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ABSTRACT

Despite rapid progress in multimodal large language models (MLLMs), their ca-
pability for deep emotional understanding remains limited. We argue that gen-
uine affective intelligence requires explicit modeling of Theory of Mind (ToM),
the cognitive substrate from which emotions arise. To this end, we introduce
HitEmotion, a ToM-grounded hierarchical benchmark that diagnoses capability
breakpoints across increasing levels of cognitive depth. Second, we propose a
ToM-guided reasoning chain that tracks mental states and calibrates cross-modal
evidence to achieve faithful emotional reasoning. We further introduce TMPO,
a reinforcement learning method that uses intermediate mental states as process-
level supervision to guide and strengthen model reasoning. Extensive experiments
show that HitEmotion exposes deep emotional reasoning deficits in state-of-the-
art models, especially on cognitively demanding tasks. In evaluation, the ToM-
guided reasoning chain and TMPO improve end-task accuracy and yield more
faithful, more coherent rationales. In conclusion, our work provides the research
community with a practical toolkit for evaluating and enhancing the cognition-
based emotional understanding capabilities of MLLMs. Our dataset and code are
anonymously available at: Anonymous Repository.

1 INTRODUCTION

Emotional intelligence (Picard, 2000) lies at the heart of machine intelligence and plays a pivotal role
in the development of human-centric AI systems. Despite the remarkable progress of Multimodal
Large Language Models (MLLMs, (OpenAI, 2025; Gemini et al., 2023)) across various tasks, their
capability in deep emotional understanding remain suboptimal (Huang et al., 2024; Sabour et al.,
2024). Existing studies primarily focus on surface-level emotion recognition, often neglecting the
dynamic, context-dependent nature of emotions and their intricate relationships with other mental
states such as beliefs and intentions (Khare et al., 2024). Such oversimplification overlooks the
complexity of human affect, limiting the interpretability and performance of MLLMs in emotional
understanding (Zhang et al., 2025c).

Recent benchmarks such as EmoBench (Sabour et al., 2024) and EmotionHallucer (Xing et al.,
2025) have empirically validated this bottleneck: even state-of-the-art (SOTA) MLLMs struggle
with emotionally complex tasks that require nuanced perspective-taking or reasoning over conflict-
ing multimodal cues (Yang et al., 2024). These failures often manifest as emotional hallucinations
and other distortions. However, while these evaluations (Hu et al., 2025a; Huang et al., 2024) suc-
cessfully expose the symptoms, their own fragmented task design limits deeper diagnosis of the
underlying causes. We argue that the core limitation of current evaluation paradigms lies in the
absence of a unified cognitive framework, a veritable Cognitive Compass, to guide the evaluation
of mental state reasoning (Chen et al., 2025). Specifically, they fail to organize emotional reason-
ing tasks according to developmental levels of Theory of Mind (ToM, (Lake et al., 2016))—e.g.,
first-order belief inference (Wimmer & Perner, 1983) vs. second-order recursive reasoning (Perner
& Wimmer, 1985). Without such a compass, benchmarks provide only a coarse overall score and
cannot pinpoint the exact ceiling or breaking point of a model’s reasoning capacity.

This lack of precision in evaluation, in turn, hides fundamental flaws in the models’ reasoning pro-
cess. Even with a generic Chain-of-Thought (CoT, (Wei et al., 2022)) approach, the reasoning
abilities of MLLMs (Zhang et al., 2025c) tend to emerge from general properties rather than from
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Figure 1: Overview of our HitEmotion benchmark.

cognition-specific, supervised training. This leads to reasoning chains that often look coherent but
are ultimately unfaithful. Specific problems include substituting causal attribution with simple tem-
plate matching, being highly sensitive to small changes in wording and prompts, lacking robust
ways to update in response to counterfactuals, and failing to explicitly track or maintain consistency
among intermediate mental states like beliefs and intentions. Ultimately, these systems are measur-
ing a shallow emotional fact retriever, skilled only at mapping superficial cues, rather than a deep
mental state simulator capable of inferring the complex interplay between mind and emotion.

To tackle these dual shortcomings in evaluation and reasoning, and to help shift the paradigm in
emotion understanding from fact retrieval to mental simulation, this study makes two core con-
tributions. ❶ A hierarchical, Theory-of-Mind–based benchmark for multimodal emotion under-
standing (HitEmotion). As presented in Figure 1, HitEmotion systematically arranges evaluation
tasks into three cognitive levels of increasing depth: Emotion Perception and Recognition, Emotion
Understanding and Analysis, and Emotion Cognition and Reasoning. This hierarchical structure
is designed to precisely pinpoint and measure a model’s capability breakpoints at different cogni-
tive depths. ❷ A novel framework for Theory-of-Mind reasoning chain preference optimization
(TMPO). This approach begins by designing structured reasoning templates for specific tasks based
on ToM principles. It then pioneers the use of intermediate mental states from these reasoning chains
as both supervisory signals and reward sources for reinforcement learning. The method aims to shift
a model’s reasoning from a “general emergent” ability to a “domain-acquired” skill, significantly
boosting its performance, robustness, and auditability in complex situations.

To validate the proposed framework, the first step was to construct a new evaluation resource. We
curated 24 diverse datasets spanning sentiment, humor, sarcasm, and causal reasoning, and sys-
tematically cleaned and re-purposed them. Following the cognitive hierarchy of the proposed ToM
framework, these datasets were rigorously restructured and aligned to create a benchmark capable
of fine-grained assessment of model capabilities. Extensive experiments on our benchmark yielded
three key findings. ❶ The performance of baseline models decisively substantiated our critique.
Even SOTA MLLMs performed inconsistently across tasks and exhibited profound deficiencies at
the highest tier of our framework. ❷ ToM reasoning chain prompting by itself shows considerable
potential. When used simply as a prompting strategy, it significantly improves the performance of
powerful closed-source models, offering initial proof of ToM’s effectiveness as a reasoning “scaf-
fold.” ❸ The TMPO optimization delivers significant and consistent improvements across all evalu-
ation tasks. It not only scores higher than most baseline models but also generates reasoning chains
with demonstrably greater faithfulness and logical consistency, highlighting the advantages of the
“domain acquisition” approach. In conclusion, the HitEmotion benchmark and TMPO method offer
the research community a powerful toolkit for evaluating and advancing the deep emotional intelli-
gence of MLLMs, facilitating the development of genuinely empathetic AI systems.

2 RELATED WORK

Multimodal Affective Computing. Multimodal Affective Computing aims to understand human
emotions by learning cross-modal representations from heterogeneous signals like language, vision,
and acoustics (Ramirez et al., 2011; Jiang et al., 2021; Zhu et al., 2024b;a). Evolving from unimodal
studies (Ji et al., 2020; Donnelly & Prestwich, 2022), the field now emphasizes unified alignment-
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Figure 2: Task taxonomy and examples in our HitEmotion benchmark.

Table 1: Comparison with other benchmarks related to emotional intelligence. Psych-based
indicates grounding in psychological theory; Rea-chain indicates whether reasoning traces are pro-
vided; Rationale indicates whether model rationales are included.

Benchmark # Task Modality # Instances Type Psy-based Rea-chain Rationale
EQ-bench (Paech, 2023b) 1 Text 60 Open-ended ✓ ✗ ✗
EmotionBench (Huang et al., 2024) 1 Text 428 Open-ended ✓ ✗ ✗
EmoBench (Sabour et al., 2024) 4 Text 400 MCQ ✓ ✗ ✗
MOSABench (Song et al., 2024b) 3 Image 1,047 MCQ ✗ ✗ ✗
MM-InstructEval (Yang et al., 2025) 6 Image 34,602 MCQ ✗ ✗ ✗
EmoBench-M (Hu et al., 2025b) 13 Video 5,646 MCQ, Open-ended ✓ ✗ ✗
MER-UniBench (Lian et al., 2025) 3 Video 12,799 Open-ended ✗ ✗ ✗
EmotionHallucer (Xing et al., 2025) 7 Video, Image 2,742 Binary QA ✓ ✗ ✗
MME-Emotion (Zhang et al., 2025b) 8 Video 6,500 Open-ended ✗ ✓ ✓
HitEmotion (Ours) 24 Video, Image 20,114 MCQ, Open-ended ✓ ✓ ✓

and-fusion frameworks, a shift accelerated by large-scale pretraining (Gemini et al., 2023) and en-
abled by parameter-efficient adaptation (Houlsby et al., 2019). Fusion techniques have similarly
advanced from early/late strategies (Tsai et al., 2019) to more sophisticated intermediate schemes
that deepen cross-modal interaction and yield more discriminative features (Luo et al., 2021; Zou
et al., 2023). Recent work further refines how affect is modeled, for instance by treating emotion
as inherently ordinal to better infer intensity (MOAC; (Mai et al., 2025)) or by leveraging human
actions as a sparse but highly credible signal for emotional understanding (TACL; (Yu et al., 2025)).

Evaluation of Emotional Intelligence. The evaluation of emotional intelligence has progressed
from text-based queries to comprehensive multimodal benchmarks. Initial text-only assessments
established reproducible formats for testing emotional inference and reasoning (EQ-Bench, (Paech,
2023a); EmotionBench, (Huang et al., 2024); EmoBench, (Sabour et al., 2024)). The focus has since
expanded to multimodal settings that probe for more contextual understanding. Current benchmarks
assess a wide range of capabilities, including multi-object sentiment analysis (MOSABench; (Song
et al., 2024b)), instruction-following (MM-InstructEval; (Yang et al., 2025)), hierarchical skills from
recognition to social awareness (EmoBench-M; (Hu et al., 2025a)), and unified evaluation of clas-
sic and free-form responses (MER-UniBench; (Lian et al., 2025)). Complementary work explicitly
audits emotion-related hallucinations (EmotionHallucer; (Xing et al., 2025)) or provides holistic,
multi-agent scoring across diverse scenarios (MME-Emotion; (Zhang et al., 2025b)). As detailed in
Table 1, while extensive, prior benchmarks offer a fragmented evaluation. We are the first to con-
nect psychological theory with the model’s reasoning process and its ability to generate rationales,
thereby providing a unified evaluation framework.

Theory-of-Mind Reasoning. ToM is the capacity to represent and infer others’ mental states such
as beliefs, intentions, and emotions (Premack & Woodruff, 1978; Baron-Cohen et al., 1985; Decety
& Jackson, 2004; Lake et al., 2016), providing a cognitive foundation for affective computing. Psy-
chology formalizes emotion as a core ToM dimension (Beaudoin et al., 2020; Chen et al., 2024) and
shows that tracking mental states is crucial for its attribution (Lillard, 1993; Qu et al., 2015). These
insights have inspired inference-time strategies for LLMs that decompose ToM queries into tractable
subproblems, such as simulating perspectives and checking knowledge access, thereby improving
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Table 2: Evaluation tasks of our HitEmotion benchmark. “N-CLS” denotes an n-class classi-
fication task, and “GEN” represents a generation task. “ACC”, “MF”, “WAF” and “EMF” denote
accuracy, micro F1 score, weighted average F1-score and exact match F1, respectively.

Task Name Data Source Type #Instances Metric
Level 1: Emotion Perception and Recognition

Face Expression Sentiment Detection (FESD) CH-SIMS 3-CLS 450 ACC, WAF
Image Sentiment Analysis (ISA) EmoSet 8-CLS 2,000 ACC, WAF
Meme Sentiment Analysis (MESA) Memotion 5-CLS 2,000 ACC, WAF
Multimodal Emotion Recognition (MER) MER2023 6-CLS 400 ACC, WAF
Multimodal Sentiment Analysis (MSA) CH-SIMSv2 3-CLS 500 ACC, WAF
Opinion Sentiment Analysis (OSA) CMU-MOSI 3-CLS 500 ACC, WAF
Sentiment Intensity Analysis (SIA) CMU-MOSEI 7-CLS 1,000 ACC, WAF
Song Emotion Recognition (SOER) RAVDESS 6-CLS 500 ACC, WAF
Speech Emotion Recognition (SPER) RAVDESS 8-CLS 500 ACC, WAF
Stock Comment Emotion Analysis (SCEA) FMSA-SC 5-CLS 250 ACC, WAF

Level 2: Emotion Understanding and Analysis
Detection of Persuasion Techniques in Memes (DPTM) SemEval-2021 Task 6 Multi-label 550 MF
Emotion-Based Intent Analysis (EBIA) MC-EIU 7-&8-CLS 500 ACC
Humor Understanding (HU) UR-FUNNY 2-CLS 400 ACC, WAF
Implicit Attribute Value Extraction (IAVE) ImplicitAVE N-CLS 2,000 ACC, WAF
Multimodal Aspect-Based Sentiment Analysis (MABSA) Twitter2015/2017 3-CLS 2,000 MF
Multimodal Quintuple Extraction (MQE) PanoSent GEN 500 MF
Multimodal Stance Detection (MSD) MMWTWT 4-CLS 2,000 ACC
Multiparty Dialogue Emotion Recognition (MDER) MELD 7-CLS 500 ACC, WAF

Level 3: Emotion Cognition and Reasoning
Emotion Elicitation Reasoning (EER) FilmStim 7-CLS 64 ACC, WAF
Emotion Interpretation (EI) EIBench GEN 1,500 LLM
Laughter Reasoning (LR) SMILE GEN 500 LLM
Multimodal Emotion Cause Pair Extraction (MECPE) ECF GEN 500 MF
Sarcasm Detection (SD) MUStARD 2-CLS 500 ACC, WAF
Sentiment Flip Analysis (SFA) PanoSent GEN 500 EMF

reasoning without extra training (Wei et al., 2022; Sarangi et al., 2025; Rahwan et al., 2019). ToM
reasoning also extends to temporal, counterfactual, and non-literal communication, which are vital
for affect interpretation (Byrne, 2017). However, recent benchmarks reveal that even state-of-the-art
MLLMs still lack robust ToM capabilities (ToMBench, (Chen et al., 2024); MMToM-QA, (Jin et al.,
2024)), highlighting a key challenge. Consequently, the absence of targeted optimization in current
models hinders the acquisition of more robust and complex ToM reasoning.

3 HITEMOTION BENCHMARK

3.1 TASK TAXONOMY

As shown in Figure 2, we organize our benchmark into three hierarchical levels of emotional in-
telligence, each targeting progressively advanced capabilities (see Appendix C for more details).
❶ Emotion Perception and Recognition (EPR) establishes the foundation by evaluating models’
ability to perceive and classify explicit emotional states across modalities, mapping multimodal in-
puts to predefined categories. ❷ Emotion Understanding and Analysis (EUA) requires contextual
awareness and relational reasoning, emphasizing the interpretation of emotions’ functions and in-
tents in situational settings. ❸ Emotion Cognition and Reasoning (ECR) advances to causal and
second-order reasoning, requiring models to explain emotion causes, track temporal dynamics, and
interpret nuanced expressions, thereby engaging with the cognitive processes underlying emotions.

3.2 BENCHMARK CONSTRUCTION

To curate data and construct our benchmark while reducing annotation costs, we leverage publicly
available datasets from the field of multimodal affective computing with task-specific annotations.
Building on this foundation, we aggregate and curate 24 publicly available datasets spanning diverse
affective domains, including emotion recognition, sentiment analysis, humor understanding, and
causal reasoning. As shown in Table 2, these datasets are systematically organized into a three-tiered
hierarchy reflecting increasing cognitive complexity: Emotion Perception and Recognition, Emotion
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Figure 3: Our reasoning chain curation pipeline.

Understanding and Analysis, and Emotion Cognition and Reasoning. While preserving the original
task names, data structures, and evaluation metrics, we unify all datasets into a standardized closed-
label QA format. To ensure the benchmark’s integrity and reliability, we implement two critical
enhancements without altering the source semantics. First, we institute a rigorous quality assurance
protocol, wherein a stratified sample representing one-third of each dataset undergo a dual-annotator
cross-review and arbitration process to validate the consistency of “prompt-answer-context” triplets.
Second, to prevent data leakage and ensure a fair evaluation, we exclusively incorporate the official
test splits from each source dataset. This meticulous curation process yields a benchmark with
high internal consistency and a more uniform label distribution, providing a robust and systematic
environment for assessing the affective capabilities of MLLMs.

4 METHODOLOGY

This section introduces TMPO, our framework for enhancing emotional understanding in MLLMs.
We organize this section into four core components: task definition, ToM based prompting, a super-
vised fine-tuning stage, and ToM preference optimization.

4.1 TASK DEFINITION

Our objective is to leverage a Multimodal Large Language Model (MLLM) to infer an emotion-
related output (o) and the underlying cognitive reasoning chain (τ ) from multimodal inputs (Text T ,
Audio A, and Video V ). This task can be formally represented as a mapping: (T,A, V ) → (τ, o).
Since ground-truth reasoning chains (τ ) are unavailable in existing datasets, we construct a gold-
standard version to guide model generation. As illustrated in Figure 3, this is achieved through a
strict four-step pipeline involving LLM-driven generation, filtering, enhancement, and correction
(see Appendix D.4 for details).

4.2 TOM-STYLE PROMPTING MECHANISM

To elicit the desired reasoning chain τ , we utilize a ToM-style prompting mechanism, denoted as
a task-specific prompt P , to structure the expected output format. Our prompt P is structured
across three levels of cognitive complexity to elicit increasingly sophisticated reasoning chains. For
concrete examples of these prompts, please refer to Figures 24 through 47 in Appendix F.

Level 1: First-Order Mental State Attribution. Prompts at this level guide the model to map
multimodal cues to an immediate emotional state. This involves synthesizing observable signals into
a first-order attribution of what the subject feels, while remaining flexible to task-specific modalities
like text-image incongruities in memes.

Level 2: Relational & Contextual Mind Modeling. This level requires reasoning about the rela-
tionship between an emotional state and its context, such as a specific entity or communicative goal.
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It builds upon Level 1 attributions by contextualizing them, for example, by linking an emotion to a
specific target in aspect-based sentiment analysis.

Level 3: Causal Attribution & Second-Order Reasoning. The highest level elicits reasoning
about the causes of emotions and their social interpretation, involving causal inference and second-
order ToM, which involves inferring what others believe about a subject’s state. Prompts guide the
model to explain why an emotion arises or detect incongruity between literal and intended meaning,
as in sarcasm, moving beyond what is felt to why it is felt and how it is meant to be interpreted.

4.3 STAGE 1: TOM-ALIGNED SUPERVISED FINE-TUNING

To establish a foundational capability for structured reasoning, we first perform SFT on a mul-
timodal backbone model. The core objective of this stage is to teach the model to generate re-
sponses that not only produce the correct task-specific output but also articulate the underlying
cognitive process in a clear, step-by-step manner. We explicitly wrap the intermediate reasoning
steps (τ ) with a <think></think> tag and encapsulate the final task-specific output (o) within
an <answer></answer> tag. This structural disentanglement forces the model to learn the dis-
tinct functions of cognitive deliberation and final conclusion generation. The model is trained on the
native multimodal inputs (T , A, V ) along with a task-specific prompt P . The target for the model is
to generate the complete structured string y = <think>τ</think><answer>o</answer>.
The fine-tuning objective is to minimize the standard negative log-likelihood loss over our dataset:

LSFT(θ) = −E((P,T,A,V ),y)[log πθ(y|P, T, A, V )] (1)

where πθ is the policy of the MLLM with parameters θ. After this stage, the model acquires a
preliminary ability to mimic structured, multi-step reasoning patterns from our curated data.

4.4 STAGE 2: TOM-BASED PREFERENCE OPTIMIZATION WITH GRPO

While SFT imparts the basic structure of ToM-aligned reasoning, the generated chains may still
lack factual grounding, exhibit logical inconsistencies, or fail to generalize robustly across diverse
scenarios. To overcome these limitations, we further refine the model using Group-wise Reward
Policy Optimization (GRPO) (DeepSeek, 2025), which enhances the model’s ability to generate
reasoning chains that are structurally correct as well as cognitively plausible and factually accurate.

The GRPO process begins by sampling N candidate outputs {y1, y2, · · · , yN} from our current
policy for a given prompt, where each yi = <think>τi</think><answer>oi</answer>.
Each candidate is then evaluated using a custom-designed, multi-dimensional reward function R(y).
The resulting scores guide the policy update via the GRPO objective:

max
πθ

Eyi∼πold

[
πθ(yi)

πold(yi)
Ai

]
− βDKL(πθ∥πref) (2)

where Ai are the computed normalized advantage scores and the KL-divergence term penalizes
deviation from a reference policy πref (typically the initial SFT model) to stabilize the optimization
process. The advantage scores Ai are derived from the relative ranking or value of the rewards R(yi)
within the sampled group, guiding the model to prefer higher-scoring responses.

4.4.1 REWARD ASSIGNMENT

The cornerstone of our GRPO strategy is a comprehensive reward function R(y) that decomposes
the quality of a response into four distinct, complementary components. This function is formulated
as a weighted sum:

R(y) = µ1Rstructure + µ2Rcontent + µ3Rprocess + µ4Rconsistency (3)

These components evaluate the reasoning process from different perspectives: the Structure Re-
ward (Rstructure) enforces the correct sequence of reasoning steps; the Content Reward (Rcontent)
evaluates the final answer’s correctness; the Process Reward (Rprocess) encourages domain-specific
language; and the Consistency Reward (Rconsistency) penalizes logical and factual inconsistencies.
The weights µ(∗) are calibrated to prioritize correctness and logical grounding. A full description of
each component and the rationale for weight assignments are provided in the Appendix D.1.
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Table 3: Performance on Emotion Perception and Recognition, with ACC as the evaluation metric.
Bold and underlined indicate the best and the worst results among all models, respectively.

Category Model FESD ISA MESA MER MSA OSA SIA SOER SPER SCEA

Open
Source

VideoLLaMA3-7B 61.78 46.85 21.60 52.18 64.62 67.89 35.20 45.80 41.80 42.00
LLaVA-One-Vision-7B 63.44 49.19 17.05 39.50 65.40 63.00 27.00 53.40 44.60 34.80
LLaVA-NeXT-Video-7B 54.44 41.20 11.85 41.31 56.11 65.80 25.03 48.60 43.40 31.20
Qwen2.5-VL-7B 62.00 43.15 21.25 56.75 61.21 64.20 32.60 52.80 41.80 47.20
InternVL3-8B 62.33 50.65 21.40 53.00 63.80 68.00 31.20 49.00 42.60 48.60
MiniCPM-V-2.6-8B 57.53 49.39 25.15 50.13 62.65 52.45 37.42 44.90 37.59 45.21
Qwen2.5-VL-32B 63.78 53.70 25.28 57.14 65.80 68.80 34.20 43.40 41.80 47.60
InternVL3-38B 63.22 53.58 24.00 57.16 68.80 68.80 35.73 53.46 48.00 50.60
R1-Omni-0.5B 42.28 51.55 23.72 50.88 41.74 32.20 19.50 30.12 24.38 43.60
HumanOmni-7B 64.44 53.77 23.82 56.75 48.20 35.20 33.90 50.31 46.20 47.60
Qwen2.5-Omni-7B 64.67 51.56 22.71 56.08 64.00 68.00 32.30 54.72 44.60 48.60
Emotion-LLaMA-7B 33.11 53.63 24.00 43.75 44.40 56.60 37.00 47.00 47.27 48.44
AffectGPT-7B 66.67 50.33 25.46 38.69 66.60 67.76 34.50 49.19 41.25 38.80

Closed
Source

GPT-4o 70.22 54.48 30.12 57.64 69.20 69.53 40.00 54.00 49.60 49.96
+ ToM prompt 74.00 (+3.78) 56.44 (+1.96) 33.18 (+3.06) 63.32 (+5.68) 74.60 (+5.40) 73.87 (+7.34) 41.34 (+1.34) 56.10 (+2.10) 54.31 (+4.71) 52.80 (+2.84)

GPT-4.1 71.46 56.80 31.43 64.00 72.46 69.60 40.81 66.19 55.20 53.20
+ ToM prompt 74.74 (+3.28) 58.06 (+1.26) 34.55 (+3.12) 66.00 (+2.00) 76.06 (+3.60) 74.80 (+8.20) 43.17 (+2.36) 69.19 (+3.00) 57.20 (+2.00) 56.01 (+2.81)

Gemini-2.5-Flash 67.11 55.41 27.12 58.73 68.40 70.91 38.44 57.47 56.51 50.83
+ ToM prompt 76.44 (+9.33) 59.01 (+3.60) 29.20 (+2.08) 64.19 (+5.46) 74.84 (+6.44) 76.03 (+5.12) 43.36 (+4.92) 63.33 (+5.86) 62.22 (+5.71) 53.04 (+2.21)

Gemini-2.5-Pro 78.39 61.12 28.96 72.11 74.20 75.71 46.53 67.96 65.00 55.02
+ ToM prompt 79.11 (+0.72) 63.13 (+2.01) 31.02 (+2.06) 72.92 (+0.81) 77.97 (+3.77) 79.19 (+3.48) 51.74 (+5.21) 69.00 (+1.04) 69.31 (+4.31) 62.25 (+7.23)

Ours TMPO (SFT) 69.39 60.85 31.34 66.23 72.49 71.33 45.58 58.71 55.43 50.20
+ GRPO 77.12 67.63 37.18 75.41 79.12 77.03 53.91 66.13 65.91 58.74

Table 4: Performance on Emotion Understanding and Analysis. By default, ACC is used as the
evaluation metric, while DPTM, MABSA, and MQE use the MF metric.

Category Model DPTM EBIA HU IAVE MABSA MQE MSD MDER

Open
Source

VideoLLaMA3-7B 31.17 14.42 44.89 62.50 61.96 23.67 51.15 42.61
LLaVA-One-Vision-7B 31.54 11.33 42.25 60.37 63.89 14.02 39.75 33.00
LLaVA-NeXT-Video-7B 31.28 12.37 43.50 40.50 59.40 13.45 44.75 25.25
Qwen2.5-VL-7B 31.41 11.02 54.25 64.49 64.65 32.59 52.55 45.60
InternVL3-8B 36.77 14.79 53.50 60.13 63.11 33.13 50.90 39.48
MiniCPM-V-2.6-8B 30.80 14.51 49.25 55.03 61.82 27.77 39.85 43.51
Qwen2.5-VL-32B 40.22 14.62 57.50 62.67 63.29 32.38 52.08 48.20
InternVL3-38B 40.55 16.49 59.25 64.74 64.80 32.64 53.85 46.00
R1-Omni-0.5B 37.54 13.45 46.25 50.03 58.40 29.58 47.85 29.81
HumanOmni-7B 35.59 12.55 49.50 53.50 59.89 32.98 47.90 36.20
Qwen2.5-Omni-7B 31.63 11.42 53.00 55.79 61.93 31.09 44.65 37.68
Emotion-LLaMA-7B 39.54 15.46 57.92 52.08 60.13 34.18 44.15 47.59
AffectGPT-7B 34.17 12.27 56.50 40.07 60.48 30.95 42.40 37.92

Closed
Source

GPT-4o 42.33 17.45 60.00 66.13 64.76 35.32 55.76 49.68
+ ToM prompt 45.90 (+3.57) 25.70 (+8.25) 66.63 (+6.63) 71.19 (+5.06) 68.30 (+3.54) 36.45 (+1.13) 61.04 (+5.28) 53.72 (+4.04)

GPT-4.1 47.50 18.62 70.19 67.68 70.81 37.98 65.76 53.82
+ ToM prompt 49.47 (+1.97) 27.65 (+9.03) 78.00 (+7.81) 72.91 (+5.23) 77.70 (+6.89) 40.91 (+2.93) 66.18 (+0.42) 57.85 (+4.03)

Gemini-2.5-Flash 47.18 16.34 64.66 64.14 66.71 36.55 57.65 51.41
+ ToM prompt 56.35 (+9.17) 24.87 (+8.53) 65.74 (+1.08) 72.63 (+8.49) 73.21 (+6.50) 38.12 (+1.57) 61.83 (+4.18) 55.56 (+4.15)

Gemini-2.5-Pro 49.23 19.25 69.39 70.67 67.61 39.23 64.95 52.65
+ ToM prompt 59.21 (+9.98) 28.68 (+9.43) 71.83 (+2.44) 77.20 (+6.53) 75.43 (+7.82) 44.47 (+5.24) 73.79 (+8.84) 58.90 (+6.25)

Ours TMPO (SFT) 46.42 23.11 68.40 64.18 69.47 37.24 60.45 51.83
+ GRPO 56.23 32.82 78.64 73.39 78.16 45.68 71.56 61.08

5 EXPERIMENTS

5.1 SETTINGS

We use Qwen2.5-Omni-7B as our base model, trained on 8 × NVIDIA A800 80 GB GPUs. For
our reward function, the weights µ1, µ2, µ3, µ4 are set to 0.4, 1.0, 0.1, and 1.0, respectively. During
training, videos are sampled into 16 frames. The model first undergoes SFT for two epochs with a
learning rate of 1e-5, followed by our GRPO strategy with a learning rate of 1e-6. For evaluation, we
select the checkpoint with the best validation performance and conduct a comprehensive assessment
on both open-source models (0.5B to 38B parameters) and closed-source models (GPT and Gemini
series). Further implementation details are provided in the Appendix D.3.

5.2 RESULTS AND ANALYSIS

The experimental results reveal significant limitations in the multimodal emotion analysis capabili-
ties of current MLLMs. As shown in Tables 3–5, model performance is evaluated across the three
hierarchical task categories. At the foundational level of EPR, only three of the ten tasks—FESD,
MSA, and OSA—yield average scores above 60. Even the best-performing model, Gemini-2.5-
Pro, achieves 78.39 on FESD, 74.20 on MSA, and 75.71 on OSA, while most other models remain
around the 50-point range, reflecting limited robustness. As task complexity increases, performance
declines markedly. In EUA level, only two tasks surpass the 60-point threshold. Most critically,
within the cognitively demanding ECR level, no task achieves an average score above 60. This clear
performance hierarchy underscores our benchmark’s ability to differentiate models across distinct
levels of reasoning. Taken together, the findings show that current MLLMs possess only rudimentary
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Table 5: Performance on Emotion Cognition and Reasoning. By default, ACC is used as the
evaluation metric, while MECPE uses the MF metric and SFA uses the EMF metric.

Category Model EER EI LR MECPE SD SFA

Open
Source

VideoLLaMA3-7B 45.31 31.29 39.56 13.09 37.56 13.16
LLaVA-One-Vision-7B 46.88 47.40 44.60 10.83 45.20 16.22
LLaVA-NeXT-Video-7B 35.94 46.80 43.10 13.05 46.36 18.42
Qwen2.5-VL-7B 40.62 50.53 48.20 15.07 49.00 14.64
InternVL3-8B 50.00 47.00 46.40 16.41 51.40 17.61
MiniCPM-V-2.6-8B 39.68 33.93 50.40 16.44 51.40 21.83
Qwen2.5-VL-32B 54.69 53.40 53.40 19.60 55.60 23.79
InternVL3-38B 50.31 50.67 51.40 19.28 55.80 25.73
R1-Omni-0.5B 39.67 43.73 43.00 16.13 53.00 19.93
HumanOmni-7B 38.85 47.93 28.40 13.19 49.40 16.43
Qwen2.5-Omni-7B 51.25 48.67 49.20 13.83 53.40 17.76
Emotion-LLaMA-7B 42.81 49.53 53.00 19.28 52.60 19.02
AffectGPT-7B 43.75 46.27 50.40 10.81 52.73 15.12

Closed
Source

GPT-4o 57.81 54.13 55.83 20.93 56.60 25.77
+ ToM prompt 60.00 (+2.19) 64.33 (+10.20) 66.00 (+10.17) 22.48 (+1.55) 64.80 (+8.20) 42.29 (+16.52)

GPT-4.1 60.31 57.67 61.04 26.86 66.20 36.73
+ ToM prompt 65.86 (+5.55) 69.00 (+11.33) 71.79 (+10.75) 28.11 (+1.25) 68.67 (+2.47) 47.75 (+11.02)

Gemini-2.5-Flash 58.33 54.47 58.20 27.11 61.49 28.02
+ ToM prompt 64.13 (+5.80) 63.93 (+9.46) 66.60 (+8.40) 31.43 (+4.32) 64.10 (+2.61) 45.22 (+17.20)

Gemini-2.5-Pro 66.13 65.13 59.23 33.33 66.61 41.22
+ ToM prompt 71.94 (+5.81) 70.27 (+5.14) 68.20 (+8.97) 37.70 (+4.37) 69.00 (+2.39) 52.78 (+11.56)

Ours TMPO (SFT) 60.10 62.36 59.75 26.33 59.92 40.50
+ GRPO 73.13 72.27 72.45 39.34 70.13 54.16
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Figure 4: Average performance across our HitEmotion benchmark levels. Comparison of 17
multimodal models on our HitEmotion benchmark, showing average scores for each level per model.

emotional intelligence and continue to struggle with higher-order emotional reasoning, highlighting
an urgent need for advances in both model architectures and training methodologies.

Closed-Source, Tuned, and Scaled Models Lead in Emotional Intelligence. As shown in Fig-
ure 4, proprietary models such as the GPT and Gemini series consistently outperform open-source
counterparts, owing to their large parameter scales and extensive pretraining on diverse datasets.
Even in the zero-shot setting, Gemini-2.5-Pro achieves 78.39 on the FESD task, while GPT-4.1
reaches 71.46, both substantially ahead of most open-source models. The Gemini series further
surpass GPT in multimodal emotion recognition due to its native capacity for processing video and
audio inputs. Nevertheless, open-source models, though constrained by scale, can achieve com-
petitive results through task-specific fine-tuning. Emotion-LLaMA-7B attains 34.18 on the MQE
task, outperforming most untuned baselines. While Emotion-LLaMA benefits from domain-specific
fine-tuning, it still lags behind zero-shot proprietary models, indicating that a significant capabil-
ity gap persists between existing open-source solutions and top-tier proprietary systems. Likewise,
Qwen2.5-VL-32B achieves 53.40 on the LR task, closely approaching GPT-4o’s 55.83. These find-
ings show that large-scale pretraining provides the foundation for advanced emotion intelligence, but
targeted fine-tuning offers open-source models a practical pathway to close the gap with proprietary
systems and achieve broader accessibility.

Effects of ToM Prompting on Emotional Intelligence. Closed-source models such as GPT-4.1
and Gemini-2.5-Pro gain clear advantages when ToM prompting is applied, especially on the most
challenging tasks. High-capacity open-source models, including Qwen2.5-VL-32B and InternVL3-
38B, also benefit, with improvements observed across most tasks and effects becoming more pro-
nounced at higher levels. This suggests that models with stronger baseline reasoning are better able
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Figure 5: Ablation study on ToM-style prompting.

Table 6: Ablation study on reward components.
Reward Components Average Score

Rstructure Rcontent Rconsistency Rprocess L1 L2 L3

✓ - - - 56.61 54.52 52.34
✓ ✓ - - 62.63 61.07 59.31
✓ ✓ ✓ - 65.12 64.03 62.82
- ✓ ✓ ✓ 56.20 55.10 55.05

✓ ✓ ✓ ✓ 65.82 64.70 63.58

to leverage intermediate reasoning chains provided by ToM. By contrast, weaker models don’t ex-
hibit consistent gains and in some cases deteriorate. For instance, VideoLLaMA3-7B drops from
61.78 to 54.18 on FESD under ToM prompting, and LLaVA-NeXT-Video-7B shows minimal im-
provement on IAVE, increasing only from 40.50 to 40.81. These outcomes imply that models with
insufficient representational and reasoning capacity cannot stably exploit ToM, and are more prone
to hallucinations that compromise the reasoning chain.

TMPO Unlocks Advanced Reasoning Capabilities. The experimental results consistently demon-
strate the remarkable effectiveness of our TMPO framework, which provides a substantial perfor-
mance uplift to the backbone model across all task categories. Both the SFT stage and the GRPO
stage contribute to this success, with GRPO delivering a particularly significant boost in perfor-
mance. Crucially, on more complex tasks requiring nuanced reasoning, our fully-optimized model
not only closes the gap but often surpasses the performance of top-tier proprietary models, emerging
as the top-performing model on 16 of the 24 tasks. This highlights TMPO’s exceptional capability
in teaching models how to reason. Conversely, for some direct, perception-driven tasks, such as
inferring emotions mainly from facial expressions, our model still lags behind some leading sys-
tems. This is likely due to the inherent limitations in the base model’s raw multimodal perception
capabilities, which the reasoning-focused optimization cannot fully overcome.

5.3 ABLATION STUDIES

ToM-style Prompting. To validate our prompt engineering, we conduct an ablation study on its
key design choices. We compare three strategies: (1) CoT, which instructs the model to “please
think step-by-step”; (2) ToM-Init, which establishes a cognitive reasoning path without specific
terminological guidance; and (3) ToM-Full, which enhances ToM-Init by explicitly integrating task-
relevant ToM keywords. The results in Figure 5 show that ToM-Init consistently outperforms the
generic CoT, confirming the inherent benefit of a ToM-aligned framework over unguided reasoning.
In addition, ToM-Full yields a further substantial performance gain over ToM-Init, validating that the
explicit integration of key ToM concepts is crucial for unlocking the model’s full reasoning potential.

Reward Components. To validate our reward function, we conduct a complementary ablation study
on its individual components. We progressively add each reward to the GRPO objective, with results
summarized in Table 6. Using only Rstructure establishes a baseline by enforcing a coherent format.
The most substantial performance gain is observed with the introduction of Rcontent, underscoring
the necessity of directly optimizing for the correct final answer. Furthermore, integrating Rconsistency
yields another significant boost, validating its crucial role in eliminating logical fallacies and ground-
ing the reasoning. Finally, Rprocess provides a complementary refinement by encouraging the use of
ToM-specific terminology. This progressive enhancement demonstrates that all four components
work in synergy to produce high-quality, reliable, and cognitively aligned reasoning. Additionally,
we investigate the necessity of Rstructure by removing it from the full configuration. This exclusion
leads to a significant performance drop. Without the explicit structural penalty, the model exhibits
Format Collapse, failing to adhere to the XML schema required for extracting answers. This con-
firms that Rstructure acts as the foundational prerequisite that enables the effective optimization of
other reward components.

6 CONCLUSION

In this work, we introduce HitEmotion, a hierarchical benchmark that systematically diagnoses
MLLM’s capability breakpoints across increasing cognitive depths. To improve reasoning, we
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develop TMPO, a novel preference optimization method that uses intermediate mental states as
process-level supervision. Our experiments confirm that HitEmotion exposes deep reasoning deficits
even in top-tier models, while TMPO substantially boosts the backbone model’s performance. The
optimized model surpasses leading proprietary systems on many cognitively demanding tasks by im-
proving end-task accuracy, faithfulness, and the coherence of its reasoning. Together, HitEmotion
and TMPO form a robust toolkit for evaluating and enhancing cognitive-based affective intelligence.
This approach pushes MLLMs beyond superficial recognition toward a deeper, more human-like
mental state simulation, facilitating the development of more empathetic AI.
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We adhere to the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have released all data preprocessing scripts, model training and
inference code through an anonymous repository, with the link provided in the Abstract. In addition,
we have uploaded the dataset samples used in our experiments, together with detailed configuration
files. We further provide a comprehensive description of our experimental setup, including model
architecture, training methodology, and hyperparameter settings in Section 5.1 and Appendix D.3.
These resources ensure that the experimental results in this paper can be faithfully reproduced.
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APPENDIX OVERVIEW

• Appendix §A outlines how LLMs are utilized in the paper.
• Appendix §B summarizes the limitations and future work of this work.
• Appendix §C presents the taxonomy of the tasks and dataset details.
• Appendix §D provides additional implementation details.
• Appendix §E presents the extended experimental results.
• Appendix §F describes the design of ToM-style prompts.
• Appendix §G presents representative samples from each dataset used.
• Appendix §H presents representative case studies from multiple perspectives.

A THE USE OF LLMS

In this work, LLMs are employed as an auxiliary tool for language editing. Their use is limited
to grammar correction, refinement of sentence structure, and improvements in textual fluency and
readability. LLMs are not used for any substantive aspects of the research, including the design of
methodology, execution of experiments, data analysis, or interpretation of results.

B LIMITATIONS AND FUTURE WORK

While our TMPO framework demonstrates significant advancements in multimodal emotion reason-
ing, we acknowledge certain limitations that outline directions for future research.

Scope of Applicability. Our framework is grounded in Theory of Mind (ToM), which refers to the
ability to attribute mental states—such as emotions, intentions, and beliefs—to oneself and others.
In essence, ToM involves “putting yourself in someone else’s shoes” to infer hidden mental states.
This stands in stark contrast to domains like mathematics, coding, and logical puzzles, where well-
defined ground-truth answers are readily available, enabling objective verification. Social reasoning,
however, is characterized by its information-asymmetric nature and increased uncertainty, where
objective answers are not easily obtainable. Consequently, TMPO is tailored specifically for these
social complexity challenges. It holds strong promise for broader Social Intelligence domains (e.g.,
negotiation, intent analysis) that rely on the same underlying cognitive mechanisms.

Base Model and Modality Constraints. Our choice of the 7B parameter backbone was driven by
the necessity for native omni-modal processing (Video+Audio+Text), as audio is critical for emotion
perception. Currently, few open-source models larger than 7B support native audio-visual integra-
tion. While TMPO significantly boosts cognitive reasoning (Level 2 & 3 tasks), the performance
on direct perception tasks (Level 1) remains bounded by the inherent sensory quality of the base
encoders. As larger omni-modal models become available, we anticipate that scaling up TMPO will
yield further gains, leveraging the stronger reasoning priors of large-scale backbones.

Computational Efficiency. Despite using a compact 7B model, our approach achieves performance
competitive with proprietary systems (e.g., Gemini-2.5-pro). This highlights the efficiency of our
method: by optimizing the reasoning process via RL, we extract maximal cognitive intelligence
from a lightweight architecture, offering a practical solution for resource-constrained deployment.

C TASK TAXONOMY

Level 1: Emotion Perception and Recognition. This level forms the foundation of emotion intelli-
gence; its core function is to directly identify and classify explicit emotional states across modalities.
This layer evaluates MLLMs’ ability to accurately extract and integrate emotional information from
multimodal inputs and map it to predefined emotion categories. This capability is a prerequisite for
higher-level EI competencies. Specific evaluation tasks draw on several specialized datasets. For
Facial Expression Sentiment Detection, CH-SIMS (Yu et al., 2020) provides Chinese video clips
with fine-grained multimodal annotations to assess models’ capacity for integrated perception of
visual and linguistic emotions in realistic scenarios. EmoSet (Yang et al., 2023) is a large-scale
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image-sentiment dataset that focuses on recognizing emotions from static visual content. To capture
internet-specific expressions, Meme Sentiment Analysis employs the Memotion dataset (Mishra
et al., 2023), which contains a large collection of memes annotated for sentiment and humor and
challenges models’ ability to comprehend text–image interplay. The Multimodal Emotion Recogni-
tion task uses MER2023 (Lian et al., 2023) to evaluate models’ generalization in broader multimodal
contexts. Opinion Sentiment Analysis uses CMU-MOSI (Zadeh et al., 2016), a corpus of monologue
videos that targets sentiment polarity from speech and facial expressions. Emotion Intensity Analy-
sis extends this by using the larger CMU-MOSEI dataset (Zadeh et al., 2018), which requires models
not only to identify emotion categories but also to quantify their intensity. Song and Speech Emotion
Recognition employ RAVDESS (Livingstone & Russo, 2018), comprising speech and song clips by
professional actors with matched lexical content and emotions presented at varying intensities. Fi-
nally, to assess domain-specific performance, Stock Comment Emotion Analysis uses FMSA-SC
(Song et al., 2024a) to analyze emotions in financial-domain comments.

Level 2: Emotion Understanding and Analysis. This level constitutes an advanced layer of emo-
tion intelligence, which goes beyond basic classification, requiring models to analyze emotions
within complex contexts. This capability entails not only identifying emotions but also modeling
their complexity and interpreting their function and intent in specific situations. Accordingly, mod-
els must exhibit robust contextual awareness and relational reasoning. To evaluate these abilities,
this layer incorporates several challenging tasks. For internet culture, Detection of Persuasion Tech-
niques in Memes employs the SemEval-2021 Task 6 dataset (Dimitrov et al., 2021) to identify per-
suasive intent in memes. Emotion-Based Intent Analysis uses the MC-EIU dataset (Liu et al., 2024)
to examine links between emotional expression and users’ underlying intent. Humor Understanding
employs UR-FUNNY (Hasan et al., 2019), a corpus of TED-talk clips that requires integrating lin-
guistic, visual, and acoustic cues to determine whether content is humorous. Implicit Attribute Value
Extraction uses ImplicitAVE (Zou et al., 2024), in which attribute values are not stated explicitly.
Multimodal Stance Detection leverages the MWTWT datasets (Liang et al., 2024). The Multimodal
Quintuple Extraction task, based on the PanoSent dataset (Luo et al., 2024), aims to parse five core
elements of sentiment—holder, target, aspect, opinion and sentiment. Multimodal Aspect-Based
Sentiment Analysis uses Twitter2015/2017 (Yu & Jiang, 2019) to evaluate models’ ability to identify
fine-grained sentiment toward specific entities or aspects in text and images. Lastly, to approximate
real-world social interaction, Multiparty Dialogue Emotion Recognition uses MELD (Poria et al.,
2018), a corpus of multiparty conversational clips from Friends, and requires tracking the emotional
dynamics of each character in multi-person interactions.

Level 3: Emotion Cognition and Reasoning. This level constitutes the highest tier of emotion
intelligence, which requires models not only to perceive and understand emotions but also to reason
about their causal relationships, temporal dynamics, and underlying cognitive processes. This level
approximates a computational account of human emotional cognition, encompassing tasks such as
explaining emotion causes, predicting consequent behaviors, and interpreting complex expressions.
Evaluation at this layer focuses on models’ cognitive and reasoning abilities. Emotion Elicitation
Reasoning uses FilmStim (Schaefer et al., 2010) to assess whether models can infer emotions likely
to be elicited in audiences from film-clip content. Emotion Interpretation leverages EIBench (Lin
et al., 2025), requiring models to explain the deeper meaning and motivation behind emotional ex-
pressions. Laughter Reasoning uses the SMILE dataset (Hyun et al., 2023), which requires models
to explain the specific reason for a person’s laughter in a video, demanding a nuanced understanding
of social context. Multimodal Emotion Cause Pair Extraction employs the ECF dataset (Wang et al.,
2022), focusing on precisely identifying the event or cause that leads to a particular emotion from
multimodal signals. Sarcasm detection uses the MUSTARD dataset (Castro et al., 2019), which
contains sarcastic dialogue clips from TV shows. Models must integrate contextual, prosodic, and
facial cues to identify the incongruity between an utterance’s literal meaning and its intended mean-
ing. Finally, Sentiment Flip Analysis also uses the PanoSent (Luo et al., 2024), requiring models to
detect shifts in emotional state during conversation and to identify the key causes of such flips.

C.1 DATASET DETAILS

We benchmark a total of 22 publicly available multimodal affective computing datasets, which to-
gether constitute 24 distinct tasks. The following section details each dataset included in our bench-
mark, and representative samples are provided in Appendix G.
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• CH-SIMS: CH-SIMS is constructed from 60 Chinese movies, TV series, and variety shows
involving 474 unique speakers. The dataset comprises 2,281 curated video clips with an
average duration of 3.67 seconds. Its key characteristic is the provision of both unimodal
and multimodal annotations across text, audio, and vision under in-the-wild conditions.
Labels are assigned to five sentiment categories: negative, weakly negative, neutral, weakly
positive, and positive.

• CH-SIMSv2: CH-SIMS v2.0 extends CH-SIMS with Mandarin video data from films,
TV, talk shows, interviews, vlogs, and other sources. It offers 4,402 supervised seg-
ments (2,281 relabeled and 2,121 new) alongside 10,161 unsupervised clips. Designed
for text–acoustic–visual analysis, it employs 720p+ sources, active speaker detection, and
strict modality separation. Labels comprise unimodal and multimodal scores mapped to
five sentiment categories ranging from negative to positive.

• EmoSet: EmoSet is curated using 810 emotion-related keywords from social media and
artistic image platforms. It comprises 3.3 million images, of which 118,102 are carefully
annotated by humans. Distinguished by attribute diversity, the dataset records brightness,
colorfulness, scene type, object class, facial expression, and human action. Labels follow
Mikels’ model, encompassing eight categories: amusement, awe, contentment, excitement,
anger, disgust, fear, and sadness.

• Memotion: Memotion is compiled from Reddit and Google Images through automated
crawling and enriched with OCR text via Google Vision. The dataset consists of 10,000
Hinglish memes, divided into 8,500 for training, 1,500 for validation, and 1,500 for testing,
with annotations verified by bilingual raters. It distinctively integrates multimodal content
with code-mixed language, providing sentiment labels (positive, neutral, negative), four
emotion types (humorous, sarcastic, offensive, motivational), and graded intensity levels.

• MER2023: MER 2023 extends CHEAVD (Li et al., 2017) by automatically collecting
expression-centric video clips and releasing rigorously curated splits for community bench-
marking. The corpus comprises 3,373 Train & Val samples and three test partitions—MER-
MULTI, MER-NOISE, and MER-SEMI—amounting to about 68 hours of audiovisual data.
Emphasizing robustness, it provides three tracks (multi-label learning, modality-noise ro-
bustness, and semi-supervised learning) and supplies annotations for six discrete emotions
(neutral, anger, happiness, sadness, worry, surprise) together with a continuous valence
dimension.

• CMU-MOSI: MOSI is a multimodal opinion-level corpus for sentiment intensity and sub-
jectivity in online vlogs. It comprises 93 videos (89 speakers), 3,702 segments, and 2,199
opinion clips labeled on a -3. . . +3 scale by five AMT raters. Releases include word- and
phoneme-aligned transcripts, millisecond acoustic features, frame-level visual cues, and
gesture tags, with fine-grained subjectivity boundaries and high inter-annotator agreement.
Baselines demonstrate that multimodal fusion—especially a word–gesture “multimodal
dictionary”—outperforms text-only models.

• CMU-MOSEI: CMU-MOSEI is one of the largest multimodal sentiment analysis corpora,
derived from 3,228 YouTube videos featuring about 1,000 speakers across 250 topics. It
offers 23,453 sentence-level segments with synchronized text, audio, and visual modalities.
Distinguished by its scale and fine-grained alignment, the dataset facilitates cross-modal
learning. Labels cover a 7-point sentiment scale from -3 (strongly negative) to +3 (strongly
positive), supporting both polarity and intensity prediction.

• RAVDESS: RAVDESS is a validated multimodal corpus of speech and song by 24 profes-
sional actors in North American English. Speech covers neutral/calm, happy, sad, angry,
fearful, surprise, and disgust, while song includes neutral/calm, happy, sad, angry, and
fearful, each at two intensity levels. The 7,356 recordings are available in audio-visual,
audio-only, and video-only formats. Each clip is rated 10 times by 247 raters, demonstrat-
ing strong validity and test–retest reliability.

• FMSA-SC: FMSA-SC consists of 1,247 stock comment videos. Its novelty lies in offering
fine-grained sentiment annotations, aligning textual phrases with corresponding visual and
acoustic cues. Labels span five sentiment levels from strong negative to strong positive,
establishing the first multimodal benchmark for financial sentiment analysis.
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• SemEval-2021 Task 6: SemEval-2021 Task 6 introduces a multimodal benchmark for
detecting persuasion techniques in memes collected from 26 public Facebook groups. The
dataset comprises 950 memes, divided into 687 training, 63 development, and 200 testing
samples. Its novelty lies in addressing propaganda in a multimodal context, offering three
subtasks on text, spans, and complete memes. Annotations cover 22 persuasion techniques,
encompassing both textual and visual strategies.

• MC-EIU: The MC-EIU dataset offers a large-scale open-source resource for multimodal
emotion and intent understanding in conversation. It includes 4,970 clips with 56,012 utter-
ances from English and Mandarin TV series, totaling 53 hours of dialogue. Distinguished
by its bilingual coverage and tri-modal design (text, audio, and video), it provides seven
emotion and nine intent categories, establishing the first comprehensive benchmark for
joint affective analysis.

• UR-FUNNY: UR-FUNNY is derived from TED talks, using transcripts and laughter mark-
ers to label punchlines and contexts. The corpus covers 1,866 videos with 1,741 speakers
and 417 topics, containing 8,257 humorous and 8,257 non-humorous instances. It features
tri-modal alignment (text, audio, vision), speaker-independent splits, and word-level syn-
chronization to support robust multimodal modeling, with balanced negatives sampled from
the same videos. Tags: humor detection, multimodal language, TED, punchline–context
modeling, laughter cues, speech–vision–text fusion.

• ImplicitAVE: ImplicitAVE is the first publicly available multimodal dataset for implicit
attribute value extraction in e-commerce. It includes 68,604 training and 1,610 human-
verified test instances across five domains and 25 attributes. Its novelty lies in curating
implicit values absent from text but inferable from images or context, supplemented with
product photos and rigorous human re-annotation. Labels span 158 attribute values across
clothing, footwear, jewelry, food, and home products.

• Twitter2015/2017: The Twitter2015 and Twitter2017 datasets are benchmark corpora for
target-oriented multimodal sentiment classification. Together they comprise over 5,000
tweets paired with images, annotated for sentiment polarity toward specific opinion targets.
Their main contribution is enabling fine-grained alignment between textual and visual con-
tent to model sentiment at the target level. Labels span three categories—positive, negative,
and neutral—supporting multimodal sentiment research.

• PanoSent: The PanoSent dataset establishes a large-scale benchmark for Multimodal Con-
versational Aspect-based Sentiment Analysis. It comprises 10,000 dialogues and over
47,000 sextuples across English, Chinese, and Spanish, integrating text, image, audio, and
video. Its novelty lies in panoptic sentiment sextuple extraction and dynamic sentiment
flipping analysis, capturing holders, targets, aspects, opinions, sentiments, and rationales.
Annotated through both human experts and GPT-4 synthesis, it supports multi-scenario,
and implicit sentiment reasoning, with labels covering fine-grained and causal dynamics.

• MWTWT: The MWTWT dataset originates from the Multi-modal Stance Detection
project. It extends the textual Will-They-Won’t-They dataset (Conforti et al., 2020) into
a multimodal form by incorporating both tweets and images. The dataset comprises 1,747
annotated examples focused on corporate merger debates, where each instance is labeled
as Support, Refute, Comment, or Unrelated. Its uniqueness lies in capturing stance expres-
sion across text–image pairs, enabling research on multimodal opinion dynamics. Labels
highlight nuanced stance categories relevant to corporate decision-making.

• MELD: The MELD dataset extends the EmotionLines corpus(Chen et al., 2018) into a
multimodal benchmark for emotion recognition in conversations. It contains over 13,000
utterances from 1,433 dialogues in the TV series Friends, each annotated with emotion and
sentiment labels across audio, visual, and textual modalities. By emphasizing multi-party
interactions, MELD captures complex phenomena such as emotion shifts and inter-speaker
dependencies, providing a challenging resource for multimodal conversational emotion
recognition. Tags: multimodal, emotion, conversation, multi-party.

• FilmStim: The FilmStim dataset is developed to provide a validated collection of emotion-
eliciting film excerpts for experimental research. It comprises 70 clips selected through
expert surveys and validated on 364 participants, offering a rich tool for controlled emotion
induction. Its distinctive feature lies in covering both basic emotions and mixed feelings,
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with validated criteria including arousal, valence, and emotional discreteness. Labels span
anger, fear, sadness, disgust, amusement, tenderness, and neutral states, making it a com-
prehensive benchmark for affective studies.

• EIBench: The EIBench dataset is constructed from CAER-S (Lee et al., 2019) and EmoSet
to advance the task of Emotion Interpretation, which asks why an emotion arises rather than
merely identifying which emotion is present. It contains 1,615 basic samples and 50 com-
plex cases, requiring models to generate causal explanations across explicit and implicit
triggers. Its key contribution is the Coarse-to-Fine Self-Ask (CFSA) annotation pipeline,
which combines Vision-Language Models with human refinement to capture nuanced,
context-dependent emotional reasoning. Labels span four primary emotions—angry, sad,
happy, and excited—with complex subsets featuring overlapping emotional states.

• SMILE: The SMILE dataset is curated from TED talks and sitcoms to explore the task
of Video Laugh Reasoning. It comprises 887 clips with 4,434 annotated segments, each
paired with textual explanations of why laughter occurs. Its unique focus lies in audience
laughter, reducing subjectivity and highlighting multimodal cues across visual, acoustic,
and semantic channels. Labels provide free-form explanations rather than fixed classes,
enabling deeper analysis of social intelligence.

• ECF: The ECF dataset is constructed from the sitcom Friends to support the task of Mul-
timodal Emotion-Cause Pair Extraction in Conversations. It contains 1,344 conversations
with 13,509 utterances and 9,272 annotated emotion–cause pairs. Its distinguishing fea-
ture lies in integrating text, audio, and video modalities to capture diverse causal triggers,
categorized as events, opinions, emotional influence, and greetings. Emotion labels follow
Ekman’s six basic categories: anger, disgust, fear, joy, sadness, and surprise.

• MUStARD: The MUStARD dataset is constructed from TV shows such as Friends, The
Big Bang Theory, The Golden Girls, and Sarcasmaholics Anonymous to advance multi-
modal sarcasm detection. It comprises 690 balanced video clips evenly divided between
sarcastic and non-sarcastic utterances, each paired with transcripts and conversational con-
text. Its distinctive contribution lies in integrating text, audio, and visual cues with dialogue
history, enabling nuanced analysis of incongruity across modalities. Labels are binary: sar-
castic versus non-sarcastic.

D IMPLEMENTATION DETAILS

D.1 REWARD COMPONENT DETAILS

Weight Assignment Rationale. The weights for the reward function are set based on a principled
hierarchy reflecting each component’s importance. We set µ2 = 1.0 (content) and µ4 = 1.0 (con-
sistency) to assign the highest priority to the foundational requirements of correctness and logical-
factual grounding. A moderate weight of µ1 = 0.4 (structure) ensures compliance with the reason-
ing format without overriding correctness. Lastly, a minimal weight of µ3 = 0.1 (process) serves as
a gentle stylistic nudge, guiding the model towards domain-specific language while mitigating the
risk of superficial keyword stuffing. The four components of our comprehensive reward function are
detailed as follows:

• Structure Reward (Rstructure): This reward fosters the generalization of structured rea-
soning by enforcing the unique cognitive framework required for each training task. The
reward system is task-aware: it first identifies the task from the input prompt to select the
corresponding reasoning template. The reward Rstructure is then calculated as the proportion
of required step headers that are correctly present and sequenced within the reasoning chain
τ .

• Content Reward (Rcontent): This reward evaluates the correctness of the final output o by
comparing it against the ground-truth label using the standard evaluation metric appropriate
for each task’s specific format. This ensures the model’s reasoning ultimately leads to a
factually accurate conclusion.

• Process Reward (Rprocess): This reward promotes the articulation of reasoning using ToM-
specific language. We curate a lexicon of ToM-related keywords (e.g., “belief,” “intention,”
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“desire”). Rprocess is calculated as the normalized count of unique keywords from this
lexicon found within τ . This encourages the model not just to follow a structural template,
but to fill it with rich language reflecting genuine cognitive reasoning.

• Consistency Reward (Rconsistency): To penalize logical fallacies, this reward assesses the
consistency of the reasoning chain τ . We employ a large language model to detect two
types of inconsistencies: (1) Internal Contradictions, where the chain contradicts itself,
and (2) External Contradictions, where the chain describes a fact inconsistent with the
input multimodal context. Rconsistency is a penalty-based reward, yielding a high value (1.0)
for consistent chains and a significantly lower value (0.1) if any contradictions are found.

The computational formulas for the four reward components are defined as follows:

Structure Reward (Rstructure). This reward calculates the proportion of required structural ele-
ments that are correctly present and sequenced. Let Sreq be the ordered sequence comprising the
mandatory XML delimiters and the task-specific step headers {hk} derived from the prompt:

Sreq = [<think>, h1, . . . , hK ,</think>,<answer>,</answer>] (4)

Let idx(s, y) denote the index of token s in y. We define a validity indicator vi ∈ {0, 1} for the i-th
token in Sreq:

vi = I [idx(si, y) ̸= ∞ ∧ idx(si, y) > max({idx(sj , y) | j < i, vj = 1} ∪ {−1})] (5)

This recursive condition strictly enforces the topological order. Let N = |Sreq| be the total number
of required elements. The reward is the proportion:

Rstructure(y) =
1

N

N∑
i=1

vi (6)

Content Reward (Rcontent). This evaluates the correctness using the standard metric Mtask (e.g.,
Accuracy, F1) comparing the extracted answer o to the ground truth o∗:

Rcontent(y) = Mtask(o, o
∗) (7)

Process Reward (Rprocess). Consistent with the description of a normalized count, let VToM be the
ToM lexicon and Sτ be the set of unique tokens in τ . We use a normalization factor η:

Rprocess(y) = min

(
1.0,

|Sτ ∩ VToM|
η

)
(8)

Consistency Reward (Rconsistency). To rigorously enforce logical soundness, we employ an LLM
Judge to detect inconsistencies, the Judge evaluates two logical predicates:

• Jint(τ): Returns True if the reasoning chain is free of internal contradictions.

• Jext(τ, Input): Returns True if the reasoning chain is consistent with the inputs (T,A, V ).

The final reward applies a penalty if either condition fails (i.e., if any contradiction is found):

Rconsistency(y) =

{
1.0 if Jint(τ) ∧ Jext(τ, Input)
0.1 otherwise

(9)

D.2 HYPERPARAMETER SENSITIVITY AND ABLATION ANALYSIS
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To empirically validate the optimality of our reward weight configuration (µ1 = 0.4, µ2 = 1.0, µ3 =
0.1, µ4 = 1.0), we conducted a fine-grained grid search. We report the Average Score (mean of L1,
L2, and L3 tasks) to quantify the optimization objective.

Sensitivity to Process Reward (µprocess). We fixed µstruct = 0.4 and varied µprocess. The results
are shown in Table 7.

Table 7: Ablation study on Process Reward Weight.

µprocess 0.0 0.1 0.3 0.5

Score 63.99 64.70 63.65 62.31

The configuration µ = 0.0 serves as the baseline without stylistic constraints. Introducing a minimal
weight (µ = 0.1) yields the optimal performance. However, increasing the weight beyond this point
(µ ≥ 0.3) leads to a degradation in reasoning quality, as the model prioritizes keyword frequency
over logical correctness.

Sensitivity to Structure Reward (µstruct). We fixed µprocess = 0.1 and varied µstruct. Table 8
illustrates the impact of structural constraints.

Table 8: Ablation on Structure Reward Weight.

µstruct 0.1 0.4 0.7 1.0

Score 61.25 64.70 64.10 63.80

At µ = 0.1, the penalty is insufficient to enforce the XML schema, leading to Format Collapse and
parsing failures. Conversely, high weights (µ ≥ 0.7) cause Structural Rigidity, where the model
strictly adheres to templates at the cost of the reasoning flexibility required for complex multimodal
inputs, resulting in diminished accuracy.

The Necessity of Structure Reward To address the question of whether Rstructure is essential for
the synergy of other components, we conducted an exhaustive ablation study by removing Rstructure
from the full reward configuration. We evaluated the model on both task performance (Average
Score) and Format Compliance (the rate of successfully parsed outputs).

Table 9: Impact of removing Structure Reward. The “w/o Structure” setting retains Content,
Consistency, and Process rewards but removes the explicit structural constraint.

Configuration Rstruct Rcont Rconsist Rproc Average Score Format Compliance

Full Model ✓ ✓ ✓ ✓ 64.70 98.2%
w/o Rstruct - ✓ ✓ ✓ 55.45 62.3%

As shown in Table 9, removing Rstructure leads to a significant performance degradation. Although
the model is initialized with SFT, relying solely on Rcontent acts only as an implicit constraint (i.e.,
receiving zero reward if parsing fails). Our results indicate that this implicit signal is insufficient
to counteract the variance during RL exploration. The model exhibits Format Collapse (Compli-
ance drops to 62.3%), where it progressively deviates from the strict XML schema. Since structural
validity is a prerequisite for extracting answers and evaluating correctness, this collapse fundamen-
tally destabilizes the optimization process, confirming that Rstructure is a necessary condition for the
efficacy of the overall framework.

D.3 EXPERIMENT SETTINGS

During inference, we allow 16–64 frames with a resolution of up to 256 × 28 × 28 pixels per frame.
Training hyperparameters for both SFT and GRPO stages, including learning rate, scheduler, batch
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Table 10: Key hyperparameters for the SFT and GRPO training stages.

Hyperparameter SFT Stage GRPO Stage
Base Model Qwen2.5-Omni-7B SFT-tuned Model
Learning Rate 1.0× 10−5 1.0× 10−6

LR Scheduler Cosine Constant
Warmup Ratio 0.1 N/A
Epochs 2 1
Batch Size 16 8
Precision bfloat16 bfloat16
Rollout Samples (N ) N/A 8
KL Coefficient N/A 0.001

size, and rollout settings, are summarized in Table 10. The model uses a context window of 8,192
tokens and a maximum generation length of 4,096. The closed-source models included in our eval-
uation are accessed through their official APIs.

We evaluate a total of 17 MLLMs, comprising 4 closed-source and 13 open-source models. A brief
introduction to each model is provided below:

• VideoLLaMA3 (Zhang et al., 2025a) is the third-generation VideoLLaMA series designed
for both image and video understanding. It introduces flexible resolution tokenization and
efficient frame pruning to reduce redundancy while preserving temporal context. With
a progressive training pipeline, VideoLLaMA3 achieves strong performance on diverse
video reasoning and description benchmarks, particularly in long-horizon and fine-grained
temporal comprehension.

• LLaVA-One-Vision (Li et al., 2024a) is a unified vision–language model built to handle
images, documents, and charts under one interface. Its transfer framework distills knowl-
edge from multiple pretrained encoders into a single instruction-tuned backbone. LLaVA-
One-Vision enables broad task coverage and practical deployment in real-world multimodal
applications, ranging from general VQA to structured document analysis.

• LLaVA-NeXT-Video (Li et al., 2024b) extends the LLaVA-NeXT series to video under-
standing. It employs interleaved frame encoding with preference-optimized alignment to
enhance temporal reasoning and dialogue quality. LLaVA-NeXT-Video proves effective for
video QA and conversational analysis in long-horizon scenarios, delivering more coherent
and context-aware responses.

• Qwen2.5-VL (Bai et al., 2025) is a vision–language model family developed by Alibaba. It
combines dynamic-resolution processing, fine-grained localization, and progressive align-
ment to support documents, diagrams, and long videos. Qwen2.5-VL delivers reliable
perception and reasoning across diverse multimodal benchmarks, excelling in tasks that
require detailed and structured visual understanding.

• InternVL3 (Zhu et al., 2025) is the third-generation InternVL family, integrating stronger
vision encoders with Qwen2.5 backbones. It introduces efficient token reduction and im-
proved preference optimization for reasoning-heavy tasks. InternVL3 achieves notable
improvements in OCR, document analysis, and complex visual understanding, offering a
more balanced trade-off between efficiency and accuracy.

• MiniCPM-V (Yao et al., 2024) is a lightweight multimodal LLM optimized for on-device
use, including phones and edge platforms. With efficient visual encoding, multilingual
tuning, and system-level optimizations, it supports privacy-preserving and energy-efficient
interaction. MiniCPM-V enables practical multimodal deployment in resource-constrained
environments, making advanced perception and reasoning accessible on everyday devices.

• R1-Omni (Zhao et al., 2025a) is an omni-modal model focused on emotion reasoning.
Building on HumanOmni, it integrates reinforcement learning with verifiable rewards to
enhance interpretability. R1-Omni generates step-by-step explanations that clarify how vi-
sual and acoustic cues shape predictions, leading to improved generalization in challenging
emotional tasks.
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• HumanOmni (Zhao et al., 2025b) is a human-centric omni-multimodal model trained for
emotion and interaction understanding. It employs dedicated perception branches for faces,
bodies, and interactions, fused with audio signals. HumanOmni excels in human-related
applications such as emotion recognition and social behavior analysis, enabling more fine-
grained comprehension of real-world scenarios.

• Qwen2.5-Omni (Xu et al., 2025) is a flagship omnimodal model that unifies text, im-
ages, audio, and video while generating both text and speech. Its Thinker–Talker architec-
ture and efficient streaming design support real-time interaction. Qwen2.5-Omni enables
speech-in/speech-out multimodal assistants for continuous audiovisual tasks, combining
responsiveness with versatile cross-modal reasoning.

• Emotion-LLaMA (Cheng et al., 2024) is a multimodal model tailored for affective com-
puting. It fuses audio, visual, and text encoders through a two-stage training pipeline
for recognition and explanation. Emotion-LLaMA advances emotion-aware understanding
across diverse modalities, supporting both accurate recognition and interpretable rationale
generation.

• AffectGPT (Lian et al., 2025) is a multimodal emotion model that introduces MER-
Caption, the largest fine-grained emotion dataset gathered via a novel model-based crowd-
sourcing strategy. It also embeds pre-fusion operations for enhanced cross-modal align-
ment and proposes MER-UniBench, a unified evaluation benchmark tailored to natural
language emotion understanding. AffectGPT optimizes emotion-aware reasoning and de-
scriptive understanding in multimodal LLMs.

• GPT-4o (Hurst et al., 2024) is one of OpenAI’s latest multimodal large language models,
offering APIs that can seamlessly handle text, vision, and audio. It shows strong perfor-
mance across numerous benchmarks, with notable progress in perception, comprehension,
and multimodal reasoning. Built on a unified design that supports smooth cross-modal in-
tegration, GPT-4o is efficient and versatile, making it well-suited for practical multimodal
applications.

• GPT-4.1 (OpenAI, 2025) is a recently released multimodal model that emphasizes both
cost-effectiveness and reliability. It enhances programming capabilities and instruction
following, while also introducing an extended context window of up to one million tokens.
With this improvement, GPT-4.1 is able to deliver more robust long-context reasoning and
significantly improve task efficiency.

• Gemini-2.5-Flash (Comanici et al., 2025) is a multimodal reasoning model designed to
balance speed, performance, and resource usage. It introduces selective reasoning modes,
enabling users to trade off accuracy and efficiency depending on their needs. With its fine-
grained control of reasoning steps, Gemini-2.5-Flash achieves competitive results across a
broad range of multimodal understanding benchmarks.

• Gemini-2.5-Pro (Comanici et al., 2025) is the flagship model in the Gemini family, advanc-
ing multimodal understanding with stronger perception and reasoning. It supports longer
contexts and delivers improved cross-modal alignment, while excelling in domains such as
programming, mathematics, and scientific analysis. Equipped with more capable reasoning
abilities, Gemini-2.5-Pro is optimized for demanding, knowledge-intensive tasks.

D.4 TRAINING DATA GENERATION

Our training data generation methodology follows a multi-stage pipeline designed to produce high-
fidelity reasoning chains. The pipeline integrates the generative capacity of advanced MLLMs with
automated filtering and human-in-the-loop verification, ensuring both efficiency and reliability. It
comprises four key stages, as outlined below.

Step 1: Reasoning Chain Generation. For each sample, we generate initial reasoning pathways
by providing GPT-5 with the video input and our tailored prompt, augmented by an auxiliary report
from Qwen2-Audio that identifies and supplies additional information present in the soundtrack.
This module extracts salient audio cues—such as crying, laughter, changes in tone, speech rate,
pauses, emphasis and stress, or voice trembling—which are integrated with the visual and textual
context according to the task. GPT-5 then produces three independent candidate reasoning chains
from these multimodal inputs.
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Step 2: Label-Aligned Filtering & Correction. The generated reasoning chains are automatically
evaluated by comparing their predicted labels against the ground-truth answers. Based on this com-
parison, each sample is categorized into one of three groups. If at least one of the three candidate
chains produces a final output that exactly matches the ground truth, it is preserved as correct and
advanced to the next stage. If all three chains fail, the sample is classified as completely incorrect
and flagged for intensive correction. In multi-label tasks, chains that correctly predict part of the
labels but miss others are deemed partially incorrect; for these cases, the full original reasoning path
together with the gold-standard labels are provided to the correction model, which is instructed to
revise only the erroneous parts while keeping the valid portions intact.

Step 3: Self-Reflection Normalization. The correction process is carried out using Gemini-2.5-
pro, which generates either a fully new reasoning chain for completely incorrect samples or targeted
revisions for partially incorrect ones. Once all corrected and initially correct chains are consolidated,
they undergo a final self-reflection step with GPT-4o. In this phase, the model standardizes format-
ting, ensures logical clarity, and refines the articulation of ToM concepts, resulting in coherent and
high-quality reasoning outputs.

Step 4: Human Verification. As the final stage, the complete set of refined reasoning chains
undergoes human-in-the-loop verification. Two computer science PhD students manually review
each chain with the primary goal of cross-validating the reasoning against the source multimodal
information. If any factual inaccuracies, logical inconsistencies, or misinterpretations of the visual
context are detected, the annotators intervene to edit and finalize the chain, thereby ensuring its
correctness and reliability.

Our data generation pipeline yields a two-stage training corpus tailored for reasoning alignment.
First, in the SFT stage, we collect approximately 10,000 high-quality prompt–response pairs to
bootstrap the model’s output format, reasoning style, and baseline behavior. Then, in the GRPO
stage, we select another 10,000 prompt instances emphasizing tasks with complex reasoning struc-
ture and high diversity; these prompts serve as seeds for multiple rollouts and pairwise preference
comparisons to train a policy aligned to human judgments.

D.5 EVALUATION SPECIFICATIONS

Our evaluation framework is designed to rigorously assess model performance across a spectrum of
emotion-related tasks. We employ a set of four primary metrics: ACC (Accuracy), WAF (Weighted
Average F1-score), MF (Micro F1 score), and EMF (Exact Match F1). The evaluation is stratified
into three hierarchical levels, with the complexity of tasks and the sophistication of metrics increas-
ing at each level.

Level 1: Emotion Perception and Recognition. This foundational level focuses on the direct
perception and classification of emotional and sentimental states from various data modalities. It
encompasses 10 tasks: FESD, ISA, MESA, MER, MSA, OSA, SIA, SOER, SPER, and SCEA.
These tasks are measured using ACC and WAF.

• ACC offers a direct measure of overall correctness by calculating the ratio of correct pre-
dictions to the total number of samples.

ACC =
Number of Correct Predictions

Total Number of Samples
(10)

• WAF addresses class imbalance by computing the F1 score for each class and averaging
them, weighted by the number of true instances per class (|Sc|). This yields a more bal-
anced assessment, especially when certain emotion labels are underrepresented. For a set
of classes C and a total sample size of |S|, it is defined as:

WAF =
∑
c∈C

|Sc|
|S|

× F1c (11)

where the F1 score for an individual class, F1c, is the harmonic mean of its precision and
recall:

F1c = 2× Precisionc × Recallc
Precisionc + Recallc

(12)
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Level 2: Emotion Understanding and Analysis. This intermediate level requires a deeper ana-
lytical capability, moving from simple recognition to understanding context and implicit attributes.
It includes eight tasks: DPTM, EBIA, HU, IAVE, MABSA, MQE, MSD, MDER. For the classifi-
cation tasks at this level, we continue to utilize ACC and WAF. Additionally, to provide a holistic
performance view on more granular tasks, we also use the MF score.

• MF assesses performance by aggregating the counts of true positives (TP), false positives
(FP), and false negatives (FN) across all classes before computing the final score. This
makes it equivalent to overall accuracy in single-label classification but provides a robust
metric for more complex scenarios.

Precisionµ =

∑
c∈C TPc∑

c∈C(TPc + FPc)
(13)

Recallµ =

∑
c∈C TPc∑

c∈C(TPc + FNc)
(14)

MF = 2× Precisionµ × Recallµ
Precisionµ + Recallµ

(15)

Level 3: Emotion Cognition and Reasoning. This highest level probes the model’s ability to
perform complex reasoning and generate human-like explanations. It comprises six tasks: EER,
EI, LR, MECPE, SD, and SFA. The evaluation methodology at this level is diversified to match
the task requirements. For classification-oriented tasks like SD, we continue to employ ACC and
WAF. For tasks that demand the generation of free-form text, we also use two specialized evaluation
strategies: EMF for answers with a high degree of expected lexical overlap, and a sophisticated
LLM-based evaluation for open-ended, creative responses.

• EMF is designed for generative tasks where the desired output is a specific, factual ex-
planation, such as in LR. It quantifies the word-level overlap between the predicted and
ground-truth texts after normalization. The texts are treated as a bag of words, and the F1
score is computed based on the common words. Let Wordspred and Wordsgt be the set of
words in the prediction and ground truth, respectively.

Precisionword =
|Wordspred ∩ Wordsgt|

|Wordspred|
(16)

Recallword =
|Wordspred ∩ Wordsgt|

|Wordsgt|
(17)

EMF = 2× Precisionword × Recallword

Precisionword + Recallword
(18)

• LLM-based Semantic Evaluation is employed for open-ended tasks like EI, where multi-
ple, distinct answers can be valid and word-level overlap metrics like EMF are inadequate.
In this paradigm, we leverage GPT-4.1 as a semantic judge. The LLM is prompted to com-
pare the meaning of the generated response against the ground-truth answer(s), assessing
its semantic relevance, plausibility, and correctness. This approach transcends word-level
matching to capture the true quality of nuanced and diverse generative outputs.

In practice, some models fail to strictly follow the required output format due to differences in
instruction-following ability. In such cases, we also employ GPT-4.1 to normalize and extract the
intended answers, ensuring consistent and fair evaluation across all models.
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E EXTENDED EXPERIMENTS RESULTS

In this section, we extend our evaluation across all three hierarchical levels and introduce metrics
beyond accuracy for a more in-depth analysis. We report results in two parts: Tables 11-13 es-
tablish baseline performance of vanilla models, while Tables 14-16 show the effects of integrating
ToM prompting. Complementing these tables, Figure 6 provides per-task radar visualizations that
directly contrast each representative model with vs. without ToM prompting across all benchmark
tasks, revealing heterogeneous impacts—substantial improvements on some tasks and occasional
regressions on others. In addition, we provide task-level comparisons on labeled tasks, where fine-
grained F1 scores across n emotion categories are reported for all MLLMs; visual summaries appear
in Figures 8–21. We also include confusion matrices for Gemini-2.5-Pro (Figures 22 and 23).
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Figure 6: Per-task radar performance for representative models. Each polar chart groups tasks
by benchmark level and juxtaposes vanilla model vs. ToM-prompted results.

E.1 TASK-LEVEL PERFORMANCE CHARACTERISTICS OF CURRENT MLLMS.
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Figure 7: Score distributions by task and level. For each task, the left box corresponds to the
vanilla model and the right box to the ToM Prompting.
Figure 7 summarizes the performance of MLLMs across tasks spanning three hierarchical levels.
Current models perform relatively well on explicit emotion recognition: for example, Gemini-2.5-
Pro scores 78.39 on FESD, and GPT-4.1 reaches 71.46, demonstrating that large-scale MLLMs can
classify direct emotional cues with reasonable accuracy. However, performance declines sharply on
tasks requiring implicit inference or complex contextual reasoning. In EBIA, even Gemini-2.5-Pro
attains only 19.25, underscoring the difficulty of intent recognition. Likewise, in structured extrac-
tion tasks such as MQE and MECPE, most models achieved MF scores below 30. These results
reveal persistent weaknesses in handling implicit cues, causal reasoning, structured extraction, and
higher-level pragmatic understanding such as dialogue dynamics, sarcasm, and humor.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.2 VERIFICATION OF LLM-BASED EVALUATION RELIABILITY

To validate the reliability of GPT-4.1 in our evaluation pipeline, we consider two representative sce-
narios. First, for free-form generation tasks in Level 3, we randomly sample one-third of the dataset
and compare GPT-4.1’s judgments with human annotations. Agreement is measured using accuracy
and Cohen’s Kappa. GPT-4.1 achieves 98.5% agreement with a Cohen’s Kappa of 0.98, demonstrat-
ing near-human reliability. Second, for classification-style tasks where models often fail to follow
the required output format, we employ GPT-4.1 to normalize predictions and extract the intended
labels. On a stratified sample of 2,000 such cases, GPT-4.1’s extracted labels match human inter-
pretations with 96.5% agreement and a Cohen’s Kappa of 0.96. These results confirm that GPT-4.1
provides a consistent and trustworthy mechanism both for semantic judgment and for standardizing
model outputs, ensuring fair and reliable evaluation across diverse task types.

Table 11: Performance on Emotion Perception and Recognition using vanilla model. Bold and
underlined indicate the best and the worst results among all models, respectively.

Method FESD ISA MESA MER MSA OSA SIA SOER SPER SCEA
ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF

Open-Source Model

VideoLLaMA3-7B 61.78 61.51 46.85 45.68 21.60 18.28 52.18 50.91 64.62 63.91 67.89 69.98 35.20 34.04 45.80 41.03 41.80 36.02 42.00 41.50
LLaVA-One-Vision-7B 63.44 64.84 49.19 48.14 17.05 16.35 39.50 36.84 65.40 66.87 63.00 66.74 27.00 25.30 53.40 46.14 44.60 34.04 34.80 37.07
LLaVA-NeXT-Video-7B 54.44 58.53 41.20 37.44 11.85 9.63 41.31 38.42 56.11 61.65 65.80 70.53 25.03 20.28 48.60 46.10 43.40 40.54 31.20 32.72
Qwen2.5-VL-7B 62.00 64.90 43.15 43.13 21.25 16.97 56.75 57.24 61.21 65.79 64.20 71.71 32.60 29.54 52.80 44.18 41.80 32.13 47.20 45.77
InternVL3-8B 62.33 64.45 50.65 49.25 21.40 18.69 53.00 53.92 63.80 67.73 68.00 72.90 31.20 24.38 49.00 46.55 42.60 35.86 48.60 40.02
MiniCPM-V-2.6-8B 57.53 61.12 49.39 47.78 25.15 18.85 50.13 50.01 62.65 66.85 52.45 62.35 37.42 34.11 44.90 38.73 37.59 30.17 45.21 38.93
Qwen2.5-VL-32B 63.78 67.18 53.70 52.18 25.28 22.43 57.14 57.10 65.80 69.85 68.80 74.02 34.20 27.38 43.40 39.66 41.80 32.13 47.60 47.73
InternVL3-38B 63.22 66.39 53.58 52.53 24.00 22.63 57.16 68.57 68.80 71.62 68.80 74.98 35.73 31.92 53.46 48.58 48.00 40.18 50.60 42.28
R1-Omni-0.5B 42.28 46.78 51.55 52.18 23.72 24.68 50.88 49.29 41.74 47.95 32.20 42.27 19.50 16.04 30.12 26.87 24.38 22.10 43.60 33.28
HumanOmni-7B 64.44 66.68 53.77 53.81 23.82 24.97 56.75 53.46 48.20 49.47 35.20 44.54 33.90 34.28 50.31 40.74 46.20 37.37 47.60 31.13
Qwen2.5-Omni-7B 64.67 68.03 51.56 52.85 22.71 23.55 56.08 56.67 64.00 68.74 68.00 74.78 32.30 28.03 54.72 49.10 44.60 34.69 48.60 49.56
Emotion-LLaMA-7B 33.11 34.74 53.63 53.31 24.00 10.58 43.75 43.70 44.40 49.78 56.60 63.08 37.00 38.27 47.00 45.75 47.27 36.13 48.44 49.69
AffectGPT-7B 66.67 65.47 50.33 50.93 25.46 12.78 38.69 39.16 66.60 66.56 67.76 69.66 34.50 34.67 49.19 50.87 41.25 34.89 38.80 40.63

Closed-Source Model

GPT-4o 70.22 72.58 54.48 54.50 30.12 23.11 57.64 59.10 69.20 72.57 69.53 76.78 40.00 38.98 54.00 53.94 49.60 47.01 49.96 49.87
GPT-4.1 71.46 73.75 56.80 57.15 31.43 27.20 64.00 64.40 72.46 75.01 69.60 77.14 40.81 41.34 66.19 65.64 55.20 50.91 53.20 54.24
Gemini-2.5-Flash 67.11 70.03 55.41 54.89 27.12 25.23 58.73 60.66 68.40 67.48 70.91 76.35 38.44 36.58 57.47 55.47 56.51 57.27 50.83 52.47
Gemini-2.5-Pro 78.39 78.22 61.12 61.29 28.96 25.52 72.11 72.78 74.20 76.24 75.71 79.66 46.53 43.93 67.96 67.27 65.00 63.08 55.02 51.40

Table 12: Performance on Emotion Understanding and Analysis using vanilla model.

Method DPTM EBIA HU IAVE MABSA MQE MSD MDER
MF ACC ACC WAF ACC WAF MF MF ACC ACC WAF

Open-Source Model

VideoLLaMA3-7B 31.17 14.42 44.89 34.80 62.50 61.46 61.96 23.67 51.15 42.61 40.71
LLaVA-One-Vision-7B 31.54 11.33 42.25 29.96 60.37 58.70 63.89 14.02 39.75 33.00 26.52
LLaVA-NeXT-Video-7B 31.28 12.37 43.50 39.54 40.50 35.38 59.40 13.45 44.75 25.25 19.08
Qwen2.5-VL-7B 31.41 11.02 54.25 54.19 64.49 63.16 64.65 32.59 52.55 45.60 44.18
InternVL3-8B 36.77 14.79 53.50 53.25 60.13 57.03 63.11 33.13 50.90 39.48 34.80
MiniCPM-V-2.6-8B 30.80 14.51 49.25 47.32 55.03 54.04 61.82 27.77 39.85 43.51 41.38
Qwen2.5-VL-32B 40.22 14.62 57.50 57.43 62.67 62.20 63.29 32.38 52.08 48.20 48.64
InternVL3-38B 40.55 16.49 59.25 59.19 64.74 63.82 64.80 32.64 53.85 46.00 44.88
R1-Omni-0.5B 37.54 13.45 46.25 45.41 50.03 50.92 58.40 29.58 47.85 29.81 28.24
HumanOmni-7B 35.59 12.55 49.50 49.50 53.50 53.67 59.89 32.98 47.90 36.20 33.30
Qwen2.5-Omni-7B 31.63 11.42 53.00 52.77 55.79 53.85 61.93 31.09 44.65 37.68 35.09
Emotion-LLaMA-7B 39.54 15.46 57.92 57.92 52.08 52.04 60.13 34.18 44.15 47.59 48.04
AffectGPT-7B 34.17 12.27 56.50 56.47 40.07 37.99 60.48 30.95 42.40 37.92 37.28

Closed-Source Model

GPT-4o 42.33 17.45 60.00 59.92 66.13 65.87 64.76 35.32 55.76 49.68 50.64
GPT-4.1 47.50 18.62 70.19 70.17 67.68 67.78 70.81 37.98 65.76 53.82 53.82
Gemini-2.5-Flash 47.18 16.34 64.66 64.38 64.14 64.45 66.71 36.55 57.65 51.41 53.07
Gemini-2.5-Pro 49.23 19.25 69.39 66.98 70.67 70.99 67.61 39.23 64.95 52.65 53.59
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Table 13: Performance on Emotion Cognition and Reasoning using vanilla model.

Method EER EI LR MECPE SD SFA
ACC WAF LLM LLM MF ACC WAF EMF

Open-Source Model

VideoLLaMA3-7B 45.31 37.85 31.29 39.56 13.09 37.56 36.90 13.16
LLaVA-One-Vision-7B 46.88 42.43 47.40 44.60 10.83 45.20 40.37 16.22
LLaVA-NeXT-Video-7B 35.94 28.33 46.80 43.10 13.05 46.36 36.37 18.42
Qwen2.5-VL-7B 40.62 29.14 50.53 48.20 15.07 49.00 45.43 14.64
InternVL3-8B 50.00 44.72 47.00 46.40 16.41 51.40 51.37 17.61
MiniCPM-V-2.6-8B 39.68 34.54 33.93 50.40 16.44 51.40 39.60 21.83
Qwen2.5-VL-32B 54.69 51.41 53.40 53.40 19.60 55.60 45.73 23.79
InternVL3-38B 50.31 46.63 50.67 51.40 19.28 55.80 55.58 25.73
R1-Omni-0.5B 39.67 38.65 43.73 43.00 16.13 53.00 52.91 19.93
HumanOmni-7B 38.85 30.76 47.93 28.40 13.19 49.40 49.15 16.43
Qwen2.5-Omni-7B 51.25 51.98 48.67 49.20 13.83 53.40 53.25 17.76
Emotion-LLaMA-7B 42.81 40.53 49.53 53.00 19.28 52.60 52.45 19.02
AffectGPT-7B 43.75 45.75 46.27 50.40 10.81 52.73 52.64 15.12

Closed-Source Model

GPT-4o 57.81 59.48 54.13 55.83 20.93 56.60 53.61 25.77
GPT-4.1 60.31 65.49 57.67 61.04 26.86 66.20 65.09 36.73
Gemini-2.5-Flash 58.33 60.29 54.47 58.20 27.11 61.49 59.76 28.02
Gemini-2.5-Pro 66.13 65.41 65.13 59.23 33.33 66.61 66.62 41.22

Table 14: Performance on Emotion Perception and Recognition with proposed ToM prompting.

Method FESD ISA MESA MER MSA OSA SIA SOER SPER SCEA
ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF ACC WAF

Open-Source Model

VideoLLaMA3-7B 54.18 58.59 47.93 45.43 23.01 21.83 44.22 45.47 60.58 63.72 68.15 72.62 31.80 32.38 49.09 43.23 40.60 34.29 45.83 44.63
LLaVA-One-Vision-7B 52.88 57.03 46.61 46.41 22.65 22.33 42.64 42.08 56.56 61.87 64.71 69.60 25.10 23.89 32.15 29.15 25.26 20.03 40.40 38.10
LLaVA-NeXT-Video-7B 52.16 54.83 45.55 43.84 22.23 20.12 39.88 35.57 55.10 59.02 52.71 56.98 27.00 26.42 37.11 35.55 40.29 38.48 31.20 33.77
Qwen2.5-VL-7B 67.50 68.58 44.71 42.47 23.90 21.34 55.95 56.54 65.66 68.52 73.80 75.77 32.33 32.36 48.48 42.59 33.06 26.29 39.20 39.99
InternVL3-8B 64.29 66.87 45.96 43.51 21.57 20.05 49.75 51.66 67.15 70.02 68.94 74.29 35.29 35.65 43.95 44.15 27.91 25.08 41.20 43.08
MiniCPM-V-2.6-8B 48.60 53.23 45.59 45.13 25.88 18.44 43.08 43.25 64.85 67.42 70.75 72.82 29.61 28.71 30.77 28.32 20.12 15.60 44.00 44.88
Qwen2.5-VL-32B 66.67 72.38 55.30 54.12 28.50 23.79 59.00 59.17 69.40 72.31 72.40 75.26 38.62 38.21 47.78 47.31 45.20 41.16 48.55 48.63
InternVL3-38B 68.22 70.61 54.15 51.77 25.88 19.88 58.65 59.66 71.60 73.99 72.00 75.09 38.21 37.76 55.02 53.73 49.40 45.18 51.80 52.20
R1-Omni-0.5B 43.80 47.35 39.62 38.14 23.48 21.19 50.77 50.34 54.85 57.39 42.83 48.94 30.48 30.76 41.43 40.81 41.28 40.90 47.00 46.06
HumanOmni-7B 62.00 65.21 47.97 53.99 22.98 19.77 55.83 51.92 64.40 67.76 61.40 67.93 31.10 31.04 40.31 30.63 39.00 30.12 46.41 46.51
Qwen2.5-Omni-7B 64.22 68.01 49.64 47.46 25.20 22.80 56.53 56.07 68.20 71.34 61.00 65.98 33.10 32.41 44.97 43.69 32.26 27.29 50.40 43.26
Emotion-LLaMA-7B 60.31 63.47 34.96 39.78 20.20 14.72 39.00 31.89 62.32 66.65 43.80 52.53 26.94 21.60 38.80 31.05 23.20 14.98 29.20 37.52
AffectGPT-7B 40.14 42.71 46.84 46.28 21.23 19.75 30.65 29.77 55.62 59.10 60.60 61.30 31.55 31.64 28.30 24.62 21.12 21.10 39.60 39.53

Closed-Source Model

GPT-4o 74.00 75.74 56.44 56.41 33.18 30.36 63.32 63.73 74.60 75.75 73.87 75.89 41.34 41.05 56.10 55.15 54.31 54.12 52.80 50.49
GPT-4.1 74.74 76.20 58.06 58.59 34.55 28.36 66.00 65.96 76.06 77.31 74.80 77.65 43.17 44.07 69.19 69.71 57.20 52.92 56.01 52.37
Gemini-2.5-Flash 76.44 74.73 59.01 57.85 29.20 28.86 64.19 65.09 74.84 74.97 76.03 77.54 43.36 42.33 63.33 63.69 62.22 64.06 53.04 53.72
Gemini-2.5-Pro 79.11 79.42 63.13 66.89 31.02 28.86 72.92 73.05 77.97 78.91 79.19 80.85 51.74 51.75 69.00 69.99 69.31 69.62 62.25 62.85
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Table 15: Performance on Emotion Understanding and Analysis with proposed ToM prompting.

Method DPTM EBIA HU IAVE MABSA MQE MSD MDER
MF ACC ACC WAF ACC WAF MF MF ACC ACC WAF

Open-Source Model

VideoLLaMA3-7B 26.75 12.42 56.00 53.07 66.41 65.15 61.37 22.86 43.60 34.49 31.83
LLaVA-One-Vision-7B 24.72 10.21 51.01 47.85 64.44 62.80 60.66 20.18 39.15 34.90 31.62
LLaVA-NeXT-Video-7B 25.89 14.53 54.50 53.84 40.81 38.32 61.32 24.18 43.12 32.58 31.66
Qwen2.5-VL-7B 20.12 12.27 54.25 46.41 44.17 41.84 64.30 22.79 46.90 41.30 40.16
InternVL3-8B 29.76 12.88 56.75 53.00 62.08 59.09 66.67 22.42 44.00 38.00 34.01
MiniCPM-V-2.6-8B 29.36 14.52 56.75 55.85 70.26 69.13 61.42 22.63 38.15 39.37 38.28
Qwen2.5-VL-32B 41.20 16.12 65.25 64.04 75.46 74.33 68.37 33.56 59.95 49.64 49.17
InternVL3-38B 40.28 19.08 64.75 61.07 67.45 66.05 66.50 34.21 55.65 48.83 43.30
R1-Omni-0.5B 26.21 14.57 46.43 38.71 55.74 56.76 56.29 22.24 42.78 31.95 28.42
HumanOmni-7B 26.14 12.89 55.64 54.24 57.21 57.75 66.39 22.61 42.49 38.80 36.13
Qwen2.5-Omni-7B 25.67 11.20 49.75 34.08 57.23 55.08 64.54 25.38 46.60 35.55 32.56
Emotion-LLaMA-7B 25.25 10.91 50.00 33.33 32.51 25.84 58.52 22.37 39.51 39.06 32.11
AffectGPT-7B 25.93 11.98 52.31 43.61 43.40 42.90 63.29 26.16 44.39 35.21 34.94

Closed-Source Model

GPT-4o 45.90 25.70 66.63 66.51 71.19 70.92 68.30 36.45 61.04 53.72 55.24
GPT-4.1 49.47 27.65 78.00 77.68 72.91 72.75 77.70 40.91 66.18 57.85 59.83
Gemini-2.5-Flash 56.35 24.87 65.74 65.57 72.63 72.01 73.21 38.12 61.83 55.56 57.36
Gemini-2.5-Pro 59.21 28.68 71.83 71.42 77.20 77.78 75.43 44.47 73.79 58.90 60.13

Table 16: Performance on Emotion Cognition and Reasoning with proposed ToM prompting.

Method EER EI LR MECPE SD SFA
ACC WAF LLM LLM MF ACC WAF EMF

Open-Source Model

VideoLLaMA3-7B 50.00 43.30 55.00 51.80 15.18 48.88 32.09 18.29
LLaVA-One-Vision-7B 40.62 37.90 52.00 50.60 12.42 50.10 33.67 19.22
LLaVA-NeXT-Video-7B 28.81 25.97 36.67 51.28 10.37 53.60 53.36 20.33
Qwen2.5-VL-7B 48.44 43.90 55.53 59.59 19.30 50.00 44.91 18.33
InternVL3-8B 54.69 51.70 62.73 57.56 15.32 51.70 38.03 30.54
MiniCPM-V-2.6-8B 39.68 34.41 60.13 56.80 17.46 48.35 40.16 19.99
Qwen2.5-VL-32B 58.42 52.10 57.16 64.21 22.14 61.53 53.24 34.91
InternVL3-38B 55.50 51.33 55.32 57.13 23.33 64.72 57.54 33.61
R1-Omni-0.5B 41.67 43.23 30.59 60.72 15.02 56.68 56.21 21.22
HumanOmni-7B 37.50 36.90 49.07 43.09 17.62 51.60 38.61 22.94
Qwen2.5-Omni-7B 40.62 35.36 50.07 63.60 13.65 46.20 42.36 30.65
Emotion-LLaMA-7B 38.71 44.02 38.73 59.80 12.38 49.60 35.47 31.07
AffectGPT-7B 32.26 37.83 46.73 60.08 12.83 53.51 52.50 40.49

Closed-Source Model

GPT-4o 60.00 63.41 64.33 66.00 22.48 64.80 62.49 42.29
GPT-4.1 65.86 77.98 69.00 71.79 28.11 68.67 68.63 47.75
Gemini-2.5-Flash 64.13 75.71 63.93 66.60 31.43 64.10 64.08 45.22
Gemini-2.5-Pro 71.94 75.73 70.27 68.20 37.70 69.00 68.63 52.78
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Figure 8: Task-level Performance Comparison on FESD task.
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Figure 9: Task-level Performance Comparison on ISA task.
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Figure 10: Task-level Performance Comparison on MESA task.
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Figure 11: Task-level Performance Comparison on MER task.
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Figure 12: Task-level Performance Comparison on MSA task.
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Figure 13: Task-level Performance Comparison on SIA task.
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Figure 14: Task-level Performance Comparison on SOER task.
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Figure 15: Task-level Performance Comparison on SPER task.
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Figure 16: Task-level Performance Comparison on SCEA task.
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Figure 17: Task-level Performance Comparison on IAVE task.
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Figure 18: Task-level Performance Comparison on MABSA task.
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Figure 19: Task-level Performance Comparison on MSD task.
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Figure 20: Task-level Performance Comparison on MDER task.
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Figure 21: Task-level Performance Comparison on EER task.
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Figure 22: Confusion matrices for Gemini-2.5-Pro on each task (Part 1).
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Figure 23: Confusion matrices for Gemini-2.5-Pro on each task (Part 2).
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F DESIGN OF TOM-STYLE PROMPTS

We adopt a unified ToM-style prompting scaffold across three levels, aligned with the progres-
sion of our framework. Level 1 operationalizes first-order affect attribution through a four-
stage chain—Perceptual Simulation, Cognitive Empathy, Perspective-Taking, and Conclude-and-
Map—illustrated in Figure 24 to Figure 33. Level 2 extends this scaffold to relational and contextual
mind modeling, where perceived states are linked to entities, aspects, and communicative goals (state
→ about(entity, context)). Representative templates are shown in Figure 34 to Figure 41. Level 3
advances to causal attribution and second-order reasoning, focusing on why emotions arise, how
they shift, and how they are socially interpreted (cause attribution and recursive mind modeling).
Illustrative templates are provided in Figure 42 to Figure 47.

F.1 DETAILED PROMPT DESIGN RATIONALE

• Face Expression Sentiment Detection. This task instantiates basic ToM attribution by
inferring a subject’s immediate affect from facial micro-expressions, gaze, posture, and
prosody. The model integrates convergent and divergent cues into a coherent here-and-
now hypothesis, explicitly excluding observer bias or trait-based assumptions. Attribution
remains grounded in the subject’s perspective, ensuring that emotion labels reflect their
mental state rather than external interpretation.

• Image Sentiment Analysis. This task extends ToM reasoning to full-scene interpretation,
requiring attribution of an affective stance from either visible human subjects or environ-
mental affordances such as threat, celebration, or serenity. The model infers what an ex-
periencer—depicted or implied—would feel, grounding sentiment in context rather than
in the observer’s reaction. This design highlights scene-level ToM attribution by linking
visual evidence to an imagined experiencer’s mental state.

• Meme Sentiment Analysis. This task reframes sentiment detection as communicative in-
tent attribution. The model integrates text and image cues, treating convergence as straight-
forward reinforcement and divergence as deliberate rhetorical strategy (e.g., sarcasm, irony,
humor). Sentiment is attributed from the creator’s perspective toward the intended audi-
ence, embedding ToM reasoning in the recognition of communicative goals.

• Multimodal Emotion Recognition. This task generalizes first-order ToM attribution
across multiple input channels—visual behavior, prosody, and lexical content. The model
integrates these cues into a coherent hypothesis of the speaker’s immediate emotional state,
resolving convergence and divergence strictly on observable evidence. Attribution reflects
the speaker’s perspective, ensuring recognition captures their current mental state.

• Multimodal Sentiment Analysis. This task shifts from emotion recognition to polarity
attribution, asking whether the speaker expresses a positive, negative, or neutral stance.
Multimodal cues are synthesized into a stance hypothesis, with attribution grounded in the
speaker’s evaluative perspective rather than external judgments. The design distinguishes
evaluative positioning from emotion states while preserving ToM-based reasoning.

• Opinion Sentiment Analysis. This task emphasizes propositional attitudes, attributing po-
larity toward a stated proposition. The model decodes evaluative lexical markers alongside
multimodal cues and synthesizes them into a hypothesis about the speaker’s stance. Attri-
bution is explicitly tied to the speaker’s point of view, ensuring that polarity judgments are
context-sensitive rather than generic affect labels.

• Sentiment Intensity Analysis. This task advances polarity attribution by incorporating
graded strength. The model decodes lexical intensifiers, prosodic emphasis, and visual
force/tension to distinguish slight, moderate, or strong polarity expressions. Attribution
remains anchored in the speaker’s immediate evaluative stance, enabling finer-grained dis-
tinctions within ToM-based sentiment reasoning.

• Song Emotion Recognition. This task applies ToM reasoning to performance contexts, at-
tributing enacted emotional states conveyed by singers or performers. The model integrates
facial, bodily, and acoustic-musical cues, with lyrics considered when present. Attribution
is framed from the performer’s expressive perspective, capturing intended affective enact-
ment rather than audience response.
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• Speech Emotion Recognition. This task applies ToM attribution to spoken interaction,
decoding acoustic-prosodic features, articulatory-visual cues, and lexical content as evi-
dence of inner state. The model integrates these signals into a hypothesis of the speaker’s
immediate emotion, ensuring attribution reflects the speaker’s mental world rather than the
listener’s impression.

• Stock Comment Emotion Analysis. This task adapts ToM reasoning to financial dis-
course, attributing a commenter’s evaluative stance toward a financial target with graded
polarity strength. Lexical cues such as hedging, certainty, or numeric framing are cen-
tral, with prosodic/visual markers incorporated when available. Attribution reflects the
commenter’s current evaluative orientation, distinguishing weak versus strong polarity in
context.

• Emotion-Based Intent Analysis. This task extends ToM reasoning from first-order emo-
tion attribution to relational modeling of communicative intent in dialogue. The model de-
codes lexical, prosodic, visual, and dialogic cues as traces of the speaker’s state, integrates
them into an emotion hypothesis, and then contextualizes this stance as intent toward the
addressee (e.g., questioning, consoling, encouraging). Attribution reflects the transition
from state to state→about(addressee, context), binding emotions to pragmatic communica-
tive goals.

• Humor Understanding. This task applies second-order ToM reasoning, requiring the
model to capture how a speaker amuses an audience by violating expectations. The model
decodes setup, punchline, and delivery cues, constructs an audience expectation baseline,
and checks for mismatches such as reversals or double meanings. Attribution is made from
the speaker→audience perspective, framing humor as communicative intent based on in-
congruity resolution.

• Implicit Attribute Value Extraction. This task adapts ToM reasoning to product interpre-
tation, treating product presentation as a communicative act between designer and observer.
The model decodes visual design cues together with metadata, interprets them as intentional
signals of hidden properties, and maps them onto valid attribute values. Attribution thus
reframes classification as relational reasoning about design intent and observer inference.

• Multimodal Aspect-Based Sentiment Analysis. This task extends sentiment attribution
to multiple targets and aspects, requiring structured stance separation. The model de-
codes multimodal and referential cues, integrates them into stance hypotheses for each
target/aspect, and interprets divergences as possible rhetorical devices while grounding
strictly in evidence. Attribution reflects the author’s perspective toward each entity, pro-
ducing distinct and contextually bound polarity labels.

• Multimodal Quintuple Extraction. This task formalizes relational stance mapping by ex-
tracting structured units of evaluation. The model decodes evaluative cues, resolves holder
identity and coreference, and infers holder–target–aspect relations. Attribution is expressed
as quintuples (holder, target, aspect, opinion, sentiment), ensuring attitudes are contextual-
ized, evidence-based, and relationally organized beyond raw polarity classification.

• Multimodal Stance Detection. This task links an author’s evaluative state to a specific
claim or target, distinguishing stance from generic sentiment. The model decodes multi-
modal stance cues, attributes the author’s immediate attitude toward the target, and maps it
into support, refute, comment, or unrelated. Attribution explicitly conditions inference on
target-specific positioning, aligning with ToM reasoning about communicative orientation.

• Multiparty Dialogue Emotion Recognition. This task situates emotion attribution within
multi-party exchanges. The model decodes lexical, prosodic, and visual cues for the focal
speaker, integrates them into an emotion hypothesis, and refines the attribution using roles,
turn-taking, and interactional context. Attribution reflects ToM reasoning about how a
speaker’s state is shaped and signaled within dialogue structure, ensuring role- and context-
sensitive recognition.

• Emotion Elicitation Reasoning. This task shifts ToM reasoning to second-order attri-
bution, modeling how a generic viewer, rather than the characters, appraises events. The
model decodes narrative and cinematic cues as potential affect triggers, constructs viewer
appraisals along dimensions such as goal congruence, threat, or attachment, and maps them
to a single elicited emotion. Attribution is grounded in the causal link between specific
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events/devices and the audience’s reaction, highlighting what the scene makes viewers feel
and why.

• Emotion Interpretation. This task explains why a subject experiences a given emotion
by reconstructing appraisal pathways. The model decodes observable cues (expressions,
posture, events, objects), builds a subject-centered appraisal hypothesis (e.g., goal obstruc-
tion, threat, social evaluation), and attributes the emotion to proximate, visible causes. ToM
reasoning is operationalized as event → appraisal → emotion mapping, producing concise,
evidence-based explanations.

• Laughter Reasoning. This task applies second-order ToM reasoning to explain why laugh-
ter occurs. The model decodes setup, punchline, and delivery cues, models audience expec-
tations, and identifies the humor trigger (e.g., incongruity, reversal, irony, norm violation).
Attribution explains how the mismatch causes reinterpretation into amusement, framing
laughter as the outcome of expectation management and speaker intent.

• Multimodal Emotion Cause Pair Extraction. This task extends emotion recognition to
explicit cause–effect mapping in dialogue. The model decodes cues in a target utterance,
builds a subject-centered appraisal hypothesis, and links it to the most proximate prior
utterance that explains the emotion, enforcing temporal precedence. Attribution results in
explicit emotion–cause pairs, embedding ToM reasoning about interpersonal dynamics and
conversational elicitation.

• Sarcasm Detection. This task frames sarcasm as nonliteral intent attribution requiring
second-order reasoning. The model decodes the literal proposition and surface polarity,
models speaker–audience dynamics, and tests for incongruity–reversal where context sig-
nals the opposite of what is said. Attribution distinguishes sarcasm from humor or exag-
geration by grounding meaning in the speaker’s intent for the audience to infer a reversed
stance.

• Sentiment Flip Analysis. This task tracks how sentiments evolve across dialogue, at-
tributing changes to conversational causes. The model decodes polarity and discourse cues,
builds sentiment timelines for each speaker, and detects flips from one stance to another. At-
tribution assigns trigger types (e.g., new information, argument, feedback, self-reflection)
by enforcing temporal and causal reasoning. This highlights ToM’s role in modeling dy-
namic shifts in evaluation rather than static judgments.
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Figure 24: ToM-style prompting for Face Expression Sentiment Detection.

Figure 25: ToM-style prompting for Image Sentiment Analysis.
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Figure 26: ToM-style prompting for Meme Sentiment Analysis.

Figure 27: ToM-style prompting for Multimodal Emotion Recognition.
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Figure 28: ToM-style prompting for Multimodal Sentiment Analysis.

Figure 29: ToM-style prompting for Opinion Sentiment Analysis.
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Figure 30: ToM-style prompting for Sentiment Intensity Analysis.

Figure 31: ToM-style prompting for Song Emotion Recognition.
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Figure 32: ToM-style prompting for Speech Emotion Recognition.

Figure 33: ToM-style prompting for Stock Comment Emotion Analysis.
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Figure 34: ToM-style prompting for Detection of Persuasion Techniques in Memes.

Figure 35: ToM-style prompting for Emotion-Based Intent Analysis.
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Figure 36: ToM-style prompting for Humor Understanding.

Figure 37: ToM-style prompting for Implicit Attribute Value Extraction.
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Figure 38: ToM-style prompting for Multimodal Aspect-Based Sentiment Analysis.

Figure 39: ToM-style prompting for Multimodal Quintuple Extraction.
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Figure 40: ToM-style prompting for Multimodal Stance Detection.

Figure 41: ToM-style prompting for Multiparty Dialogue Emotion Recognition.
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Figure 42: ToM-style prompting for Emotion Elicitation Reasoning.

Figure 43: ToM-style prompting for Emotion Interpretation.
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Figure 44: ToM-style prompting for Laughter Reasoning.

Figure 45: ToM-style prompting for Multimodal Emotion Cause Pair Extraction.
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Figure 46: ToM-style prompting for Sarcasm Detection.

Figure 47: ToM-style prompting for Sentiment Flip Analysis.
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G DATASET CASES

Figure 48: Representative sample of CH-SIMS dataset.

Figure 49: Representative sample of CH-SIMSv2 dataset.

Figure 50: Representative sample of EmoSet dataset.
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Figure 51: Representative sample of Memotion dataset.

Figure 52: Representative sample of MER2023 dataset.

Figure 53: Representative sample of CMU-MOSI dataset.
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Figure 54: Representative sample of CMU-MOSEI dataset.

Figure 55: Representative sample of RAVDESS (song) dataset.
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Figure 56: Representative sample of RAVDESS (speech) dataset.

Figure 57: Representative sample of FMSA-SC.
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Figure 58: Representative sample of SemEval2021 Task6 dataset.

Figure 59: Representative sample of MC-EIU dataset.
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Figure 60: Representative sample of UR-FUNNY dataset.

Figure 61: Representative sample of ImplicitAVE dataset.

Figure 62: Representative sample of Twitter2015/2017 dataset.
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Figure 63: Representative sample of PanoSent dataset.

Figure 64: Representative sample of MMWTWT dataset.
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Figure 65: Representative sample of MELD dataset.

Figure 66: Representative sample of FilmStim dataset.
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Figure 67: Representative sample of EIBench dataset.

Figure 68: Representative sample of SMILE dataset.
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Figure 69: Representative sample of ECF dataset.

Figure 70: Representative sample of MUStARD dataset.
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Figure 71: Representative sample of PanoSent dataset.
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H CASE STUDY

We present representative case studies to complement the quantitative analyses. In each case, the
QA specification is fixed so that comparisons are controlled along three axes. First, Figures 72–74
compare different models under identical prompts for the same QA, revealing substantial variability
in final predictions. Second, Figures 75–77 fix the model but switch the response mode between a
direct answer and ToM prompting, showing how explicit reasoning reshapes intermediate justifica-
tions and can alter predicted emotions or intents. Third, Figures 78–80 return to the across-model
setting, applying standardized ToM prompting for the same QA and examining step-by-step traces;
despite explicit reasoning, divergences remain and some systems still err. Together, these qualitative
results highlight both the strengths and the limitations of current reasoning procedures.

Figure 72: Model answers on the same QA. A side-by-side comparison of different models’ pre-
dictions for the same QA, illustrating variability in responses across models.
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Figure 73: Model answers on the same QA.

Figure 74: Model answers on the same QA.
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Figure 75: Same model, direct answer vs. ToM prompting. For the same QA, we compare one
model’s output when answering directly and when using our ToM prompting, illustrating how ex-
plicit reasoning changes the predicted label.
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Figure 76: Same model, direct answer vs. ToM prompting.
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Figure 77: Same model, direct answer vs. ToM prompting.
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Figure 78: ToM prompting answers from different models on the same QA. We compare models’
reasoning and decisions, illustrating cross-model differences in analytical paths and outcomes.
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Figure 79: ToM prompting answers from different models on the same QA.
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Figure 80: ToM prompting answers from different models on the same QA.
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