/53.3/98.7
Tile 95.3/48.5/60.5/85.8 91.8/42.1/50.6/78.4 95.7/60.5/59.9/90.6 93.0/71.0/66.2/87.1 92.4/65.7/64.1/90.7 93.8/45.1/54.8/80.0

Wood 95.3/47.8/51.0/90.0 93.2/37.2/41.5/86.7 91.4/34.8/39.7/76.3 95.9/77.3/71.3/83.4 93.3/43.3/43.5/97.5 94.4/46.2/48.2/91.2
Mean 96.1/48.6/53.8/91.1 96.8/43.4/49.5/90.7 96.9/45.9/49.7/86.5 93.1/54.3/50.9/64.8 96.8/52.6/55.5/90.7 97.7/56.3/59.2/93.1
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B More Quantitative Results for Each Category on The VisA Dataset.

Tab. A3 and Tab. A4 respectively present the results of image-level anomaly detection and pixel-level
anomaly localization quantitative outcomes across all categories within the VisA dataset. The results
further demonstrate the superiority of our method over various SoTA approaches.

Table A3: Comparison with SoTA methods on VisA dataset for multi-class anomaly detection with
AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

pcb1 96.2/95.5/91.9 92.8/92.7/87.8 91.6/91.9/86.0 87.6/83.1/83.7 88.1/88.7/80.7 95.4/93.0/91.6
pcb2 97.8/97.8/94.2 87.8/87.7/83.1 92.4/93.3/84.5 86.5/85.8/82.6 91.4/91.4/84.7 94.2/93.7/89.3
pcb3 96.4/96.2/91.0 78.6/78.6/76.1 89.1/91.1/82.6 93.7/95.1/87.0 86.2/87.6/77.6 93.7/94.1/86.7
pcb4 99.9/99.9/99.0 98.8/98.8/94.3 97.0/97.0/93.5 97.8/97.8/92.7 99.6/99.5/97.0 99.9/99.9/98.5

macaroni1 75.9/61.5/76.8 79.9/79.8/72.7 85.9/82.5/73.1 76.6/69.0/71.0 85.7/85.2/78.8 91.6/89.8/81.6
macaroni2 88.3/84.5/83.8 71.6/71.6/69.9 68.3/54.3/59.7 68.9/62.1/67.7 62.5/57.4/69.6 81.6/78.0/73.8
capsules 82.2/90.4/81.3 55.6/55.6/76.9 74.1/82.8/74.6 87.1/93.0/84.2 58.2/69.0/78.5 91.8/95.0/88.8
candle 92.3/92.9/86.0 94.1/94.0/86.1 84.1/73.3/76.6 94.9/94.8/89.2 92.8/92.0/87.6 96.8/96.9/90.1
cashew 92.0/95.8/90.7 92.8/92.8/91.4 88.0/91.3/84.7 92.0/96.1/88.1 91.5/95.7/89.7 94.5/97.3/91.1

chewinggum 94.9/97.5/92.1 96.3/96.2/95.2 96.4/98.2/93.8 95.8/98.3/94.7 99.1/99.5/95.9 97.7/98.9/94.2
fryum 95.3/97.9/91.5 83.0/83.0/85.0 88.4/93.0/83.3 92.1/96.1/89.5 89.8/95.0/87.2 95.2/97.7/90.5

pipe_fryum 97.9/98.9/96.5 94.7/94.7/93.9 90.8/95.5/88.6 94.1/97.1/91.9 96.2/98.1/93.7 98.7/99.3/97.0
Mean 92.4/92.4/89.6 85.5/85.5/84.4 87.2/87.0/81.8 88.9/89.0/85.2 86.8/88.3/85.1 94.3/94.5/89.4

Table A4: Comparison with SoTA methods on VisA dataset for multi-class anomaly localization with
AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

pcb1 99.4/66.2/62.4/95.8 93.3/ 3.9/ 8.3/64.1 99.2/86.1/78.8/83.6 95.8/46.4/49.0/83.2 98.7/49.6/52.8/80.2 99.8/77.1/72.4/92.8
pcb2 98.0/22.3/30.0/90.8 93.9/ 4.2/ 9.2/66.9 96.6/ 8.9/18.6/85.7 97.3/14.6/28.2/79.9 95.2/ 7.5/16.7/67.0 98.9/13.3/23.4/89.6
pcb3 97.9/26.2/35.2/93.9 97.3/13.8/21.9/70.6 97.2/31.0/36.1/85.1 97.7/28.1/33.4/62.4 96.7/ 8.0/18.8/68.9 99.1/18.3/27.4/89.1
pcb4 97.8/31.4/37.0/88.7 94.9/14.7/22.9/72.3 93.9/23.9/32.9/61.1 95.8/53.0/53.2/76.9 97.0/17.6/27.2/85.0 98.6/47.0/46.9/87.6

macaroni1 99.4/ 2.9/ 6.9/95.3 97.4/ 3.7/ 9.7/84.0 98.9/ 3.5/ 8.4/92.0 99.1/ 5.8/13.4/62.4 94.1/10.2/16.7/68.5 99.5/17.5/27.6/95.2
macaroni2 99.7/13.2/21.8/97.4 95.2/ 0.9/ 4.3/76.6 93.2/ 0.6/ 3.9/77.8 98.5/ 6.3/14.4/70.0 93.6/ 0.9/ 2.8/73.1 99.5/ 9.2/16.1/96.2
capsules 99.4/60.4/60.8/93.1 88.7/ 3.0/ 7.4/43.7 97.1/52.9/53.3/73.7 96.9/33.2/39.1/76.7 97.3/10.0/21.0/77.9 99.1/61.3/59.8/91.8
candle 99.1/25.3/35.8/94.9 98.5/17.6/27.9/91.6 97.6/ 8.4/16.5/87.6 98.7/39.9/45.8/69.0 97.3/12.8/22.8/89.4 99.0/23.2/32.4/95.5
cashew 91.7/44.2/49.7/86.2 98.6/51.7/58.3/87.9 98.9/68.9/66.0/84.4 87.9/47.6/52.1/66.3 90.9/53.1/60.9/61.8 94.3/46.8/51.4/87.8

chewinggum 98.7/59.9/61.7/76.9 98.8/54.9/56.1/81.3 97.9/26.8/29.8/78.3 98.8/86.9/81.0/68.3 94.7/11.9/25.8/59.5 98.1/57.5/59.9/79.7
fryum 97.0/47.6/51.5/93.4 95.9/34.0/40.6/76.2 93.0/39.1/45.4/85.1 88.1/35.2/38.5/47.7 97.6/58.6/60.1/81.3 96.9/47.8/51.9/91.6

pipe_fryum 99.1/56.8/58.8/95.4 98.9/50.2/57.7/91.5 98.5/65.6/63.4/83.0 98.9/78.8/72.7/45.9 99.4/72.7/69.9/89.9 99.1/53.5/58.5/95.1

Mean 98.1/38.0/42.6/91.8 95.9/21.0/27.0/75.6 96.8/34.7/37.8/81.4 96.1/39.6/43.4/67.4 96.0/26.1/33.0/75.2 98.5/39.4/44.0/91.0

C More Quantitative Results for Each Category on The MVTec-3D Dataset.

Tab. A5 and Tab. A6 respectively present the results of image-level anomaly detection and pixel-level
anomaly localization quantitative outcomes across all categories within the MVTec-3D dataset. The
results further demonstrate the superiority of our method over various SoTA approaches.

Table A5: Comparison with SoTA methods on MVTec-3D dataset for multi-class anomaly detection
with AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

bagel 82.5/95.4/89.6 82.7/95.8/89.3 76.2/93.3/89.3 89.7/97.4/92.4 100./100./100. 87.7/96.7/92.2
cable gland 90.1/97.5/92.6 89.8/97.2/93.9 70.3/91.0/90.2 84.8/95.7/91.5 68.1/91.0/92.3 94.3/98.6/93.5

carrot 87.3/96.7/93.2 76.8/93.8/92.5 71.4/92.6/91.2 79.1/94.7/91.0 94.4/99.3/98.0 90.7/97.7/95.0
cookie 46.0/77.4/88.0 77.3/93.5/88.0 66.7/89.6/88.4 67.4/89.8/88.0 69.4/78.8/90.9 61.2/87.5/88.4
dowel 96.7/98.9/97.6 96.7/99.3/96.2 83.7/95.1/91.7 77.3/94.3/88.9 98.0/99.3/97.3 97.6/99.5/96.6
foam 74.3/92.9/90.6 70.5/92.4/88.9 77.4/94.2/89.7 77.9/94.7/88.9 100./100./100. 84.0/95.8/90.4
peach 64.3/84.8/90.6 70.0/91.0/90.5 62.0/86.9/89.7 82.2/95.3/90.7 58.0/91.3/94.3 92.8/98.1/94.3
potato 62.5/88.5/90.5 51.6/81.8/89.3 56.7/82.2/89.8 62.9/87.8/90.9 76.3/94.3/95.0 66.8/88.6/90.5
rope 96.3/98.5/93.2 97.4/99.0/95.5 95.6/98.4/94.7 93.5/97.4/92.5 89.2/95.4/91.9 97.4/98.9/94.7
tire 79.2/93.0/88.4 75.7/90.7/89.7 65.3/86.8/87.9 80.8/93.6/91.5 92.7/98.9/95.8 90.0/97.0/91.9

Mean 77.9/92.4/91.4 78.9/93.4/91.4 72.5/91.0/90.3 79.6/94.1/90.6 84.6/94.8/95.6 86.2/95.8/92.8
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Table A6: Comparison with SoTA methods on MVTec-3D dataset for multi-class anomaly localiza-
tion with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

bagel 98.6/39.0/45.1/91.3 97.6/30.4/35.8/84.4 93.2/23.6/30.9/70.4 98.7/53.0/52.9/77.6 98.5/49.6/54.2/93.8 98.5/38.3/41.1/92.1
cable gland 99.4/37.9/43.2/98.2 98.9/26.4/34.8/96.3 95.2/14.4/23.1/86.8 97.8/46.0/49.8/64.1 98.4/25.2/32.0/94.5 99.4/39.5/43.9/98.4

carrot 99.4/27.5/33.7/97.2 98.0/12.2/19.3/93.4 96.4/13.8/21.2/84.4 86.9/26.5/21.7/14.2 98.6/20.0/26.9/94.6 99.4/30.1/35.4/98.1
cookie 96.6/27.5/32.9/86.6 97.5/40.4/45.6/88.7 90.5/26.7/31.4/66.6 93.3/34.0/35.6/40.9 94.3/14.0/23.8/83.5 96.8/39.0/41.9/83.6
dowel 99.7/47.7/50.8/98.8 99.1/32.1/37.7/96.1 95.3/17.4/25.6/83.0 97.3/43.1/44.5/31.2 97.2/31.4/40.1/89.6 99.6/49.9/50.4/97.1
foam 94.2/15.0/26.4/79.9 82.2/ 6.8/18.9/55.8 87.8/15.7/26.7/66.7 95.7/43.7/49.3/63.6 89.8/ 9.6/23.5/69.1 95.1/23.4/32.8/82.7
peach 98.5/15.5/22.7/93.2 97.4/11.7/17.9/90.4 92.9/ 8.1/15.0/74.8 95.9/35.7/41.2/48.2 98.4/27.6/31.3/94.2 99.4/43.2/45.1/97.1
potato 99.1/14.9/22.5/95.9 97.6/ 5.1/ 8.9/91.1 91.0/ 4.3/10.9/72.8 89.2/ 8.7/12.2/ 6.2 98.0/ 8.6/17.8/93.9 99.0/17.6/22.6/94.8
rope 99.6/50.3/55.9/97.9 99.0/34.5/40.7/94.3 99.3/51.1/52.9/92.8 98.8/64.5/62.1/90.4 99.3/61.0/59.9/96.5 99.4/52.1/50.9/95.5
tire 99.2/23.2/31.1/96.4 98.0/11.9/20.3/90.6 93.8/ 8.1/15.3/77.9 97.0/25.8/30.0/27.3 91.8/ 5.9/13.7/68.8 99.5/42.0/46.9/97.0

Mean 98.4/29.8/36.4/93.5 96.5/21.2/28.0/88.1 93.6/18.3/25.3/77.6 95.1/38.1/39.9/46.4 96.4/25.3/32.3/87.8 98.6/37.5/41.1/93.6

D More Quantitative Results for Each Category on The Uni-Medical Dataset.

Tab. A7 and Tab. A8 respectively present the results of image-level anomaly detection and pixel-level
anomaly localization quantitative outcomes across all categories within the Uni-Medical dataset. The
results further demonstrate the superiority of our method over various SoTA approaches.

Table A7: Comparison with SoTA methods on Uni-Medical dataset for multi-class anomaly detection
with AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

brain 82.4/94.4/91.5 89.9/97.5/92.6 82.3/95.6/90.9 84.5/95.0/92.1 93.7/98.1/95.0 94.2/98.6/94.5
liver 55.1/46.3/64.1 61.0/48.8/63.2 55.8/47.6/60.9 69.2/60.6/64.7 59.2/55.6/60.9 63.2/53.1/64.7

retinal 89.2/86.7/78.5 84.6/79.4/73.9 88.8/87.6/78.6 88.3/83.8/79.2 88.3/86.6/77.7 93.6/88.7/86.6
Mean 75.6/75.8/78.0 78.5/75.2/76.6 75.6/76.9/76.8 80.7/79.8/78.7 80.4/80.1/77.8 83.7/80.1/82.0

Table A8: Comparison with SoTA methods on Uni-Medical dataset for multi-class anomaly localiza-
tion with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

brain 96.5/45.9/49.2/82.6 97.4/55.7/55.7/82.4 94.8/42.1/42.4/73.0 89.3/33.0/37.0/23.3 95.4/42.9/36.7/80.3 98.1/62.7/62.2/87.6
liver 96.6/ 5.7/10.3/89.9 97.1/ 7.8/13.7/92.7 97.4/13.2/20.1/86.3 79.4/21.9/28.5/20.3 97.1/13.7/ 7.3/91.4 96.9/ 9.1/16.3/91.8

retinal 96.4/64.7/60.9/86.5 94.8/49.3/51.3/79.9 95.5/59.5/56.3/82.1 91.0/59.0/46.8/31.7 95.3/57.5/62.8/84.1 95.7/64.5/63.4/83.1
Mean 96.5/38.7/40.1/86.4 96.4/37.6/40.2/85.0 95.9/38.3/39.6/80.5 86.6/38.0/37.5/25.1 95.9/38.0/35.6/85.4 96.9/45.4/47.3/87.5

E More Quantitative Results for Each Category on The COCO-AD Dataset.

Tab. A9 and Tab. A10 respectively present the results of image-level anomaly detection and pixel-
level anomaly localization quantitative outcomes across all categories within the COCO-AD dataset.
The results further demonstrate the superiority of our method over various SoTA approaches.

Table A9: Comparison with SoTA methods on COCO-AD dataset for multi-class anomaly detection
with AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

0 65.7/81.9/85.1 66.1/84.0/85.1 57.8/77.4/84.7 59.7/79.1/85.0 57.5/77.5/85.3 75.3/89.8/85.2
1 54.9/46.8/61.1 56.1/47.8/61.1 51.2/42.3/59.0 55.6/47.9/61.2 54.4/49.8/62.2 55.0/48.1/61.0
2 59.6/39.4/51.3 52.3/30.8/49.5 60.1/38.5/50.7 55.8/37.6/50.1 63.8/43.4/52.5 66.9/46.4/54.6
3 53.5/36.4/51.5 50.1/33.5/51.2 59.2/39.2/52.2 53.5/36.5/51.2 60.1/41.4/52.9 58.4/40.5/51.9

Mean 58.4/51.1/62.3 56.2/49.0/61.7 57.1/49.4/61.7 56.2/50.3/61.9 58.9/53.0/63.2 63.9/56.2/63.2
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Table A10: Comparison with SoTA methods on COCO-AD dataset for multi-class anomaly localiza-
tion with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)

0 72.1/30.8/38.2/45.9 70.8/29.4/36.7/36.5 64.0/27.4/34.4/26.8 61.8/21.5/27.7/23.5 67.0/33.4/26.2/28.8 75.6/38.6/41.7/46.2
1 70.7/ 6.2/11.2/40.6 70.0/ 6.2/11.3/31.8 61.4/ 4.9/ 8.9/33.0 69.3/ 6.8/11.3/27.7 71.3/11.8/ 7.8/28.8 71.2/ 6.6/11.3/36.6
2 68.4/11.6/18.9/42.9 60.9/ 7.7/14.7/27.0 57.4/ 8.2/14.4/29.2 61.1/ 9.8/13.9/26.3 68.0/19.2/12.2/33.2 71.2/13.9/21.6/44.4
3 58.3/ 8.4/14.2/33.4 59.8/ 8.3/14.8/31.4 55.3/ 8.2/13.9/21.0 51.2/ 6.9/12.4/16.8 65.9/17.5/10.6/32.3 59.0/ 8.6/14.4/34.7

Mean 67.4/14.3/20.6/40.7 65.4/12.9/19.4/31.7 59.5/12.2/17.9/27.5 60.9/11.3/16.3/23.6 68.0/20.5/14.2/30.8 69.3/16.9/22.2/40.5

F More Quantitative Results for Each Category on The Real-IAD Dataset.

Tab. A11 and Tab. A12 respectively present the results of image-level anomaly detection and pixel-
level anomaly localization quantitative outcomes across all categories within the Real-IAD dataset.
The results further demonstrate the superiority of our method over various SoTA approaches.

Table A11: Comparison with SoTA methods on Real-IAD dataset for multi-class anomaly detection
with AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)
audiojack 76.2/63.2/60.8 81.4/76.6/64.9 58.4/44.2/50.9 81.1/72.6/64.5 76.5/54.3/65.7 84.2/76.5/67.4
bottle cap 89.5/86.3/81.0 92.5/91.7/81.7 54.1/47.6/60.3 78.1/74.6/68.1 91.6/94.0/87.9 92.8/92.0/82.1

button battery 73.3/78.9/76.1 75.9/81.6/76.3 52.5/60.5/72.4 86.7/89.2/83.5 80.5/71.3/70.6 79.8/85.3/77.8
end cap 79.8/84.0/77.8 80.9/86.1/78.0 51.6/60.8/72.9 77.9/81.1/77.1 85.1/83.4/84.8 78.0/82.8/77.2
eraser 90.0/88.7/79.7 90.3/89.2/80.2 46.4/39.1/55.8 84.6/82.9/71.8 80.0/80.0/77.3 87.5/86.2/76.1

fire hood 78.3/70.1/64.5 80.6/74.8/66.4 58.1/41.9/54.4 81.7/72.4/67.7 83.3/81.7/80.5 79.3/72.5/64.8
mint 65.8/63.1/64.8 67.0/66.6/64.6 52.4/50.3/63.7 58.4/55.8/63.7 76.7/76.7/76.0 70.1/70.8/65.5

mounts 88.6/79.9/74.8 87.6/77.3/77.2 58.7/48.1/52.4 74.7/56.5/63.1 75.3/74.5/82.5 86.8/78.0/73.5
pcb 79.5/85.8/79.7 81.0/88.2/79.1 54.5/66.0/75.5 82.0/88.7/79.6 86.0/85.1/85.4 89.1/93.7/84.0

phone battery 87.5/83.3/77.1 83.6/80.0/71.6 51.6/43.8/58.0 83.3/81.8/72.1 82.3/77.7/75.9 90.2/88.9/80.5
plastic nut 80.3/68.0/64.4 80.0/69.2/63.7 59.2/40.3/51.8 83.1/75.4/66.5 71.9/58.2/65.6 87.1/80.7/70.7

plastic plug 81.9/74.3/68.8 81.4/75.9/67.6 48.2/38.4/54.6 71.7/63.1/60.0 88.7/89.2/90.9 85.7/82.2/72.6
porcelain doll 86.3/76.3/71.5 85.1/75.2/69.3 66.3/54.5/52.1 78.7/66.2/64.3 72.6/66.8/65.2 88.0/82.2/74.1

regulator 66.9/48.8/47.7 56.9/41.5/44.5 50.5/29.0/43.9 79.2/63.5/56.9 72.1/71.4/78.2 69.7/58.7/50.4
rolled strip base 97.5/98.7/94.7 98.7/99.3/96.5 59.0/75.7/79.8 96.5/98.2/93.0 68.4/55.9/56.8 98.0/99.0/95.0

sim card set 91.6/91.8/84.8 89.7/90.3/83.2 63.1/69.7/70.8 95.5/96.2/89.2 72.6/53.7/61.5 94.4/95.1/87.2
switch 84.3/87.2/77.9 85.5/88.6/78.4 62.2/66.8/68.6 90.1/92.8/83.1 73.4/49.4/61.2 91.7/94.0/85.4
tape 96.0/95.1/87.6 97.2/96.2/89.4 49.9/41.1/54.5 94.5/93.4/85.9 73.9/57.8/66.1 96.8/95.9/89.3

terminalblock 89.4/89.7/83.1 87.5/89.1/81.0 59.8/64.7/68.8 83.1/86.2/76.6 62.1/36.4/47.8 96.1/96.8/90.0
toothbrush 82.0/83.8/77.2 78.4/80.1/75.6 65.9/70.0/70.1 83.7/85.3/79.0 91.2/93.7/90.9 85.1/86.2/80.3

toy 69.4/74.2/75.9 68.4/75.1/74.8 57.8/64.4/73.4 70.3/74.8/75.4 66.2/57.3/59.8 83.0/87.5/79.6
toy brick 63.6/56.1/59.0 77.0/71.1/66.2 58.3/49.7/58.2 73.2/68.7/63.3 68.4/45.3/55.9 70.5/63.7/61.6

transistor1 91.0/94.0/85.1 93.7/95.9/88.9 62.2/69.2/72.1 90.2/92.1/84.6 73.1/63.1/62.7 94.4/96.0/89.0
u block 89.5/85.0/74.2 88.8/84.2/75.5 62.4/48.4/51.8 80.1/73.9/64.3 75.2/68.4/67.9 89.7/85.7/75.3

usb 84.9/84.3/75.1 78.7/79.4/69.1 57.0/55.3/62.9 87.8/88.0/78.3 58.9/37.4/45.7 92.0/92.2/84.5
usb adaptor 71.1/61.4/62.2 76.8/71.3/64.9 47.5/38.4/56.5 80.1/74.9/67.4 76.9/60.2/67.2 79.4/76.0/66.3

vcpill 85.1/80.3/72.4 87.1/84.0/74.7 59.0/48.7/56.4 83.8/81.5/69.9 64.1/40.4/56.2 88.3/87.7/77.4
wooden beads 81.2/78.9/70.9 78.4/77.2/67.8 55.1/52.0/60.2 82.4/78.5/73.0 62.1/56.4/65.9 82.5/81.7/71.8

woodstick 76.9/61.2/58.1 80.8/72.6/63.6 58.2/35.6/45.2 80.4/69.2/60.3 74.1/66.0/62.1 80.4/69.0/63.4
zipper 95.3/97.2/91.2 98.2/98.9/95.3 77.2/86.7/77.6 96.9/98.1/93.5 86.0/87.0/84.0 99.2/99.6/96.9
Mean 82.4/79.0/73.9 83.0/80.9/74.3 57.2/53.4/61.5 82.3/79.2/73.2 75.6/66.4/69.9 86.3/84.6/77.0

G More Quantitative Results for Each Category on The MVTec-AD Dataset
for Single-class Anomaly Detection.

Tab. A13 and Tab. A14 respectively present the results of image-level anomaly detection and
pixel-level anomaly localization quantitative outcomes for single-class anomaly detection of the
MVTec-AD dataset.
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Table A12: Comparison with SoTA methods on Real-IAD dataset for multi-class anomaly localization
with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] DiAD [18] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 AAAI’24 (ours)
audiojack 96.6/12.8/22.1/79.6 97.6/20.0/31.0/83.7 74.4/ 0.9/ 4.8/38.0 95.5/25.4/31.9/52.6 91.6/ 1.0/ 3.9/63.3 97.7/21.6/29.5/83.9
bottle cap 99.5/18.9/29.9/95.7 99.5/19.4/29.6/96.0 85.3/ 2.3/ 5.7/45.1 94.5/25.3/31.1/25.3 94.6/ 4.9/11.4/73.0 99.7/30.6/34.6/97.2

button battery 97.6/33.8/37.8/86.5 96.7/28.5/34.4/77.5 75.9/ 3.2/ 6.6/40.5 98.3/63.9/60.4/36.9 84.1/ 1.4/ 5.3/66.9 98.1/46.7/49.5/86.2
end cap 96.7/12.5/22.5/89.2 95.8/ 8.8/17.4/85.4 63.1/ 0.5/ 2.8/25.7 89.6/14.4/22.7/29.5 81.3/ 2.0/ 6.9/38.2 97.0/12.0/19.6/89.4
eraser 99.5/30.8/36.7/96.0 99.3/24.4/30.9/94.1 80.6/ 2.7/ 7.1/42.8 95.8/52.7/53.9/46.7 91.1/ 7.7/15.4/67.5 99.2/30.2/38.3/93.7

fire hood 98.9/27.7/35.2/87.9 98.6/23.4/32.2/85.3 70.5/ 0.3/ 2.2/25.3 97.3/27.1/35.3/34.7 91.8/ 3.2/ 9.2/66.7 98.7/25.1/31.3/86.3
mint 95.0/11.7/23.0/72.3 94.4/ 7.7/18.1/62.3 79.9/ 0.9/ 3.6/43.3 84.1/10.3/22.4/ 9.9 91.1/ 5.7/11.6/64.2 96.5/15.9/27.0/72.6

mounts 99.3/30.6/37.1/94.9 99.4/28.0/32.8/95.2 80.5/ 2.2/ 6.8/46.1 94.2/30.0/41.3/43.3 84.3/ 0.4/ 1.1/48.8 99.2/31.4/35.4/93.5
pcb 97.5/15.8/24.3/88.3 97.0/18.5/28.1/81.6 78.0/ 1.4/ 4.3/41.3 97.2/37.1/40.4/48.8 92.0/ 3.7/ 7.4/66.5 99.2/46.3/50.4/93.1

phone battery 77.3/22.6/31.7/94.5 85.5/11.2/21.6/88.5 43.4/ 0.1/ 0.9/11.8 79.5/25.6/33.8/39.5 96.8/ 5.3/11.4/85.4 99.4/36.3/41.3/95.3
plastic nut 98.8/21.1/29.6/91.0 98.4/20.6/27.1/88.9 77.4/ 0.6/ 3.6/41.5 96.5/44.8/45.7/38.4 81.1/ 0.4/ 3.4/38.6 99.4/33.1/37.3/96.1

plastic plug 99.1/20.5/28.4/94.9 98.6/17.4/26.1/90.3 78.6/ 0.7/ 1.9/38.8 91.9/20.1/27.3/21.0 92.9/ 8.7/15.0/66.1 99.0/24.2/31.7/91.5
porcelain doll 99.2/24.8/34.6/95.7 98.7/14.1/24.5/93.2 81.8/ 2.0/ 6.4/47.0 93.1/35.9/40.3/24.8 93.1/ 1.4/ 4.8/70.4 99.2/31.3/36.6/95.4

regulator 98.0/ 7.8/16.1/88.6 95.5/ 9.1/17.4/76.1 76.6/ 0.1/ 0.6/38.1 88.8/18.9/23.6/17.5 84.2/ 0.4/ 1.5/44.4 97.6/20.6/29.8/87.0
rolled strip base 99.7/31.4/39.9/98.4 99.6/20.7/32.2/97.8 80.5/ 1.7/ 5.1/52.1 99.2/48.7/50.1/55.5 87.7/ 0.6/ 3.2/63.4 99.7/37.4/42.5/98.8

sim card set 98.5/40.2/44.2/89.5 97.9/31.6/39.8/85.0 71.0/ 6.8/14.3/30.8 99.1/65.5/62.1/73.9 89.9/ 1.7/ 5.8/60.4 98.8/51.1/50.6/89.4
switch 94.4/18.9/26.6/90.9 98.1/33.8/40.6/90.7 71.7/ 3.7/ 9.3/44.2 97.4/57.6/55.6/44.7 90.5/ 1.4/ 5.3/64.2 98.2/39.9/45.4/92.9
tape 99.7/42.4/47.8/98.4 99.7/29.2/36.9/97.5 77.5/ 1.2/ 3.9/41.4 99.0/61.7/57.6/48.2 81.7/ 0.4/ 2.7/47.3 99.8/47.1/48.2/98.0

terminalblock 99.5/27.4/35.8/97.6 99.2/23.1/30.5/94.4 87.0/ 0.8/ 3.6/54.8 96.6/40.6/44.1/34.8 75.5/ 0.1/ 1.1/38.5 99.8/35.3/39.7/98.2
toothbrush 96.9/26.1/34.2/88.7 95.7/16.4/25.3/84.3 84.7/ 7.2/14.8/52.6 94.3/30.0/37.3/42.8 82.0/ 1.9/ 6.6/54.5 97.5/27.8/36.7/91.4

toy 95.2/ 5.1/12.8/82.3 93.4/ 4.6/12.4/70.5 67.7/ 0.1/ 0.4/25.0 86.3/ 8.1/15.9/16.4 82.1/ 1.1/ 4.2/50.3 96.0/16.4/25.8/86.3
toy brick 96.4/16.0/24.6/75.3 97.4/17.1/27.6/81.3 86.5/ 5.2/11.1/56.3 94.7/24.6/30.8/45.5 93.5/ 3.1/ 8.1/66.4 96.6/18.0/25.8/74.7

transistor1 99.1/29.6/35.5/95.1 98.9/25.6/33.2/94.3 71.7/ 5.1/11.3/35.3 97.3/43.8/44.5/45.4 88.6 7.2/15.3/58.1 99.4/39.4/40.0/96.5
u block 99.6/40.5/45.2/96.9 99.3/22.3/29.6/94.3 76.2/ 4.8/12.2/34.0 96.9/57.1/55.7/38.5 88.8/ 1.6/ 5.4/54.2 99.5/37.8/46.1/95.4

usb 98.1/26.4/35.2/91.0 97.9/20.6/31.7/85.3 81.1/ 1.5/ 4.9/52.4 98.4/42.2/47.7/57.1 78.0/ 1.0/ 3.1/28.0 99.2/39.1/44.4/95.2
usb adaptor 94.5/ 9.8/17.9/73.1 96.6/10.5/19.0/78.4 67.9/ 0.2/ 1.3/28.9 94.9/25.5/34.9/36.4 94.0/ 2.3/ 6.6/75.5 97.3/15.3/22.6/82.5

vcpill 98.3/43.1/48.6/88.7 99.1/40.7/43.0/91.3 68.2/ 1.1/ 3.3/22.0 97.1/64.7/62.3/42.3 90.2/ 1.3/ 5.2/60.8 98.7/50.2/54.5/89.3
wooden beads 98.0/27.1/34.7/85.7 97.6/16.5/23.6/84.6 68.1/ 2.4/ 6.0/28.3 94.7/38.9/42.9/39.4 85.0/ 1.1/ 4.7/45.6 98.0/32.6/39.8/84.5

woodstick 97.8/30.7/38.4/85.0 94.0/36.2/44.3/77.2 76.1/ 1.4/ 6.0/32.0 97.9/60.3/60.0/51.0 90.9/ 2.6/ 8.0/60.7 97.7/40.1/44.9/82.7
zipper 99.1/44.7/50.2/96.3 98.4/32.5/36.1/95.1 89.9/23.3/31.2/55.5 98.2/35.3/39.0/78.5 90.2/12.5/18.8/53.5 99.3/58.2/61.3/97.6
mean 97.3/25.0/32.7/89.6 97.3/21.1/29.2/86.7 75.7/ 2.8/ 6.5/39.0 94.6/37.9/41.7/40.6 88.0/ 2.9/ 7.1/58.1 98.5/33.0/38.7/90.5

Table A13: Comparison with SoTA methods on MVTec-AD dataset for single-class anomaly
detection with AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] PatchCore [36] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 CVPR’22 ours

O
bjects

Bottle 100./100./100. 100./100./100. 99.9/100./99.2 100./100./100. 100./100./100. 100./100./100.
Cable 94.8/97.0/89.7 97.9/98.7/93.8 99.6/99.7/97.3 97.1/98.4/93.3 99.8/99.9/98.9 98.5/99.1/95.1

Capsule 98.4/99.7/97.3 87.1/95.3/95.2 97.2/99.2/98.6 97.4/99.5/96.8 97.4/99.4/98.2 97.8/99.5/97.2
Hazelnut 100./100./100. 99.7/99.8/98.6 99.0/99.4/97.2 99.7/99.8/99.3 100./100./100. 100./100./100.
Metal Nut 99.9/100./99.5 98.7/99.7/98.4 99.9/100./99.5 99.7/99.9/98.9 99.9/100./99.5 100./100./99.5

Pill 97.5/99.6/97.1 96.0/99.3/95.8 98.6/99.7/97.9 96.2/99.3/95.7 96.6/99.4/96.5 95.3/99.1/95.3
Screw 97.7/99.2/95.9 87.7/93.0/93.1 97.5/99.2/95.1 92.3/97.5/90.9 98.1/99.3/97.5 97.6/99.1/97.1

Toothbrush 93.3/97.2/95.2 88.1/94.8/93.8 99.4/99.8/98.4 99.7/99.9/98.4 100./100./100. 96.1/98.4/95.2
Transistor 98.4/97.7/93.8 100./100./100. 99.9/99.9/98.7 98.5/98.2/94.7 100./100./100. 100./100./100.

Zipper 98.3/99.5/97.9 90.6/96.5/93.9 99.8/99.9/99.6 100./100./100. 99.6/99.9/98.7 98.6/99.6/97.5

Textures
Carpet 99.7/99.9/98.3 99.4/99.8/98.9 99.1/99.7/98.3 99.3/99.8/97.7 98.5/99.6/97.1 100./100./100.
Grid 100./100./100. 97.6/99.3/96.6 100./100./100. 100./100./100. 99.7/99.9/99.1 100./100./100.

Leather 100./100./100. 100./100./100. 100./100./100. 100./100./100. 100./100./100. 100./100./100.
Tile 100./100./100. 95.8/98.2/95.8 99.9/99.9/98.8 100./100./99.4 99.0/99.7/98.8 97.5/99.1/94.7

Wood 99.5/99.8/98.3 97.9/99.4/95.9 99.9/100./99.2 99.3/99.8/98.4 99.1/99.7/97.5 99.6/99.9/99.2
Mean 98.5/99.3/97.5 95.8/98.9/96.7 99.3/99.8/98.5 98.6/99.5/97.6 99.2/99.8/98.8 98.7/99.6/98.1

Table A14: Comparison with SoTA methods on MVTec-AD dataset for single-class anomaly
localization with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] PatchCore [36] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 CVPR’22 (ours)

O
bjects

Bottle 98.6/75.9/74.1/95.8 98.3/73.6/70.7/94.4 98.0/70.4/72.7/88.8 99.3/91.0/84.3/94.0 98.5/77.7/75.2/94.9 98.8/79.7/76.6/96.1
Cable 96.8/51.3/57.3/88.8 97.4/54.8/56.9/87.7 97.4/66.8/60.0/87.7 95.8/55.0/52.8/82.4 98.4/66.3/65.1/92.5 98.0/54.4/61.7/93.4

Capsule 98.9/48.1/49.9/95.3 98.0/35.2/40.1/86 98.9/42.5/49.1/92.8 98.8/52.4/57.9/71.6 99.0/44.7/50.9/91.7 98.6/45.0/47.5/94.3
Hazelnut 98.8/59.6/60.8/96.5 98.3/55.0/56.1/92.8 97.9/46.2/50.3/78.9 99.4/84.5/79.0/90.6 98.7/53.5/59.2/89.7 99.0/61.8/63.9/95.8
Metal Nut 96.9/75.3/79.5/94.1 94.4/55.8/68.8/77.8 98.8/91.6/86.6/84.0 99.2/95.0/88.7/95.0 98.3/86.9/85.1/91.4 97.1/78.3/80.6/93.6

Pill 97.6/66.6/66.7/95.9 95.2/45.9/51.9/92.2 98.5/79.5/72.6/92.5 98.9/87.9/79.6/56.6 97.8/77.8/72.9/94.1 97.3/64.5/66.0/95.8
Screw 99.5/44.6/47.2/96.9 98.4/15.5/23.6/91.3 99.3/35.0/38.8/95.2 97.3/54.2/53.3/53.6 99.5/36.5/40.1/96.6 99.5/52.2/51.7/97.6

Toothbrush 99.0/51.8/60.9/92.0 98.5/42.6/52.1/84.6 98.5/41.7/52.9/92.4 99.5/78.2/73.7/90.8 98.6/38.3/52.3/92.3 99.0/51.1/60.7/92.3
Transistor 90.6/52.8/54.9/80.8 98.8/79.5/75.8/94.5 96.8/67.4/62.1/91.1 88.1/63.6/60.0/80.9 96.2/66.4/61.5/89.8 96.8/69.7/67.5/91.6

Zipper 98.7/53.0/59.0/94.6 96.5/35.5/43.4/89.3 98.9/64.3/65.4/95.5 99.2/85.7/77.4/84.3 98.9/62.9/66.1/94.3 98.1/55.6/58.8/94.8

Textures

Carpet 99.1/60.1/60.9/95.6 98.5/52.1/53.3/94.9 98.0/43.2/47.8/87.9 98.2/77.5/72.5/94.9 99.1/64.1/63.0/94.8 99.2/63.0/63.4/97.0
Grid 99.3/45.2/47.7/96.3 94.3/24.3/31.5/85.8 98.8/34.7/39.3/93.9 99.5/62.5/63.5/93.8 98.8/31.0/35.3/94.2 99.2/48.9/48.8/97.3

Leather 99.3/44.7/46.7/97.9 99.1/38.5/41.9/98.1 99.2/41.7/45.6/95.7 99.8/74.9/69.6/96.9 99.3/46.3/46.7/96.8 99.3/47.5/49.5/98.6
Tile 95.1/48.6/59.7/85.1 90.2/40.4/48.7/77.1 97.2/69.8/68.8/89.7 99.4/94.6/87.1/89.1 95.8/55.0/64.7/90.0 93.1/42.8/52.3/80.3

Wood 94.8/48.6/49.5/91.6 93.5/38.6/43.9/85.2 94.0/45.6/48.1/82.5 98.4/84.5/77.5/90.9 95.0/50.2/50.9/85.3 93.9/44.2/47.7/92.1
Mean 97.5/55.1/58.3/93.1 96.6/45.8/50.6/88.8 98.0/56.0/57.3/89.9 98.1/76.1/71.8/84.4 98.1/57.2/59.3/92.6 97.8/57.2/59.8/94.0
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H More Quantitative Results for Each Category on The VisA Dataset for
Single-class Anomaly Detection.

Tab. A15 and Tab. A16 respectively present the results of image-level anomaly detection and
pixel-level anomaly localization quantitative outcomes for single-class anomaly detection of the VisA
dataset.

Table A15: Comparison with SoTA methods on VisA dataset for single-class anomaly detection with
AU-ROC/AP/F1_max metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] PatchCore [36] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 CVPR’22 (ours)

pcb1 95.9/95.6/92.8 91.9/90.9/87.2 98.9/98.9/96.0 94.9/92.5/92.0 97.7/97.1/94.9 96.0/95.1/93.8
pcb2 96.5/96.2/92.1 92.2/92.3/84.8 98.8/98.8/93.9 96.6/94.7/93.4 97.7/98.2/93.3 97.1/96.8/91.9
pcb3 96.2/96.1/91.1 90.9/91.3/86.2 98.9/98.8/95.1 97.0/97.3/91.7 98.5/98.5/93.5 97.8/98.0/92.7
pcb4 100./100./99.5 98.8/98.6/96.1 99.3/99.0/97.6 99.3/99.3/94.8 99.8/99.8/97.5 99.7/99.7/97.5

macaroni1 92.1/90.2/85.4 87.5/83.3/79.6 94.8/92.7/89.0 82.8/75.1/77.2 91.3/85.9/87.0 91.2/88.4/84.1
macaroni2 86.1/80.3/80.2 83.1/82.5/76.4 83.4/77.0/70.4 72.8/66.1/69.2 75.2/60.6/59.4 81.8/78.9/77.7
capsules 89.7/94.2/87.7 79.1/88.7/79.0 90.1/93.3/86.4 85.3/91.5/83.6 77.7/83.2/74.4 91.4/94.6/90.5
candle 94.6/94.7/89.4 96.5/96.5/89.3 92.3/85.6/86.9 94.6/95.1/87.2 92.2/85.3/84.4 97.7/97.7/92.1
cashew 96.9/98.6/93.4 91.9/96.1/90.3 94.1/96.2/90.9 73.8/87.2/81.3 91.2/93.5/89.2 95.7/97.6/93.7

chewinggum 98.8/99.4/96.3 97.4/98.8/94.8 98.6/99.3/96.9 97.1/98.8/95.9 97.9/98.8/95.4 99.0/99.5/96.1
fryum 94.8/97.7/91.7 85.5/92.6/86.0 96.4/98.0/93.5 91.7/96.0/88.6 95.0/96.7/89.8 96.5/98.3/92.5

pipe_fryum 99.7/99.8/98.5 91.9/95.4/90.8 99.8/99.9/99.0 99.3/99.6/97.5 99.1/99.5/97.5 99.2/99.6/97.6
Mean 95.1/95.2/91.5 90.6/92.3/86.7 95.4/94.8/91.3 90.4/91.1/87.7 92.8/91.4/88.0 95.3/95.3/91.7

Table A16: Comparison with SoTA methods on VisA dataset for single-class anomaly localization
with AU-ROC/AP/F1_max/AU-PRO metrics.

Method → RD4AD [12] UniAD [47] SimpleNet [30] DeSTSeg [55] PatchCore [36] MambaAD
Category ↓ CVPR’22 NeurlPS’22 CVPR’23 CVPR’23 CVPR’22 (ours)

pcb1 99.7/71.2/68.4/94.8 99.2/53.0/56.2/86.7 99.6/87.7/78.4/89.6 99.4/61.5/62.8/76.9 99.8/91.8/85.9/94.7 99.8/72.5/67.4/94.9
pcb2 98.8/16.2/24.0/90.1 97.1/ 5.8/13.0/80.8 98.2/11.9/22.2/87.7 98.9/20.0/30.1/91.5 98.7/12.5/22.8/89.9 98.9/10.1/19.5/90.7
pcb3 99.2/26.4/29.6/92.0 98.2/14.9/23.0/80.3 99.3/45.5/45.4/92.5 98.7/31.3/33.1/40.4 99.4/48.1/47.3/89.2 99.3/25.7/27.9/92.8
pcb4 98.4/39.7/40.9/89.1 97.5/20.8/29.4/82.0 97.5/40.6/45.5/80.6 96.7/27.5/37.5/66.2 98.2/42.1/45.8/82.2 98.7/47.6/47.0/90.9

macaroni1 99.6/21.0/31.1/95.4 99.0/ 6.8/13.5/95.8 99.6/ 7.0/11.1/98.5 98.7/17.3/25.3/53.4 99.7/ 7.8/13.5/98.4 99.6/18.7/27.8/96.8
macaroni2 99.5/10.9/18.7/95.9 98.2/ 3.8/10.3/95.3 98.4/ 3.9/ 8.8/94.8 99.0/ 8.6/18.2/68.8 98.8/ 4.9/ 7.6/94.5 99.3/10.8/16.2/95.9
capsules 99.6/61.1/59.5/92.8 98.4/44.8/49.4/76.6 98.8/52.8/56.2/89.6 98.9/49.6/51.0/90.0 99.4/65.2/65.6/89.8 99.3/65.2/62.5/93.1
candle 98.9/22.6/33.7/94.5 98.9/16.7/26.2/94.9 98.4/13.1/22.2/90.2 99.0/31.1/36.7/78.7 99.3/18.7/27.2/96.7 98.7/19.9/30.5/95.1
cashew 95.4/53.0/56.2/89.8 99.2/64.6/64.3/85.5 98.9/62.3/62.6/78.5 99.0/80.1/74.9/89.2 98.7/58.8/60.0/91.8 97.5/58.9/59.3/86.9

chewinggum 98.8/54.5/59.1/82.6 98.7/48.0/48.5/81.2 98.4/19.5/35.7/86.0 98.8/24.6/38.8/82.9 98.9/43.0/44.2/81.1 98.4/56.5/56.2/80.6
fryum 96.6/44.2/49.5/90.3 97.1/43.4/51.5/73.8 91.1/37.9/46.0/85.0 95.0/51.8/52.3/70.2 92.6/38.3/45.9/89.1 97.0/48.1/52.9/91.1

pipe_fryum 99.0/51.0/55.5/93.7 99.3/56.9/63.7/90.7 98.9/59.6/60.4/91.5 99.7/89.2/82.6/50.7 98.9/58.7/58.8/96.4 98.9/51.1/54.7/94.0

Mean 98.6/39.3/43.8/91.7 98.4/31.6/37.4/85.3 98.1/36.8/41.2/88.7 98.5/41.1/45.3/71.6 98.5/40.8/43.7/91.1 98.8/40.4/43.5/91.9
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction have clearly included the motivations, important
assumptions, and contributions made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The authors have discussed the limitations of the work at the end of the
Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The authors have clearly provided the full set of assumptions and complete
proofs in the Method section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The authors have presented all the experimental details in the Implementation
Details section. Also, the codes are submitted as Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The authors have submitted all the codes in Supplementary Material which
provided sufficient instructions to faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The authors have presented all the training and test details in the Implementa-
tion Details section. Also, the codes are submitted as Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The authors have presented the error bars in the experiments in Tab. 1 and show
more results in Appendix 5 for each class of six datasets. Also, the authors have submitted
the full codes which include the details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The authors have included the sufficient information on the computer resources
in the Implementation Details and Ablation and Analysis sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The authors have explained the broader impacts of the work at the end of the
Conclusion section.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors have cited the original paper that produced the code package or
dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The authors have submitted the details of the code/model which includes
details about training, license, limitations, etc.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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