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Abstract

Computer-Aided Chemical Synthesis Planning (CASP) algorithms have the poten-
tial to help chemists predict how to make molecules, and decide which molecules
to prioritize for synthesis and testing. Recently, several algorithms have been
proposed to tackle this problem, reporting large performance improvements. In
this work, we re-examine current and prior state-of-the-art synthesis planning
algorithms under controlled and identical conditions, providing a holistic view
using several previously un-reported evaluation metrics which cover the common
use-cases of these algorithms. In contrast to prior studies, we find that under strict
control, differences between algorithms are smaller than previously assumed. Our
findings can guide users to choose the appropriate algorithms for specific tasks, as
well as stimulate new research in improved algorithms.

1 Introduction/Motivation

The synthesis of small organic molecules (SMOLs) is an essential part of drug and materials discovery.
To make a desired target molecule, one follows a synthesis route (also called plan), which consists
of usually multiple reactions one has to run starting from commercially available building block
molecules to obtain the target. Thus, a route resembles a cooking recipe, where the target molecule is
the desired final dish, and the building blocks are ingredients. The most common approach to come
up with a route is by decomposing the target molecule recursively using formally reversed chemical
reactions, until one reaches the building blocks. In chemistry, this technique is called retrosynthesis
[Robinson, 1917, Vleduts, 1963, Corey and Cheng, 1989].

In contrast to peptides, proteins, or DNA/RNA, which can be made by a small number of possible
chemical reaction types, the structural diversity of SMOLs requires thousands of different reaction
types. This makes route planning challenging even for the best human chemists, as reaction types
correspond to different options that can be taken at each step in the recursive decomposition.

Computational approaches for synthesis planning have been studied for at least six decades [Todd,
2005, Strieth-Kalthoff et al., 2020, Vleduts, 1963]. Recently, the use of machine learning for synthesis
planning has led to considerable progress in particular in the quality of the proposed solutions, and
to renewed interest in the field [Segler et al., 2017, 2018, Coley et al., 2019, Kishimoto et al., 2019,
Schwaller et al., 2020, Genheden et al., 2020, Chen et al., 2020, Kim et al., 2021, Xie et al., 2022].
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Conceptually, synthesis planning programs have four components: 1) A reaction prediction module,
to propose single-step retrosynthetic disconnections that correspond to feasible reactions in the
forward direction, 2) a search or planning algorithm that can handle large branching factors, 3) a
building block library, 4) ranking criteria for the returned routes, for example by cost.

In this work, we re-evaluate component 2), the search algorithms. We report preliminary findings
which suggest that the performance of different search algorithms may be much more similar than
previously reported. Specifically, after re-benchmarking two Monte Carlo Tree Search (MCTS)
variants against the Retro* algorithm [Chen et al., 2020] on four distinct sets of test molecules, we
find that both the time at which a solution is found and the diversity of solutions found is essentially
indistinguishable for all algorithms. We believe these results raise some important questions for the
community, and help to set best practice for future researchers in this area.

2 Experimental Procedure

Algorithm classes considered. We focus our experiments on two algorithm classes: MCTS
[Browne et al., 2012] and Retro* [Chen et al., 2020], which is inspired by A*. MCTS is chosen
because of its initial successful results for synthesis planning [Segler et al., 2017], and the subsequent
attention and adoption that it received from the chemistry community (e.g. [Segler et al., 2018, Coley
et al., 2019, Genheden et al., 2020]). Retro* [Chen et al., 2020] is selected as it reported a significant
improvement over MCTS , and because the algorithm operates on an AND/OR tree instead of an
OR tree from Segler et al. [2018], Coley et al. [2019], Genheden et al. [2020], which is a more
natural data structure for synthesis trees. We did not run initial experiments using proof number
search [Kishimoto et al., 2019] at this time due to the lower performance of this method reported in
Genheden and Bjerrum [2022], although we intend to run these experiments at a later date.

Algorithms used. From these algorithm classes, we chose three specific algorithms: Retro* on
AND/OR trees, MCTS as implemented by Segler et al. [2018], Coley et al. [2019], Genheden et al.
[2020] on OR trees, and a novel modified version of MCTS which uses an AND/OR tree (AO-MCTS).
All algorithms are implemented in a similar way as part of a larger python package for retrosynthesis,
ensuring that performance differences due to implementation style are minimal. All algorithms use
the same reaction model and policy, and we run each algorithm with two different value functions: a
constant value function, and a pre-trained neural network value function from Chen et al. [2020]. This
is an important departure from previous papers, which used different value functions for different
algorithms (often rollouts for MCTS), making it unclear how much of performance differences are
due to the algorithm and how much are due to the value function. Further details can be found in
Appendix A.

Evaluation metrics. We chose to evaluate performance with two metrics: the time at which a
solution is found, and the number of distinct solutions found over time. The first metric was chosen
as an improvement over previous papers, which simply report the fraction of molecules which have
at least one solution by a given time, which does not yield any insight about when within that time
window solutions were found. The second metric was chosen to represent route diversity. Although
chemists generally want CASP algorithms to propose multiple diverse synthesis routes, most previous
works have not evaluated diversity. Our metric, which specifically reports the number of synthesis
routes found at time t such that no molecules in any two synthesis routes overlap, was chosen based
on the diversity-metric guidance from Xie et al. [2021]. Among other things, this measure of diversity
guarantees that adding an additional solution to an existing set of solutions will never result in
the diversity decreasing: a property which does not hold for other proposed measures of diversity
[Genheden and Bjerrum, 2022].

Use of caching. When calculating the metrics above, we have followed previous works in using
the number of calls to the reaction model as a measure of time, since this tends to be the most
computationally-intensive part of the search. However, unlike previous works, we use a cache for
the reaction model, meaning that after the reactions for a molecule M are predicted once, if M is
encountered again its reactions are retrieved from the cache instead of calling the model. This may
sound like a minor implementation detail, but it actually has a significant impact on the evaluation.
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Often very large sub-trees can occur in multiple places during search:2 without a cache, expanding
each occurrence of these subtrees will count against an algorithm’s time budget, whereas with a cache
these expansions are effectively free. Given that any realistic implementation of these algorithms
would use caching to minimize computational cost, we think that it is important to use caching when
making any sort of real-world comparison between algorithms.

Experiments run. For all experiments, each algorithm is allowed to run for a maximum of 300 s
on each molecule tested. While previous papers tend to focus on a single testing setup (i.e. using a
single reaction model, set of purchasable molecules, and set of test molecules), we think that testing
on multiple setups is helpful to obtain a comprehensive picture of the performance differences of
each algorithm. Therefore we use the following setups.

1. Retro* Hard: 190 hard molecules used in Chen et al. [2020], using the reaction model and
set of purchasable molecules from Chen et al. [2020].

2. PaRoutes: 200 randomly chosen molecules from the n = 5 setting of PaRoutes [Genheden
and Bjerrum, 2022], using the associated pre-trained reaction model as the policy for each
algorithm and the associated set of purchasable molecules.

3. ChemBL Hard: 200 “hard” molecules chosen randomly from a subset of the ChemBL
dataset, with the reaction model and purchasable molecules from Chen et al. [2020]. To
create a set of molecules equally or more challenging than the Retro* set, the subset of
molecules was chosen by applying the pre-processing script from [Brown et al., 2019],
keeping only molecules whose molecular weight, Bertz coefficient, logP and TPSA were
larger than the mean of the respective values in the Retro* hard set, and removing all
purchasable molecules.

4. GDB17: 200 randomly chosen molecules from gdb17 [Ruddigkeit et al., 2012], using the
reaction model and set of purchasable molecules from Chen et al. [2020].

Summary. Overall, the most important parts of our experimental procedure are:

• Algorithm implementation
– All algorithms implemented by us in a similar way as part of a common code base.
– Use the same policies and value functions for all algorithms.

• Analysis of performance
– Show when each algorithm finds a solution, not just whether a solution is found at an

arbitrary end time.
– Measure and evaluate diversity of routes found in a principled way.
– Use caching of the reaction model and account for this when measuring algorithm

runtime.
– Test in 4 different scenarios.

3 Results and Discussion

The results from our experiments are summarized in Figure 1. The most important observation in
this figure is the high amount of overlap between the evaluation metrics for all different algorithms.
Looking at the left column, for all four test sets, the box plots for time of first solution for all different
algorithms almost entirely overlap. Looking at the right column, for all test sets the algorithms all
find approximately the same number of non-overlapping routes, although they seem to find additional
routes at slightly different rates (with no clear pattern across the different test sets). This result may
seem surprising, because it directly contradicts the findings of Chen et al. [2020], who report that
MCTS performs far worse than Retro*. However, our findings are very similar to those of Genheden
and Bjerrum [2022], who also report very little difference between MCTS and Retro*.

2For example, if the reactions M → A+B and M → A+ C are possible, then any subsequent reactions
on molecule A will be repeated multiple times.
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Figure 1: Evaluation metrics for different algorithms, where time is measured by number of calls to
the reaction model (with caching). Each row represents a different test set, explained in Section 2.
Left: The box plots in the left column represent the times at which the first solution was found for
all tested molecules. The orange line represents the median, the top/bottom of the box represent the
25th/75th percentile, and the whiskers represent 5th and 95th percentile respectively. Points outside
this range are plotted as dots. The black dashed line represents the value assigned to molecules that
were not solved. For this metric, lower is better. Right: The plots in the right column plot the median
number of distinct solutions found for each molecule (i.e. a reading of n at time t implies that 50% of
the test molecules had ≥ n distinct solutions at time t). For this metric, higher is better.
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Further examining Figure 1 yields several additional insights:

• Difficulty of different test sets: The easiest set seems to be that of PaRoutes [Genheden and
Bjerrum, 2022], where all algorithms find a solution for 75% of the test molecules within
just 10 calls to the reaction model. The hardest set seems to be GDB17, where over 75%
of the molecules are not solved at all. The Retro* Hard and ChemBL Hard test sets are
somewhere in between.

• Effect of the value function: Comparing each algorithm run with a constant value function
(C) to that same algorithm run with a neural network value function (V) reveals that the
value function seems to help, but only slightly. This is most visible on the Retro* Hard test
set. It is consistent with the results reported by Chen et al. [2020] that setting the value
function to 0 for all molecules resulted in only a mild decrease in performance.

We also analyzed the results measuring time instead by wall-clock time (Figure 2) and by number of
calls to the value function (Figure 3). In general, the conclusions measuring time with wall-clock are
very similar to those measuring time with number of calls to the reaction model: perhaps unsurprising
since calling the reaction model is the most time-consuming part of search. However, when time is
measured by number of calls to the value function, Retro* is decisively worse than MCTS: solutions
are found later, and fewer solutions are generally found by any given time. We believe this is
because for MCTS, only a handful of molecules are evaluated after the reaction model is run (since a
single random action is taken), however for Retro* all molecules produced by the value function are
evaluated with the reaction model (because the minimum cost path must be computed). This suggests
that Retro* would not perform well if an expensive value function were used (e.g. rollouts).

4 Conclusions and Future Work

After a careful re-implementation of existing methods, our main finding in Section 3 is that the
performance of different CASP algorithms is much more similar than previously reported. This
suggests either that new algorithms are needed to improve upon the deficiencies of existing algorithms,
or that the choice of search algorithm is less important than previously thought – perhaps the most
important choice is a good policy and value function. Future work will include adding additional
algorithms such as proof number search [Kishimoto et al., 2019] to the benchmark, and expanding
our evaluation metrics to also include route quality.
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A Details on Algorithm Implementations

All code was written in python. For Retro*, the cost of all reactions was the negative log probability
from the template classifier, as in [Chen et al., 2020]. The constant value function was given a
value of 0, and the outputs of the neural network value function was used without adjustment. For
both AND/OR and OR MCTS, the P-UCT bound function from Segler et al. [2018] was used with
C = 10, and P values obtained by applying softmax normalization to the log probabilities from the
template classifier with a softmax temperature T = 3. The values of T and C were chosen from a
hyperparameter sweep on a small set of sample molecules. The constant value function had a value
of 0.5, and the values from the neural network value function were adjusted by f(x) = exp (−x)
(because this neural network predicts a cost, it needed to be adjusted so that higher cost implied lower
value). To prevent infinite expansion, the search trees for all algorithms were limited to a maximum
depth of 20 for all tree types.

AND/OR MCTS is a simple variant of MCTS on AND/OR tree. Like OR MCTS, it is an iterative
algorithm where one starts at the root node, descends the tree to a leaf node, either expands or
evaluates this node, then propagates a series of values upwards. At an OR node, an AND node is
selected using the same P-UCT method as in OR MCTS (whichever node has the highest value +
exploration bound). At an AND node, all of its children are visited, and the value propagated upwards
is the minimum value of the children. This is the key difference to normal MCTS, where only a single
child of one node is visited.

B Additional Results
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Figure 2: Identical to Figure 1 but with time measured by wallclock time (in seconds).
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Figure 3: Identical to Figure 1 but with time measured by number of calls to the value function.
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