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ABSTRACT

Two lines of work are taking center stage in AI research. On the one hand, the
community is making increasing efforts to build models that discard spurious
correlations and generalize better in novel test environments. Unfortunately, a
hard lesson so far is that no proposal convincingly outperforms a simple empirical
risk minimization baseline. On the other hand, large language models (LLMs)
have erupted as algorithms able to learn in-context, generalizing on-the-fly to
the eclectic contextual circumstances that users enforce by prompting. We argue
that context is environment, and posit that in-context learning holds the key to
better domain generalization. Via extensive theory and experiments, we show
that paying attention to context—unlabeled examples as they arrive—allows our
proposed In-Context Risk Minimization (ICRM) algorithm to zoom-in on the test
environment risk minimizer, leading to significant out-of-distribution performance
improvements. Furthermore, training with context helps the model learn a better
featurizer. From all of this, two messages are worth taking home: researchers
in domain generalization should consider environment as context, and harness
the adaptive power of in-context learning. Researchers in LLMs should consider
context as environment, to better structure data towards generalization. Code is
available at https://github.com/facebookresearch/ICRM.

1 INTRODUCTION

One key problem in AI research is to build systems that generalize across a wide range of test envi-
ronments. In principle, these algorithms should discard spurious correlations present only in certain
training environments, and capture invariant patterns appearing across conditions. For example, we
would like to build self-driving systems that, while trained on certain weather conditions, levels of
traffic, and driving rules, can perform satisfactorily in new circumstances. Unfortunately, this has
proven challenging—for instance, these models often fail to drive in unseen weather conditions (Lech-
ner et al., 2022), creating immediate hazards. Despite its importance, how to perform well beyond the
distribution of the training data remains a burning question. In fact, major international conferences
offer well-attended workshops dedicated to the issue (Wald et al., 2023), and news articles remind us
of the profound societal impact of the failures of ML systems (Angwin et al., 2016).

Research efforts have so far led to domain generalization algorithms that fall into two broad categories.
On the one hand, invariance proposals (Ganin et al., 2016; Peters et al., 2016; Arjovsky et al., 2019),
illustrated in Figure 1a, discard all environment-specific information, thus removing excessive signal
about the problem. On the other hand, marginal transfer proposals (Blanchard et al., 2011; Li et al.,
2016a; Zhang et al., 2020; Bao and Karaletsos, 2023), illustrated in Figure 1b, summarize observed
inputs in each environment as a coarse embedding, thus diluting important signal at the example
level. So far, the bitter lesson is that no algorithm geared towards out-of-distribution generalization
convincingly outperforms a simple empirical risk minimization (ERM) baseline, which pools the data
from environments, when evaluated across standard real-world benchmarks (Gulrajani and Lopez-Paz,
2020; Gagnon-Audet et al., 2023; Yao et al., 2022). Has the generalization project hit a dead end?

In parallel, large language models (OpenAI, 2023; Touvron et al., 2023, LLMs) are taking the world
by storm. LLMs are next-token predictors built with transformers (Vaswani et al., 2017) and trained
on enormous amounts of natural language. One impressive capability of LLM systems is their ability
to learn in-context, that is, to generalize on-the-fly to the eclectic circumstances that users enforce
by prompting (Brown et al., 2020). For example, a trained LLM would complete the sequence
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Figure 1: Three frameworks for domain generalization (DG), predicting the target yei from the input
xe
i in test environment e. Depicted in blue, the last example xe

i−1 contains relevant features for the
current prediction. (a) Invariance DG discards all of the previously observed information from the
test environment, removing too much predictive signal. (b) Marginal transfer DG summarizes all
of the previously observed test inputs as a coarse embedding, diluting predictive signal found at the
example level. (b) Our in-context DG directly observes all of the previous test inputs, allowing the
search of “needle-in-the-haystack” signals, such as the relevant one, i.e., xe

i−1.

“France-Paris Italy-Rome Spain-” with the sequence “Madrid,” effectively learning, from the input
itself, that the user is demanding a capital prediction task. When interacting with LLMs, one feels
closer towards solving the puzzle of out-of-distribution (OOD) generalization. Could LLMs hold a
key piece to the OOD puzzle?

This paper suggests a positive answer, establishing a strong parallel between the concept of en-
vironment in domain generalization, and the concept of context in next-token prediction. In fact,
different environments describe varying contextual circumstances such as time, location, experimental
intervention, and other background conditions. On the one hand, describing environments as context
opens the door to using powerful next-token predictors off-the-shelf, with their adaptability to learn
in-context, to address domain generalization problems. This allows us to move from coarse domain
indices to fine and compositional contextual descriptions, helpful to amortize learning across similar
environments. On the other hand, using context as environment can help LLM researchers to use
various domain generalization methods such as distributionally robust optimization (Sagawa et al.,
2019; Xie et al., 2023, DRO) across varying contexts.

Based on these insights, we propose a natural algorithm, In-Context Risk Minimization (ICRM),
illustrated in Figure 1c. Given examples (xe

i , y
e
i ) from environment e, we propose to address out-of-

distribution prediction as in-distribution context-based prediction, training a machine:

yei ≈ h(xe
i ; xe

1, . . . , x
e
i−1︸ ︷︷ ︸

environment ≈ context

). (1)

While the requested prediction yei concerns only the input xe
i , the machine can now pay attention to

the test experience so far, extracting relevant environment information from instance and distributional
features. Our theoretical results show that such in-context learners can utilize context to zoom-in
on the empirical risk minimizer of the test environment, achieving competitive out-of-distribution
performance. Further, we show that the extended input-context feature space in ICRM can reveal
invariances that ERM-based algorithms ignore. A standout feature of ICRM is its capability to
improve feature learning through context-based training enabling ICRM to outperform counterparts
even in the absence of context. Our extensive experiments demonstrate the efficacy of ICRM, and
extensive ablations dissect and deepen our understanding of it.

We organize the rest of the exposition as follows. Section 2 reviews the fundamentals of domain
generalization, centered around the concept of environment. Section 3 explains the basics of next-
token prediction, with an emphasis on learning from context. Section 4 knits these threads together
to propose ICRM, a framework to learn from contexts from multiple environments, supported by a
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host of theory. Section 6 showcases the efficacy of our ideas in a variety of domain generalization
benchmarks, and Section 7 closes the exposition with some topics for future discussion.

2 THE PROBLEM OF DOMAIN GENERALIZATION

The goal of domain generalization (DG) is to learn a predictor that performs well across a set
of domains or environments E (Muandet et al., 2013). Environment indices e ∈ E list different
versions of the data collection process—variations that may occur due to time, location, experimental
interventions, changes in background conditions, and other contextual circumstances leading to
distribution shifts (Arjovsky et al., 2019).

During training we have access to a collection of triplets D = {(xi, yi, ei)}ni=1. Each triplet contains
a vector of features xi, a target label yi, and the index of the corresponding training environment
ei ∈ Etr ⊂ E . Each example (xi, yi) is sampled independently from a joint distribution P e(X,Y ).
Using the dataset D, we learn a predictor h that maps features to labels, while minimizing the worst
risk across the set of all environments E :

h∗ = argmin
h

max
e∈E

Re(h), (2)

where Re(h) = E(X,Y )∼P e [ℓ(h(X), Y )] is the risk of the predictor h in environment e, as measured
by the expectation of the loss function ℓ with respect to the environment distribution P e.

As one example, we could train a self-driving model h to classify images xi into a label yi indicating
the presence of a pedestrian. Each training example (xi, yi) is hereby collected from one of the
training cities ei ∈ Etr, with its own weather conditions. The goal of Equation (2) is to obtain a
predictor that correctly classifies x in new cities e ∈ Ete observed during test time. This has proved to
be challenging (Lechner et al., 2022), as predictors often exhibit penurious performance in unseen
weather conditions.

Domain generalization is challenging because we do not have access to test environments during
training time, rendering Equation (2) challenging to estimate. Therefore, to address the DG problem
in practice, researchers have proposed various algorithms that make different assumptions about
the invariances shared between Etr and Ete. In broad strokes, domain generalization algorithms
fall in one of the two following categories. In the first category, domain generalization algorithms
based on invariance (Muandet et al., 2013; Ganin et al., 2016; Peters et al., 2016; Arjovsky et al.,
2019), illustrated in Figure 1a, regularize predictors h(xe

i ) to not contain any information about
the environment e. This however results in removing a lot of signal about the prediction task. In
the second category, domain generalization algorithms based on marginal transfer (Blanchard et al.,
2011; Li et al., 2016a; Zhang et al., 2020; Bao and Karaletsos, 2023) extract environment-specific
information. These methods implement predictors h(xe

i , ϕ
e
i ), where ϕe

i =
1

i−1

∑i−1
j=1 ϕ(x

e
j) coarsely

summarizes the environment e in terms of previously observed instances. Different choices for ϕ
include kernel functions (Blanchard et al., 2011, MTL), convolutional neural networks (Zhang et al.,
2020, ARM), and patch embeddings (Bao and Karaletsos, 2023, Context-ViT). Alas, all of these
alternatives in the second category dilute relevant features found in individual examples. For example,
the size of the representation ϕ would have to grow linearly with the size of the training data to
describe aspects corresponding to a small group of examples, such as extreme value statistics.

As a result, and despite all efforts, no proposal so far convincingly outperforms a simple empirical risk
minimization baseline (Vapnik, 1998, ERM) across standard benchmarks (Gulrajani and Lopez-Paz,
2020; Gagnon-Audet et al., 2023; Yao et al., 2022). Effectively, ERM simply pools all training data
together and seeks the global empirical risk minimizer:

h† = argmin
h

∑
e∈Etr

P (E = e) ·Re(h). (3)

Does the efficacy of ERM suggest that environmental information is useless? We argue that this is
not the case. The key to our answer resides in a recently discovered emergent ability of next-token
predictors, namely, in-context learning.
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paradigm training data testing data estimates

ERM x, y xe′ P (Y | X)

IRM x, y, e xe′ P (Y | ϕinv(X))
LLM z zt and context zj<t P (Zt+1 | Zt, . . . , Z1)

ICRM x, y, e xe′

t and context ce
′

t = (xe′

j )j<t P (Y |X,C)⇝ P e′(Y | X)

Table 1: Different learning paradigms discussed in this work, together with their training data and
testing data formats, as well as the estimated predictors. In our ICRM, we amortize the current
input xe′ and its context ce

′
, containing previously experienced unlabeled examples from the same

environment e′, and “zoom-in” (⇝) to the appropriate local risk minimizer.

3 NEXT-TOKEN PREDICTORS AND IN-CONTEXT LEARNING

In next-token prediction, we aim to learn the conditional distribution

P (Zt+1 = zt+1 | Zt = zt, . . . Z1 = z1), (4)

describing the probability of observing the token zt+1 after having observed the sequence of tokens
(z1, . . . , zt). The quintessential next-token prediction task is language modeling (Bengio et al.,
2000), where the sequence of tokens represents a snippet of natural language text. Most LLMs
estimate Equation (4) via a transformer zt+1 ≈ h(zt; zt−1, . . . , z1) (Vaswani et al., 2017).

LLMs exhibit a certain ability, termed in-context learning (ICL), relevant to our interests. ICL is the
ability to describe and learn about a learning problem from the sequence of tokens (typically labeled
(x, y) pairs) itself, called the context or prompt. As an example, trained LLM would complete the
sequence “France-Paris Italy-Rome Spain-” with the sequence “Madrid,” demonstrating its ability to
infer from a few input-output pairs that the user is demanding a capital prediction task. To illustrate
this ability for contexts without labels, consider the two following sequences:

“You are talking to a teenager.︸ ︷︷ ︸
context c1

Write a poem on gravitational fields.”︸ ︷︷ ︸
x1

“You are talking to a Physics graduate.︸ ︷︷ ︸
context c2

Write a poem on gravitational fields.”︸ ︷︷ ︸
x2

As widely observed, LLMs answer differently to these two sequences, producing two poems, say
y1 and y2, each adapted to the assumed audience. While nothing unexpected is happening here
at the sequence level—the model simply produces a high-likelihood continuation to each of the
two prompts—we observe a degree of compositional generalization, because the LLM can provide
different but correct answers to the same question x1 = x2 when presented under two contexts
c1 and c2. By addressing the general task of in-distribution language modeling, LLMs can attain
significant out-of-distribution abilities in a multitude of specific tasks—such as writing poems. ICL is
reminiscent of meta-learning (Schmidhuber, 1987; Finn et al., 2017), yet it seamlessly accommodates
to contexts without labels, and does not require updating the parameters of the model. ICL is also
similar in spirit to test-time adaptation (Wang et al., 2020, TTA); however, TTA often requires
updating model parameters with an externally hand-crafted objective.

Notably, ICL emerges without supervision. The training corpus does not contain any explicit division
between questions and their context beyond the natural order of the words within each snippet
of language in the training data. However, since we train the machine to produce an enormous
amount of completions, some of which start with partially overlapping contexts, the predictor has the
opportunity to amortize learning to a significant degree i.e. use the trained model to generalize across
unseen distributions rather than explicitly optimizing a separate model for each distribution. While
the machine may have never observed the context c̃1 = “You are now speaking to a teenager,” its
semantic similarity to c1 above—plus other similar contexts where the word speaking appears— may
endow OOD generalization. This is the desired ability to generalize over environments described in
the previous section, which remained out of reach when using coarse domain indices.
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4 ADAPTIVE DOMAIN GENERALIZATION VIA IN-CONTEXT LEARNING

Our exposition has so far laid out two threads. First, Section 2 motivated the need for domain
generalization algorithms capable of extracting relevant environment-specific features, at both the
example and distributional levels. To this end, we have argued to move away from coarse environment
indices, and towards rich and amortizable descriptions shared in new circumstances. Second, Section 3
suggests understanding context as an opportunity to describe environments in precisely this manner.
We now knit these threads together with a protocol to address domain generalization with in-context
learners.

In-Context Risk Minimization (ICRM, Figure 1c):

• Collect a dataset of triplets D = {(xi, yi, ei)}ni=1 as described in Section 2. Initialize a
context-based predictor ŷ = h(x; c), tasked with predicting the label y associated to the
input x, as supported by the context c.

• During training, select e ∈ Etr at random. Draw t examples from this environment at
random, construct one input sequence (xe

1, . . . , x
e
t ) and its associated target sequence

(ye1, . . . , y
e
t ). Update the context-based predictor to minimize the auto-regressive loss∑t

j=1 ℓ(h(x
e
j ; c

e
j), y

e
j ), where the context is cej = (xe

1, . . . , x
e
j−1), for all j = 2, . . . , t,

and ce1 = ∅.
• During test time, a sequence of inputs (xe′

1 , . . . , x
e′

t′ ) arrives for prediction, one by one, all
from the test environment e′ ∈ Ete. We predict ŷe

′

j = h(xe′

j , c
e′

j ) for xe′

j , where the context
ce

′

j = (xe′

1 , . . . , x
e′

j−1), for all j = 2, . . . , t′, and ce
′

1 = ∅.

A few critical remarks about the above proposal are in order. The idea of using contextual information
to aid the prediction through attention mechanisms in transformers has been used in earlier works on
neural processes (Kim et al., 2019; Nguyen and Grover, 2022), prior data fitted networks (Müller
et al., 2021) and more recent works that study the mechanisms underlying in-context learning (Garg
et al., 2022; Akyürek et al., 2022). These works leverage labeled contextual data. Our proposal
embraces the challenge of domain generalization and only uses unlabeled data from the environments
both at train and test time. The most natural way to construct contexts is to use past samples that
appear in the natural order in which data was collected (e.g., video). Since existing DG datasets
do not provide such a refined ordering, we build contexts using environment indices that are more
readily available. The proposal also requires the data at test time to be sampled from the same or
slowly changing environments. While the proposal is strongly inspired from LLMs in that both pay
attention to current query and the contextual information, there are differences namely we predict the
label of the input and not the next x in the sequence.

Next, we develop theoretical guarantees on the behavior of ICRM. The results below concern
the joint distribution of

(
(X1, · · ·Xt), (Y1, . . . , Yt), E

)
, where each Xj , Yj is an independent draw

from environment E with distribution PE(X,Y ) . For query Xj , the context preceding it is Cj =
(X1, · · · , Xj−1) and the environment underlying this context is E. To orient ourselves around these
results, we recall three predictors featured in the exposition so far. First, the global empirical risk
minimizer over the pooled training data, denoted by h† in Equation (3), estimates P (Y | X). Second,
the environment risk minimizer estimates P (Y | X,E). Third, our in-context risk minimizer, denoted
by

h̃ = argmin
h

t∑
j=1

E(Xj ,Cj ,Yj)[ℓ(h(Xj ;Cj), Yj)]. (5)

estimates the conditional expectation E(Y | X,C). The sequel focuses on the binary cross-entropy
loss ℓ. Our first result shows that, in the absence of context, ICRM zooms-out to behave conserva-
tively.

Proposition 1 (Zoom-out). In the absence of context, ICRM behaves as the global empirical risk
minimizer across the support of the training environments, i.e., h̃(· ; ∅) = h†(·).

The above result is built on the insight that ICRM is Bayes optimal at all context lengths and ERM is
Bayes optimal for context c = ∅. Having established the connection between ICRM and ERM in
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the absence of any context, we now study the benefits of ICRM in the presence of sufficiently long
contexts. The following result shows that, when provided with context from a training environment
e ∈ Etr, our ICRM zooms-in and behaves like the appropriate environment risk minimizer, as shown
in Table 1. We assume that P (Y = 1 | X = x,E = e) is parametrized by a function h⋆(x, θex),
where θex describes features of the environment relevant to the query x, for all e ∈ E . We also assume
there exists an ideal amortization function b that takes as input the query X and context Ct preceding
it—both sampled from environment E—and approximates θEX . Formally, the sequence of random
variables b(X,Ct) indexed by t converges almost surely to the random variable θEX .
Theorem 1 (Full iid zoom-in). Let h⋆(x, θex) describe P (Y = 1 | X = x,E = e) for all e ∈ E .
Further, we assume the existence of an amortization function b(X,Ct)

a.s.→ θEX . Then, ICRM zooms-in
on the environment risk minimizer and achieves a cross-entropy loss over the training distribution

lim
t→∞

H(Y | X,Ct) = H(Y | X,E).

Further, if I(Y ;E | X) > 0, ICRM has better performance than the global risk minimizer.

Theorem 1 states that ICRM converges to empirical risk minimizer of the environment under infinitely
long contexts. Next, we show that ICRM can partially zoom-in on the appropriate environment risk
minimizer even with contexts of length of one.
Theorem 2 (Partial iid zoom-in). Suppose the joint distribution ((X1, · · ·Xt), (Y1, . . . , Yt), E) is
Markov with respect to a Bayesian network. The query X and the environment E are statistically
dependent and form the Markov blanket of Y . Then ICRM partially zooms-in on the environment
risk minimizer, improving over the performance of the global empirical risk minimizer in terms of the
cross-entropy loss. Further, the improvement is strictly monotonic in context length t.

Next, we move to the out-of-distribution setting where the test environments can be different from
the training environments. To provide theory for a domain generalization result, we must place
some assumptions on the data generation process. In particular, and for all e ∈ E , let z | y, e ∼
N (µy

e ,Σ
y
e), and x← g(z) where the latent variables z are sampled conditional on the label y and

environment e from a Gaussian distribution with mean and covariance depending on (y, e), and are
then mixed by a map g to generate the observations x. We summarize the environment as a parameter
vector γe =

[
(pye , µ

y
e ,Σ

y
e)y∈{0,1}

]
, where pye is the probability of label y in environment e. Our next

result shows that ICL algorithms that learn h(x; c) exhibit robust behavior under distribution shifts.
In contrast, such guarantees are not known for algorithms that generate predictors of the form h(x).

Define δe to be a permutation of γe that swaps its two components. We construct the Voronoi cells
corresponding to the points in the union of sets {γe}e∈Etr

and {δe}e∈Etr
. The set of points in the

Voronoi cells corresponding to the set of points {γe}e∈Etr
define the Voronoi cells of the training

environments. Next, we show that there exists an ICL algorithm, which takes the data from multiple
environments as input and outputs a predictor that takes current query and context as input, whose
output predictors perform well in novel test environments even those that are sufficiently far away
from the training environments, so long as they are in the Voronoi cells of training environments.
Theorem 3 (Full OOD zoom-in). Consider data triplets (x, y, e) generated from z ∼ N (µy

e ,Σ
y
e)

and x← g(z), ∀e ∈ E , where g is the identity map (see Appendix A for extension to general diffeo-
morphism g). There exists an ICL algorithm that in the limit of infinitely long contexts produces Bayes
optimal predictions for all the test environments in the Voronoi cells of the training environments.

5 ICRM UNDER THE LENS OF INVARIANCE

Common advice in domain generalization recommends following the invariance principle to learn
robust predictors (Peters et al., 2016; Arjovsky et al., 2019). One simple version of the invariance
principle is to “select those inputs leading to stable predictors across training environments.” At first
sight, one could argue that the proposed ICRM does not adhere to such a principle, as it is adapting to
environment-specific information provided in the form of context. As we shall now illustrate, ICRM’s
implementation of ERM on the extended input-context feature space reveals invariant predictors that
a vanilla implementation of ERM on the standard feature space fails to find. To see this, consider a
linear least-squares regression problem mapping two dimensional inputs x = (x1, x2) into a target y
under environments e ∈ E as y = α · x1 + β · µ2

e + ε, where µi
e = E[Xi | E = e], the pair (α, β)
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are invariant regression coefficients, and ε is an independent noise term. We make one simplifying
assumption for pedagogic purposes. During training, we provide ICRM training directly with the
relevant extended feature space (x1, x2, µ1

e, µ
2
e), instead of requiring the algorithm to learn such

representation from general-form sequential context.

In this setup, ICRM learns to predict using α · x1 + 0 · x2 + 0 · µ1
e + β · µ2

e. In contrast, ERM
trains a linear model on (x1, x2) and predicts using α̃ · x1 + β̃ · x2. The main point is: if β ̸= 0 and
cov(X1, X2) ̸= 0, then α̃ ̸= α, and the error of ERM in a new environment grows with the variance
of x1. On the other hand, ICRM estimates the true invariant coefficient α. and the resulting error is
independent of variance of x1, even in the absence of context during test time. As a result, ICRM
exhibits better out-of-distribution performance than ERM without any contextual information at test
time. For a derivation and generalization of these claims, see Appendix A.

We believe that ICRM, and more generally ICL, provide a novel view on invariance. On the one
hand, prior DG algorithms advocated to remove features as a guide to reveal invariance. On the other
hand, in-context learners suggest that extending features with context affords invariance otherwise
unnoticed. This needs further clarification: while the process of zooming-in to an environment risk
minimizer does not provide us with an invariant predictor over the original feature space, the process
of zooming-in is often an invariant mechanism over the extended feature space. These points are
reminiscent of the concept of “fragility” in the philosophy of causation (Menzies and Beebee, 2020).
Does smoking cause cancer? Not invariably across all contexts or environments. Yet, smoking does
cause cancer invariably—across all contexts or environments—when extending the feature space as to
include additional causes such as diet, genetic predispositions, and the number of smoked cigarettes.
The ever-growing collection of causes approaches what Mill (1856) called the total cause, a large
context sharpening invariance at the expense of constraining the diameter of the environment. In the
extreme, when constraining the environment to contain only one smoker, the outcome of lung cancer
disease invariably follows.

6 EXPERIMENTS

To evaluate the efficacy of ICRM, our experiments address the following questions:

1. How does ICRM fare against competitive DG algorithms, for different context sizes?
2. What is the impact of model architecture on ICRM’s gains?
3. Can ICRM search for query relevant signals in the context?

In our experiments, we compare ICRM against marginal transfer methods such as Adaptive Risk
Minimization (Zhang et al., 2020, ARM), and test-time adaptation proposals such as TENT (Wang
et al., 2020). As a strong baseline, we also include ERM in our experimental protocol. To ensure a
fair comparison across different algorithms for each dataset, we use a standardized neural network
backbone (ConvNet or ResNet-50 depending on the dataset) as described in Appendix C.4. For ICRM,
the same backbone is used to featurize the input, which is then processed by the decoder-only GPT-
2 (Radford et al., 2019). During both training and inference for ICRM, data in a sequence is sampled
from the same environment. For fair comparisons, we adhere to DomainBed’s protocols for training,
hyper-parameter tuning, and testing (Gulrajani and Lopez-Paz, 2020), details in Appendix C.4.
We assess these methods across six image classification benchmarks, featuring diversity shift –
FEMNIST (Cohen et al., 2017) contains MNIST digits and handwritten letters from individual
writers as environments. Rotated MNIST concerns varied rotational angles as environments. Tiny
ImageNet-C and CIFAR10-C (Hendrycks and Dietterich, 2019) introduce diverse image corruptions
to create multiple environments. WILDS Camelyon17 (Koh et al., 2021) studies tumor detection
with data from multiple hospitals as distinct environments and Imagenet-R (Hendrycks et al., 2021)
contains various renditions (e.g., paintings, embroidery, etc.) of ImageNet object classes as domains.
More details are provided in Appendix C.3. We consider addressing correlation shifts (Ye et al.,
2022) as a future work of our paper, as it involves scenarios where the test domain contains naturally
occurring subpopulations or time-based shifts without clear domain separation

6.1 ADAPTATION TO DISTRIBUTION SHIFT

To study the adaptation of other approaches to distribution shifts, we report the average performance
on four datasets across three independent runs of the entire sweep for test context lengths of 0, 25, 50,
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Table 2: Average/worst OOD test accuracy for different context lengths, for Adaptive Risk Mini-
mization (ARM), Empirical Risk Minimization (ERM), Test Entropy Minimization (TENT) and our
ICRM on FEMNIST, Rotated MNIST, WILDS Camelyon17 and Tiny-ImageNet-C.

Data / method Average test accuracy Worst case test accuracy
FEMNIST 0 25 50 75 100 0 25 50 75 100

ARM 49.5 83.9 84.4 84.7 84.6 23.6 59.5 60.7 57.0 58.8
TENT 78.1 77.9 81.2 82.5 83.3 55.2 57.2 63.3 65.9 67.2
ERM 79.3 79.3 79.3 79.3 79.3 59.0 59.0 59.0 59.0 59.0
ICRM 78.7 87.2 87.4 87.5 87.8 59.8 69.3 70.6 70.6 70.6

Rotated MNIST 0 25 50 75 100 0 25 50 75 100
ARM 36.5 94.2 95.1 95.3 95.5 28.2 85.3 87.2 87.9 87.9
TENT 94.1 88.0 91.9 93.8 94.3 80.2 88.5 88.5 80.2 81.3
ERM 94.2 94.2 94.2 94.2 94.2 80.8 80.8 80.8 80.8 80.8
ICRM 93.6 96.1 96.2 96.2 96.2 82.5 88.5 88.5 88.8 88.8

WILDS Camelyon17 0 25 50 75 100 0 25 50 75 100
ARM 61.2 59.5 59.7 59.7 59.7

same as average accuracyTENT 67.9 81.8 87.2 89.4 89.4
ERM 68.6 68.6 68.6 68.6 68.6
ICRM 92.0 90.7 90.8 90.8 90.8

Tiny ImageNet-C 0 25 50 75 100 0 25 50 75 100
ARM 30.8 31.0 31.0 31.0 31.0 8.2 8.3 8.2 8.3 8.2
TENT 31.7 1.6 1.7 2.0 2.1 9.4 1.2 1.4 1.6 1.6
ERM 31.8 31.8 31.8 31.8 31.8 9.5 9.5 9.5 9.5 9.5
ICRM 38.3 39.2 39.2 39.2 39.2 18.8 19.2 19.5 19.5 19.4

75, and 100 samples. The results for other datasets and more DG algorithms are reported in Table 7
and Table 8. As Table 2 shows, ICRM outperforms all methods across context lengths, except at null
context length on MNIST datasets, where ERM exceeds by 1%. Further, our gains persist over both
the worst group and average accuracy across testing environments. Figure 5 zooms into the model’s
performance between no-context and 25 context samples, highlighting the consistent superiority of
ICRM even with small contexts. Additionally, ICRM demonstrates gains in performance even in the
absence of test context. Specifically for both WILDS Camelyon17 and Tiny ImageNet-C, ICRM
outperforms baselines despite not leveraging any context from the test environment. We hypothesize
that ICRM training still benefits from contexts as to find contextual features that ERM ignores.

6.2 UNDERSTANDING THE IMPACT OF ARCHITECTURE

To dissect the performance gains potentially arising from ICRM’s transformer architecture, we
explore two additional competitors. First, we train an ERM baseline, ERM+ using an identical
architecture to ICRM, but without context. Second, we train an ARM baseline, ARM+, where
the input and context coarse summary are sent to a GPT-2 such that the model now attends to the
summary through attention layers.

Table 3: Worst group OOD test accuracies for ARM+ and ERM+ in contrast to their base algorithms,
ARM and ERM across FEMNIST, Rotated MNIST, WILDS, Camelyon17, and Tiny-ImageNet-C.

Dataset ARM ARM+ ERM ERM+

# Context Samples 0 100 0 100 0 100 0 100

FEMNIST 23.6 58.8 51.7 62.0 59.0 59.0 53.3 53.3
Rotated MNIST 28.2 87.9 71.4 81.1 80.8 80.8 81.9 81.9
WILDS Camelyon17 61.2 59.7 55.8 55.0 68.6 68.6 50.1 50.1
Tiny ImageNet-C 8.2 8.2 1.9 1.9 9.5 9.5 8.3 8.3

Table 3 presents the performance of both ERM+ and ARM+ relative to ERM and ARM, across the
four datasets. ARM+ demonstrates superior zero-shot performance over ARM on both FEMNIST
and Rotated MNIST. However, ARM maintains a performance advantage over ARM+ across varying
counts of in-context samples on WILDS Camelyon17 and Tiny ImageNet-C, with a pronounced
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difference on the latter. Similarly, ERM either matches or outperforms ERM+ on all four datasets.
Therefore, even with similar architectures, prior protocols fall short of the proposed ICRM.

Attention maps (final fig feminist) 
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Figure 2: Attention scores for random test sequences, for ICRM on FEMNIST (top) and Tiny
ImageNet-C (bottom), with the class label shown below. Samples following the query have an
attention score of 0.0 because of the causal attention mechanism.

6.3 INVESTIGATING ATTENTION IN ICRM

As discussed in Section 2, ICRM can learn an amortization function by paying attention to the input
query and context. To understand this better, we construct a random data sequence from the test
environment and analyze attention scores between each example in this context and a novel input
query. Figure 2 illustrates attention scores from a single head for a query image (marked in blue) for
FEMNIST and Tiny ImageNet-C. Note that samples following the query have an attention score of
0.0 because of the causal attention mechanism. The top row reveals that the model selectively attends
to images featuring at least two curved arcs (marked in green) while paying little attention to a partial
circle (highlighted in red). Similarly, in the bottom row, the model effectively discerns individuals
across samples within the sequence and also indicates a semantic understanding of similarity.

7 DISCUSSION

We introduced In-Context Risk Minimization (ICRM), a framework to address domain generalization
as context-based prediction. ICRM learns in-context about environmental features by paying
attention to unlabeled instances as they arrive. In such a away, ICRM dynamically zooms-in on the
test environment risk minimizer, enabling competitive out-of-distribution generalization.

ICRM provides a new perspective on invariance. While prior work on DG focused on information
removal as a guide to generalization, ICRM suggests that extending the feature space with the
relevant environment information affords further invariance. By addressing the general problem of
context-based prediction in-distribution, we amortize the performance over a multitude of specific
out-of -distribution tasks. More generally, by framing DG as next-token prediction, our approach can
be adapted to fully exploit data in natural order (such as in video or text, ordered by time and position),
more closely mimicking the human learning experience—as Léon Bottou once said, Nature does
not shuffle data. That said, we view extending ICRM to scenarios where the environment contains
naturally occurring subpopulations or time-based shifts without clear separation as an exciting future
direction. As a word of caution, we must conduct research to guarantee that in-context learners do
not “zoom-in” on toxic spurious correlations with high predictive power in certain environments. We
close with a quote from Andersen et al. (2022), for whom zooming-in

refers to a cognitive agent’s ability to intelligently ignore irrelevant information and zero
in on those aspects of the world that are relevant to their goals. The relevance realization
framework suggests that the brain achieves this feat by attempting to balance the competing
goals of remaining efficient in the current environment while also being resilient in the face
of environmental perturbations.

Paralleling the examples from Andersen et al. (2022), we would like to further understand how next-
token prediction and in-context learning serves as a powerful mechanism to amortize and dynamically
navigate trade-offs such as such as efficiency-resiliency, exploration-exploitation, specialization-
generalization, and focusing-diversifying.
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Robert B Ash and Catherine A Doléans-Dade. Probability and measure theory. 2000.

Yujia Bao and Theofanis Karaletsos. Contextual Vision Transformers for Robust Representation
Learning. arXiv, 2023.
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A THEOREMS AND PROOFS

A.1 PROOF OF PROPOSITION 1

Lemma 1. ICRM is Bayes optimal at all context lengths. Suppose ℓ is the binary cross-entropy
loss and the labels Y are binary. The optimal in-context learner h̃ (equation 5) satisfies the following
condition, i.e., for each k ∈ [t]

h̃(xk; ck) = E[Y |Xk = xk, Ck = ck], (6)

15



Published as a conference paper at ICLR 2024

for almost all (ck, xk) in the support of training distribution except over a set of a measure zero, and
where the expectation is over Y conditional on [ck, xk]. In other words, the in-context learner is
Bayes optimal at each context length.

Proof. In this result, we consider the problem of binary classification. Suppose h(xk; ck) is the
predicted probability of class Y = 1 conditional on xk and ck. Define h̄(xk; ck) =

[
h(xk; ck), 1−

h(xk; ck)
]

describing the probability of both the classes.

From equation 5, recall that the objective of ICRM is to minimize

t∑
j=1

E(Xj ,Cj ,Yj)[ℓ(h(Xj ;Cj), Yj)]. (7)

Consider one of the terms in the sum above - E
[
ℓ(h(Xk;Ck), Yk)

]
. Substituting ℓ as the cross-entropy

in this term, we obtain

E
[
ℓ(h(Xk;Ck), Yk)

]
= H(Yk|Xk, Ck) + E

[
KL

(
P (Yk|Xk, Ck)

∥∥h̄(Xk;Ck)
)]
.

If h̄(Xk;Ck) = P (Yk|Xk, Ck), then the second term in the above is zero and E
[
ℓ(h(Xk;Ck), Yk)

]
equals H(Yk|Xk;Ck). Since KL divergence is always non-negative, H(Yk|Xk, Ck) corresponds to
the lowest value that can be achieved by E

[
ℓ(h(Xk;Ck), Yk)

]
. If h̄(Xk;Ck) = P (Yk|Xk, Ck) for

all k ∈ [t], then each of the terms in the sum in equation 7 are minimized. As a result, h̄(Xk;Ck) =
P (Yk|Xk, Ck) for all k ∈ [t] is a solution to equation 5.

Consider another minimizer h
′

of equation 5 and define the corresponding distribution h̄
′
. For each

k ∈ [t], the second term E
[
KL(P (Yk|Xk, Ck)∥h̄

′
(Xk;Ck)

]
has to be zero for h̄

′
to be a minimizer.

If E
[
KL(P (Yk|Xk, Ck)∥h̄

′
(Xk;Ck)

]
= 0, then we claim that h̄

′
(xk; ck) = P (Yk|Xk = xk, Ck =

ck) for almost all (xk, ck) in the support of training distribution except over a set of measure zero. If
the probability measure associated with Xk, Ck is absolutely continuous w.r.t Lebesgue measure, then
this claim follows from Theorem 1.6.6 (Ash and Doléans-Dade, 2000). If the probability measure
associated with Xk, Ck is absolutely continuous w.r.t counting measure, then this claim trivially
follows.

We proved the above result for classification and cross-entropy loss for measures over X,C that are
either absolutely continuous w.r.t Lebesgue measure or the counting measure. It is easy to extend the
above result for regressions and least square loss; see Lemma 1 in Ahuja and Lopez-Paz (2023).

Proposition 1 (Zoom-out). In the absence of context, ICRM behaves as the global empirical risk
minimizer across the support of the training environments, i.e., h̃(· ; ∅) = h†(·).

Proof. From Lemma 1, it follows that h̃(xk; ck) = E[Y |Xk = xk, Ck = ck]. The solution to
empirical risk minimization is h†(x) = E[Y |X1 = x], where the expectation is computed over the
training distribution of Y conditional on x. When the context is empty, then we have h̃(x; ∅) =
E[Y |X1 = x] = h†(x) for almost all x in the support of training distribution except over a set of
measure zero.

A.2 PROOF OF THEOREM 1

Before stating the proof of Theorem 1, we provide an example of an ideal amortization map b(·).

Example of ideal amortization map. Consider the example from equation ??, where y = α · x1 +
β · µ2

e + ε. P (Y = y|X = x,E = e) = pε(y − αx1 − βµ2
e), where pε is the probability density of

noise. Observe that P (Y = y|X = x,E = e) is parametrized in terms of µ2
e and the sequence of

random variables b(X,Ct) =
1

t−1

∑t−1
j=1 X

2
j converge almost surely to µ2

e, where X2
j is the second

component of Xj and Ct = (X1, · · · , Xt−1).
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For ease of exposition, we start with the case when all the concerned random variables
X,Y,Ct, E, b(X,Ct), where X is the current query and Y is its label and Ct is the context preceed-
ing it sampled from environment E, and b(·) is the ideal amortization map, are discrete-valued with a
finite support. Subsequently, we study more general settings.
Theorem 1 (Full iid zoom-in). Let h⋆(x, θex) describe P (Y = 1 | X = x,E = e) for all e ∈ E .
Further, we assume the existence of an amortization function b(X,Ct)

a.s.→ θEX . Then, ICRM zooms-in
on the environment risk minimizer and achieves a cross-entropy loss over the training distribution

lim
t→∞

H(Y | X,Ct) = H(Y | X,E).

Further, if I(Y ;E | X) > 0, ICRM has better performance than the global risk minimizer.

Proof. As stated above, in this proof, we work with discrete-valued X,Y,Ct, E, b(X,Ct) that also
have finite support, where X is the current query and Y is its label and Ct is the context preceeding it
sampled from environment E, and b(·) is the ideal amortization map. Subsequently, we study more
general settings.

Since each (Xj , Yj) is sampled independently given a training environment E, we can conclude
I(Y ;Ct|X,E) = 0. Therefore,

I(Y ;Ct|X,E) = 0 =⇒ H(Y |X,E) = H(Y |X,E,Ct).

Observe that for all t ∈ Z+

H(Y |X,E) = H(Y |X,E,Ct) ≤ H(Y |X,Ct) ≤ H(Y |X, b(X,Ct)), (8)

where Z+ is the set of all positive integers. The first inequality in the above follows from the fact that
conditioning reduces entropy. For the second inequality, we use the following property. Consider U, V
as two random variables and define W = a(V ). Observe that I(U ;W |V ) = 0 =⇒ H(U |V ) =
H(U |V,W ) ≤ H(U |W ).

Since the inequality above equation 8 holds for all t, we obtain

H(Y |X,E) ≤ lim
t→∞

H(Y |X,Ct) ≤ lim
t→∞

H(Y |X, b(X,Ct)). (9)

In the above, we use the following property. If an ≤ bn,∀n ∈ Z+ and limn→∞ an and limn→∞ bn
exist, then limn→∞ an ≤ limn→∞ bn. In what follows, we will show that both the limits
limt→∞ H(Y |X,Ct) and limt→∞ H(Y |X, b(X,Ct)) exist. First observe that H(Y |X,Ct+1) ≤
H(Y |X,Ct) for all t as a result the sequence is decreasing bounded below by 0 and thus from
monotone convergence theorem (Rudin, 1953) limt→∞ H(Y |X,Ct) exists. Next, we will show that
limt→∞ H(Y |X, b(X,Ct)) = H(Y |X,E). We will then combine it equation 9 to obtain what we
intend to prove, i.e., limt→∞ H(Y |X,Ct) = H(Y |X,E).

For each X = x and E = e in the support of training distribution, we argue that b(X,Ct)
a.s.→ θex.

Suppose this was not true. This implies that the probability that P (limt→∞ b(X,Ct) ̸= θex|X =
x,E = e) = β > 0. Since X = x, E = e occurs with a finite probability (as X and E are
discrete-valued and x, e is in the support) say α, then αβ fraction of sequences of b(X,Ct) do not
converge to θex, which contradicts the assumption that b(X,Ct)

a.s.→ θEX .

Consider a (x, θ) from the support of (X, θEX), where X is the current query and E is the envi-
ronment from which X and context preceeding it is sampled. Let us consider the distribution
P (Y |X, b(X,Ct)).

P (Y = y|X = x, b(X,Ct) = θ) =
P (Y = y,X = x, b(X,Ct) = θ)

P (X = x, b(X,Ct) = θ)
(10)

We simplify limt→∞ P (Y |X, b(X,Ct)) below.

lim
t→∞

P (Y = y|X = x, b(X,Ct) = θ) =
limt→∞ P (Y = y,X = x, b(X,Ct) = θ)

limt→∞ P (X = x, b(X,Ct) = θ)
(11)
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We show that the limits of the numerator and denominator exist (and non-zero for the denominator)
and we simplify these separately below.

lim
t→∞

P (Y = y,X = x, b(X,Ct) = θ) = lim
t→∞

∑
e

P (Y = y,X = x,E = e, b(X,Ct) = θ)

=
∑
e

P (Y = y|X = x,E = e) lim
t→∞

P (X = x,E = e, b(X,Ct) = θ)

=
∑
e

P (Y = y|X = x,E = e)P (X = x,E = e) lim
t→∞

P (b(X,Ct) = θ|X = x,E = e)

(12)

In the simplification above, we firstly used the fact that we can interchange sum and limits, this is
true because e only takes finitely many values. In the simplification above, we also use the fact
Y ⊥ Ct|X,E. Since b(X,Ct) converges to θex almost surely, the distribution limt→∞ P (b(X,Ct) =
θ|X = x,E = e) takes a value one if θ = θex and zero otherwise. As a result, the above expression
becomes

lim
t→∞

P (Y = y,X = x, b(X,Ct) = θ) =
∑

e∈Ex,θ

P (Y = y|X = x,E = e)P (X = x,E = e).

(13)
where Ex,θ is the set of all the environments observed conditional on X = x with θex = θ. Observe
that all the environments in Ex,θ have the same P (Y = 1|X = x,E = e) given by h⋆(x, θ). We can
write

lim
t→∞

P (Y = 1, X = x, b(X,Ct) = θ) = h⋆(x, θ)
∑

e∈Ex,θ

P (X = x,E = e). (14)

We simplify limt→∞ P (X = x, b(X,Ct) = θ) in a similar manner to obtain

lim
t→∞

P (X = x, b(X,Ct) = θ) =
∑

e∈Ex,θ

P (X = x,E = e). (15)

Observe that the denominator is positive and not zero because x, θ is in support of X, θEX . We use
equation 14 and equation 15 to obtain

lim
t→∞

P (Y = 1|X = x, b(X,Ct) = θ) =
limt→∞ P (Y = 1, X = x, b(X,Ct) = θ)

limt→∞ P (X = x, b(X,Ct) = θ)

=
h⋆(x, θ)

∑
e∈Ex,θ

P (X = x,E = e)∑
e∈Ex,θ

P (X = x,E = e)
= h⋆(x, θ).

(16)

Therefore,
lim
t→∞

P (Y = 1|X = x, b(X,Ct) = θ) = P (Y = 1|X = x,E = e). (17)

where e is any environment in Ex,θ, i.e., it is in the support of data sampled with X = x and that also
satisfies θex = θ.

lim
t→∞

H(Y |X, b(X,Ct)) =
∑
x,θ

lim
t→∞

P (X = x, b(X,Ct) = θ) lim
t→∞

H(Y |X = x, b(X,Ct) = θ)

∑
x,θ

( ∑
ẽ∈Ex,θ

P (X = x,E = ẽ)
)

lim
t→∞

H(Y |X = x, b(X,Ct) = θ)

(18)
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In the above simplification, we again swap limits and sum because the summation is over a finite
set of values. From equation 17, it follows that limt→∞ H(Y |X = x, b(X,Ct) = θ) = H(Y |X =
x,E = e), where e is any environment in Ex,θ. We use this in the above to get

lim
t→∞

H(Y |X, b(X,Ct)) =
∑
x,θ

( ∑
ẽ∈Ex,θ

P (X = x,E = ẽ)
)
H(Y |X = x,E = e)

=
∑
x,θ

( ∑
ẽ∈Ex,θ

P (X = x,E = ẽ)
)
H(Y |X = x,E = ẽ)

=
∑
x,ẽ

P (X = x,E = ẽ)H(Y |X = x,E = ẽ) = H(Y |X,E).

(19)

We combine the above with equation 9 to obtain limt→∞ H(Y |X,Ct) = H(Y |X,E). Finally,
observe that if I(Y ;E|X) > 0 =⇒ H(Y |X,E) < H(Y |X). Since limt→∞ H(Y |X,Ct) =
H(Y |X,E), ICRM impoves over ERM that attains a cross-entropy loss of H(Y |X).

This completes the proof.

We now extend the argument to setting beyond discrete random variables. In particular, we consider
settings where X,E, b(X,Ct) can be either discrete or continuous random variables. In the notation
to follow, we use dP to denote the Radon-Nikodym derivatives. For discrete random variable, the
Radon-Nikodym derivatives correspond to the standard probability mass function and for continuous
random variables it would correspond to standard probability density functions. We operate under
some regularity assumptions. We assume that the support of E has a finite volume and the support of
(X, b(X,Ct)) has a finite volume for all t. Further, we assume that the Radon-Nikodym derivative of
the joint dP (X = x,E = e, b(X,Ct) = θ) is bounded above. While much of the proof that follows
is same as the previous proof, we repeat the arguments for completeness.
Theorem 4. Let h⋆(x, θex) describe dP (Y = 1 | X = x,E = e) for all e ∈ E . Further, we assume
the existence of an amortization function b(X,Ct)

a.s.→ θEX . Then, ICRM zooms-in on the environment
risk minimizer and achieves a cross-entropy loss over the training distribution

lim
t→∞

H(Y | X,Ct) = H(Y | X,E).

Further, if I(Y ;E | X) > 0, ICRM has better performance than the global risk minimizer.

Proof. Since each (Xj , Yj) is sampled independently given a training environment E, we can
conclude I(Y ;Ct|X,E) = 0. Therefore,

I(Y ;Ct|X,E) = 0 =⇒ H(Y |X,E) = H(Y |X,E,Ct).

Observe that for all t ∈ Z+

H(Y |X,E) = H(Y |X,E,Ct) ≤ H(Y |X,Ct) ≤ H(Y |X, b(X,Ct)), (20)

where Z+ is the set of all positive integers. The first inequality in the above follows from the fact that
conditioning reduces entropy. For the second inequality, we use the following property. Consider U, V
as two random variables and define W = a(V ). Observe that I(U ;W |V ) = 0 =⇒ H(U |V ) =
H(U |V,W ) ≤ H(U |W ).

Since the inequality above equation 20 holds for all t, we obtain

H(Y |X,E) ≤ lim
t→∞

H(Y |X,Ct) ≤ lim
t→∞

H(Y |X, b(X,Ct)). (21)

In the above, we use the following property. If an ≤ bn,∀n ∈ Z+ and limn→∞ an and limn→∞ bn
exist, then limn→∞ an ≤ limn→∞ bn. In what follows, we will show that both the limits
limt→∞ H(Y |X,Ct) and limt→∞ H(Y |X, b(X,Ct)) exist. First observe that H(Y |X,Ct+1) ≤
H(Y |X,Ct) for all t as a result the sequence is decreasing bounded below by 0 and thus
from Monotone convergence theorem limt→∞ H(Y |X,Ct) exists. Next, we will show that
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limt→∞ H(Y |X, b(X,Ct)) = H(Y |X,E). We will then combine it with equation 21 to obtain what
we intend to prove, i.e., limt→∞ H(Y |X,Ct) = H(Y |X,E).

For each X = x and E = e in the support except over a set of probability measure zero, we
argue that b(X,Ct)

a.s.→ θex. Suppose this was not true. Define Γ to be the set of values of x, e for

which b(X,Ct)
a.s.

̸→ θex. Let P ((X,E) ∈ Γ) > 0 and the probability that P (limt→∞ b(X,Ct) ̸=
θEX |(X,E) ∈ Γ) > 0. If this is true then P (limt→∞ b(X,Ct) ̸= θex) > 0 contradicts the fact that
b(X,Ct)

a.s.→ θEX . Therefore, P ((X,E) ∈ Γ) = 0.

Consider a (x, θ) from the support of (X, θEX) except from Γ, where X is the current query and E is
the environment from which X and context preceeding it is sampled. Let us consider the distribution
dP (Y |X, b(X,Ct)).

dP (Y = y|X = x, b(X,Ct) = θ) =
dP (Y = y,X = x, b(X,Ct) = θ)

dP (X = x, b(X,Ct) = θ)
(22)

We simplify limt→∞ dP (Y = y|X = x, b(X,Ct) = θ) below.

lim
t→∞

dP (Y = y|X = x, b(X,Ct) = θ) =
limt→∞ dP (Y = y,X = x, b(X,Ct) = θ)

limt→∞ dP (X = x, b(X,Ct) = θ)
(23)

We simplify the numerator and the denominator of the above separately.

lim
t→∞

dP (Y = y,X = x, b(X,Ct) = θ) = lim
t→∞

∫
e

dP (Y = y,X = x,E = e, b(X,Ct) = θ)

=

∫
e

dP (Y = y|X = x,E = e) lim
t→∞

dP (X = x,E = e, b(X,Ct) = θ)

=

∫
e

dP (Y = y|X = x,E = e)dP (X = x,E = e) lim
t→∞

dP (b(X,Ct) = θ|X = x,E = e)

(24)

In the above, we use dominated convergence theorem (Ash and Doléans-Dade, 2000) to swap limit
and the integrals (to use dominated convergence theorem, we use the fact that the dP (X = x,E =
e, b(X,Ct) = θ) is bounded and support of E has a finite volume). In the simplification above,
we also use the fact Y ⊥ Ct|X,E. Since b(X,Ct) converges to θex almost surely, the distribution
limt→∞ dP (b(X,Ct) = θ|X = x,E = e) evaluates to probability one when θ = θex and is zero
otherwise. As a result, the above expressions become

lim
t→∞

dP (Y = y,X = x, b(X,Ct) = θ) =

∫
e∈Ex,θ

dP (Y = y|X = x,E = e)dP (X = x,E = e).

(25)

where Ex,θ is the set of all the environments observed conditional on X = x with θex = θ. Observe
that all the environments in Ex,θ have the same dP (Y = 1|X = x,E = e) given by h⋆(x, θ).
Similarly,

lim
t→∞

dP (X = x, b(X,Ct) = θ) =

∫
e∈Ex,θ

dP (X = x,E = e). (26)

As a result, we can write

lim
t→∞

dP (Y = 1, X = x, b(X,Ct) = θ) = h⋆(x, θ)

∫
e∈Ex,θ

dP (X = x,E = e).
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We use this to obtain

lim
t→∞

dP (Y = 1|X = x, b(X,Ct) = θ) =
limt→∞ dP (Y = 1, X = x, b(X,Ct) = θ)

limt→∞ dP (X = x, b(X,Ct) = θ)

=
h⋆(x, θ)

∫
e∈Ex,θ

dP (X = x,E = e)∫
e∈Ex,θ

dP (X = x,E = e)
= h⋆(x, θ).

(27)

Therefore,

lim
t→∞

dP (Y = y|X = x, b(X,Ct) = θ) = dP (Y = y|X = x,E = e). (28)

where e is any environment that is in the support of data sampled with X = x and that also satisfies
θex = θ.

lim
t→∞

H(Y |X, b(X,Ct)) =

∫
x,θ

lim
t→∞

dP (X = x, b(X,Ct) = θ) lim
t→∞

H(Y |X = x, b(X,Ct) = θ)

=

∫
x,θ

(∫
ẽ∈Ex,θ

dP (X = x,E = ẽ)
)

lim
t→∞

H(Y |X = x, b(X,Ct) = θ)

(29)

In the above, we use dominated convergence theorem to swap the limits and integrals (Recall that
dP (X = x,E = e, b(X,Ct) = θ) is bounded say by say ς and the volume of the support of E
is bounded say by φ. As a result, dP (X = x, b(X,Ct) = θ)H(Y |X = x, b(X,Ct) = θ) ≤
ςφ log(2).). From equation 28, it follows that limt→∞ H(Y |X = x, b(X,Ct) = θ) = H(Y |X =
x,E = e), where e is any environment in Ex,θ. We use this in the above to get

lim
t→∞

H(Y |X, b(X,Ct)) =

∫
x,θ

(∫
ẽ∈Ex,θ

dP (X = x,E = ẽ)
)
H(Y |X = x,E = e)

=

∫
x,θ

(∫
ẽ∈Ex,θ

dP (X = x,E = ẽ)
)
H(Y |X = x,E = ẽ)

=

∫
x,ẽ

dP (X = x,E = ẽ)H(Y |X = x,E = ẽ) = H(Y |X,E).

(30)

We combine the above with equation 21 to obtain limt→∞ H(Y |X,Ct) = H(Y |X,E). Finally,
observe that if I(Y ;E|X) > 0 =⇒ H(Y |X,E) < H(Y |X). Since limt→∞ H(Y |X,Ct) =
H(Y |X,E), ICRM impoves over ERM that attains a cross-entropy loss of H(Y |X).

This completes the proof.

A.3 PROOF OF THEOREM 2

Theorem 2 (Partial iid zoom-in). Suppose the joint distribution ((X1, · · ·Xt), (Y1, . . . , Yt), E) is
Markov with respect to a Bayesian network. The query X and the environment E are statistically
dependent and form the Markov blanket of Y . Then ICRM partially zooms-in on the environment
risk minimizer, improving over the performance of the global empirical risk minimizer in terms of the
cross-entropy loss. Further, the improvement is strictly monotonic in context length t.

Proof. Let us consider the setting where the context is of length one. We denote the current query
as X with corresponding label Y and environment E. The example in the context is X̃ which has
corresponding label Ỹ and it shares the same environment E. Recall that as part of the context, the
learner only sees X̃ and not Ỹ . Both Y and E are real-valued scalars and X is a d dimensional
vector.
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Following the assumption in the theorem, the distribution of (X̃, Ỹ ,X, Y,E) is Markov with respect
to a Bayesian network. We first establish that E cannot be a child of any variable in the directed
acyclic graph (DAG). The assumption (X,Y ) ⊥ (X̃, Ỹ )|E implies X ⊥ X̃|E and Y ⊥ Ỹ |E.
Suppose E is a child variable of Y . Due to the symmetry, (X,Y,E) and (X̃, Ỹ , E) follow the same
distribution. As a result, E is also a child variable of Ỹ , which implies Y ̸⊥ Ỹ |E (since E is a
collider on the path from Y to Ỹ ). This contradicts Y ⊥ Ỹ |E. Suppose E is a child variable of
some component of X say Xi. Due to symmetry, E is also a child variable of X̃i, which implies
Xi ̸⊥ X̃i|E. This contradicts X ⊥ X̃|E. Therefore, E cannot be a child of any of the variables in
the DAG.

Since both X and E form the Markov blanket of Y , there are two possible cases. Either E is directly
connected to Y or E is connected to Y through some element of X .

In the first case, E can only have an arrow into Y and not the other way around as E is not a child
of any other node. Let us consider the setting when E is one of the parents of Y and denote it as
E → Y . Since X (X̃) is on the Markov Blanket of Y (Ỹ ), we claim that each component of X is
either a parent of Y or a child of Y . Suppose this was not the case. This implies that there exists a
component of X say Xi, which is on the Markov Blanket as a parent of E. But that would make E a
child of Y . However, E cannot be a child variable as shown above. As a result, each component of
X is either a parent or a child of Y . We now consider two subcases.

Let us consider the setting when there exists a child Xi of Y . Observe that X̃i is a child of Ỹ and
it has a path to E and as a result it has a path to Y . This path from elements of X̃i to Ỹ passes
through E. This path has no colliders and does not contain any element of X on it (We show this case
in Figure 3a). As a result, Y ̸⊥ X̃i|X . Thus I(Y ; X̃|X) > 0 (use chain rule of mutual information).

Let us consider the other setting when each Xi is a parent of Y (shown in Figure 3b). In this case,
E has to have a path to some element of X , say Xj as otherwise E ⊥ X , which contradicts the
assumption that E ̸⊥ X . Consider the path X̃j to E to Y . Observe that this path is not blocked. As a
result, I(Y ; X̃|X) > 0.

Let us consider the other possibility when Y is connected to E through X . Here the only way this is
possible is if some element of X say Xi is a child of Y and E is a parent of that element (as shown
in Figure 3c). Therefore, we know that X̃i is connected to Y through E and Xi.

Observe that this path from X̃i to Y is not blocked as Xi is a collider. Therefore, I(Y ; X̃|X) > 0.
We showed the result so far assuming that the context length was one. Suppose that the context has
k − 1 examples denoted as Ck = [X1 · · · , Xk−1]. The chain rule of mutual information tells us
I(Y ;Ck|X) = I(Y ;Xk−1|X) + I(Y ;Ck−1|X,Xk−1). The proof above already demonstrates that
the first term I(Y ;Xk−1|X) is strictly positive. Since mutual information is non-negative, we can
conclude that I(Y ;Ck|X) > 0.

Next, we want to argue that entropy strictly reduces as context length increases. In other words,

H(Y |X,Ck) < H(Y |X,Ck−1) ⇐⇒ I(Y ;Xk|X,Ck−1) > 0.

We want to show Y ̸⊥ Xk|(X,Ck−1). In the proof above, we had three cases shown in Figure 3. In
each of these cases, we argued that the path from Xk to Y is not blocked. Even if we condition on
contexts Ck−1 this continues to be the case. In the first two cases, the path from Xk to Y is direct
and does not contain any element from the conditioning set. In the third case, the direct path involves
a collider X from the conditioning set and thus is also not blocked. As a result, Y ̸⊥ Xk|(X,Ck−1).
This completes the proof.

Remark on the Theorem 2 It is possible to extend Theorem 2 to the case when only a subset of
X and E form the Markov blanket. Observe that the analysis of Case a) and Case c) in Figure 3a,
Figure 3c does not change. The analysis of Case b) is more nuanced now. In Case b), we used the
fact that E is connected to X that is on the Markov blanket. This need not be the case if only a subset
of X is on the Markov blanket. Suppose XMB denote the set of X that are on the Markov Blanket. If
E is connected to any member of XMB, the same analysis as Case b) continues to hold. Consider the

22



Published as a conference paper at ICLR 2024

E

Y Ỹ

Xi X̃i

(a) Case 1.

EX X̃

Y Ỹ

(b) Case 2.

Y E

Xi

Ỹ

X̃i

(c) Case 3.

Figure 3: Illustrating the different key cases for Theorem 2.

case when E is connected to some other member of X that is not in XMB. Denote this member as
Xi. Observe that the same element X̃i from X̃ will have a direct path into Y through E that is not
blocked. As a result, even in this case conditioning on X̃ helps.

A.4 PROOF OF THEOREM 3

Theorem 3 (Full ood zoom-in) Consider data triplets (x, y, e) generated from z ∼ N (µy
e ,Σ

y
e) and

x← g(z), for all environments e ∈ E , where g is the identity map. There exists an ICL algorithm that
in the limit of infinitely long contexts produces Bayes optimal predictions for all the test environments
that fall in the Voronoi cells of the training environments.

Proof. The learning algorithm works as follows. For each e, y pair in the training data, define the
set of x′s as De,y

x . Maximize the likelihood of De,y
x assuming that the underlying distribution is

Gaussian. This can be stated as

µ̂y
e , Σ̂

y
e = argmin

µy
e ,Σ

y
e

( ∑
x∈De,y

x

[
∥x− µy

e∥2(Σy
e )−1

]
− log(det(Σy

e))
)
.

The solution to the above are standard sample mean based estimators of means and covariance. Also,
use a sample mean based estimator to estimate the probability of each class in environment e and
denote it as p̂ye . Define γ̂e = [(p̂0e, µ̂

0
e, Σ̂

0
e), (p̂

1
e, µ̂

1
e, Σ̂

1
e)]. The model at test time works as follows.

• We are given samples De′

x at test time from some environment e′ ∈ Ete. Estimate the param-
eters of Gaussian mixture model with two mixture components to maximize the likelihood
of observing De′

x . We denote the estimated parameters as θe′ = [pe′ , µe′ ,Σe′ , p̃e′ , µ̃e′ , Σ̃e′ ].
Define a permutation of θe′ as βe′ = [p̃e′ , µ̃e′ , Σ̃e′ , pe′ , µe′ ,Σe′ ].

• Find the closest environment to the estimated parameters in the training set.

min
e∈Etr

(
min{∥θe′ − γ̂e∥, ∥βe′ − γ̂e∥}

)
(31)

Suppose ẽ is the closest training environment that solves the above. If θe′ is closer to γ̂ẽ
than βe′ , then pe′ , µe′ ,Σe′ correspond to the label 0 and p̃e′ , µ̃e′ , Σ̃e′ correspond to the label
1. For the query x, the probability assigned to label 0 is

c(x) =
pe′e

−∥x−µe′∥
2
(Σ

e′ )
−1

pe′e
−∥x−µe′∥2

(Σ
e′ )

−1
+ p̃e′e

−∥x−µ̃e′∥2
(Σ̃

e′ )
−1

.

If βe′ is closest to this environment, then pe′ , µe′ ,Σe′ correspond to the label 1 and
p̃e′ , µ̃e′ , Σ̃e′ is the label 0. For the query x, the probability assigned to label 0 is 1− c(x).

For the training environments, in the limit of infinitely long contexts the estimated parameters take
exact values, i.e., γ̂e = γe, for all e ∈ Etr.
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γẽ

δe

γe

δẽ

Voronoi cell  
of training environment

γe′ 

Figure 4: Illustration of Voronoi cells of training environment.

For the test environment, the true set of parameters that generate the data are γe′ ,
where γe′ =

[
(p0e′ , µ

0
e′ ,Σ

0
e′), (p

1
e′ , µ

1
e′ ,Σ

1
e′)

]
. Define the permutation of γe′ as δe′ =[

(p1e′ , µ
1
e′ ,Σ

1
e′), (p

0
e′ , µ

0
e′ ,Σ

0
e′)

]
.

There can be two types of test environments. One in which the mean and covariance for both classes
are identical. The method above assigns a probability of 1

2 to both the classes, which is the Bayes
optimal prediction. Let us consider the latter environments, where the class conditional parameters
for x are not the same. In the limit of infinitely long contexts at test time, there are two possible values
θe′ can take, either θe′ = γe′ or θe′ = δe′ . This follows from identifiability of Gaussian mixtures,
Yakowitz and Spragins (1968).

Consider the first case, θe′ = γe′ . In this case, the equation 31 becomes

min
e∈Etr

(
min{∥γe′ − γe∥, ∥δe′ − γe∥}

)
.

Suppose some environment ẽ solves the above optimization. Following the assumption in we know
that γe′ falls in the Voronoi region of some γẽ and thus γe′ is closer to γẽ than δẽ (see Figure 4). As
a result, p0e′ , µ

0
e′ ,Σ

0
e′ is associated with class 0, which is actually correct and thus the final predictor

would match the Bayes optimal predictor for the test environment. In the second case, θe′ = δe′ .
Therefore, βe′ = γe′ and p1e′ , µ

1
e′ ,Σ

1
e′ would be correctly associated with class one thus leading to

Bayes optimal predictions. This completes the argument we set out to prove.

We now briefly explain how the method fails if test parameter is outside the Voronoi cell of training
parameters. Suppose θe′ = γe′ but γe′ is in Voronoi region of some δe. In this case, βe′ would be
closest to γe and p0e′ , µ

0
e′ ,Σ

0
e′ would be incorrectly associated with class 1. This shows that beyond

the Voronoi region the proposed algorithm fails.

A.5 EXTENSION OF THEOREM 3

In the previous theorem, we assumed that g is identity. We now describe how the result can be
extended to general non-linear mixing maps g. For this result, we leverage the theoretical results
from identifiable variational autoencoders (i-VAE) (Khemakhem et al., 2020).

A short review of identifiable variational autoencoders (Khemakhem et al., 2020) We are
provided with observations x’s that are generated from a latent variable z using an injective map g,
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where x← g(z). The theory of i-VAE provides with a method and the conditions under which the
underlying true latent variables z can be identified up to permutation and scaling. In i-VAEs, it is
assumed that along with each sample x, we are provided with auxiliary information, which they term
as u. For our results, auxiliary information is available to us in the form of the environment index and
the label of the data point. In the theory of i-VAE, the distribution of the latent variables are assumed
to follow a conditionally factorial exponential distribution stated as follows.

pT,λ(z|u) =
∏
i

Qi(zi)

Mi(u)
exp

[ k∑
j=1

Ti,j(zi)λi,j(u)

]
(32)

where Ti = (Ti,1, · · · , Ti,k) are the sufficient statistics, λi(u) = (λi,1(u), · · · , λi,k(u)) are the
parameters of the distribution that vary with u, Qi is a base measure and Mi is a normalizing constant.
We concatenate Ti’s and λ′

is across d latent dimensions to make construct dk dimensional vectors
denoted as λ(u) and T (z). Thus the data generation process is summarized as

z ∼ pT,λ(·|u),
x← g(z),

(33)

where g, T, λ are the parameters. We now revisit the data generation process that we consider and
explain how it falls under the umbrella of the data generation processes considered in i-VAE. For all
e ∈ E ,

z|y, e ∼ N (µy
e ,Σ

y
e),

x← g(z),
(34)

where the latent variables z are sampled conditional on the label y and environment e from a Normal
distribution whose mean and covariance depend on both y, e. Define X as the image of g, i.e.,
X = g(Rd). We further assume that the covariance matrix has a diagonal structure as stated below.

Assumption 1. Each Σy
e is a diagonal matrix.

Since Σy
e is a diagonal matrix, we denote the ith diagonal element as (σy

e (i))
2. Similarly, the

ith component of µy
e is denoted as µy

e(i). Observe that the distribution of z conditional on y, e
belongs to the family conditionally factorial exponential distributions studied in i-VAE (Khemakhem

et al., 2020). If we substitute Qi(zi) =
1√
2π

, Mi(y, e) = e

(
(µy

e (i))
2/(σy

e (i))
2
)
, λi,1(y, e) =

2µy
e (i)

(σy
e (i))2

,
λi,2(y, e) = − 1

(σy
e (i))2

, Ti,1(z) = z and Ti,2(z) = z2, then we obtain the distribution of z described
by equation 34.

Definition 1. We define an equivalence relation between sets of parameters of the model as follows.

(g, T, λ) ∼ (g̃, T̃ , λ̃) ⇐⇒ ∃A, c | T (g−1(x)) = AT̃ (g̃−1(x)) + c,∀x ∈ X . (35)

If A is invertible, then we denote the relation by ∼A. If A is a block permutation matrix, then we
denote it by ∼P .

We now state some key results from (Khemakhem et al., 2020).

Theorem 5. Assume that the data is sampled from the data generation in equation 33 according to
with parameters (g, T, λ). Assume the following holds

• The mixing function g is injective

• The sufficient statistics Ti,j are differentiable almost everywhere, and (Ti,j)1≤j≤k are
linearly independent on any subset of X of measure greater than zero.

• There exists dk + 1 distinct points u0, · · · , udk such that the matrix

L = (λ(u1)− λ(u0), · · · , λ(udk)− λ(u0))

of size dk × dk is invertible.
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then the parameters (g, T, λ) are ∼A identifiable.
Theorem 6. Assume the hypotheses of the Theorem 5 holds, and k ≥ 2. Further assume:

• The sufficient statistics Ti,j are twice differentiable.

• The mixing function g is C2-diffeomorphism.

then the parameters (g, T, λ) are ∼P identifiable.

We can leverage the above two theorems (Theorem 5, Theorem 6 and Theorem 4 from Lachapelle
et al. (2022)) and arrive at the following corollary for the Gaussian data generation process from
equation 34.
Theorem 7. If the data generation process follows equation 34, where g is a C2-diffeomorphism.
Suppose there exist 2d + 1 points u0 = (y0, e0), · · · , u2d = (y2d, e2d) in the support of (y, e)
observed in training distribution such that

(λ(u1)− λ(u0), · · · , λ(u2d)− λ(u0))

is invertible. If pg,T,λ(·|y, e) = pg̃,T̃ ,λ̃(·|y, e) for all y, e in the support of (y, e) in the training
distribution, then z̃ = ΛΠz + r, where z̃ = g̃−1(x) and z = g−1(x).

Proof. We equate the probability of observations x under two models g, T, λ and g̃, T̃ , λ̃ for each
y, e. Consider a z ∼ pT,λ(·|y, e) and the corresponding x = g(z). These x’s follow pg̃,T̃ ,λ̃(·|y, e)
since pg,T,λ(·|y, e) = pg̃,T̃ ,λ̃(·|y, e). Define z̃ = g̃−1(x) and these z̃ follow pT̃ ,λ̃(·|y, e). We can
write z̃ = a(z), where a = g̃−1 ◦ g.

Observe pz(z|y, e) = pz̃(a(z)|y, e)det(Da(z)) and

log pz
(
z|yk, ek

)
= log

(
pz̃(a(z)|yk, ek)

)
+ log det(Da(z)),

log pz
(
z|y0, e0

)
= log

(
pz̃(a(z)|y0, e0)

)
+ log det(Da(z)),

log pz
(
z|yk, ek

)
− log

(
pz(z|y0, e0)

)
= log

(
pz̃(a(z)|yk, ek)

)
− log

(
pẑ(a(z)|y0, e0)

)
.

(36)

Substituting the exponential form we obtain that

T (z)⊤[λ(yk, ek)− λ(y0, e0))] = T (z̃)⊤[λ̃(yk, ek)− λ̃(y0, e0))]

If we use sufficient variability conditions, we obtain T (z) = AT (z̃) + c. We now use the fact that
sufficient statistics T (z) = (z, z2) are minimal to conclude that

T (z) = AT (z̃) + c

where A is invertible. In the above, we use the line of reasoning used in in the proof of Theorem 4 in
(Lachapelle et al., 2022).

After this point, we leverage Theorem 6 to conclude that

Ti(zi) = ATj(z̃j) + c.

We can expand the above to write [
z̃j
z̃2j

]
= D

[
zi
z2i

]
+ e.

Note that the above relationship holds for all z ∈ Z . If z̃j depends on z2i , then z̃2j would be a degree
four polynomial in zi and it would be equated to a degree 2 polynomial zi stated in the RHS. This
cannot be true for all zi in the support. As a result, z̃j is a scalar multiple of zi. Since for every i
there is such a j, it follows that z̃ = ΛΠz + r.
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Theorem 8. (Zoom-in [ood]) Consider the data generation process in equation 34. We make a few
additional assumptions on the data generation stated below.

• Each Σy
e is a diagonal matrix

• There exist 2d + 1 points u0 = (y0, e0), · · · , u2d = (y2d, e2d) in the support of (y, e)
observed in training distribution such that

(λ(u1)− λ(u0), · · · , λ(u2d)− λ(u0))

is invertible.

• g is a C2-diffeomorphism.

Under the above assumptions, we can guarantee that there exists an in-context learning algorithm that
in the limit of infinitely long contexts generates Bayes optimal predictions for all the test environments
that fall in Voronoi cells of training parameters weighted by a certain vector.

Proof. The training proceeds as follows. Train an autoencoder on training data under the constraint
that the output of the encoder follow a Gaussian distribution with independent components conditional
on each y, e. This is stated as the following minimization.

ĝ, f̂ , µ̂y
e , Σ̂

y
e = arg min

g̃,f̃ ,{µy
e ,Σ

y
e}

E[∥(g̃ ◦ f̃(x)− x)∥2] + α
∑
y,e

KL
(
pz̃(·|y, e) ∥ N (µy

e ,Σ
y
e)
)

(37)

where z̃ = f̃(x), pz̃(·|y, e) is the distribution of z̃. The first term is standard reconstruction loss
and the second term is the KL divergence between distribution of z̃ and a Normal distribution with
independent components. Also, estimate the class probabilities for each environment and denote
them as p̂ye . Similar to the proof of Theorem 3 define γ̂e = [(p̂ye , µ̂

y
e , Σ̂

y
e)y∈{0,1}]

The model at test time works as follows. We first use the trained encoder f̂ and generate z̃ for
test time inputs. After this the model operates in exactly the same way on z̃′s as in the proof
of Theorem 3. Basically the output of encoder takes place of raw x’s in the procedure described in
proof of Theorem 3.

The assumptions in this theorem along with following i) z̃ follows a Gaussian distribution with
independent components, ii) g(z̃) follows distribution of x conditional on y, e for each y, e, implies
we can use the previous result in Theorem 7 to conclude that z̃ = ΛΠz + r. Observe that z̃ also
follows a Gaussian distribution with independent components conditional on each y, e. In the
limit of infinitely long contexts, γ̂e is equal to scaled means of original training environments and
covariances also scaled componentwise according to the transform ΛΠ. We can now apply the
previous Theorem 3 on z̃′s as follows. If the parameters of the test environment are in the Voronoi
cell of the train distribution of z̃′s, then the procedure described above continues to generate Bayes
optimal predictions in those environments.

A.6 COMPARING ICRM AND ERM UNDER THE LENS OF INVARIANCE

The label y is related to x1 and mean of x2 in environment e as follows.

y ← αx1 + βµ2
e + ε (38)

ERM learns a linear model on two dimensional feature vector x = (x1, x2). The closed form
solution for linear regression is Λ−1ρ, where Λ = E[XX⊤], which is assumed to be invertible, and

ρ = E[XY ]. The covariance matrix of X is defined as Σ =

[
σ2
1 σ12

σ12 σ2
2

]
.

Proposition 2. Let E[X1|E = e] = 0 for all e ∈ E . If Σ is invertible, β ̸= 0, σ12 ̸= 0, µ2
e ̸= 0 for

some e ∈ Etr, then the coefficient estimated by ERM for x1 is not the same as the invariant coefficient
α.
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Proof. We compute ρ first.

ρ = E[XY ] =

[
αE[(X1)2] + βE[µ2

EX
1]

αE[X1X2] + β[µ2
EX

2]

]
= α

[
σ2
1

σ12 +
β
αδ

]
,

(39)

where δ = E[(µ2
E)

2].

Next, we compute Λ.

Λ = E[XX⊤] =

[
σ2
1 σ12

σ12 σ2
2 + δ

]
. (40)

The solution to ERM is[
α′

β′

]
=

α

(σ2
2 + δ)σ2

1 − σ2
12

[
σ2
2 + δ − σ12

−σ12 σ2
1

] [
σ2
1

σ12 +
β
αδ

]
. (41)

Simplifying the above, we obtain the coefficient for x1 to be

α′ = α− σ12βE[(µ2
E)

2]

σ2
1

(
σ2
2 + E[(µ2

E)
2]
)
− σ2

12

. (42)

Owing to the assumptions, β ̸= 0, σ12 ̸= 0 and µ2
e for some e we obtain that the second term in the

above is not zero. As a result, the estimate computed by ERM for α is biased.

Proposition 3. Let E[X1|E = e] = 0 for all e ∈ E . If Σ is invertible, β ̸= 0, σ12 ̸= 0, µ2
e ̸= 0. The

error of ERM in test environment increases in σ2
1

Proof. The error of ERM is given as

E[(αX1 + βµ2
e − α′X1 − β′X2)2] + σ2

ε

= (α− α
′
)2σ2

1 + β2E[(µ2
E)

2] + (β′)2E[(X2)2]− 2ββ
′
E[(µ2

E)
2]− 2(α− α′)βσ12 + σ2

ε ,
(43)

where σ2
ε is the variance of the noise variable ε. If we take the derivative of the above error w.r.t σ2

1 ,
we obtain (α− α′)2, which is positive. This completes the proof.

ICRM learns a linear model on (x1, x2, µ1
e, µ

2
e). We study two settings to analyze the error of ICRM

at test time. If at test time, the model has seen sufficiently long contexts, then it knows the means
corresponding to x1 and x2 and the model achieves the test error of σ2

ε . On the other hand, if the
context is empty, then also note that the expected error of the model is β2∥µ2

e′∥2 (assuming the model
uses a default value of zero for the mean in the absence of any context), where µ2

e′ is the mean of x2

in environment e′. Since the error of ICRM in the absence of any context is independent of variance
of x1, the error of ERM can be much worse than that of ICRM in this setting as well.

Extending the above example beyond linear settings. Let us consider a more general setting.

y = u(x1, µ2
e) + ε,

x2 = v(µ2
e, ϑ),

(44)

where u(·) and v(·) are maps (potentially non-linear), ε and ϑ are independent zero mean noise
variables. Following the same line of thought as the above example. ICRM learns a non-linear model
on (x1, x2, µ

e
1, µ

e
2) and learns E[Y |x1, x2, µ1

e, µ
2
e]. From equation 44, it follows that

Y ⊥ (X2, µ1
E)|(X1, µ2

E) =⇒ E[Y |x1, x2, µ1
e, µ

2
e] = E[Y |x1, µ2

e] = u(x1, µ2
e).
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From the above it follows that ICRM learns u(x1, µ2
e). In comparison, consider standard ERM

learns a non-linear model on (x1, x2). Consider the DAG corresponding to setting equation 44. We
assume that the joint distribution described in equation 44 is Markov w.r.t to the following DAG
X1 → Y ← µ2

E → X2. As a result, Y ̸⊥ X2|X1. This follows from the fact there is a path Y to
X2 through µ2

E and is not blocked by X1. From Y ̸⊥ X2|X1 it follows that ERM learns a predictor
that relies on both x1 and x2. Therefore, ICRM learns the right invariant model and does not rely on
x2 and ERM relies on spurious feature x2.

A.7 ILLUSTRATION OF FAILURE OF EXISTING MTL METHODS

In this section, we provide a simple example to show the failure mode of marginal transfer learning
(MTL) methods that are based on averaging 1

|c|
∑

xi∈c Φ(·) to summarize information about the
environment. These methods can be summarized to take the following form:

f

(
1

|c|
∑
xi∈c

Φ(xi), x

)
. (45)

We are only going to consider maps Φ that are differentiable.

Example. Suppose we want to learn the following function

w(x, c) =
1

|c|
∑
xi∈C

I(x < xi), (46)

where xi is the ith input in the context and x is the current query and I(·) is indicator function
that takes a value of one if the argument inside is true and zero otherwise. We claim that if

f

(
1
|c|

∑
xi∈c Φ(xi), x

)
= w(x, c) for all x ∈ R, c ∈ R|c|, then the output dimension of Φ grows in

context length |c|. Suppose this was not the case. If Φ′s output dimension is smaller than |c|, then Φ
cannot be a differentiable bijection. As a result, there exists two contexts c and c′ of same length for
which

∑
xi∈c Φ(xi) =

∑
xi∈c′ Φ(xi). We argue that there exists an x such that w(x, c) ̸= w(x, c′).

This would lead to a contradiction as f
(

1
|c|

∑
xi∈c Φ(xi), x

)
= w(x, c) for all x, c. Without loss

of generality, suppose that the smallest value of context c is smaller than that in context c′. If x is
larger than smallest value of c but lesser than smallest value of c′, then w(x, c′) = 1 on the other
hand w(x, c) ≤ 1− 1

|c| .

We can translate the insight from the above example into more general settings. Consider any map
w(x, c), that satisfies the following property. For no two distinct contexts c and c

′
, w(x, c) = w(x, c′)

for all x ∈ R. Maps of the form f

(
1
|c|

∑
xi∈c Φ(xi), x

)
can only approximate such w′s provided

dimension of Φ grows in length of c.

We explain how the above example can be described by attention-based architectures with much

fewer parameters. First take the current query x and transform it through a linear map x̃ =

[
x
1

]
and

transform the past context values through a linear map as well to obtain a transform for xi to x̃i =[
1
xi

]
. We set the Query Q and Key K matrices such that Q⊤K =

[
−1 0
0 1

]
and thus x̃⊤Q⊤Kx̃i =

(−x+xi). Instead of softmax, if we pass the output through a sigmoid, we obtain σ(τ x̃⊤Q⊤Kx̃i) =
1

1+e−τ(xi−x) . If τ is sufficiently large, then this approximates I(x < xi). Therefore, one layer linear
attention with sigmoid and sufficiently high τ achieves the target, i.e.,

∑
xi∈c σ(τ x̃

⊤Q⊤Kx̃i) ≈∑
xi∈C I(x < xi).
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B RELATED WORK

A brief tour of domain generalization. Muandet et al. (2013) developed kernel methods to learn
transformations such that the distance between the feature distributions across domains is minimized
and the information between the features and the target labels is preserved. The pioneering work of
Ganin et al. (2016) proposes a method inspired from generative adversarial networks to learn feature
representations that are similar across domains. Sun and Saenko (2016) developed a method based on
a natural strategy to match the means and covariances of feature representations across domains. Li
et al. (2018) went a step further to enforce invariance on the distribution of representations conditional
on the labels. In a parallel line of work, led by Peters et al. (2016); Rojas-Carulla et al. (2018);
Arjovsky et al. (2019), the proposals sought to learn representations such that the distribution of
labels conditional on the representation are invariant across domains. These works were followed by
several interesting proposals to enforce invariance – (Teney et al., 2020; Krueger et al., 2020; Ahuja
et al., 2020; Jin et al., 2020; Chang et al., 2020; Mahajan et al., 2020; Koyama and Yamaguchi, 2020;
Müller et al., 2020; Parascandolo et al., 2021; Robey et al., 2021; Wald et al., 2021; Chen et al., 2022;
Wang et al., 2022; Zhang et al., 2023; Eastwood et al., 2022; Rame et al., 2022; Veitch et al., 2021;
Makar et al., 2022; Wald et al., 2022; Salaudeen and Koyejo, 2022; Eastwood et al., 2023) – which is
an incomplete representative list. See Shen et al. (2021) for a more comprehensive survey of these
works. Most of the above works have focused on learning features that enable better generalization.
Recently there been an intriguing line of work from Kirichenko et al. (2022); Izmailov et al. (2022)
that shifts the focus from feature learning to last layer retraining. These works show that under certain
conditions (e.g., avaiability of some data that does not carry spurious correlations) one can carry out
last layer retraining and achieve significant out-of-distribution performance improvements.

In the main body of the paper, we already discussed the other prominent line of work in domain
generalization on marginal transfer learning, where the focus is to leverage the distributional features
and learn environment specific relationships. This line of work was started by the notable work of
Blanchard et al. (2011) and has been followed up by several important proposals such as Zhang et al.
(2020); Bao and Karaletsos (2023).

Context-supported prediction frameworks. Existing works have exploited contextual information
to develop a variety of prediction frameworks. The works on neural processes and conditional neural
processes (Garnelo et al., 2018b;a) combined the uncertainty estimation capabilities of Gaussian
processes with function aprpoximation capabilities of neural networks and showed promising results
on meta-learning. These works were later improved through transformer based archictectures in atten-
tive neural processes (Kim et al., 2019; Nguyen and Grover, 2022). Context-based architectures have
also been used to study in-context learning in (Garg et al., 2022; Akyürek et al., 2022; Von Oswald
et al., 2023). These works use labeled data in the context to enable adaptation. In contrast, our work
adheres to the constraints of domain generalization and only leverages unlabeled data.

C SUPPLEMENTARY EXPERIMENTAL DETAILS AND ASSETS DISCLOSURE

C.1 ASSETS

We do not introduce new data in the course of this work. Instead, we use publicly available widely
used image datasets for the purposes of benchmarking and comparison.

C.2 HARDWARE AND SETUP

Each experiment was performed on 8 NVIDIA Tesla V100 GPUs with 32GB accelerator RAM for a
single training run. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB
RAM. All experiments use the PyTorch deep-learning framework.

C.3 DATASETS

C.3.1 FEDERATED EXTENDED MNIST (FEMNIST)

Building on the Extended MNIST (EMNIST) dataset, which includes images of handwritten
uppercase and lowercase alphabets along with digits, FEMNIST (Zhang et al., 2020) enriches
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this data by attributing each data point to its originating writer. This extension associates each
28×28-sized image in the dataset to one of the 62 classes. In our setup, each writer serves as a
distinct environment. We evaluate the performance of each method based on both worst-case and
average accuracy across a set of 35 test users, who are distinct from the 262 training users and 50
validation users. Unlabelled data from an environment in this dataset could provide cues about the
writing style of the user and disambiguate data points.

C.3.2 ROTATED MNIST

We employ a customized version of the MNIST dataset as in Zhang et al. (2020). The dataset
contains images rotated in increments of 10 degrees, ranging from 0 to 130 degrees. Each degree
of rotation constitutes a separate environment, effectively acting as a distinct value. The training
set for the two most extreme rotations, 120 and 130 degrees, contains only 108 data points each.
For rotations between 90 and 110 degrees, each environment includes 324 data points. The total
training set comprises 32,292 points. For evaluation, test images are generated from the MNIST
test set, and are duplicated for each environment. Performance metrics include both worst-case and
average accuracy across these testing domains. Analogous to FEMNIST, unlabeled samples from an
environment within this dataset can assist in distinguishing images that may seem similar due to their
rotated orientations.

C.3.3 WILDS CAMELYON17

We use the Camelyon17 dataset, part of the WILDS benchmark (Koh et al., 2021), which features
image patches derived from whole-slide lymph node sections of patients with potential metastatic
breast cancer. Each patch is labeled to indicate the presence or absence of a tumor. In our
experimental design, each participating hospital is treated as a distinct environment. The dataset is
partitioned in alignment with the official WILDS configuration: three hospitals contribute to the
training set, a fourth is designated for validation, and the remaining hospital’s data is used for testing.

C.3.4 CIFAR10-C AND TINY IMAGENET-C

Adapting the methodology from Hendrycks and Dietterich (2019), we introduce 56 distinct
distortions to the training set, treating each as a separate environment. For evaluation, we use a
non-overlapping set of 22 test distortions, largely differing in nature from those used in training. For
Tiny ImageNet-C, each 64×64-sized distorted image is associated with one of the 200 classes in the
dataset. The same set of corruptions are employed to augment the CIFAR10 dataset, resulting in
32 × 32-sized images for the CIFAR10-C dataset.This setup permits an investigation into whether
exposure to distortions during training equips the model to better manage novel distortions during
testing. We assess performance through both worst-case and average accuracies across these test
distortions.

C.3.5 IMAGENET R

ImageNet-R comprises a diverse range of artistic and creative content, encompassing art, cartoons,
deviant art, graffiti, embroidery, graphics, origami, paintings, patterns, plastic objects, plush objects,
sculptures, sketches, tattoos, toys, and video game interpretations of ImageNet classes. This dataset
consists of renditions for 200 ImageNet classes, totaling 30,000 images. For our experiments,
we utilize images from categories of cartoons, paintings, stickers, graphics, sculptures, sketches,
tattoos, toys, and video games for training. Validation is conducted using images from embroidery,
miscellaneous, and graffiti categories, while the test environments incorporate images from art,
deviant art, and origami categories. This segregation introduces extreme real-world distribution shifts,
where the data features during testing differ significantly from those observed during training.
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C.4 EXPERIMENTAL PROTOCOLS

To ensure a fair comparison across different algorithms for each dataset, we use a standardized neural
network backbone. The details for these architectures are provided in Table 4 and Table 5. We use
the ConvNet architecture as outlined in Zhang et al. (2020). ‘

For ICRM, the same backbone is used to featurize the input, which is then processed by the decoder-
only Transformer (Vaswani et al., 2017) architecture from the GPT-2 Transformer family (Radford
et al., 2019). Our model is standardized to have 12 layers, 4 attention heads, and a 128-dimensional
embedding space across all datasets. Linear layers are employed to map both the input sequence
to the transformer’s latent embedding and the model’s predicted output vector to the output label.
For training ICRM on larger datasets like ImageNet R, CIFAR10-C, WILDS Camelyon17 and Tiny
ImageNet-C, we start with a ResNet50 model pre-trained on ImageNet (as shown in Table 4) and
freeze all batch normalization layers before fine-tuning.

We adopt the same Context Network as used in ARM, specifically retaining their choice of output
channels – one for smaller datasets like FEMNIST and Rotated MNIST, and three for the others.

For TENT, all reported metrics are based on its episodic version, where the model is reset to its trained
state after processing each batch. This ensures a fair comparison with other methods. Additionally,
during testing, the model’s parameters are updated for 10 steps using stochastic gradient descent by
minimization test entropy across all datasets.

Table 4: Network architectures for each dataset.

Dataset Architecture

ICRM Others

FEMNIST ConvNet + GPT2
Transformer

ConvNetRotated MNIST

CIFAR10-C
Camelyon17 ResNet-50 + GPT2

Transformer
ResNet-50Tiny ImageNet-C

ImageNet R

Table 5: ConvNet architecture for
(Zhang et al., 2020). We use 2×2
kernels and “same” padding.

# Layer
1 Conv2D (in=d, out=128)
2 BatchNorm2d (dim=129)
3 ReLU
4 Max Pooling (2)
5 Conv2D (in=128, out=128)
6 BatchNorm2d (dim=128)
7 ReLU
8 Max Pooling (2)
9 Global average-pooling

We list all hyperparameters, their default settings, and search boundaries for random sweeps in Table 6.
The maximum context length, or support, is fixed at 100 for all algorithms. All models are optimized
using the Adam optimizer (Kingma and Ba, 2014). To ensure a fair comparison, we perform a random
search of 5 trials across the hyperparameter range (refer to Table 6) for each algorithm. The model
with the highest validation set accuracy is selected for each run. We then report the average of this
number across three independent runs of the entire sweep, and its corresponding standard error.

Table 6: Hyperparameters, their default values and distributions for random search.

Condition Parameter Default value Random distribution

ResNet learning rate 0.0001 10Uniform(−5,−3.5)

weight decay 0 10Uniform(−6,−2)

not ResNet learning rate 0.0001 10Uniform(−4.5,−2.5)

weight decay 0 10Uniform(−6,−2)
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D ADDITIONAL EXPERIMENTS

D.1 ADAPTATION CURVES OF VARIOUS ALGORITHMS
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Figure 5: Accuracy adaptation curves for worst accuracy (left) and average accuracy (right) across the
test environment as a function of increasing count of context samples. Showing results in order for
FEMNIST(top), RotatedMNIST, WILDS Camelyon17 and Tiny ImageNet-C(bottom). The average
and worst-case accuracy plots for WILDS Camelyon17 are identical since the dataset contains only a
single test environment.
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D.2 DOMAIN GENERALIZATION ACCURACIES PER ALGORITHM AND DATASET

D.2.1 ADAPTATION TO DISTRIBUTION SHIFT

In our experiments, we compare ICRM against marginal transfer methods such as Adaptive Risk
Minimization (Zhang et al., 2020, ARM), test-time adaptation proposals such as TENT (Wang et al.,
2020) and Empirical Risk Minimization (Vapnik, 1998, ERM). We also include comparisons with six
additional baselines, including approaches that follow the invariance-based paradigm like Fish (Shi
et al., 2021) and IB-IRM (Ahuja et al., 2021), alongside those that use contextual information differ-
ently, such as BN Adapt (Schneider et al., 2020; Li et al., 2016b) and Bayesian BN Adapt (Schneider
et al., 2020). BN Adapt replaces the global batch normalization statistics learned during training with
test batch statistics at inference. On the other hand, Bayesian BN Adapt assumes the global statistics
of the training data as a prior and linearly interpolates between these statistics and the test batch
statistics during inference. Additionally, we evaluate methods that employ classic regularization tech-
niques such as Mixup (Yan et al., 2020) and IB-ERM (Ahuja et al., 2021). Table 2 shows the average
performance attained by these methods across four benchmark datasets. Further, Table 7 and Table 8
demonstrate the average and worst group out-of-distribution performance, respectively, accompanied
by the corresponding standard errors. These statistics are computed across three independent runs of
the entire sweep, wherein the model selected for evaluation is the one with hyper-parameters yielding
the highest validation accuracy.
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Table 7: Average out-of-distribution test accuracies along with their corresponding standard errors
for various counts of context samples. The methods compared include Adaptive Risk Minimization
(ARM), Empirical Risk Minimization (ERM), Test Entropy Minimization (TENT), Batch Norm
Adaptation (BN Adapt), Bayesian Batch Norm Adaptation (Bayesian BN Adapt), Fish, IB-ERM,
IB-IRM, Mixup and our method ICRM on FEMNIST, Rotated MNIST, WILDS Camelyon17,
Tiny-ImageNet-C, ImageNet R and CIFAR10-C.

Dataset / algorithm Average test accuracy (by # in-context examples)
FEMNIST 0 25 50 75 100

ARM 49.5 ± 1.0 83.9 ± 0.5 84.4 ± 0.5 84.7 ± 0.6 84.6 ± 0.3
TENT 78.1 ± 1.2 77.9 ± 1.2 81.2 ± 0.9 82.5± 0.9 83.3 ± 0.8
BN Adapt 78.3 ± 0.6 76.9 ± 1.4 80.3 ± 0.9 81.5 ± 0.7 82.4 ± 0.6
Bayesian BN Adapt 78.3 ± 1.8 79.6 ± 1.0 81.3 ± 0.6 82.2 ± 0.7 82.9 ± 0.8
Fish 77.2 ± 0.6 77.2 ± 0.6 77.2 ± 0.6 77.2 ± 0.6 77.2 ± 0.6
IB-ERM 79.0 ± 1.5 79.0 ± 1.5 79.0 ± 1.5 79.0 ± 1.5 79.0 ± 1.5
IB-IRM 79.0 ± 0.4 79.0 ± 0.4 79.0 ± 0.4 79.0 ± 0.4 79.0 ± 0.4
Mixup 78.6 ± 0.9 78.6 ± 0.9 78.6 ± 0.9 78.6 ± 0.9 78.6 ± 0.9
ERM 79.3 ± 0.4 79.3 ± 0.4 79.3 ± 0.4 79.3 ± 0.4 79.3 ± 0.4
ICRM 78.7 ± 0.5 87.2 ± 0.4 87.4 ± 0.5 87.5 ± 0.2 87.8 ± 0.2

Rotated MNIST 0 25 50 75 100
ARM 36.5 ± 5.2 94.2 ± 0.7 95.1 ± 0.4 95.3 ± 0.4 95.5 ± 0.3
TENT 94.1 ± 0.3 88.0 ± 0.4 91.9 ± 0.3 93.8 ± 0.2 94.3 ± 0.2
BN Adapt 94.6 ± 0.8 87.0 ± 2.3 91.5 ± 1.5 93.7 ± 1.2 94.3 ± 1.0
Bayesian BN Adapt 94.6 ± 1.0 91.2 ± 1.6 93.4 ± 1.2 94.3 ± 1.0 94.7 ± 1.0
Fish 94.8 ± 0.4 94.8 ± 0.4 94.8 ± 0.4 94.8 ± 0.4 94.8 ± 0.4
IB-ERM 92.2 ± 0.5 92.2 ± 0.5 92.2 ± 0.5 92.2 ± 0.5 92.2 ± 0.5
IB-IRM 91.0 ± 1.1 91.0 ± 1.1 91.0 ± 1.1 91.0 ± 1.1 91.0 ± 1.1
Mixup 93.6 ± 0.0 93.6 ± 0.0 93.6 ± 0.0 93.6 ± 0.0 93.6 ± 0.0
ERM 94.2 ± 0.3 94.2 ± 0.3 94.2 ± 0.3 94.2 ± 0.3 94.2 ± 0.3
ICRM 93.6 ± 0.2 96.1 ± 0.1 96.2 ± 0.1 96.2 ± 0.1 96.2 ± 0.1

WILDS Camelyon17 0 25 50 75 100
ARM 61.2 ± 5.2 59.5 ± 4.2 59.7 ± 4.2 59.7 ± 4.3 59.7 ± 4.2
TENT 67.9 ± 7.6 81.8 ± 1.1 87.2 ± 1.1 89.4 ± 1.1 89.4 ± 1.0
BN Adapt 67.5 ± 5.9 82.0 ± 0.3 87.4 ± 0.3 89.7 ± 0.3 89.9 ± 0.3
Bayesian BN Adapt 67.5 ± 6.1 82.0 ± 0.3 87.3 ± 0.3 89.6 ± 0.2 89.7 ± 0.3
Fish 53.9 ± 2.8 53.9 ± 2.8 53.9 ± 2.8 53.9 ± 2.8 53.9 ± 2.8
IB-ERM 51.8 ± 1.0 51.8 ± 1.0 51.8 ± 1.0 51.8 ± 1.0 51.8 ± 1.0
IB-IRM 53.9 ± 1.3 53.9 ± 1.3 53.9 ± 1.3 53.9 ± 1.3 53.9 ± 1.3
Mixup 62.8 ± 5.7 62.8 ± 5.7 62.8 ± 5.7 62.8 ± 5.7 62.8 ± 5.7
ERM 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8
ICRM 92.0 ± 0.6 90.7 ± 0.8 90.8 ± 0.8 90.8 ± 0.8 90.8 ± 0.8

Tiny ImageNet-C 0 25 50 75 100
ARM 30.8 ± 0.2 31.0 ± 0.2 31.0 ± 0.2 31.0 ± 0.2 31.0 ± 0.2
TENT 31.7 ± 0.5 1.6 ± 0.1 1.7 ± 0.1 2.0 ± 0.1 2.1 ± 0.1
BN Adapt 31.7 ± 0.7 1.7 ± 0.1 1.7 ± 0.1 1.9 ± 0.1 2.1 ± 0.1
Bayesian BN Adapt 31.7 ± 0.8 2.2 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 2.4 ± 0.1
Fish 33.7 ± 0.8 33.7 ± 0.8 33.7 ± 0.8 33.7 ± 0.8 33.7 ± 0.8
IB-ERM 35.5 ± 0.4 35.5 ± 0.4 35.5 ± 0.4 35.5 ± 0.4 35.5 ± 0.4
IB-IRM 35.4 ± 0.3 35.4 ± 0.3 35.4 ± 0.3 35.4 ± 0.3 35.4 ± 0.3
Mixup 35.5 ± 0.3 35.5 ± 0.3 35.5 ± 0.3 35.5 ± 0.3 35.5 ± 0.3
ERM 31.8 ± 0.6 31.8 ± 0.6 31.8 ± 0.6 31.8 ± 0.6 31.8 ± 0.6
ICRM 38.3 ± 0.1 39.2 ± 0.3 39.2 ± 0.3 39.2 ± 0.3 39.2 ± 0.3

ImageNet R 0 25 50 75 100
ARM 56.3 ± 0.8 58.1 ±0.3 58.8 ± 0.8 59.8 ± 0.8 59.0 ± 0.3
TENT 58.9 ± 0.5 10.1 ± 0.2 10.7 ± 0.1 12.1 ± 0.2 13.0 ± 0.1
BN Adapt 58.9 ± 0.5 9.9 ± 0.1 10.9 ± 0.1 12.2 ± 0.2 13.1 ± 0.1
Bayesian BN Adapt 58.9 ± 0.5 11.9 ± 0.1 12.3 ± 0.1 13.9 ± 0.3 14.6 ± 0.1
Fish 58.6 ± 1.0 58.6 ± 1.0 58.6 ± 1.0 58.6 ± 1.0 58.6 ± 1.0
IB-ERM 58.5 ± 0.5 58.5 ± 0.5 58.5 ± 0.5 58.5 ± 0.5 58.5 ± 0.5
IB-IRM 57.8 ± 0.0 57.8 ± 0.0 57.8 ± 0.0 57.8 ± 0.0 57.8 ± 0.0
Mixup 58.8 ± 0.8 58.8 ± 0.8 58.8 ± 0.8 58.8 ± 0.8 58.8 ± 0.8
ERM 58.9 ± 0.5 58.9 ± 0.5 58.9 ± 0.5 58.9 ± 0.5 58.9 ± 0.5
ICRM 57.4 ± 0.4 59.7 ± 0.4 59.6 ± 0.6 59.4 ± 0.4 60.5 ± 0.3

CIFAR10-C 0 25 50 75 100
ARM 65.9 ± 1.3 66.0 ± 1.3 66.0 ± 1.3 66.0 ± 1.3 66.0 ± 1.3
TENT 66.1 ± 1.6 63.9 ± 2.1 68.4 ± 2.1 69.9 ± 2.0 70.5 ± 2.0
BN Adapt 66.1 ± 1.6 63.9 ± 2.1 68.4 ± 2.1 69.9 ± 2.0 70.1 ± 2.0
Bayesian BN Adapt 66.1 ± 1.6 65.1 ± 2.1 68.9 ± 2.0 69.8 ± 2.0 70.0 ± 2.0
Fish 72.3 ± 1.0 72.3 ± 1.0 72.3 ± 1.0 72.3 ± 1.0 72.3 ± 1.0
IB-ERM 65.2 ± 2.9 65.2 ± 2.9 65.2 ± 2.9 65.2 ± 2.9 65.2 ± 2.9
IB-IRM 64.3 ± 2.6 64.3 ± 2.6 64.3 ± 2.6 64.3 ± 2.6 64.3 ± 2.6
Mixup 72.8 ± 0.4 72.8 ± 0.4 72.8 ± 0.4 72.8 ± 0.4 72.8 ± 0.4
ERM 66.1 ± 1.6 66.1 ± 1.6 66.1 ± 1.6 66.1 ± 1.6 66.1 ± 1.6
ICRM 70.6 ± 0.2 71.0 ± 0.2 71.0 ± 0.2 71.0 ± 0.2 71.0 ± 0.3
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Table 8: Worst environment out-of-distribution test accuracies along with their corresponding stan-
dard errors for various counts of context samples. The methods compared include Adaptive Risk
Minimization (ARM), Empirical Risk Minimization (ERM), Test Entropy Minimization (TENT),
Batch Norm Adaptation (BN Adapt), Bayesian Batch Norm Adaptation (Bayesian BN Adapt),
Fish, IB-ERM, IB-IRM, Mixup and our method ICRM on FEMNIST, Rotated MNIST, WILDS
Camelyon17, Tiny-ImageNet-C, ImageNet R and CIFAR10-C.

Dataset / algorithm Worst case test accuracy (by # in-context examples)
FEMNIST 0 25 50 75 100

ARM 23.6 ± 1.7 59.5 ± 3.5 60.7 ± 3.8 57.0 ± 7.3 58.8 ± 4.0
TENT 55.2 ± 2.5 57.2 ± 2.2 63.3 ± 0.4 65.9 ± 0.6 67.2 ± 1.0
BN Adapt 52.7 ± 6.2 56.2 ± 2.5 61.9 ± 0.1 64.7 ± 2.5 65.3 ± 0.9
Bayesian BN Adapt 54.3 ± 2.6 60.4 ± 1.2 64.7 ± 0.9 65.5 ± 2.2 66.3 ± 1.2
Fish 52.8 ± 1.2 52.8 ± 1.2 52.8 ± 1.2 52.8 ± 1.2 52.8 ± 1.2
IB-ERM 58.6 ± 3.4 58.6 ± 3.4 58.6 ± 3.4 58.6 ± 3.4 58.6 ± 3.4
IB-IRM 57.3 ± 2.6 57.3 ± 2.6 57.3 ± 2.6 57.3 ± 2.6 57.3 ± 2.6
Mixup 57.0 ± 1.9 57.0 ± 1.9 57.0 ± 1.9 57.0 ± 1.9 57.0 ± 1.9
ERM 59.0 ± 0.2 59.0 ± 0.2 59.0 ± 0.2 59.0 ± 0.2 59.0 ± 0.2
ICRM 59.8 ± 0.7 69.3 ± 0.0 70.6 ± 2.3 70.6 ± 1.5 70.6 ± 0.7

Rotated MNIST 0 25 50 75 100
ARM 28.2 ± 2.1 85.3 ± 1.6 87.2 ± 1.0 87.9 ± 1.0 87.9 ± 0.9
TENT 80.2 ± 1.3 88.5 ± 0.8 88.5 ± 0.9 80.2 ± 1.0 81.3 ± 1.0
BN Adapt 80.5 ± 2.4 70.9 ± 2.8 76.9 ± 2.5 79.8 ± 2.7 80.9 ± 2.3
Bayesian BN Adapt 80.5 ± 2.9 75.4 ± 3.1 79.2 ± 2.6 80.7 ± 2.8 81.3 ± 2.5
Fish 83.2 ± 1.9 83.2 ± 1.9 83.2 ± 1.9 83.2 ± 1.9 83.2 ± 1.9
IB-ERM 72.0 ± 0.9 72.0 ± 0.9 72.0 ± 0.9 72.0 ± 0.9 72.0 ± 0.9
IB-IRM 69.9 ± 3.4 69.9 ± 3.4 69.9 ± 3.4 69.9 ± 3.4 69.9 ± 3.4
Mixup 81.2± 0.7 81.2± 0.7 81.2± 0.7 81.2± 0.7 81.2± 0.7
ERM 80.8 ± 1.1 80.8 ± 1.1 80.8 ± 1.1 80.8 ± 1.1 80.8 ± 1.1
ICRM 82.5 ± 0.5 88.5 ± 0.5 88.5 ± 0.5 88.8 ± 0.5 88.8 ± 0.4

WILDS Camelyon17 0 25 50 75 100
ARM 61.2 ± 5.2 59.5 ± 4.2 59.7 ± 4.2 59.7 ± 4.3 59.7 ± 4.2
TENT 67.9 ± 7.6 81.8 ± 1.1 87.2 ± 1.1 89.4 ± 1.1 89.4 ± 1.0
BN Adapt 67.5 ± 5.9 82.0 ± 0.3 87.4 ± 0.3 89.7 ± 0.3 89.9 ± 0.3
Bayesian BN Adapt 67.5 ± 6.1 82.0 ± 0.3 87.3 ± 0.3 89.6 ± 0.2 89.7 ± 0.3
Fish 53.9 ± 2.8 53.9 ± 2.8 53.9 ± 2.8 53.9 ± 2.8 53.9 ± 2.8
IB-ERM 51.8 ± 1.0 51.8 ± 1.0 51.8 ± 1.0 51.8 ± 1.0 51.8 ± 1.0
IB-IRM 53.9 ± 1.3 53.9 ± 1.3 53.9 ± 1.3 53.9 ± 1.3 53.9 ± 1.3
Mixup 62.8 ± 5.7 62.8 ± 5.7 62.8 ± 5.7 62.8 ± 5.7 62.8 ± 5.7
ERM 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8
ICRM 92.0 ± 0.6 90.7 ± 0.8 90.8 ± 0.8 90.8 ± 0.8 90.8 ± 0.8

Tiny ImageNet-C 0 25 50 75 100
ARM 8.2 ± 0.3 8.3 ± 0.3 8.2 ± 0.3 8.3 ± 0.3 8.2 ± 0.3
TENT 1.2 ± 0.4 1.4 ± 0.0 1.6 ± 0.1 1.6 ± 0.0 1.6 ± 0.0
BN Adapt 9.4 ± 0.7 1.3 ± 0.0 1.4 ± 0.0 1.6 ± 0.0 1.7 ± 0.0
Bayesian BN Adapt 9.4 ± 0.7 1.6 ± 0.2 1.6 ± 0.1 1.8 ± 0.0 1.8 ± 0.0
Fish 11.1 ± 0.1 11.1 ± 0.1 11.1 ± 0.1 11.1 ± 0.1 11.1 ± 0.1
IB-ERM 15.8 ± 0.6 15.8 ± 0.6 15.8 ± 0.6 15.8 ± 0.6 15.8 ± 0.6
IB-IRM 15.9 ± 0.4 15.9 ± 0.4 15.9 ± 0.4 15.9 ± 0.4 15.9 ± 0.4
Mixup 11.3 ± 0.5 11.3 ± 0.5 11.3 ± 0.5 11.3 ± 0.5 11.3 ± 0.5
ERM 9.5 ± 0.4 9.5 ± 0.4 9.5 ± 0.4 9.5 ± 0.4 9.5 ± 0.4
ICRM 18.8 ± 0.2 19.2 ± 0.1 19.5 ± 0.2 19.5 ± 0.1 19.4 ± 0.2

ImageNet R 0 25 50 75 100
ARM 47.4 ± 1.1 45.3 ± 0.4 47.2 ± 1.9 49.8 ± 1.2 47.4 ± 1.0
TENT 48.0 ± 1.0 8.6 ± 0.1 8.4 ± 0.1 8.9 ± 0.1 9.1 ± 0.1
BN Adapt 48.0 ± 1.0 8.5 ± 0.1 8.5 ± 0.1 8.9 ± 0.1 9.1 ± 0.0
Bayesian BN Adapt 48.0 ± 1.0 10.5 ± 0.2 10.3 ± 0.2 10.7 ± 0.2 10.9 ± 0.2
Fish 46.0 ± 2.1 46.0 ± 2.1 46.0 ± 2.1 46.0 ± 2.1 46.0 ± 2.1
IB-ERM 47.2 ± 1.3 47.2 ± 1.3 47.2 ± 1.3 47.2 ± 1.3 47.2 ± 1.3
IB-IRM 47.2 ± 0.4 47.2 ± 0.4 47.2 ± 0.4 47.2 ± 0.4 47.2 ± 0.4
Mixup 47.9 ± 2.1 47.9 ± 2.1 47.9 ± 2.1 47.9 ± 2.1 47.9 ± 2.1
ERM 48.0 ± 1.0 48.0 ± 1.0 48.0 ± 1.0 48.0 ± 1.0 48.0 ± 1.0
ICRM 45.4 ± 0.7 48.0 ± 0.2 47.2 ± 0.8 46.9 ± 0.4 50.6 ± 1.3

CIFAR10-C 0 25 50 75 100
ARM 39.3 ± 1.7 39.3 ± 1.7 39.4 ± 1.7 39.3 ± 1.7 39.4 ± 1.7
TENT 39.8 ± 2.5 45.4 ± 2.1 48.9 ± 2.1 49.7 ± 2.0 52.6 ± 2.0
BN Adapt 39.8 ± 2.5 43.8 ± 2.1 45.1 ± 2.0 47.8 ± 2.0 48.6 ± 2.0
Bayesian BN Adapt 39.8 ± 2.5 44.5 ± 2.0 46.8 ± 2.0 49.6 ± 2.0 51.0 ± 2.1
Fish 49.9 ± 1.5 49.9 ± 1.5 49.9 ± 1.5 49.9 ± 1.5 49.9 ± 1.5
IB-ERM 44.9 ± 3.4 44.9 ± 3.4 44.9 ± 3.4 44.9 ± 3.4 44.9 ± 3.4
IB-IRM 43.3 ± 2.3 43.3 ± 2.3 43.3 ± 2.3 43.3 ± 2.3 43.3 ± 2.3
Mixup 53.9 ± 2.4 53.9 ± 2.4 53.9 ± 2.4 53.9 ± 2.4 53.9 ± 2.4
ERM 39.8 ± 2.5 39.8 ± 2.5 39.8 ± 2.5 39.8 ± 2.5 39.8 ± 2.5
ICRM 54.6 ± 0.4 56.0 ± 0.5 55.8 ± 0.5 55.8 ± 0.5 55.9 ± 0.5
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D.2.2 ROBUSTNESS OF ICRM IN THE ABSENCE OF ENVIRONMENT LABELS

As outlined in Section 4, the training regimen of ICRM assumes a dataset D = {(xi, yi, ei)}ni=1
collected under multiple training environments ei ∈ Etr. However, in scenarios lacking such domain
separation during training, does ICRM continue to show an edge over ERM baselines? To study
this question, we modify the sampling strategy: rather than constructing context vectors containing
examples from one environment, we construct context vectors containing iid samples from all of the
environments pooled together. To continue to test for out-of-distribution generalization, however,
we evaluate the performance on examples from a novel test environment. We term this modified
approach ICRM-Mix.

Table 9 and Table 10 contrasts the performance of ICRM with ICRM-Mix. ICRM consistently
outperforms ICRM-Mix across varying counts of in-context samples on both FEMNIST and Rotated
MNIST. Surprisingly, ICRM-Mix and ICRM perform similarly on WILDS Camelyon17 and Tiny
ImageNet-C. Consider a setting where the model benefits the most attending to examples from the
same class or related classes. If classes are distributed uniformly across domains, then ICRM and
ICRM-mix are bound to perform similarly. Consider another setting where the model benefits the
most by attending to environment-specific examples such as characters drawn by the same user. In
such a case, ICRM and ICRM-mix have very different performances.

Table 9: Average out-of-distribution test accuracies along with their corresponding standard errors for
ICRM and ICRM-Mix across FEMNIST, Rotated MNIST, WILDS Camelyon17 and Tiny-ImageNet-
C. ICRM-Mix trains on sequences with samples drawn i.i.d. from the unified dataset comprising
various environments.

Dataset / algorithm Average test accuracy (by # in-context examples)
FEMNIST 0 25 50 75 100

ICRM 78.7 ± 0.5 87.2 ± 0.4 87.4 ± 0.5 87.5 ± 0.2 87.8 ± 0.2
ICRM-Mix 77.6 ± 0.8 81.1 ± 0.2 81.1 ± 0.2 80.9 ± 0.3 80.9 ± 0.1

Rotated MNIST 0 25 50 75 100
ICRM 93.6 ± 0.2 96.1 ± 0.1 96.2 ± 0.1 96.2 ± 0.1 96.2 ± 0.1
ICRM-Mix 88.9 ± 1.4 92.6 ± 0.3 92.7 ± 0.2 92.6 ± 0.3 92.7 ± 0.2

WILDS Camelyon17 0 25 50 75 100
ICRM 92.0 ± 0.6 90.7 ± 0.8 90.8 ± 0.8 90.8 ± 0.8 90.8 ± 0.8
ICRM-Mix 92.9 ± 0.3 90.7 ± 0.6 90.8 ± 0.5 90.7 ± 0.5 90.7 ± 0.5

Tiny ImageNet-C 0 25 50 75 100
ICRM 38.3 ± 0.1 39.2 ± 0.3 39.2 ± 0.3 39.2 ± 0.3 39.2 ± 0.3
ICRM-Mix 38.4 ± 0.2 39.3 ± 0.2 39.3 ± 0.2 39.3 ± 0.2 39.3 ± 0.2

Imagenet R 0 25 50 75 100
ICRM 57.4 ± 0.4 59.7 ± 0.4 59.6 ± 0.6 59.4 ± 0.4 60.5 ± 0.3
ICRM-Mix 54.9 ± 1.0 54.9 ± 1.0 57.8 ± 1.0 57.8 ± 1.0 57.8 ± 1.0

CIFAR10-C 0 25 50 75 100
ICRM 70.6 ± 0.2 71.0 ± 0.2 71.0 ± 0.2 71.0 ± 0.2 71.0 ± 0.3
ICRM-Mix 69.2 ± 0.2 69.4 ± 0.3 69.4 ± 0.3 69.4 ± 0.3 69.4 ± 0.3

D.2.3 UNDERSTANDING THE IMPACT OF ARCHITECTURE

Table 3 presents the average performance of both ERM+ and ARM+ relative to ERM and ARM,
across the four datasets. Further, Table 11 and Table 12 demonstrate the average and worst group
out-of-distribution performance of these approaches, respectively, along with the corresponding
standard errors. These statistics are computed across three independent runs of the entire sweep,
wherein the model selected for evaluation is the one with hyper-parameters yielding the highest
validation accuracy.
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Table 10: Worst environment out-of-distribution test accuracies along with their corresponding
standard errors for ICRM and ICRM-Mix across FEMNIST, Rotated MNIST, WILDS Camelyon17
and Tiny-ImageNet-C. ICRM-Mix trains on sequences with samples drawn i.i.d. from the unified
dataset comprising various environments.

Dataset / algorithm Worst case test accuracy (by # in-context examples)
FEMNIST 0 25 50 75 100

ICRM 59.8 ± 0.7 69.3 ± 0.0 70.6 ± 2.3 70.6 ± 1.5 70.6 ± 0.7
ICRM-Mix 57.5 ± 1.4 62.7 ± 1.1 65.0 ± 0.3 64.1 ± 1.5 62.9 ± 2.3

Rotated MNIST 0 25 50 75 100
ICRM 82.5 ± 0.5 88.5 ± 0.5 88.5 ± 0.5 88.8 ± 0.5 88.8 ± 0.4
ICRM-Mix 68.8 ± 3.8 77.1 ± 0.7 76.8 ± 0.9 76.4 ± 0.9 76.6 ± 0.9

WILDS Camelyon17 0 25 50 75 100
ICRM 92.0 ± 0.6 90.7 ± 0.8 90.8 ± 0.8 90.8 ± 0.8 90.8 ± 0.8
ICRM-Mix 92.9 ± 0.3 90.7 ± 0.6 90.8 ± 0.5 90.7 ± 0.5 90.7 ± 0.5

Tiny ImageNet-C 0 25 50 75 100
ICRM 18.8 ± 0.2 19.2 ± 0.1 19.5 ± 0.2 19.5 ± 0.1 19.4 ± 0.2
ICRM-Mix 18.7 ± 0.2 19.2 ± 0.2 19.4 ± 0.1 19.5 ± 0.1 19.4 ± 0.1

Imagenet R 0 25 50 75 100
ICRM 45.4 ± 0.7 48.0 ± 0.2 47.2 ± 0.8 46.9 ± 0.4 50.6 ± 1.3
ICRM-Mix 44.4 ± 1.7 46.9 ± 0.4 48.1 ± 1.6 46.6 ± 0.6 48.7 ± 1.0

CIFAR10-C 0 25 50 75 100
ICRM 54.6 ± 0.4 56.0 ± 0.5 55.8 ± 0.5 55.8 ± 0.5 55.9 ± 0.5
ICRM-Mix 53.3 ± 0.0 54.2 ± 1.1 54.2 ± 1.1 54.3 ± 1.1 54.2 ± 1.1
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Table 11: Average out-of-distribution test accuracies along with their corresponding standard errors
for ARM+ and ERM+ in contrast to their base algorithms, ARM and ERM across FEMNIST, Rotated
MNIST, WILDS Camelyon17 and Tiny-ImageNet-C.

Dataset / algorithm Average test accuracy (by # in-context examples)
FEMNIST 0 25 50 75 100

ARM 49.5 ± 1.0 83.9 ± 0.5 84.4 ± 0.5 84.7 ± 0.6 84.6 ± 0.3
ARM+ 71.4 ± 1.2 83.4 ± 0.2 84.0 ± 0.2 83.8 ± 0.2 83.5 ± 0.1

ERM 79.3 ± 0.4 79.3 ± 0.4 79.3 ± 0.4 79.3 ± 0.4 79.3 ± 0.4
ERM+ 77.4 ± 1.3 77.4 ± 1.3 77.4 ± 1.3 77.4 ± 1.3 77.4 ± 1.3

Rotated MNIST 0 25 50 75 100
ARM 36.5 ± 5.2 94.2 ± 0.7 95.1 ± 0.4 95.3 ± 0.4 95.5 ± 0.3
ARM+ 86.9 ± 2.0 92.6 ± 0.7 92.7 ± 0.6 92.8 ± 0.6 92.8 ± 0.6

ERM 94.2 ± 0.3 94.2 ± 0.3 94.2 ± 0.3 94.2 ± 0.3 94.2 ± 0.3
ERM+ 94.3 ± 0.4 94.3 ± 0.4 94.3 ± 0.4 94.3 ± 0.4 94.3 ± 0.4

WILDS Camelyon17 0 25 50 75 100
ARM 61.2 ± 5.2 59.5 ± 4.2 59.7 ± 4.2 59.7 ± 4.3 59.7 ± 4.2
ARM+ 55.8 ± 0.8 55.1 ± 1.7 55.0 ± 1.7 55.0 ± 1.8 55.0 ± 1.8

ERM 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8
ERM+ 50.1 ± 0.1 50.1 ± 0.1 50.1 ± 0.1 50.1 ± 0.1 50.1 ± 0.1

Tiny ImageNet-C 0 25 50 75 100
ARM 30.8 ± 0.2 31.0 ± 0.2 31.0 ± 0.2 31.0 ± 0.2 31.0 ± 0.2
ARM+ 5.5 ± 0.2 5.7 ± 0.2 5.7 ± 0.2 5.7 ± 0.2 5.7 ± 0.2

ERM 31.8 ± 0.6 31.8 ± 0.6 31.8 ± 0.6 31.8 ± 0.6 31.8 ± 0.6
ERM+ 29.7 ± 0.3 29.7 ± 0.3 29.7 ± 0.3 29.7 ± 0.3 29.7 ± 0.3

Imagenet R 0 25 50 75 100
ARM 56.3 ± 0.8 58.1 ±0.3 58.8 ± 0.8 59.8 ± 0.8 59.0 ± 0.3
ARM+ 1.8 ± 0.2 1.5 ± 0.2 1.5 ± 0.2 1.5 ± 0.2 1.5 ± 0.1

ERM 58.9 ± 0.5 58.9 ± 0.5 58.9 ± 0.5 58.9 ± 0.5 58.9 ± 0.5
ERM+ 57.0 ± 0.4 57.0 ± 0.4 57.0 ± 0.4 57.0 ± 0.4 57.0 ± 0.4

CIFAR10-C 0 25 50 75 100
ARM 65.9 ± 1.3 66.0 ± 1.3 66.0 ± 1.3 66.0 ± 1.3 66.0 ± 1.3
ARM+ 42.7 ± 0.1 44.2 ± 0.1 44.3 ± 0.1 44.3 ± 0.1 44.3 ± 0.1

ERM 66.1 ± 1.6 66.1 ± 1.6 66.1 ± 1.6 66.1 ± 1.6 66.1 ± 1.6
ERM+ 66.5 ± 1.2 66.5 ± 1.2 66.5 ± 1.2 66.5 ± 1.2 66.5 ± 1.2
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Table 12: Worst environment out-of-distribution test accuracies along with their corresponding
standard errors for ARM+ and ERM+ in contrast to their base algorithms, ARM and ERM across
FEMNIST, Rotated MNIST, WILDS Camelyon17 and Tiny-ImageNet-C.

Dataset / algorithm Worst case test accuracy (by # in-context examples)
FEMNIST 0 25 50 75 100

ARM 23.6 ± 1.7 59.5 ± 3.5 60.7 ± 3.8 57.0 ± 7.3 58.8 ± 4.0
ARM+ 51.7 ± 2.2 63.0 ± 2.1 64.0 ± 0.8 60.7 ± 1.6 62.0 ± 0.8

ERM 59.0 ± 0.2 59.0 ± 0.2 59.0 ± 0.2 59.0 ± 0.2 59.0 ± 0.2
ERM+ 53.3 ± 2.7 53.3 ± 2.7 53.3 ± 2.7 53.3 ± 2.7 53.3 ± 2.7

Rotated MNIST 0 25 50 75 100
ARM 28.2 ± 2.1 85.3 ± 1.6 87.2 ± 1.0 87.9 ± 1.0 87.9 ± 0.9
ARM+ 71.4 ± 2.6 80.9 ± 1.8 81.0 ± 1.8 81.2 ± 1.9 81.1 ± 1.8

ERM 80.8 ± 1.1 80.8 ± 1.1 80.8 ± 1.1 80.8 ± 1.1 80.8 ± 1.1
ERM+ 81.9 ± 0.7 81.9 ± 0.7 81.9 ± 0.7 81.9 ± 0.7 81.9 ± 0.7

WILDS Camelyon17 0 25 50 75 100
ARM 61.2 ± 5.2 59.5 ± 4.2 59.7 ± 4.2 59.7 ± 4.3 59.7 ± 4.2
ARM+ 55.8 ± 0.8 55.1 ± 1.7 55.0 ± 1.7 55.0 ± 1.8 55.0 ± 1.8

ERM 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8 68.6 ± 7.8
ERM+ 50.1 ± 0.1 50.1 ± 0.1 50.1 ± 0.1 50.1 ± 0.1 50.1 ± 0.1

Tiny ImageNet-C 0 25 50 75 100
ARM 8.2 ± 0.3 8.3 ± 0.3 8.2 ± 0.3 8.3 ± 0.3 8.2 ± 0.3
ARM+ 1.9 ± 0.1 1.9 ± 0.1 1.9 ± 0.1 1.9 ± 0.1 1.9 ± 0.1

ERM 9.5 ± 0.4 9.5 ± 0.4 9.5 ± 0.4 9.5 ± 0.4 9.5 ± 0.4
ERM+ 8.3 ± 0.3 8.3 ± 0.3 8.3 ± 0.3 8.3 ± 0.3 8.3 ± 0.3

Imagenet R 0 25 50 75 100
ARM 47.4 ± 1.1 45.3 ± 0.4 47.2 ± 1.9 49.8 ± 1.2 47.4 ± 1.0
ARM+ 1.4 ± 0.2 0.9 ± 0.3 1.0 ± 0.4 0.8 ± 0.3 1.0 ± 0.3

ERM 48.0 ± 1.0 48.0 ± 1.0 48.0 ± 1.0 48.0 ± 1.0 48.0 ± 1.0
ERM+ 45.3 ± 1.0 45.3 ± 1.0 45.3 ± 1.0 45.3 ± 1.0 45.3 ± 1.0

CIFAR10-C 0 25 50 75 100
ARM 39.3 ± 1.7 39.3 ± 1.7 39.4 ± 1.7 39.3 ± 1.7 39.4 ± 1.7
ARM+ 24.5 ± 0.7 24.7 ± 0.6 24.8 ± 0.5 24.8 ± 0.5 24.8 ± 0.6

ERM 39.8 ± 2.5 39.8 ± 2.5 39.8 ± 2.5 39.8 ± 2.5 39.8 ± 2.5
ERM+ 40.4 ± 1.8 40.4 ± 1.8 40.4 ± 1.8 40.4 ± 1.8 40.4 ± 1.8
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D.3 COMPARISON OF ICRM WITH IN-CONTEXT LEARNING

The first and most popular conception of In-context learning (Brown et al., 2020) involves providing
the model with contextual information, typically a few sample (x, y) pairs that represent a specific
“task”. In contrast, our approach ICRM introduces an alternative perspective on in-context learning,
where unlabeled inputs x act as the contextual backdrop for a task, also known as an environment.
Note that, in order to benefit from in-context learning in domain generalization, the context itself
must be a sequence of unlabeled inputs since at test-time the learner only has access to the unlabeled
x’s from the test environment and not the labels y’s.

Our method, ICRM, can seamlessly adapt to supervised settings, functioning with input sequences
containing both (x, y) pairs, instead of just x. We refer to this approach as Supervised ICRM or
ICL. We evaluate both Supervised ICRM and ICRM on FEMNIST and Rotated MNIST datasets. As
anticipated, Supervised ICRM demonstrates superior performance compared to ICRM. However, it
is not suitable for domain generalization settings where data labels are unavailable at inference.

Table 13: Average/worst OOD test accuracy for different context lengths, for ICRM and Supervised
ICRM on FEMNIST and Rotated MNIST. Supervised ICRM refers to ICRM trained on labeled input
sequences containing (x, y) pairs as context.

Data / method Average test accuracy Worst case test accuracy
FEMNIST 0 25 50 75 100 0 25 50 75 100
ICRM 78.7 87.2 87.4 87.5 87.8 59.8 69.3 70.6 70.6 70.6
Supervised ICRM 79.0 87.8 87.7 88.2 87.9 61.2 72.2 73.5 74.5 74.9
Rotated MNIST 0 25 50 75 100 0 25 50 75 100
ICRM 93.6 96.1 96.2 96.2 96.2 82.5 88.5 88.5 88.8 88.8
Supervised ICRM 93.3 96.3 96.3 96.3 96.3 82.0 89.0 89.0 89.1 89.3

D.4 INVESTIGATING THE FEATURES LEARNED BY ICRM

Figure 2 presents attention maps for two randomly sampled sequences for FEMNIST and Tinu
ImageNet-C datasets. Figure 6 shows similar visualization for two other random sequences. Par-
ticularly in the second row, attention is predominantly allocated to lines of length similar to that of
the query (also in green), thereby disregarding shorter lines (shown in red). Similarly, the third row
shows that the model, when presented with a query image of a “train”, attends not only on other
trains but also on a “bus”—indicating a semantic understanding of similarity.

The key takeaway from this visualization is that ICRM effectively learns to attend to a select few
samples in an input sequence. Interestingly, these samples either belong to the same class or exhibit
similar features, despite potentially belonging to different classes.

To gain deeper insights into the features learned by ICRM, we examine its capability to transition
from broad domain indices to nuanced, compositional contextual descriptions of environments. This
analysis is crucial for understanding how ICRM facilitates amortization across similar environments.
In particular, we extract embeddings from the penultimate layer of our trained model, for data from
every environment within the training set. Subsequently, we train a linear classifier to predict the
corresponding environment from each embedding. We repeat the experiment for models trained using
both ICRM and ICRM-Mix.

As illustrated in Figure 7, the linear model using embeddings from ICRM attains an accuracy of
up to 75% on FEMNIST and 98% on Rotated MNIST. This efficacy suggests that ICRM embeds
representations that are linearly separable with respect to their environmental origins. Additionally,
ICRM not only exhibits superior accuracy but also a faster rate of convergence in comparison to
ICRM-Mix. This advantage is likely due to ICRM’s i.i.d data sampling from each environment. In
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Attention maps (final fig feminist) 
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Figure 6: Attention scores for random test sequences, for ICRM on FEMNIST (top two rows) and
Tiny ImageNet-C (bottom two rows).

contrast, a linear model trained on embeddings from a ICRM-Mix model also achieves significant
accuracy, reaching 70% on FEMNIST and 91% on Rotated MNIST. This further explains ICRM-
Mix’s robust performance in out-of-distribution generalization even in the absence of explicit domain
separation during training, as analyzed in Appendix D.2.2.
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Figure 7: Evolution of the classification accuracy of the linear model trained on the retrieved
embeddings as a function of training epochs for (a) FEMNIST (b) Rotated MNIST
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