

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNVEILING THE COGNITIVE COMPASS: THEORY-OF-MIND-GUIDED MULTIMODAL EMOTION REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite rapid progress in multimodal large language models (MLLMs), their capability for deep emotional understanding remains limited. We argue that genuine affective intelligence requires explicit modeling of Theory of Mind (ToM), the cognitive substrate from which emotions arise. To this end, we introduce HitEmotion, a ToM-grounded hierarchical benchmark that diagnoses capability breakpoints across increasing levels of cognitive depth. Second, we propose a ToM-guided reasoning chain that tracks mental states and calibrates cross-modal evidence to achieve faithful emotional reasoning. We further introduce TMPO, a reinforcement learning method that uses intermediate mental states as process-level supervision to guide and strengthen model reasoning. Extensive experiments show that HitEmotion exposes deep emotional reasoning deficits in state-of-the-art models, especially on cognitively demanding tasks. In evaluation, the ToM-guided reasoning chain and TMPO improve end-task accuracy and yield more faithful, more coherent rationales. In conclusion, our work provides the research community with a practical toolkit for evaluating and enhancing the cognition-based emotional understanding capabilities of MLLMs. Our dataset and code are anonymously available at: [Anonymous Repository](#).

1 INTRODUCTION

Emotional intelligence (Picard, 2000) lies at the heart of machine intelligence and plays a pivotal role in the development of human-centric AI systems. Despite the remarkable progress of Multimodal Large Language Models (MLLMs, (OpenAI, 2025; Gemini et al., 2023)) across various tasks, their capability in deep emotional understanding remain suboptimal (Huang et al., 2024; Sabour et al., 2024). Existing studies primarily focus on surface-level emotion recognition, often neglecting the dynamic, context-dependent nature of emotions and their intricate relationships with other mental states such as beliefs and intentions (Khare et al., 2024). Such oversimplification overlooks the complexity of human affect, limiting the interpretability and performance of MLLMs in emotional understanding (Zhang et al., 2025c).

Recent benchmarks such as EmoBench (Sabour et al., 2024) and EmotionHallucer (Xing et al., 2025) have empirically validated this bottleneck: even state-of-the-art (SOTA) MLLMs struggle with emotionally complex tasks that require nuanced perspective-taking or reasoning over conflicting multimodal cues (Yang et al., 2024). These failures often manifest as emotional hallucinations and other distortions. However, while these evaluations (Hu et al., 2025a; Huang et al., 2024) successfully expose the symptoms, their own fragmented task design limits deeper diagnosis of the underlying causes. We argue that the core limitation of current evaluation paradigms lies in the absence of a unified cognitive framework, a veritable Cognitive Compass, to guide the evaluation of mental state reasoning (Chen et al., 2025). Specifically, they fail to organize emotional reasoning tasks according to developmental levels of Theory of Mind (ToM, (Lake et al., 2016))—e.g., first-order belief inference (Wimmer & Perner, 1983) vs. second-order recursive reasoning (Perner & Wimmer, 1985). Without such a compass, benchmarks provide only a coarse overall score and cannot pinpoint the exact ceiling or breaking point of a model’s reasoning capacity.

This lack of precision in evaluation, in turn, hides fundamental flaws in the models’ reasoning process. Even with a generic Chain-of-Thought (CoT, (Wei et al., 2022)) approach, the reasoning abilities of MLLMs (Zhang et al., 2025c) tend to emerge from general properties rather than from

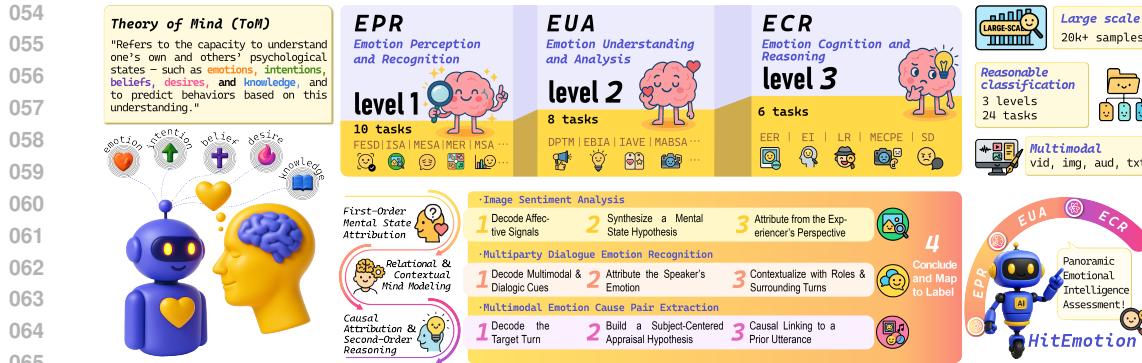


Figure 1: Overview of our HitEmotion benchmark.

cognition-specific, supervised training. This leads to reasoning chains that often look coherent but are ultimately unfaithful. Specific problems include substituting causal attribution with simple template matching, being highly sensitive to small changes in wording and prompts, lacking robust ways to update in response to counterfactuals, and failing to explicitly track or maintain consistency among intermediate mental states like beliefs and intentions. Ultimately, these systems are measuring a shallow emotional fact retriever, skilled only at mapping superficial cues, rather than a deep mental state simulator capable of inferring the complex interplay between mind and emotion.

To tackle these dual shortcomings in evaluation and reasoning, and to help shift the paradigm in emotion understanding from fact retrieval to mental simulation, this study makes two core contributions. ① A hierarchical, Theory-of-Mind-based benchmark for multimodal **emotion** understanding (**HitEmotion**). As presented in Figure 1, HitEmotion systematically arranges evaluation tasks into three cognitive levels of increasing depth: Emotion Perception and Recognition, Emotion Understanding and Analysis, and Emotion Cognition and Reasoning. This hierarchical structure is designed to precisely pinpoint and measure a model’s capability breakpoints at different cognitive depths. ② A novel framework for Theory-of-Mind reasoning chain preference optimization (**TMPO**). This approach begins by designing structured reasoning templates for specific tasks based on ToM principles. It then pioneers the use of intermediate mental states from these reasoning chains as both supervisory signals and reward sources for reinforcement learning. The method aims to shift a model’s reasoning from a “general emergent” ability to a “domain-acquired” skill, significantly boosting its performance, robustness, and auditability in complex situations.

To validate the proposed framework, the first step was to construct a new evaluation resource. We curated 24 diverse datasets spanning sentiment, humor, sarcasm, and causal reasoning, and systematically cleaned and re-purposed them. Following the cognitive hierarchy of the proposed ToM framework, these datasets were rigorously restructured and aligned to create a benchmark capable of fine-grained assessment of model capabilities. Extensive experiments on our benchmark yielded three key findings. ① The performance of baseline models decisively substantiated our critique. Even SOTA MLLMs performed inconsistently across tasks and exhibited profound deficiencies at the highest tier of our framework. ② ToM reasoning chain prompting by itself shows considerable potential. When used simply as a prompting strategy, it significantly improves the performance of powerful closed-source models, offering initial proof of ToM’s effectiveness as a reasoning “scaffold.” ③ The TMPO optimization delivers significant and consistent improvements across all evaluation tasks. It not only scores higher than most baseline models but also generates reasoning chains with demonstrably greater faithfulness and logical consistency, highlighting the advantages of the “domain acquisition” approach. In conclusion, the HitEmotion benchmark and TMPO method offer the research community a powerful toolkit for evaluating and advancing the deep emotional intelligence of MLLMs, facilitating the development of genuinely empathetic AI systems.

2 RELATED WORK

Multimodal Affective Computing. Multimodal Affective Computing aims to understand human emotions by learning cross-modal representations from heterogeneous signals like language, vision, and acoustics (Ramirez et al., 2011; Jiang et al., 2021; Zhu et al., 2024b;a). Evolving from unimodal studies (Ji et al., 2020; Donnelly & Prestwich, 2022), the field now emphasizes unified alignment-

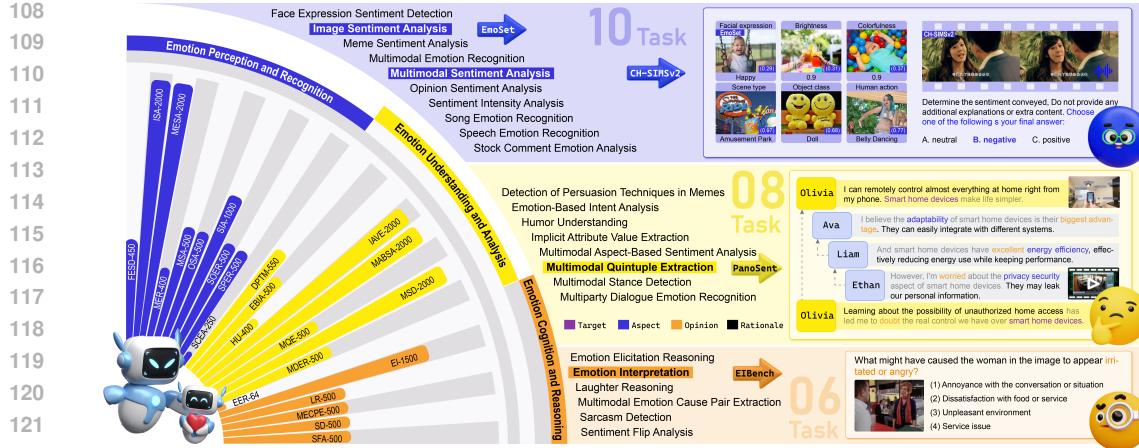


Figure 2: Task taxonomy and examples in our HitEmotion benchmark.

Table 1: **Comparison with other benchmarks related to emotional intelligence.** Psy-based indicates grounding in psychological theory; Rea-chain indicates whether reasoning traces are provided; Rationale indicates whether model rationales are included.

Benchmark	# Task	Modality	# Instances	Type	Psy-based	Rea-chain	Rationale
EQ-bench (Paech, 2023b)	1	Text	60	Open-ended	✓	✗	✗
EmotionBench (Huang et al., 2024)	1	Text	428	Open-ended	✓	✗	✗
EmoBench (Sabour et al., 2024)	4	Text	400	MCQ	✓	✗	✗
MOSABench (Song et al., 2024b)	3	Image	1,047	MCQ	✗	✗	✗
MM-InstructEval (Yang et al., 2025)	6	Image	34,602	MCQ	✗	✗	✗
EmoBench-M (Hu et al., 2025b)	13	Video	5,646	MCQ, Open-ended	✓	✗	✗
MER-UniBench (Lian et al., 2025)	3	Video	12,799	Open-ended	✗	✗	✗
EmotionHallucer (Xing et al., 2025)	7	Video, Image	2,742	Binary QA	✓	✗	✗
MME-Emotion (Zhang et al., 2025b)	8	Video	6,500	Open-ended	✗	✓	✓
HitEmotion (Ours)	24	Video, Image	20,114	MCQ, Open-ended	✓	✓	✓

and-fusion frameworks, a shift accelerated by large-scale pretraining (Gemini et al., 2023) and enabled by parameter-efficient adaptation (Houlsby et al., 2019). Fusion techniques have similarly advanced from early/late strategies (Tsai et al., 2019) to more sophisticated intermediate schemes that deepen cross-modal interaction and yield more discriminative features (Luo et al., 2021; Zou et al., 2023). Recent work further refines how affect is modeled, for instance by treating emotion as inherently ordinal to better infer intensity (MOAC; (Mai et al., 2025)) or by leveraging human actions as a sparse but highly credible signal for emotional understanding (TACL; (Yu et al., 2025)).

Evaluation of Emotional Intelligence. The evaluation of emotional intelligence has progressed from text-based queries to comprehensive multimodal benchmarks. Initial text-only assessments established reproducible formats for testing emotional inference and reasoning (EQ-Bench, (Paech, 2023a); EmotionBench, (Huang et al., 2024); EmoBench, (Sabour et al., 2024)). The focus has since expanded to multimodal settings that probe for more contextual understanding. Current benchmarks assess a wide range of capabilities, including multi-object sentiment analysis (MOSABench; (Song et al., 2024b)), instruction-following (MM-InstructEval; (Yang et al., 2025)), hierarchical skills from recognition to social awareness (EmoBench-M; (Hu et al., 2025a)), and unified evaluation of classic and free-form responses (MER-UniBench; (Lian et al., 2025)). Complementary work explicitly audits emotion-related hallucinations (EmotionHallucer; (Xing et al., 2025)) or provides holistic, multi-agent scoring across diverse scenarios (MME-Emotion; (Zhang et al., 2025b)). As detailed in Table 1, while extensive, prior benchmarks offer a fragmented evaluation. We are the first to connect psychological theory with the model’s reasoning process and its ability to generate rationales, thereby providing a unified evaluation framework.

Theory-of-Mind Reasoning. ToM is the capacity to represent and infer others’ mental states such as beliefs, intentions, and emotions (Premack & Woodruff, 1978; Baron-Cohen et al., 1985; Decety & Jackson, 2004; Lake et al., 2016), providing a cognitive foundation for affective computing. Psychology formalizes emotion as a core ToM dimension (Beaudoin et al., 2020; Chen et al., 2024) and shows that tracking mental states is crucial for its attribution (Lillard, 1993; Qu et al., 2015). These insights have inspired inference-time strategies for LLMs that decompose ToM queries into tractable subproblems, such as simulating perspectives and checking knowledge access, thereby improving

162 **Table 2: Evaluation tasks of our HitEmotion benchmark.** “N-CLS” denotes an n-class classification task, and “GEN” represents a generation task. “ACC”, “MF”, “WAF” and “EMF” denote accuracy, micro F1 score, weighted average F1-score and exact match F1, respectively.

165 Task Name	166 Data Source	167 Type	168 #Instances	169 Metric
<i>Level 1: Emotion Perception and Recognition</i>				
170 Face Expression Sentiment Detection (FESD)	171 CH-SIMS	172 3-CLS	173 450	174 ACC, WAF
175 Image Sentiment Analysis (ISA)	176 EmoSet	177 8-CLS	178 2,000	179 ACC, WAF
180 Meme Sentiment Analysis (MESA)	181 Memotion	182 5-CLS	183 2,000	184 ACC, WAF
185 Multimodal Emotion Recognition (MER)	186 MER2023	187 6-CLS	188 400	189 ACC, WAF
190 Multimodal Sentiment Analysis (MSA)	191 CH-SIMSV2	192 3-CLS	193 500	194 ACC, WAF
195 Opinion Sentiment Analysis (OSA)	196 CMU-MOSI	197 3-CLS	198 500	199 ACC, WAF
200 Sentiment Intensity Analysis (SIA)	201 CMU-MOSEI	202 7-CLS	203 1,000	204 ACC, WAF
205 Song Emotion Recognition (SOER)	206 RAVDESS	207 6-CLS	208 500	209 ACC, WAF
210 Speech Emotion Recognition (SPER)	211 RAVDESS	212 8-CLS	213 500	214 ACC, WAF
215 Stock Comment Emotion Analysis (SCEA)	216 FMSA-SC	217 5-CLS	218 250	219 ACC, WAF
<i>Level 2: Emotion Understanding and Analysis</i>				
220 Detection of Persuasion Techniques in Memes (DPTM)	221 SemEval-2021 Task 6	222 Multi-label	223 550	224 MF
225 Emotion-Based Intent Analysis (EBIA)	226 MC-EIU	227 7-&8-CLS	228 500	229 ACC
230 Humor Understanding (HU)	231 UR-FUNNY	232 2-CLS	233 400	234 ACC, WAF
235 Implicit Attribute Value Extraction (IAVE)	236 ImplicitAVE	237 N-CLS	238 2,000	239 ACC, WAF
240 Multimodal Aspect-Based Sentiment Analysis (MABA)	241 Twitter2015/2017	242 3-CLS	243 2,000	244 MF
245 Multimodal Quintuple Extraction (MQE)	246 PanoSent	247 GEN	248 500	249 MF
250 Multimodal Stance Detection (MSD)	251 MMWTWT	252 4-CLS	253 2,000	254 ACC
255 Multiparty Dialogue Emotion Recognition (MDER)	256 MELD	257 7-CLS	258 500	259 ACC, WAF
<i>Level 3: Emotion Cognition and Reasoning</i>				
260 Emotion Elicitation Reasoning (EER)	261 FilmStim	262 7-CLS	263 64	264 ACC, WAF
265 Emotion Interpretation (EI)	266 EIBench	267 GEN	268 1,500	269 LLM
270 Laughter Reasoning (LR)	271 SMILE	272 GEN	273 500	274 LLM
275 Multimodal Emotion Cause Pair Extraction (MECPE)	276 ECF	277 GEN	278 500	279 MF
280 Sarcasm Detection (SD)	281 MUSTARD	282 2-CLS	283 500	284 ACC, WAF
285 Sentiment Flip Analysis (SFA)	286 PanoSent	287 GEN	288 500	289 EMF

189 reasoning without extra training (Wei et al., 2022; Sarangi et al., 2025; Rahwan et al., 2019). ToM
190 reasoning also extends to temporal, counterfactual, and non-literal communication, which are vital
191 for affect interpretation (Byrne, 2017). However, recent benchmarks reveal that even state-of-the-art
192 MLLMs still lack robust ToM capabilities (ToMBench, (Chen et al., 2024); MMToM-QA, (Jin et al.,
193 2024)), highlighting a key challenge. Consequently, the absence of targeted optimization in current
194 models hinders the acquisition of more robust and complex ToM reasoning.

195 3 HITEMOTION BENCHMARK

196 3.1 TASK TAXONOMY

200 As shown in Figure 2, we organize our benchmark into three hierarchical levels of emotional in-
201 telligence, each targeting progressively advanced capabilities (see Appendix C for more details).
202 **1 Emotion Perception and Recognition (EPR)** establishes the foundation by evaluating models’
203 ability to perceive and classify explicit emotional states across modalities, mapping multimodal in-
204 puts to predefined categories. **2 Emotion Understanding and Analysis (EUA)** requires contextual
205 awareness and relational reasoning, emphasizing the interpretation of emotions’ functions and in-
206 tents in situational settings. **3 Emotion Cognition and Reasoning (ECR)** advances to causal and
207 second-order reasoning, requiring models to explain emotion causes, track temporal dynamics, and
208 interpret nuanced expressions, thereby engaging with the cognitive processes underlying emotions.

209 3.2 BENCHMARK CONSTRUCTION

211 To curate data and construct our benchmark while reducing annotation costs, we leverage publicly
212 available datasets from the field of multimodal affective computing with task-specific annotations.
213 Building on this foundation, we aggregate and curate 24 publicly available datasets spanning diverse
214 affective domains, including emotion recognition, sentiment analysis, humor understanding, and
215 causal reasoning. As shown in Table 2, these datasets are systematically organized into a three-tiered
216 hierarchy reflecting increasing cognitive complexity: Emotion Perception and Recognition, Emotion

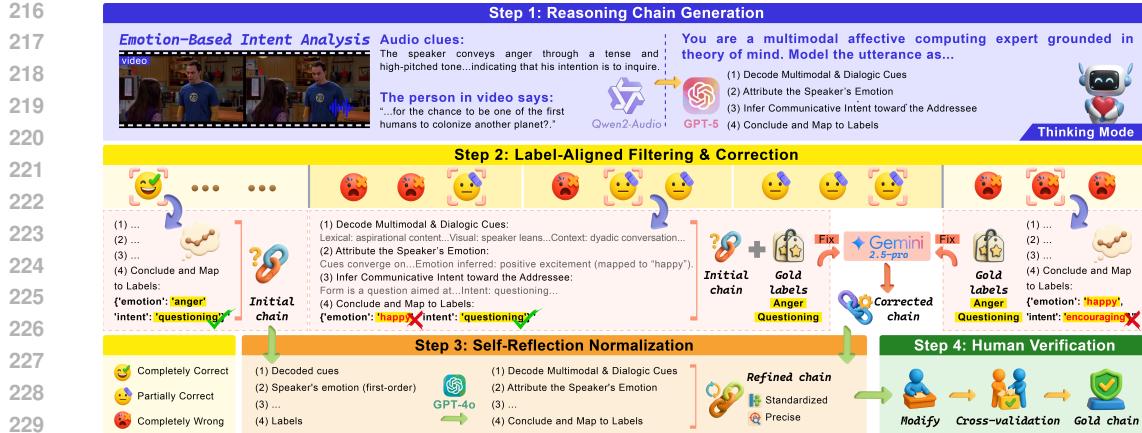


Figure 3: Our reasoning chain curation pipeline.

Understanding and Analysis, and Emotion Cognition and Reasoning. While preserving the original task names, data structures, and evaluation metrics, we unify all datasets into a standardized closed-label QA format. To ensure the benchmark’s integrity and reliability, we implement two critical enhancements without altering the source semantics. First, we institute a rigorous quality assurance protocol, wherein a stratified sample representing one-third of each dataset undergo a dual-annotator cross-review and arbitration process to validate the consistency of “prompt-answer-context” triplets. Second, to prevent data leakage and ensure a fair evaluation, we exclusively incorporate the official test splits from each source dataset. This meticulous curation process yields a benchmark with high internal consistency and a more uniform label distribution, providing a robust and systematic environment for assessing the affective capabilities of MLLMs.

4 METHODOLOGY

This section introduces TMPO, our framework for enhancing emotional understanding in MLLMs. We organize this section into four core components: task definition, ToM based prompting, a supervised fine-tuning stage, and ToM preference optimization.

4.1 TASK DEFINITION

Our objective is to leverage a Multimodal Large Language Model (MLLM) to infer an emotion-related output (o) and the underlying cognitive reasoning chain (τ) from multimodal inputs (Text T , Audio A , and Video V). This task can be formally represented as a mapping: $(T, A, V) \rightarrow (\tau, o)$. Since ground-truth reasoning chains (τ) are unavailable in existing datasets, we construct a gold-standard version to guide model generation. As illustrated in Figure 3, this is achieved through a strict four-step pipeline involving LLM-driven generation, filtering, enhancement, and correction (see Appendix D.4 for details).

4.2 TOM-STYLE PROMPTING MECHANISM

To elicit the desired reasoning chain τ , we utilize a ToM-style prompting mechanism, denoted as a task-specific prompt \mathcal{P} , to structure the expected output format. Our prompt \mathcal{P} is structured across three levels of cognitive complexity to elicit increasingly sophisticated reasoning chains. For concrete examples of these prompts, please refer to Figures 24 through 47 in Appendix F.

Level 1: First-Order Mental State Attribution. Prompts at this level guide the model to map multimodal cues to an immediate emotional state. This involves synthesizing observable signals into a first-order attribution of what the subject feels, while remaining flexible to task-specific modalities like text-image incongruities in memes.

Level 2: Relational & Contextual Mind Modeling. This level requires reasoning about the relationship between an emotional state and its context, such as a specific entity or communicative goal.

270 It builds upon Level 1 attributions by contextualizing them, for example, by linking an emotion to a
 271 specific target in aspect-based sentiment analysis.
 272

273 **Level 3: Causal Attribution & Second-Order Reasoning.** The highest level elicits reasoning
 274 about the causes of emotions and their social interpretation, involving causal inference and second-
 275 order ToM, which involves inferring what others believe about a subject’s state. Prompts guide the
 276 model to explain why an emotion arises or detect incongruity between literal and intended meaning,
 277 as in sarcasm, moving beyond what is felt to why it is felt and how it is meant to be interpreted.
 278

279 4.3 STAGE 1: TOM-ALIGNED SUPERVISED FINE-TUNING

280 To establish a foundational capability for structured reasoning, we first perform SFT on a mul-
 281 timodal backbone model. The core objective of this stage is to teach the model to generate re-
 282 sponses that not only produce the correct task-specific output but also articulate the underlying
 283 cognitive process in a clear, step-by-step manner. We explicitly wrap the intermediate reasoning
 284 steps (τ) with a `<think></think>` tag and encapsulate the final task-specific output (o) within
 285 an `<answer></answer>` tag. This structural disentanglement forces the model to learn the dis-
 286 tinct functions of cognitive deliberation and final conclusion generation. The model is trained on the
 287 native multimodal inputs (T, A, V) along with a task-specific prompt \mathcal{P} . The target for the model is
 288 to generate the complete structured string $y = <\text{think}>\tau</\text{think}><\text{answer}>o</\text{answer}>$.
 289 The fine-tuning objective is to minimize the standard negative log-likelihood loss over our dataset:
 290

$$\mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{((\mathcal{P}, T, A, V), y)}[\log \pi_\theta(y | \mathcal{P}, T, A, V)] \quad (1)$$

291 where π_θ is the policy of the MLLM with parameters θ . After this stage, the model acquires a
 292 preliminary ability to mimic structured, multi-step reasoning patterns from our curated data.
 293

294 4.4 STAGE 2: TOM-BASED PREFERENCE OPTIMIZATION WITH GRPO

295 While SFT imparts the basic structure of ToM-aligned reasoning, the generated chains may still
 296 lack factual grounding, exhibit logical inconsistencies, or fail to generalize robustly across diverse
 297 scenarios. To overcome these limitations, we further refine the model using Group-wise Reward
 298 Policy Optimization (GRPO) (DeepSeek, 2025), which enhances the model’s ability to generate
 299 reasoning chains that are structurally correct as well as cognitively plausible and factually accurate.
 300

301 The GRPO process begins by sampling N candidate outputs $\{y_1, y_2, \dots, y_N\}$ from our current
 302 policy for a given prompt, where each $y_i = <\text{think}>\tau_i</\text{think}><\text{answer}>o_i</\text{answer}>$.
 303 Each candidate is then evaluated using a custom-designed, multi-dimensional reward function $R(y)$.
 304 The resulting scores guide the policy update via the GRPO objective:

$$\max_{\pi_\theta} \mathbb{E}_{y_i \sim \pi_{\text{old}}} \left[\frac{\pi_\theta(y_i)}{\pi_{\text{old}}(y_i)} A_i \right] - \beta D_{KL}(\pi_\theta \| \pi_{\text{ref}}) \quad (2)$$

305 where A_i are the computed normalized advantage scores and the KL-divergence term penalizes
 306 deviation from a reference policy π_{ref} (typically the initial SFT model) to stabilize the optimization
 307 process. The advantage scores A_i are derived from the relative ranking or value of the rewards $R(y_i)$
 308 within the sampled group, guiding the model to prefer higher-scoring responses.
 309

310 4.4.1 REWARD ASSIGNMENT

311 The cornerstone of our GRPO strategy is a comprehensive reward function $R(y)$ that decomposes
 312 the quality of a response into four distinct, complementary components. This function is formulated
 313 as a weighted sum:
 314

$$R(y) = \mu_1 R_{\text{structure}} + \mu_2 R_{\text{content}} + \mu_3 R_{\text{process}} + \mu_4 R_{\text{consistency}} \quad (3)$$

315 These components evaluate the reasoning process from different perspectives: the **Structure Re-
 316 ward** ($R_{\text{structure}}$) enforces the correct sequence of reasoning steps; the **Content Reward** (R_{content})
 317 evaluates the final answer’s correctness; the **Process Reward** (R_{process}) encourages domain-specific
 318 language; and the **Consistency Reward** ($R_{\text{consistency}}$) penalizes logical and factual inconsistencies.
 319 The weights $\mu_{(*)}$ are calibrated to prioritize correctness and logical grounding. A full description of
 320 each component and the rationale for weight assignments are provided in the Appendix D.1.
 321

324 **Table 3: Performance on Emotion Perception and Recognition**, with ACC as the evaluation metric.
325 **Bold** and underlined indicate the best and the worst results among all models, respectively.

Category	Model	FESD	ISA	MESA	MER	MSA	OSA	SIA	SOER	SPER	SCEA	
Open Source	VideoLLaMA3-7B	61.78	46.85	21.60	52.18	64.62	67.89	35.20	45.80	41.80	42.00	
	LLaVA-One-Vision-7B	63.44	49.19	17.05	39.50	65.40	63.00	27.00	53.40	44.60	34.80	
	LLaVA-NeXT-Video-7B	54.44	<u>41.20</u>	11.85	41.31	56.11	65.80	25.03	48.60	43.40	31.20	
	Qwen2.5-VL-7B	62.00	43.15	21.25	56.75	61.21	64.20	32.60	52.80	41.80	47.20	
	InternVL3-8B	62.33	50.65	21.40	53.00	63.80	68.00	31.20	49.00	42.60	48.60	
	MiniCPM-V-2.6-8B	57.53	49.39	25.15	50.13	62.65	52.45	37.42	44.90	37.59	45.21	
	Qwen2.5-VL-32B	63.78	53.70	25.28	57.14	65.80	68.80	34.20	43.40	41.80	47.60	
	InternVL3-38B	63.22	53.58	24.00	57.16	68.80	68.80	35.73	53.46	48.00	50.60	
	R1-Omni-0.5B	42.28	51.55	23.72	50.88	<u>41.74</u>	<u>32.20</u>	<u>19.50</u>	<u>30.12</u>	<u>24.38</u>	43.60	
	HumanOmni-7B	64.44	53.77	23.82	56.75	48.20	35.20	33.90	50.31	46.20	47.60	
	Qwen2.5-Omni-7B	64.67	51.56	22.71	56.08	64.00	68.00	32.30	54.72	44.60	48.60	
	Emotion-LLaMA-7B	<u>33.11</u>	53.63	24.00	43.75	44.40	56.60	37.00	47.00	47.27	48.44	
	AffectGPT-7B	66.67	50.33	25.46	<u>38.69</u>	66.60	67.76	34.50	49.19	41.25	38.80	
Closed Source	GPT-4o	70.22	54.48	30.12	57.64	69.20	69.53	40.00	54.00	49.60	49.96	
	+ ToM prompt	74.00 (+3.78)	56.44 (+1.96)	33.18 (+3.06)	63.32 (+5.68)	74.60 (+5.40)	73.87 (+7.34)	41.34 (+1.34)	56.10 (+2.10)	54.31 (+4.71)	52.80 (+2.84)	
	GPT-4.1	71.46	56.80	31.43	64.00	72.46	69.60	40.81	66.19	55.20	53.20	
	+ ToM prompt	74.74 (+3.28)	58.06 (+1.26)	34.55 (+3.12)	66.00 (+2.00)	76.06 (+3.60)	74.80 (+8.20)	43.17 (+2.36)	69.19 (+3.00)	57.20 (+2.00)	56.01 (+2.81)	
	Gemini-2.5-Flash	67.11	55.41	27.12	58.73	68.40	70.91	38.44	57.47	56.51	50.83	
	+ ToM prompt	76.44 (+9.33)	59.01 (+3.60)	29.20 (+2.08)	64.19 (+5.46)	74.84 (+6.44)	76.03 (+5.12)	43.36 (+4.92)	63.33 (+5.86)	62.22 (+5.71)	53.04 (+2.21)	
	Gemini-2.5-Pro	78.39	61.12	28.96	72.11	74.20	75.71	46.53	67.96	65.00	55.02	
	+ ToM prompt	79.11 (+0.72)	63.13 (+2.01)	31.02 (+2.06)	72.92 (+0.81)	77.97 (+3.77)	79.19 (+3.48)	51.74 (+5.21)	69.00 (+1.04)	69.31 (+4.31)	62.25 (+7.23)	
	<i>Ours</i>	TMPO (SFT)	69.39	60.85	31.34	66.23	72.49	71.33	45.58	58.71	55.43	50.20
		+ GRPO	77.12	67.63	37.18	75.41	79.12	77.03	53.91	66.13	65.91	58.74

339 **Table 4: Performance on Emotion Understanding and Analysis.** By default, ACC is used as the
340 evaluation metric, while DPTM, MABSA, and MQE use the MF metric.

Category	Model	DPTM	E比亚	HU	IAVE	MABSA	MQE	MSD	MDER
Open Source	VideoLLaMA3-7B	31.17	14.42	44.89	62.50	61.96	23.67	51.15	42.61
	LLaVA-One-Vision-7B	31.54	11.33	<u>42.25</u>	60.37	63.89	14.02	<u>39.75</u>	33.00
	LLaVA-NeXT-Video-7B	31.28	12.37	43.50	40.50	59.40	<u>13.45</u>	44.75	<u>25.25</u>
	Qwen2.5-VL-7B	31.41	<u>11.02</u>	54.25	64.49	64.65	32.59	52.55	45.60
	InternVL3-8B	36.77	14.79	53.50	60.13	63.11	33.13	50.90	39.48
	MiniCPM-V-2.6-8B	<u>30.80</u>	14.51	49.25	55.03	61.82	27.77	39.85	43.51
	Qwen2.5-VL-32B	40.22	14.62	57.50	62.67	63.29	32.38	52.08	48.20
	InternVL3-38B	40.55	16.49	59.25	64.74	64.80	32.64	53.85	46.00
	R1-Omni-0.5B	37.54	13.45	46.25	50.03	<u>58.40</u>	29.58	47.85	29.81
	HumanOmni-7B	35.59	12.55	49.50	53.50	59.89	32.98	47.90	36.20
Closed Source	Qwen2.5-Omni-7B	31.63	11.42	53.00	55.79	61.93	31.09	44.65	37.68
	Emotion-LLaMA-7B	39.54	15.46	57.92	52.08	60.13	34.18	44.15	47.59
	AffectGPT-7B	34.17	12.27	56.50	<u>40.07</u>	60.48	30.95	42.40	37.92
	GPT-4o	42.33	17.45	60.00	66.13	64.76	35.32	55.76	49.68
	+ ToM prompt	45.90 (+3.57)	25.70 (+8.25)	66.63 (+6.63)	71.19 (+5.06)	68.30 (+3.54)	36.45 (+1.13)	61.04 (+5.28)	53.72 (+4.04)
	GPT-4.1	47.50	18.62	70.19	67.68	70.81	37.98	65.76	53.82
	+ ToM prompt	49.47 (+1.97)	27.65 (+9.03)	78.00 (+7.81)	72.91 (+5.23)	77.70 (+6.89)	40.91 (+2.93)	66.18 (+0.42)	57.85 (+4.03)
	Gemini-2.5-Flash	47.18	16.34	64.66	64.14	66.71	36.55	57.65	51.41
	+ ToM prompt	56.35 (+9.17)	24.87 (+8.53)	65.74 (+1.08)	72.63 (+8.49)	73.21 (+6.50)	38.12 (+1.57)	61.83 (+4.18)	55.56 (+4.15)
	Gemini-2.5-Pro	49.23	19.25	69.39	70.67	67.61	39.23	64.95	52.65
	+ ToM prompt	59.21 (+9.98)	28.68 (+9.43)	71.83 (+2.44)	77.20 (+6.53)	75.43 (+7.82)	44.47 (+5.24)	73.79 (+8.84)	58.90 (+6.25)
<i>Ours</i>	TMPO (SFT)	46.42	23.11	68.40	64.18	69.47	37.24	60.45	51.83
	+ GRPO	56.23	32.82	78.64	73.39	78.16	45.68	71.56	61.08

5 EXPERIMENTS

5.1 SETTINGS

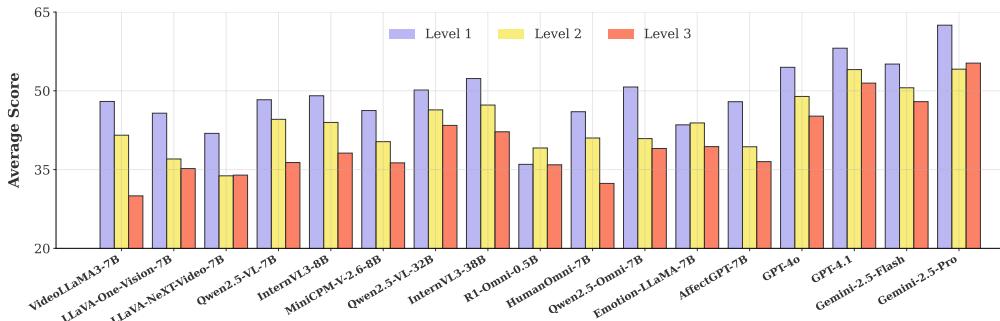
360 We use Qwen2.5-Omni-7B as our base model, trained on $8 \times$ NVIDIA A800 80 GB GPUs. For
361 our reward function, the weights $\mu_1, \mu_2, \mu_3, \mu_4$ are set to 0.4, 1.0, 0.1, and 1.0, respectively. During
362 training, videos are sampled into 16 frames. The model first undergoes SFT for two epochs with a
363 learning rate of 1e-5, followed by our GRPO strategy with a learning rate of 1e-6. For evaluation, we
364 select the checkpoint with the best validation performance and conduct a comprehensive assessment
365 on both open-source models (0.5B to 38B parameters) and closed-source models (GPT and Gemini
366 series). Further implementation details are provided in the Appendix D.3.

5.2 RESULTS AND ANALYSIS

369 The experimental results reveal significant limitations in the multimodal emotion analysis capabili-
370 ties of current MLLMs. As shown in Tables 3–5, model performance is evaluated across the three
371 hierarchical task categories. At the foundational level of EPR, only three of the ten tasks—FESD,
372 MSA, and OSA—yield average scores above 60. Even the best-performing model, Gemini-2.5-
373 Pro, achieves 78.39 on FESD, 74.20 on MSA, and 75.71 on OSA, while most other models remain
374 around the 50-point range, reflecting limited robustness. As task complexity increases, performance
375 declines markedly. In EUA level, only two tasks surpass the 60-point threshold. Most critically,
376 within the cognitively demanding ECR level, no task achieves an average score above 60. This clear
377 performance hierarchy underscores our benchmark’s ability to differentiate models across distinct
378 levels of reasoning. Taken together, the findings show that current MLLMs possess only rudimentary

378 Table 5: Performance on **Emotion Cognition and Reasoning**. By default, ACC is used as the
 379 evaluation metric, while MECPE uses the MF metric and SFA uses the EMF metric.

Category	Model	EER	EI	LR	MECPE	SD	SFA
Open Source	VideoLLaMA3-7B	45.31	<u>31.29</u>	39.56	13.09	<u>37.56</u>	<u>13.16</u>
	LLaVA-One-Vision-7B	46.88	47.40	44.60	10.83	45.20	16.22
	LLaVA-NeXT-Video-7B	<u>35.94</u>	46.80	43.10	13.05	46.36	18.42
	Qwen2.5-VL-7B	40.62	50.53	48.20	15.07	49.00	14.64
	InternVL3-8B	50.00	47.00	46.40	16.41	51.40	17.61
	MiniCPM-V-2.6-8B	39.68	33.93	50.40	16.44	51.40	21.83
	Qwen2.5-VL-32B	54.69	53.40	53.40	19.60	55.60	23.79
	InternVL3-38B	50.31	<u>50.67</u>	51.40	19.28	55.80	25.73
	R1-Omni-0.5B	39.67	43.73	43.00	16.13	53.00	19.93
	HumanOmni-7B	38.85	47.93	<u>28.40</u>	13.19	49.40	16.43
	Qwen2.5-Omni-7B	51.25	48.67	49.20	13.83	53.40	17.76
	Emotion-LLaMA-7B	42.81	49.53	53.00	19.28	52.60	19.02
	AffectGPT-7B	43.75	46.27	50.40	<u>10.81</u>	52.73	15.12
Closed Source	GPT-4o	57.81	54.13	55.83	20.93	56.60	25.77
	+ ToM prompt	60.00 (<u>+2.19</u>)	64.33 (<u>+10.20</u>)	66.00 (<u>+10.17</u>)	22.48 (<u>+1.55</u>)	64.80 (<u>+8.20</u>)	42.29 (<u>+16.52</u>)
	GPT-4.1	60.31	57.67	61.04	26.86	66.20	36.73
	+ ToM prompt	65.86 (<u>+5.55</u>)	69.00 (<u>+11.33</u>)	71.79 (<u>+10.75</u>)	28.11 (<u>+1.25</u>)	68.67 (<u>+2.47</u>)	47.75 (<u>+11.02</u>)
	Gemini-2.5-Flash	58.33	54.47	58.20	27.11	61.49	28.02
	+ ToM prompt	64.13 (<u>+5.80</u>)	63.93 (<u>+9.46</u>)	66.60 (<u>+8.40</u>)	31.43 (<u>+4.32</u>)	64.10 (<u>+2.61</u>)	45.22 (<u>+17.20</u>)
	Gemini-2.5-Pro	66.13	65.13	59.23	33.33	66.61	41.22
	+ ToM prompt	71.94 (<u>+5.81</u>)	70.27 (<u>+5.14</u>)	68.20 (<u>+8.97</u>)	37.70 (<u>+4.37</u>)	69.00 (<u>+2.39</u>)	52.78 (<u>+11.56</u>)
Ours	TMPO (SFT)	60.10	62.36	59.75	26.33	59.92	40.50
	+ GRPO	73.13	72.27	72.45	39.34	70.13	54.16



408 Figure 4: **Average performance across our HitEmotion benchmark levels.** Comparison of 17
 409 multimodal models on our HitEmotion benchmark, showing average scores for each level per model.
 410

411 emotional intelligence and continue to struggle with higher-order emotional reasoning, highlighting
 412 an urgent need for advances in both model architectures and training methodologies.

413 **Closed-Source, Tuned, and Scaled Models Lead in Emotional Intelligence.** As shown in Figure 4, proprietary models such as the GPT and Gemini series consistently outperform open-source
 414 counterparts, owing to their large parameter scales and extensive pretraining on diverse datasets.
 415 Even in the zero-shot setting, Gemini-2.5-Pro achieves 78.39 on the FESD task, while GPT-4.1
 416 reaches 71.46, both substantially ahead of most open-source models. The Gemini series further
 417 surpass GPT in multimodal emotion recognition due to its native capacity for processing video and
 418 audio inputs. Nevertheless, open-source models, though constrained by scale, can achieve com-
 419 petitive results through task-specific fine-tuning. Emotion-LLaMA-7B attains 34.18 on the MQE
 420 task, outperforming most untuned baselines. **While Emotion-LLaMA benefits from domain-specific**
 421 **fine-tuning, it still lags behind zero-shot proprietary models, indicating that a significant capabili-**
 422 **ty gap persists between existing open-source solutions and top-tier proprietary systems.** Likewise,
 423 Qwen2.5-VL-32B achieves 53.40 on the LR task, closely approaching GPT-4o’s 55.83. These find-
 424 ings show that large-scale pretraining provides the foundation for advanced emotion intelligence, but
 425 targeted fine-tuning offers open-source models a practical pathway to close the gap with proprietary
 426 systems and achieve broader accessibility.

427 **Effects of ToM Prompting on Emotional Intelligence.** Closed-source models such as GPT-4.1
 428 and Gemini-2.5-Pro gain clear advantages when ToM prompting is applied, especially on the most
 429 challenging tasks. High-capacity open-source models, including Qwen2.5-VL-32B and InternVL3-
 430 38B, also benefit, with improvements observed across most tasks and effects becoming more pro-
 431 nounced at higher levels. This suggests that models with stronger baseline reasoning are better able

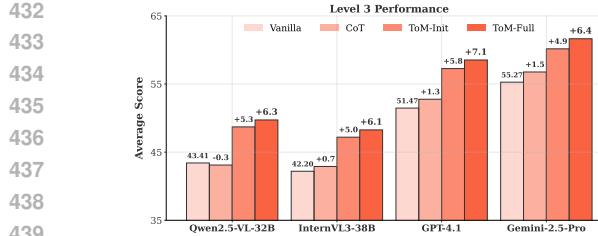


Figure 5: Ablation study on ToM-style prompting.

to leverage intermediate reasoning chains provided by ToM. By contrast, weaker models don’t exhibit consistent gains and in some cases deteriorate. For instance, VideoLLaMA3-7B drops from 61.78 to 54.18 on FESD under ToM prompting, and LLaVA-NeXT-Video-7B shows minimal improvement on IAVE, increasing only from 40.50 to 40.81. These outcomes imply that models with insufficient representational and reasoning capacity cannot stably exploit ToM, and are more prone to hallucinations that compromise the reasoning chain.

TMPO Unlocks Advanced Reasoning Capabilities. The experimental results consistently demonstrate the remarkable effectiveness of our TMPO framework, which provides a substantial performance uplift to the backbone model across all task categories. Both the SFT stage and the GRPO stage contribute to this success, with GRPO delivering a particularly significant boost in performance. Crucially, on more complex tasks requiring nuanced reasoning, our fully-optimized model not only closes the gap but often surpasses the performance of top-tier proprietary models, emerging as the top-performing model on 16 of the 24 tasks. This highlights TMPO’s exceptional capability in teaching models how to reason. Conversely, for some direct, perception-driven tasks, such as inferring emotions mainly from facial expressions, our model still lags behind some leading systems. This is likely due to the inherent limitations in the base model’s raw multimodal perception capabilities, which the reasoning-focused optimization cannot fully overcome.

5.3 ABLATION STUDIES

ToM-style Prompting. To validate our prompt engineering, we conduct an ablation study on its key design choices. We compare three strategies: (1) **CoT**, which instructs the model to “please think step-by-step”; (2) **ToM-Init**, which establishes a cognitive reasoning path without specific terminological guidance; and (3) **ToM-Full**, which enhances *ToM-Init* by explicitly integrating task-relevant ToM keywords. The results in Figure 5 show that *ToM-Init* consistently outperforms the generic *CoT*, confirming the inherent benefit of a ToM-aligned framework over unguided reasoning. In addition, *ToM-Full* yields a further substantial performance gain over *ToM-Init*, validating that the explicit integration of key ToM concepts is crucial for unlocking the model’s full reasoning potential.

Reward Components. To validate our reward function, we conduct a complementary ablation study on its individual components. We progressively add each reward to the GRPO objective, with results summarized in Table 6. Using only $R_{\text{structure}}$ establishes a baseline by enforcing a coherent format. The most substantial performance gain is observed with the introduction of R_{content} , underscoring the necessity of directly optimizing for the correct final answer. Furthermore, integrating $R_{\text{consistency}}$ yields another significant boost, validating its crucial role in eliminating logical fallacies and grounding the reasoning. Finally, R_{process} provides a complementary refinement by encouraging the use of ToM-specific terminology. This progressive enhancement demonstrates that all four components work in synergy to produce high-quality, reliable, and cognitively aligned reasoning. Additionally, we investigate the necessity of $R_{\text{structure}}$ by removing it from the full configuration. This exclusion leads to a significant performance drop. Without the explicit structural penalty, the model exhibits Format Collapse, failing to adhere to the XML schema required for extracting answers. This confirms that $R_{\text{structure}}$ acts as the foundational prerequisite that enables the effective optimization of other reward components.

6 CONCLUSION

In this work, we introduce **HitEmotion**, a hierarchical benchmark that systematically diagnoses MLLM’s capability breakpoints across increasing cognitive depths. To improve reasoning, we

Table 6: Ablation study on reward components.

$R_{\text{structure}}$	R_{content}	$R_{\text{consistency}}$	R_{process}	Average Score		
				L1	L2	L3
✓	-	-	-	56.61	54.52	52.34
✓	✓	-	-	62.63	61.07	59.31
✓	✓	✓	-	65.12	64.03	62.82
-	✓	✓	✓	56.20	55.10	55.05
✓	✓	✓	✓	65.82	64.70	63.58

486 develop **TMPO**, a novel preference optimization method that uses intermediate mental states as
487 process-level supervision. Our experiments confirm that HitEmotion exposes deep reasoning deficits
488 even in top-tier models, while TMPO substantially boosts the backbone model’s performance. The
489 optimized model surpasses leading proprietary systems on many cognitively demanding tasks by im-
490 proving end-task accuracy, faithfulness, and the coherence of its reasoning. Together, HitEmotion
491 and TMPO form a robust toolkit for evaluating and enhancing cognitive-based affective intelligence.
492 This approach pushes MLLMs beyond superficial recognition toward a deeper, more human-like
493 mental state simulation, facilitating the development of more empathetic AI.

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

7 ETHICS STATEMENT

541
 542 This work relies exclusively on publicly available datasets released by prior publications. We did not
 543 collect new human-subject data, and no personally identifiable information was used. All datasets
 544 were used in accordance with their original licenses. No institutional ethics review was required.
 545 We adhere to the ICLR Code of Ethics.

546

547 8 REPRODUCIBILITY STATEMENT

548 To facilitate reproducibility, we have released all data preprocessing scripts, model training and
 549 inference code through an anonymous repository, with the link provided in the Abstract. In addition,
 550 we have uploaded the dataset samples used in our experiments, together with detailed configuration
 551 files. We further provide a comprehensive description of our experimental setup, including model
 552 architecture, training methodology, and hyperparameter settings in Section 5.1 and Appendix D.3.
 553 These resources ensure that the experimental results in this paper can be faithfully reproduced.

554

555 REFERENCES

556 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 557 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 558 2025.

559 Simon Baron-Cohen, Alan M Leslie, and Uta Frith. Does the autistic child have a “theory of mind”? *Cognition*, 21(1):37–46, 1985.

560 Cindy Beaudoin, Élizabel Leblanc, Charlotte Gagner, and Miriam H Beauchamp. Systematic review
 561 and inventory of theory of mind measures for young children. *Frontiers in psychology*, 10:2905,
 562 2020.

563 Ruth MJ Byrne. Counterfactual thinking: From logic to morality. *Current Directions in Psychological
 564 Science*, 26(4):314–322, 2017.

565 Santiago Castro, Devamanyu Hazarika, Verónica Pérez-Rosas, Roger Zimmermann, Rada Mihalcea,
 566 and Soujanya Poria. Towards multimodal sarcasm detection (an .obviously_. perfect paper). *arXiv
 567 preprint arXiv:1906.01815*, 2019.

568 Ruirui Chen, Weifeng Jiang, Chengwei Qin, and Cheston Tan. Theory of mind in large language
 569 models: Assessment and enhancement. In *Proceedings of ACL*, pp. 31539–31558, 2025.

570 Sheng-Yeh Chen, Chao-Chun Hsu, Chuan-Chun Kuo, Ting-Hao (Kenneth) Huang, and Lun-
 571 Wei Ku. EmotionLines: An emotion corpus of multi-party conversations. *arXiv preprint
 572 arXiv:1802.08379*, 2018. Presented at LREC 2018.

573 Zhuang Chen, Jincenzi Wu, Jinfeng Zhou, Bosi Wen, Guanqun Bi, Gongyao Jiang, Yaru Cao,
 574 Mengting Hu, Yunghwei Lai, Zexuan Xiong, and Minlie Huang. Tombench: Benchmarking
 575 theory of mind in large language models, 2024. URL <https://arxiv.org/abs/2402.15052>.

576 Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Jingdong Sun, Kai Wang, Yuxiang Lin, Zheng Lian,
 577 Xiaojiang Peng, and Alexander Hauptmann. Emotion-llama: Multimodal emotion recognition
 578 and reasoning with instruction tuning. *arXiv preprint arXiv:2406.11161*, 2024.

579 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 580 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 581 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 582 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

583 Costanza Conforti, Jakob Berndt, Mohammad Taher Pilehvar, Chryssi Giannitsarou, Flavio Tox-
 584 vaerd, and Nigel Collier. Will-they-won’t-they: A very large dataset for stance detection on
 585 twitter. *arXiv preprint arXiv:2005.00388*, 2020. Accepted at ACL 2020.

594 Jean Decety and Philip L Jackson. The functional architecture of human empathy. *Behavioral and*
 595 *cognitive neuroscience reviews*, 3(2):71–100, 2004.

596

597 DeepSeek. Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. *Nature*, 645
 598 (8081):633–638, 2025.

599

600 Dimitar Dimitrov, Bishr Bin Ali, Shaden Shaar, Firoj Alam, Fabrizio Silvestri, Hamed Firooz,
 601 Preslav Nakov, and Giovanni Da San Martino. Semeval-2021 task 6: Detection of persuasion
 602 techniques in texts and images. *arXiv preprint arXiv:2105.09284*, 2021.

603

604 Patrick J Donnelly and Alex Prestwich. Identifying sentiment from crowd audio. In *2022 7th*
605 International Conference on Frontiers of Signal Processing (ICFSP), pp. 64–69. IEEE, 2022.

606

607 Gemini, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
 608 Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable
 609 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

610

611 Md Kamrul Hasan, Wasifur Rahman, Amir Zadeh, Jianyuan Zhong, Md Iftekhar Tanveer, Louis-
 612 Philippe Morency, et al. Ur-funny: A multimodal language dataset for understanding humor.
 613 *arXiv preprint arXiv:1904.06618*, 2019.

614

615 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 616 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 617 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

618

619 He Hu, Yucheng Zhou, Lianzhong You, Hongbo Xu, Qianning Wang, Zheng Lian, Fei Richard Yu,
 620 Fei Ma, and Laizhong Cui. Emobench-m: Benchmarking emotional intelligence for multimodal
 621 large language models. *arXiv preprint arXiv:2502.04424*, 2025a.

622

623 He Hu, Yucheng Zhou, Lianzhong You, Hongbo Xu, Qianning Wang, Zheng Lian, Fei Richard Yu,
 624 Fei Ma, and Laizhong Cui. Emobench-m: Benchmarking emotional intelligence for multimodal
 625 large language models, 2025b. URL <https://arxiv.org/abs/2502.04424>.

626

627 Jentse Huang, Man Ho Lam, Eric John Li, Shujie Ren, Wenxuan Wang, Wenxiang Jiao, Zhaopeng
 628 Tu, and Michael R. Lyu. Emotionally numb or empathetic? evaluating how llms feel using
 629 emotionbench, 2024. URL <https://arxiv.org/abs/2308.03656>.

630

631 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 632 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 633 *arXiv:2410.21276*, 2024.

634

635 Lee Hyun, Kim Sung-Bin, Seungju Han, Youngjae Yu, and Tae-Hyun Oh. Smile: Multi-
 636 modal dataset for understanding laughter in video with language models. *arXiv preprint*
 637 *arXiv:2312.09818*, 2023.

638

639 Yunjie Ji, Hao Liu, Bolei He, Xinyan Xiao, Hua Wu, and Yanhua Yu. Diversified multiple instance
 640 learning for document-level multi-aspect sentiment classification. In *Proceedings of the 2020 con-*
641 ference on empirical methods in natural language processing (EMNLP), pp. 7012–7023, 2020.

642

643 Dazhi Jiang, Runguo Wei, Hao Liu, Jintao Wen, Geng Tu, Lin Zheng, and Erik Cambria. A multitask
 644 learning framework for multimodal sentiment analysis. In *2021 International conference on data*
645 mining workshops (ICDMW), pp. 151–157. IEEE, 2021.

646

647 Chuanyang Jin, Yutong Wu, Jing Cao, Jiannan Xiang, Yen-Ling Kuo, Zhiting Hu, Tomer Ullman,
 648 Antonio Torralba, Joshua B Tenenbaum, and Tianmin Shu. Mmtom-qa: Multimodal theory of
 649 mind question answering. *arXiv preprint arXiv:2401.08743*, 2024.

650

651 Smith K. Khare, Victoria Blanes-Vidal, Esmaeil S. Nadimi, and U. Rajendra Acharya. Emotion
 652 recognition and artificial intelligence: A systematic review (2014-2023) and research recom-
 653 mendations. *Inf. Fusion*, 102:102019, 2024.

654

655 Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
 656 machines that learn and think like people, 2016. URL <https://arxiv.org/abs/1604.00289>.

648 Jiyoung Lee, Seungryong Kim, Sunok Kim, Jungin Park, and Kwanghoon Sohn. Context-aware
 649 emotion recognition networks. In *Proceedings of the IEEE International Conference on Computer
 650 Vision (ICCV)*, 2019.

651 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 652 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 653 arXiv:2408.03326*, 2024a.

654 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zeyun Ma, and Chunyuan Li.
 655 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv
 656 preprint arXiv:2407.07895*, 2024b.

657 Ya Li, Jianhua Tao, Linlin Chao, Wei Bao, and Yazhu Liu. CHEAVD: a chinese natural emotional
 658 audio-visual database. *Journal of Ambient Intelligence and Humanized Computing*, 8:913–924,
 659 2017. doi: 10.1007/s12652-016-0406-z.

660 Zheng Lian, Haiyang Sun, Licai Sun, Kang Chen, Mngyu Xu, Kexin Wang, Ke Xu, Yu He, Ying Li,
 661 Jinming Zhao, et al. Mer 2023: Multi-label learning, modality robustness, and semi-supervised
 662 learning. In *Proceedings of the 31st ACM international conference on multimedia*, pp. 9610–
 663 9614, 2023.

664 Zheng Lian, Haoyu Chen, Lan Chen, Haiyang Sun, Licai Sun, Yong Ren, Zebang Cheng, Bin Liu,
 665 Rui Liu, Xiaojiang Peng, et al. Affectgpt: A new dataset, model, and benchmark for emotion
 666 understanding with multimodal large language models. *ICML*, 2025.

667 Bin Liang, Ang Li, Jingqian Zhao, Lin Gui, Min Yang, Yue Yu, Kam-Fai Wong, and Ruifeng Xu.
 668 Multi-modal stance detection: New datasets and model. *arXiv preprint arXiv:2402.14298*, 2024.

669 Angeline S Lillard. Pretend play skills and the child’s theory of mind. *Child development*, 64(2):
 670 348–371, 1993.

671 Yuxiang Lin, Jingdong Sun, Zhi-Qi Cheng, Jue Wang, Haomin Liang, Zebang Cheng, Yifei Dong,
 672 Jun-Yan He, Xiaojiang Peng, and Xian-Sheng Hua. Why we feel: Breaking boundaries in emo-
 673 tional reasoning with multimodal large language models. In *Proceedings of the Computer Vision
 674 and Pattern Recognition Conference*, pp. 5196–5206, 2025.

675 Rui Liu, Haolin Zuo, Zheng Lian, Xiaofen Xing, Björn W Schuller, and Haizhou Li. Emotion and
 676 intent joint understanding in multimodal conversation: A benchmarking dataset. *arXiv preprint
 677 arXiv:2407.02751*, 2024.

678 Steven R Livingstone and Frank A Russo. The ryerson audio-visual database of emotional speech
 679 and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american
 680 english. *PloS one*, 13(5):e0196391, 2018.

681 Huaishao Luo, Lei Ji, Yanyong Huang, Bin Wang, Shenggong Ji, and Tianrui Li. Scalevlad: Improv-
 682 ing multimodal sentiment analysis via multi-scale fusion of locally descriptors. *arXiv preprint
 683 arXiv:2112.01368*, 2021.

684 Meng Luo, Hao Fei, Bobo Li, Shengqiong Wu, Qian Liu, Soujanya Poria, Erik Cambria, Mong-
 685 Li Lee, and Wynne Hsu. Panosent: A panoptic sextuple extraction benchmark for multimodal
 686 conversational aspect-based sentiment analysis. In *Proceedings of the 32nd ACM International
 687 Conference on Multimedia*, pp. 7667–7676, 2024.

688 Sijie Mai, Ying Zeng, and Haifeng Hu. Learning by comparing: Boosting multimodal affective
 689 computing through ordinal learning. In *Proceedings of the ACM on Web Conference 2025*, pp.
 690 2120–2134, 2025.

691 Shreyash Mishra, S Suryavardan, Parth Patwa, Megha Chakraborty, Anku Rani, Aishwarya Reganti,
 692 Aman Chadha, Amitava Das, Amit Sheth, Manoj Chinnakotla, Asif Ekbal, and Srijan Kumar.
 693 Memotion 3: Dataset on sentiment and emotion analysis of codemixed hindi-english memes,
 694 2023. URL <https://arxiv.org/abs/2303.09892>.

695 OpenAI. Gpt-4.1 system card. <https://openai.com/index/gpt-4-1>, 2025.

702 Samuel J Paech. Eq-bench: An emotional intelligence benchmark for large language models. *arXiv*
 703 preprint [arXiv:2312.06281](https://arxiv.org/abs/2312.06281), 2023a.
 704

705 Samuel J. Paech. Eq-bench: An emotional intelligence benchmark for large language models,
 706 2023b. URL <https://arxiv.org/abs/2312.06281>.

707 Josef Perner and Heinz Wimmer. “john thinks that mary thinks that...” attribution of second-order
 708 beliefs by 5- to 10-year-old children. *Journal of Experimental Child Psychology*, 39(3):437–471,
 709 1985.

710 Rosalind W Picard. *Affective computing*. MIT press, 2000.

711 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 712 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations.
 713 arXiv preprint [arXiv:1810.02508](https://arxiv.org/abs/1810.02508), 2018.

714

715 David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? *Behavioral and*
 716 *brain sciences*, 1(4):515–526, 1978.

717

718 Li Qu, Pinxiu Shen, Yu Yan Chee, and Luxi Chen. Teachers’ theory-of-mind coaching and children’s
 719 executive function predict the training effect of sociodramatic play on children’s theory of mind.
 720 *Social Development*, 24(4):716–733, 2015.

721

722 Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François Bonnefon, Cynthia
 723 Breazeal, Jacob W Crandall, Nicholas A Christakis, Iain D Couzin, Matthew O Jackson, et al.
 724 Machine behaviour. *Nature*, 568(7753):477–486, 2019.

725

726 Geovany A Ramirez, Tadas Baltrušaitis, and Louis-Philippe Morency. Modeling latent discrimi-
 727 native dynamic of multi-dimensional affective signals. In *International Conference on Affective*
 728 *Computing and Intelligent Interaction*, pp. 396–406. Springer, 2011.

729

730 Sahand Sabour, Siyang Liu, Zheyuan Zhang, June M. Liu, Jinfeng Zhou, Alvionna S. Sunaryo,
 731 Juanzi Li, Tatia M. C. Lee, Rada Mihalcea, and Minlie Huang. Emobench: Evaluating the emo-
 732 tional intelligence of large language models, 2024. URL <https://arxiv.org/abs/2402.12071>.

733

734 Sneheel Sarangi, Maha Elgarf, and Hanan Salam. Decompose-tom: Enhancing theory of mind
 735 reasoning in large language models through simulation and task decomposition. *arXiv preprint*
 736 *arXiv:2501.09056*, 2025.

737

738 Alexandre Schaefer, Frédéric Nils, Xavier Sanchez, and Pierre Philippot. Assessing the effectiveness
 739 of a large database of emotion-eliciting films: A new tool for emotion researchers. *Cognition and*
 740 *emotion*, 24(7):1153–1172, 2010.

741

742 Lingyun Song, Siyu Chen, Ziyang Meng, Mingxuan Sun, and Xuequn Shang. Fmsa-sc: A fine-
 743 grained multimodal sentiment analysis dataset based on stock comment videos. *IEEE Transac-*
 744 *tions on Multimedia*, 26:7294–7306, 2024a.

745

746 Shezheng Song, Chengxiang He, Shasha Li, Shan Zhao, Chengyu Wang, Tianwei Yan, Xiaopeng
 747 Li, Qian Wan, Jun Ma, Jie Yu, and Xiaoguang Mao. Mosabench: Multi-object sentiment analysis
 748 benchmark for evaluating multimodal large language models understanding of complex image,
 749 2024b. URL <https://arxiv.org/abs/2412.00060>.

750

751 Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
 752 Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences. In
 753 *Proceedings of the conference. Association for computational linguistics. Meeting*, volume 2019,
 754 pp. 6558, 2019.

755

756 Fanfan Wang, Zixiang Ding, Rui Xia, Zhaoyu Li, and Jianfei Yu. Multimodal emotion-cause pair
 757 extraction in conversations. *IEEE Transactions on Affective Computing*, 14(3):1832–1844, 2022.

758

759 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 760 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 761 *neural information processing systems*, 35:24824–24837, 2022.

756 H. Wimmer and J. Perner. Beliefs about beliefs: representation and constraining function of wrong
 757 beliefs in young children’s understanding of deception. *Cognition*, 13(1):103–28, 1983.
 758

759 Bohao Xing, Xin Liu, Guoying Zhao, Chengyu Liu, Xiaolan Fu, and Heikki Kälviäinen. Emotion-
 760 hallucer: Evaluating emotion hallucinations in multimodal large language models. *arXiv preprint*
 761 *arXiv:2505.11405*, 2025.

762 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 763 Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
 764 report. *arXiv preprint arXiv:2503.20215*, 2025. URL <https://arxiv.org/abs/2503.20215>.

765

766 Jingyuan Yang, Qirui Huang, Tingting Ding, Dani Lischinski, Danny Cohen-Or, and Hui Huang.
 767 Emoset: A large-scale visual emotion dataset with rich attributes. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 20383–20394, 2023.

768

769 Qu Yang, Mang Ye, and Bo Du. Emollm: Multimodal emotional understanding meets large
 770 language models. *CoRR*, abs/2406.16442, 2024. URL <https://doi.org/10.48550/arXiv.2406.16442>.

771

772 Xiaocui Yang, Wenfang Wu, Shi Feng, Ming Wang, Daling Wang, Yang Li, Qi Sun, Yifei Zhang,
 773 Xiaoming Fu, and Soujanya Poria. Mm-instructeval: Zero-shot evaluation of (multimodal) large
 774 language models on multimodal reasoning tasks, 2025. URL <https://arxiv.org/abs/2405.07229>.

775

776 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 777 Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 778 *arXiv:2408.01800*, 2024.

779

780 Jianfei Yu and Jing Jiang. Adapting BERT for target-oriented multimodal sentiment classification. In Sarit Kraus (ed.), *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019*, pp. 5408–5414. ijcai.org, 2019. doi: 10.24963/ijcai.2019/751. URL <https://doi.org/10.24963/ijcai.2019/751>.

781

782 Tan Yu, Jingjing Wang, Jiamin Luo, Jiawen Wang, and Guodong Zhou. Tacl: A trusted action-
 783 enhanced curriculum learning approach to multimodal affective computing. *Neurocomputing*,
 784 620:129195, 2025.

785

786 Wenmeng Yu, Hua Xu, Fanyang Meng, Yilin Zhu, Yixiao Ma, Jiele Wu, Jiyun Zou, and Kaicheng
 787 Yang. Ch-sims: A chinese multimodal sentiment analysis dataset with fine-grained annotation
 788 of modality. In *Proceedings of the 58th annual meeting of the association for computational
 789 linguistics*, pp. 3718–3727, 2020.

790

791 Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. Mosi: multimodal cor-
 792 pus of sentiment intensity and subjectivity analysis in online opinion videos. *arXiv preprint*
 793 *arXiv:1606.06259*, 2016.

794

795 AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
 796 Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
 797 graph. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
 798 tics (Volume 1: Long Papers)*, pp. 2236–2246, 2018.

799

800 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 801 Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and
 802 Deli Zhao. Videollama 3: Frontier multimodal foundation models for image and video under-
 803 standing. *arXiv preprint arXiv:2501.13106*, 2025a.

804

805 Fan Zhang, Zebang Cheng, Chong Deng, Haoxuan Li, Zheng Lian, Qian Chen, Huadai Liu, Wen
 806 Wang, Yi-Fan Zhang, Renrui Zhang, Ziyu Guo, Zhihong Zhu, Hao Wu, Haixin Wang, Yefeng
 807 Zheng, Xiaojiang Peng, Xian Wu, Kun Wang, Xiangang Li, Jieping Ye, and Pheng-Ann Heng.
 808 Mme-emotion: A holistic evaluation benchmark for emotional intelligence in multimodal large
 809 language models, 2025b. URL <https://arxiv.org/abs/2508.09210>.

810 Fan Zhang, Zebang Cheng, Chong Deng, Haoxuan Li, Zheng Lian, Qian Chen, Huadai Liu, Wen
 811 Wang, Yi-Fan Zhang, Renrui Zhang, et al. Mme-emotion: A holistic evaluation benchmark for
 812 emotional intelligence in multimodal large language models. *arXiv preprint arXiv:2508.09210*,
 813 2025c.

814 Jiaxing Zhao, Xihan Wei, and Liefeng Bo. R1-omni: Explainable omni-multimodal emotion recog-
 815 nition with reinforcement learning. *arXiv preprint arXiv:2503.05379*, 2025a. URL <https://arxiv.org/abs/2503.05379>.

816 Jiaxing Zhao, Qize Yang, Yixing Peng, Detao Bai, Shimin Yao, Boyuan Sun, Xiang Chen, Shenghao
 817 Fu, Weixuan Chen, Xihan Wei, and Liefeng Bo. Humanomni: A large vision-speech language
 818 model for human-centric video understanding. *arXiv preprint arXiv:2501.15111*, 2025b.

819 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 820 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 821 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

822 Zhihong Zhu, Xuxin Cheng, Guimin Hu, Yaowei Li, Zhiqi Huang, and Yuexian Zou. Towards multi-
 823 modal sarcasm detection via disentangled multi-grained multi-modal distilling. In *Proceedings*
 824 of the 2024 joint international conference on computational linguistics, language resources and
 825 evaluation (LREC-COLING 2024), pp. 16581–16591, 2024a.

826 Zhihong Zhu, Xianwei Zhuang, Yunyan Zhang, Derong Xu, Guimin Hu, Xian Wu, and Yefeng
 827 Zheng. Tfcd: Towards multi-modal sarcasm detection via training-free counterfactual debiasing.
 828 In *Proc. of IJCAI*, 2024b.

829 Henry Peng Zou, Vinay Samuel, Yue Zhou, Weizhi Zhang, Liancheng Fang, Zihe Song, Philip S Yu,
 830 and Cornelia Caragea. Implicitave: An open-source dataset and multimodal llms benchmark for
 831 implicit attribute value extraction. *arXiv preprint arXiv:2404.15592*, 2024.

832 Shihao Zou, Xianying Huang, and Xudong Shen. Multimodal prompt transformer with hybrid
 833 contrastive learning for emotion recognition in conversation. In *Proceedings of the 31st ACM*
 834 *International Conference on Multimedia*, pp. 5994–6003, 2023.

835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 APPENDIX OVERVIEW
865
866 • Appendix §A outlines how LLMs are utilized in the paper.
867 • Appendix §B summarizes the limitations and future work of this work.
868 • Appendix §C presents the taxonomy of the tasks and dataset details.
869 • Appendix §D provides additional implementation details.
870 • Appendix §E presents the extended experimental results.
871 • Appendix §F describes the design of ToM-style prompts.
872 • Appendix §G presents representative samples from each dataset used.
873 • Appendix §H presents representative case studies from multiple perspectives.
874
875876 A THE USE OF LLMs
877
878 In this work, LLMs are employed as an auxiliary tool for language editing. Their use is limited
879 to grammar correction, refinement of sentence structure, and improvements in textual fluency and
880 readability. LLMs are not used for any substantive aspects of the research, including the design of
881 methodology, execution of experiments, data analysis, or interpretation of results.
882883 B LIMITATIONS AND FUTURE WORK
884
885 While our TMPO framework demonstrates significant advancements in multimodal emotion reasoning,
886 we acknowledge certain limitations that outline directions for future research.
887
888 **Scope of Applicability.** Our framework is grounded in Theory of Mind (ToM), which refers to the
889 ability to attribute mental states—such as emotions, intentions, and beliefs—to oneself and others.
890 In essence, ToM involves “putting yourself in someone else’s shoes” to infer hidden mental states.
891 This stands in stark contrast to domains like mathematics, coding, and logical puzzles, where well-
892 defined ground-truth answers are readily available, enabling objective verification. Social reasoning,
893 however, is characterized by its information-asymmetric nature and increased uncertainty, where
894 objective answers are not easily obtainable. Consequently, TMPO is tailored specifically for these
895 social complexity challenges. It holds strong promise for broader Social Intelligence domains (e.g.,
896 negotiation, intent analysis) that rely on the same underlying cognitive mechanisms.
897
898 **Base Model and Modality Constraints.** Our choice of the 7B parameter backbone was driven by
899 the necessity for native omni-modal processing (Video+Audio+Text), as audio is critical for emotion
900 perception. Currently, few open-source models larger than 7B support native audio-visual integra-
901 tion. While TMPO significantly boosts cognitive reasoning (Level 2 & 3 tasks), the performance
902 on direct perception tasks (Level 1) remains bounded by the inherent sensory quality of the base
903 encoders. As larger omni-modal models become available, we anticipate that scaling up TMPO will
904 yield further gains, leveraging the stronger reasoning priors of large-scale backbones.
905
906 **Computational Efficiency.** Despite using a compact 7B model, our approach achieves performance
907 competitive with proprietary systems (e.g., Gemini-2.5-pro). This highlights the efficiency of our
908 method: by optimizing the reasoning process via RL, we extract maximal cognitive intelligence
909 from a lightweight architecture, offering a practical solution for resource-constrained deployment.
910911 C TASK TAXONOMY
912
913 **Level 1: Emotion Perception and Recognition.** This level forms the foundation of emotion intelli-
914 gence; its core function is to directly identify and classify explicit emotional states across modalities.
915 This layer evaluates MLLMs’ ability to accurately extract and integrate emotional information from
916 multimodal inputs and map it to predefined emotion categories. This capability is a prerequisite for
917 higher-level EI competencies. Specific evaluation tasks draw on several specialized datasets. For
918 Facial Expression Sentiment Detection, CH-SIMS (Yu et al., 2020) provides Chinese video clips
919 with fine-grained multimodal annotations to assess models’ capacity for integrated perception of
920 visual and linguistic emotions in realistic scenarios. EmoSet (Yang et al., 2023) is a large-scale
921

918 image-sentiment dataset that focuses on recognizing emotions from static visual content. To capture
 919 internet-specific expressions, Meme Sentiment Analysis employs the Memotion dataset (Mishra
 920 et al., 2023), which contains a large collection of memes annotated for sentiment and humor and
 921 challenges models’ ability to comprehend text–image interplay. The Multimodal Emotion Recog-
 922 nition task uses MER2023 (Lian et al., 2023) to evaluate models’ generalization in broader multimodal
 923 contexts. Opinion Sentiment Analysis uses CMU-MOSI (Zadeh et al., 2016), a corpus of monologue
 924 videos that targets sentiment polarity from speech and facial expressions. Emotion Intensity Analy-
 925 sis extends this by using the larger CMU-MOSEI dataset (Zadeh et al., 2018), which requires models
 926 not only to identify emotion categories but also to quantify their intensity. Song and Speech Emotion
 927 Recognition employ RAVDESS (Livingstone & Russo, 2018), comprising speech and song clips by
 928 professional actors with matched lexical content and emotions presented at varying intensities. Fi-
 929 nally, to assess domain-specific performance, Stock Comment Emotion Analysis uses FMSA-SC
 930 (Song et al., 2024a) to analyze emotions in financial-domain comments.

931 **Level 2: Emotion Understanding and Analysis.** This level constitutes an advanced layer of emotion
 932 intelligence, which goes beyond basic classification, requiring models to analyze emotions within
 933 complex contexts. This capability entails not only identifying emotions but also modeling
 934 their complexity and interpreting their function and intent in specific situations. Accordingly, mod-
 935 els must exhibit robust contextual awareness and relational reasoning. To evaluate these abilities,
 936 this layer incorporates several challenging tasks. For internet culture, Detection of Persuasion Tech-
 937 niques in Memes employs the SemEval-2021 Task 6 dataset (Dimitrov et al., 2021) to identify per-
 938 suasive intent in memes. Emotion-Based Intent Analysis uses the MC-EIU dataset (Liu et al., 2024)
 939 to examine links between emotional expression and users’ underlying intent. Humor Understanding
 940 employs UR-FUNNY (Hasan et al., 2019), a corpus of TED-talk clips that requires integrating lin-
 941 guistic, visual, and acoustic cues to determine whether content is humorous. Implicit Attribute Value
 942 Extraction uses ImplicitAVE (Zou et al., 2024), in which attribute values are not stated explicitly.
 943 Multimodal Stance Detection leverages the MWTWT datasets (Liang et al., 2024). The Multimodal
 944 Quintuple Extraction task, based on the PanoSent dataset (Luo et al., 2024), aims to parse five core
 945 elements of sentiment—holder, target, aspect, opinion and sentiment. Multimodal Aspect-Based
 946 Sentiment Analysis uses Twitter2015/2017 (Yu & Jiang, 2019) to evaluate models’ ability to identify
 947 fine-grained sentiment toward specific entities or aspects in text and images. Lastly, to approximate
 948 real-world social interaction, Multiparty Dialogue Emotion Recognition uses MELD (Poria et al.,
 949 2018), a corpus of multiparty conversational clips from Friends, and requires tracking the emotional
 950 dynamics of each character in multi-person interactions.

950 **Level 3: Emotion Cognition and Reasoning.** This level constitutes the highest tier of emotion
 951 intelligence, which requires models not only to perceive and understand emotions but also to reason
 952 about their causal relationships, temporal dynamics, and underlying cognitive processes. This level
 953 approximates a computational account of human emotional cognition, encompassing tasks such as
 954 explaining emotion causes, predicting consequent behaviors, and interpreting complex expressions.
 955 Evaluation at this layer focuses on models’ cognitive and reasoning abilities. Emotion Elicitation
 956 Reasoning uses FilmStim (Schaefer et al., 2010) to assess whether models can infer emotions likely
 957 to be elicited in audiences from film-clip content. Emotion Interpretation leverages EIBench (Lin
 958 et al., 2025), requiring models to explain the deeper meaning and motivation behind emotional
 959 expressions. Laughter Reasoning uses the SMILE dataset (Hyun et al., 2023), which requires models
 960 to explain the specific reason for a person’s laughter in a video, demanding a nuanced understanding
 961 of social context. Multimodal Emotion Cause Pair Extraction employs the ECF dataset (Wang et al.,
 962 2022), focusing on precisely identifying the event or cause that leads to a particular emotion from
 963 multimodal signals. Sarcasm detection uses the MUSTARD dataset (Castro et al., 2019), which
 964 contains sarcastic dialogue clips from TV shows. Models must integrate contextual, prosodic, and
 965 facial cues to identify the incongruity between an utterance’s literal meaning and its intended mean-
 966 ing. Finally, Sentiment Flip Analysis also uses the PanoSent (Luo et al., 2024), requiring models to
 967 detect shifts in emotional state during conversation and to identify the key causes of such flips.

968 C.1 DATASET DETAILS

969
 970 We benchmark a total of 22 publicly available multimodal affective computing datasets, which to-
 971 gether constitute 24 distinct tasks. The following section details each dataset included in our bench-
 972 mark, and representative samples are provided in Appendix G.

- **CH-SIMS**: CH-SIMS is constructed from 60 Chinese movies, TV series, and variety shows involving 474 unique speakers. The dataset comprises 2,281 curated video clips with an average duration of 3.67 seconds. Its key characteristic is the provision of both unimodal and multimodal annotations across text, audio, and vision under in-the-wild conditions. Labels are assigned to five sentiment categories: negative, weakly negative, neutral, weakly positive, and positive.
- **CH-SIMSV2**: CH-SIMS v2.0 extends CH-SIMS with Mandarin video data from films, TV, talk shows, interviews, vlogs, and other sources. It offers 4,402 supervised segments (2,281 relabeled and 2,121 new) alongside 10,161 unsupervised clips. Designed for text–acoustic–visual analysis, it employs 720p+ sources, active speaker detection, and strict modality separation. Labels comprise unimodal and multimodal scores mapped to five sentiment categories ranging from negative to positive.
- **EmoSet**: EmoSet is curated using 810 emotion-related keywords from social media and artistic image platforms. It comprises 3.3 million images, of which 118,102 are carefully annotated by humans. Distinguished by attribute diversity, the dataset records brightness, colorfulness, scene type, object class, facial expression, and human action. Labels follow Mikels’ model, encompassing eight categories: amusement, awe, contentment, excitement, anger, disgust, fear, and sadness.
- **Memotion**: Memotion is compiled from Reddit and Google Images through automated crawling and enriched with OCR text via Google Vision. The dataset consists of 10,000 Hinglish memes, divided into 8,500 for training, 1,500 for validation, and 1,500 for testing, with annotations verified by bilingual raters. It distinctively integrates multimodal content with code-mixed language, providing sentiment labels (positive, neutral, negative), four emotion types (humorous, sarcastic, offensive, motivational), and graded intensity levels.
- **MER2023**: MER 2023 extends CHEAVD (Li et al., 2017) by automatically collecting expression-centric video clips and releasing rigorously curated splits for community benchmarking. The corpus comprises 3,373 Train & Val samples and three test partitions—MER-MULTI, MER-NOISE, and MER-SEMI—amounting to about 68 hours of audiovisual data. Emphasizing robustness, it provides three tracks (multi-label learning, modality-noise robustness, and semi-supervised learning) and supplies annotations for six discrete emotions (neutral, anger, happiness, sadness, worry, surprise) together with a continuous valence dimension.
- **CMU-MOSI**: MOSI is a multimodal opinion-level corpus for sentiment intensity and subjectivity in online vlogs. It comprises 93 videos (89 speakers), 3,702 segments, and 2,199 opinion clips labeled on a -3...+3 scale by five AMT raters. Releases include word- and phoneme-aligned transcripts, millisecond acoustic features, frame-level visual cues, and gesture tags, with fine-grained subjectivity boundaries and high inter-annotator agreement. Baselines demonstrate that multimodal fusion—especially a word–gesture “multimodal dictionary”—outperforms text-only models.
- **CMU-MOSEI**: CMU-MOSEI is one of the largest multimodal sentiment analysis corpora, derived from 3,228 YouTube videos featuring about 1,000 speakers across 250 topics. It offers 23,453 sentence-level segments with synchronized text, audio, and visual modalities. Distinguished by its scale and fine-grained alignment, the dataset facilitates cross-modal learning. Labels cover a 7-point sentiment scale from -3 (strongly negative) to +3 (strongly positive), supporting both polarity and intensity prediction.
- **RAVDESS**: RAVDESS is a validated multimodal corpus of speech and song by 24 professional actors in North American English. Speech covers neutral/calm, happy, sad, angry, fearful, surprise, and disgust, while song includes neutral/calm, happy, sad, angry, and fearful, each at two intensity levels. The 7,356 recordings are available in audio-visual, audio-only, and video-only formats. Each clip is rated 10 times by 247 raters, demonstrating strong validity and test-retest reliability.
- **FMSA-SC**: FMSA-SC consists of 1,247 stock comment videos. Its novelty lies in offering fine-grained sentiment annotations, aligning textual phrases with corresponding visual and acoustic cues. Labels span five sentiment levels from strong negative to strong positive, establishing the first multimodal benchmark for financial sentiment analysis.

- **SemEval-2021 Task 6:** SemEval-2021 Task 6 introduces a multimodal benchmark for detecting persuasion techniques in memes collected from 26 public Facebook groups. The dataset comprises 950 memes, divided into 687 training, 63 development, and 200 testing samples. Its novelty lies in addressing propaganda in a multimodal context, offering three subtasks on text, spans, and complete memes. Annotations cover 22 persuasion techniques, encompassing both textual and visual strategies.
- **MC-EIU:** The MC-EIU dataset offers a large-scale open-source resource for multimodal emotion and intent understanding in conversation. It includes 4,970 clips with 56,012 utterances from English and Mandarin TV series, totaling 53 hours of dialogue. Distinguished by its bilingual coverage and tri-modal design (text, audio, and video), it provides seven emotion and nine intent categories, establishing the first comprehensive benchmark for joint affective analysis.
- **UR-FUNNY:** UR-FUNNY is derived from TED talks, using transcripts and laughter markers to label punchlines and contexts. The corpus covers 1,866 videos with 1,741 speakers and 417 topics, containing 8,257 humorous and 8,257 non-humorous instances. It features tri-modal alignment (text, audio, vision), speaker-independent splits, and word-level synchronization to support robust multimodal modeling, with balanced negatives sampled from the same videos. Tags: humor detection, multimodal language, TED, punchline–context modeling, laughter cues, speech–vision–text fusion.
- **ImplicitAVE:** ImplicitAVE is the first publicly available multimodal dataset for implicit attribute value extraction in e-commerce. It includes 68,604 training and 1,610 human-verified test instances across five domains and 25 attributes. Its novelty lies in curating implicit values absent from text but inferable from images or context, supplemented with product photos and rigorous human re-annotation. Labels span 158 attribute values across clothing, footwear, jewelry, food, and home products.
- **Twitter2015/2017:** The Twitter2015 and Twitter2017 datasets are benchmark corpora for target-oriented multimodal sentiment classification. Together they comprise over 5,000 tweets paired with images, annotated for sentiment polarity toward specific opinion targets. Their main contribution is enabling fine-grained alignment between textual and visual content to model sentiment at the target level. Labels span three categories—positive, negative, and neutral—supporting multimodal sentiment research.
- **PanoSent:** The PanoSent dataset establishes a large-scale benchmark for Multimodal Conversational Aspect-based Sentiment Analysis. It comprises 10,000 dialogues and over 47,000 sextuples across English, Chinese, and Spanish, integrating text, image, audio, and video. Its novelty lies in panoptic sentiment sextuple extraction and dynamic sentiment flipping analysis, capturing holders, targets, aspects, opinions, sentiments, and rationales. Annotated through both human experts and GPT-4 synthesis, it supports multi-scenario, and implicit sentiment reasoning, with labels covering fine-grained and causal dynamics.
- **MWTWT:** The MWTWT dataset originates from the Multi-modal Stance Detection project. It extends the textual Will-They-Won't-They dataset (Conforti et al., 2020) into a multimodal form by incorporating both tweets and images. The dataset comprises 1,747 annotated examples focused on corporate merger debates, where each instance is labeled as Support, Refute, Comment, or Unrelated. Its uniqueness lies in capturing stance expression across text–image pairs, enabling research on multimodal opinion dynamics. Labels highlight nuanced stance categories relevant to corporate decision-making.
- **MELD:** The MELD dataset extends the EmotionLines corpus(Chen et al., 2018) into a multimodal benchmark for emotion recognition in conversations. It contains over 13,000 utterances from 1,433 dialogues in the TV series Friends, each annotated with emotion and sentiment labels across audio, visual, and textual modalities. By emphasizing multi-party interactions, MELD captures complex phenomena such as emotion shifts and inter-speaker dependencies, providing a challenging resource for multimodal conversational emotion recognition. Tags: multimodal, emotion, conversation, multi-party.
- **FilmStim:** The FilmStim dataset is developed to provide a validated collection of emotion-eliciting film excerpts for experimental research. It comprises 70 clips selected through expert surveys and validated on 364 participants, offering a rich tool for controlled emotion induction. Its distinctive feature lies in covering both basic emotions and mixed feelings,

1080 with validated criteria including arousal, valence, and emotional discreteness. Labels span
 1081 anger, fear, sadness, disgust, amusement, tenderness, and neutral states, making it a com-
 1082 prehensive benchmark for affective studies.
 1083

- **EIBench**: The EIBench dataset is constructed from CAER-S (Lee et al., 2019) and EmoSet
 1084 to advance the task of Emotion Interpretation, which asks why an emotion arises rather than
 1085 merely identifying which emotion is present. It contains 1,615 basic samples and 50 com-
 1086 plex cases, requiring models to generate causal explanations across explicit and implicit
 1087 triggers. Its key contribution is the Coarse-to-Fine Self-Ask (CFS) annotation pipeline,
 1088 which combines Vision-Language Models with human refinement to capture nuanced,
 1089 context-dependent emotional reasoning. Labels span four primary emotions—angry, sad,
 1090 happy, and excited—with complex subsets featuring overlapping emotional states.
- **SMILE**: The SMILE dataset is curated from TED talks and sitcoms to explore the task
 1091 of Video Laugh Reasoning. It comprises 887 clips with 4,434 annotated segments, each
 1092 paired with textual explanations of why laughter occurs. Its unique focus lies in audience
 1093 laughter, reducing subjectivity and highlighting multimodal cues across visual, acoustic,
 1094 and semantic channels. Labels provide free-form explanations rather than fixed classes,
 1095 enabling deeper analysis of social intelligence.
- **ECF**: The ECF dataset is constructed from the sitcom Friends to support the task of Multi-
 1096 modal Emotion-Cause Pair Extraction in Conversations. It contains 1,344 conversations
 1097 with 13,509 utterances and 9,272 annotated emotion–cause pairs. Its distinguishing fea-
 1098 ture lies in integrating text, audio, and video modalities to capture diverse causal triggers,
 1099 categorized as events, opinions, emotional influence, and greetings. Emotion labels follow
 1100 Ekman’s six basic categories: anger, disgust, fear, joy, sadness, and surprise.
- **MUStARD**: The MUStARD dataset is constructed from TV shows such as Friends, The
 1101 Big Bang Theory, The Golden Girls, and Sarcasmholics Anonymous to advance multi-
 1102 modal sarcasm detection. It comprises 690 balanced video clips evenly divided between
 1103 sarcastic and non-sarcastic utterances, each paired with transcripts and conversational con-
 1104 text. Its distinctive contribution lies in integrating text, audio, and visual cues with dialogue
 1105 history, enabling nuanced analysis of incongruity across modalities. Labels are binary: sar-
 1106 castic versus non-sarcastic.

D IMPLEMENTATION DETAILS

D.1 REWARD COMPONENT DETAILS

1115 **Weight Assignment Rationale.** The weights for the reward function are set based on a principled
 1116 hierarchy reflecting each component’s importance. We set $\mu_2 = 1.0$ (content) and $\mu_4 = 1.0$ (con-
 1117 sistency) to assign the highest priority to the foundational requirements of correctness and logical-
 1118 factual grounding. A moderate weight of $\mu_1 = 0.4$ (structure) ensures compliance with the reason-
 1119 ing format without overriding correctness. Lastly, a minimal weight of $\mu_3 = 0.1$ (process) serves as
 1120 a gentle stylistic nudge, guiding the model towards domain-specific language while mitigating the
 1121 risk of superficial keyword stuffing. The four components of our comprehensive reward function are
 1122 detailed as follows:

- **Structure Reward ($R_{\text{structure}}$)**: This reward fosters the generalization of structured rea-
 1123 soning by enforcing the unique cognitive framework required for each training task. The
 1124 reward system is task-aware: it first identifies the task from the input prompt to select the
 1125 corresponding reasoning template. The reward $R_{\text{structure}}$ is then calculated as the proportion
 1126 of required step headers that are correctly present and sequenced within the reasoning chain
 τ .
- **Content Reward (R_{content})**: This reward evaluates the correctness of the final output o by
 1127 comparing it against the ground-truth label using the standard evaluation metric appropriate
 1128 for each task’s specific format. This ensures the model’s reasoning ultimately leads to a
 1129 factually accurate conclusion.
- **Process Reward (R_{process})**: This reward promotes the articulation of reasoning using ToM-
 1130 specific language. We curate a lexicon of ToM-related keywords (e.g., “belief,” “intention,”

1134 “desire”). R_{process} is calculated as the normalized count of unique keywords from this
 1135 lexicon found within τ . This encourages the model not just to follow a structural template,
 1136 but to fill it with rich language reflecting genuine cognitive reasoning.
 1137

- 1138 • **Consistency Reward ($R_{\text{consistency}}$)**: To penalize logical fallacies, this reward assesses the
 1139 consistency of the reasoning chain τ . We employ a large language model to detect two
 1140 types of inconsistencies: (1) *Internal Contradictions*, where the chain contradicts itself,
 1141 and (2) *External Contradictions*, where the chain describes a fact inconsistent with the
 1142 input multimodal context. $R_{\text{consistency}}$ is a penalty-based reward, yielding a high value (1.0)
 1143 for consistent chains and a significantly lower value (0.1) if any contradictions are found.
 1144

1144 The computational formulas for the four reward components are defined as follows:
 1145

1146 **Structure Reward ($R_{\text{structure}}$)**. This reward calculates the proportion of required structural ele-
 1147 ments that are correctly present and sequenced. Let \mathcal{S}_{req} be the ordered sequence comprising the
 1148 mandatory XML delimiters and the task-specific step headers $\{h_k\}$ derived from the prompt:
 1149

$$1150 \quad \mathcal{S}_{\text{req}} = [\text{<think>}, h_1, \dots, h_K, \text{</think>}, \text{<answer>}, \text{</answer>}] \quad (4)$$

1152 Let $\text{idx}(s, y)$ denote the index of token s in y . We define a validity indicator $v_i \in \{0, 1\}$ for the i -th
 1153 token in \mathcal{S}_{req} :

$$1155 \quad v_i = \mathbb{I}[\text{idx}(s_i, y) \neq \infty \wedge \text{idx}(s_i, y) > \max(\{\text{idx}(s_j, y) \mid j < i, v_j = 1\} \cup \{-1\})] \quad (5)$$

1156 This recursive condition strictly enforces the topological order. Let $N = |\mathcal{S}_{\text{req}}|$ be the total number
 1157 of required elements. The reward is the proportion:
 1158

$$1159 \quad R_{\text{structure}}(y) = \frac{1}{N} \sum_{i=1}^N v_i \quad (6)$$

1163 **Content Reward (R_{content})**. This evaluates the correctness using the standard metric $\mathcal{M}_{\text{task}}$ (e.g.,
 1164 Accuracy, F1) comparing the extracted answer o to the ground truth o^* :

$$1166 \quad R_{\text{content}}(y) = \mathcal{M}_{\text{task}}(o, o^*) \quad (7)$$

1169 **Process Reward (R_{process})**. Consistent with the description of a normalized count, let \mathcal{V}_{ToM} be the
 1170 ToM lexicon and S_{τ} be the set of unique tokens in τ . We use a normalization factor η :

$$1172 \quad R_{\text{process}}(y) = \min \left(1.0, \frac{|S_{\tau} \cap \mathcal{V}_{\text{ToM}}|}{\eta} \right) \quad (8)$$

1175 **Consistency Reward ($R_{\text{consistency}}$)**. To rigorously enforce logical soundness, we employ an LLM
 1176 Judge to detect inconsistencies, the Judge evaluates two logical predicates:
 1177

- 1178 • $J_{\text{int}}(\tau)$: Returns *True* if the reasoning chain is free of internal contradictions.
- 1179 • $J_{\text{ext}}(\tau, \text{Input})$: Returns *True* if the reasoning chain is consistent with the inputs (T, A, V) .
 1180

1181 The final reward applies a penalty if either condition fails (i.e., if any contradiction is found):
 1182

$$1184 \quad R_{\text{consistency}}(y) = \begin{cases} 1.0 & \text{if } J_{\text{int}}(\tau) \wedge J_{\text{ext}}(\tau, \text{Input}) \\ 0.1 & \text{otherwise} \end{cases} \quad (9)$$

1187 D.2 HYPERPARAMETER SENSITIVITY AND ABLATION ANALYSIS

1188 To empirically validate the optimality of our reward weight configuration ($\mu_1 = 0.4, \mu_2 = 1.0, \mu_3 =$
 1189 $0.1, \mu_4 = 1.0$), we conducted a fine-grained grid search. We report the Average Score (mean of L1,
 1190 L2, and L3 tasks) to quantify the optimization objective.

1192 **Sensitivity to Process Reward (μ_{process}).** We fixed $\mu_{\text{struct}} = 0.4$ and varied μ_{process} . The results
 1193 are shown in Table 7.

1194 Table 7: Ablation study on Process Reward Weight.
 1195

μ_{process}	0.0	0.1	0.3	0.5
Score	63.99	64.70	63.65	62.31

1200 The configuration $\mu = 0.0$ serves as the baseline without stylistic constraints. Introducing a minimal
 1201 weight ($\mu = 0.1$) yields the optimal performance. However, increasing the weight beyond this point
 1202 ($\mu \geq 0.3$) leads to a degradation in reasoning quality, as the model prioritizes keyword frequency
 1203 over logical correctness.

1205 **Sensitivity to Structure Reward (μ_{struct}).** We fixed $\mu_{\text{process}} = 0.1$ and varied μ_{struct} . Table 8
 1206 illustrates the impact of structural constraints.

1208 Table 8: Ablation on Structure Reward Weight.
 1209

μ_{struct}	0.1	0.4	0.7	1.0
Score	61.25	64.70	64.10	63.80

1214 At $\mu = 0.1$, the penalty is insufficient to enforce the XML schema, leading to Format Collapse and
 1215 parsing failures. Conversely, high weights ($\mu \geq 0.7$) cause Structural Rigidity, where the model
 1216 strictly adheres to templates at the cost of the reasoning flexibility required for complex multimodal
 1217 inputs, resulting in diminished accuracy.

1218 **The Necessity of Structure Reward** To address the question of whether $R_{\text{structure}}$ is essential for
 1219 the synergy of other components, we conducted an exhaustive ablation study by removing $R_{\text{structure}}$
 1220 from the full reward configuration. We evaluated the model on both task performance (Average
 1221 Score) and Format Compliance (the rate of successfully parsed outputs).

1223 **Table 9: Impact of removing Structure Reward.** The “w/o Structure” setting retains Content,
 1224 Consistency, and Process rewards but removes the explicit structural constraint.

Configuration	R_{struct}	R_{cont}	R_{consist}	R_{proc}	Average Score	Format Compliance
Full Model	✓	✓	✓	✓	64.70	98.2%
w/o R_{struct}	-	✓	✓	✓	55.45	62.3%

1231 As shown in Table 9, removing $R_{\text{structure}}$ leads to a significant performance degradation. Although
 1232 the model is initialized with SFT, relying solely on R_{content} acts only as an implicit constraint (i.e.,
 1233 receiving zero reward if parsing fails). Our results indicate that this implicit signal is insufficient
 1234 to counteract the variance during RL exploration. The model exhibits Format Collapse (Compli-
 1235 ance drops to 62.3%), where it progressively deviates from the strict XML schema. Since structural
 1236 validity is a prerequisite for extracting answers and evaluating correctness, this collapse fundamen-
 1237 tally destabilizes the optimization process, confirming that $R_{\text{structure}}$ is a necessary condition for the
 1238 efficacy of the overall framework.

1239 D.3 EXPERIMENT SETTINGS

1240 During inference, we allow 16–64 frames with a resolution of up to $256 \times 28 \times 28$ pixels per frame.
 1241 Training hyperparameters for both SFT and GRPO stages, including learning rate, scheduler, batch

1242 Table 10: Key hyperparameters for the SFT and GRPO training stages.
1243

1244 Hyperparameter	1245 SFT Stage	1246 GRPO Stage
1247 Base Model	1248 Qwen2.5-Omni-7B	1249 SFT-tuned Model
1250 Learning Rate	1251 1.0×10^{-5}	1252 1.0×10^{-6}
1253 LR Scheduler	1254 Cosine	1255 Constant
1256 Warmup Ratio	1257 0.1	1258 N/A
1259 Epochs	1260 2	1261 1
1262 Batch Size	1263 16	1264 8
1265 Precision	1266 bfloat16	1267 bfloat16
1268 Rollout Samples (N)	1269 N/A	1270 8
1271 KL Coefficient	1272 N/A	1273 0.001

1254
1255 size, and rollout settings, are summarized in Table 10. The model uses a context window of 8,192
1256 tokens and a maximum generation length of 4,096. The closed-source models included in our eval-
1257 uation are accessed through their official APIs.

1258 We evaluate a total of 17 MLLMs, comprising 4 closed-source and 13 open-source models. A brief
1259 introduction to each model is provided below:

- 1260 • **VideoLLaMA3** (Zhang et al., 2025a) is the third-generation VideoLLaMA series designed
1261 for both image and video understanding. It introduces flexible resolution tokenization and
1262 efficient frame pruning to reduce redundancy while preserving temporal context. With
1263 a progressive training pipeline, VideoLLaMA3 achieves strong performance on diverse
1264 video reasoning and description benchmarks, particularly in long-horizon and fine-grained
1265 temporal comprehension.
- 1266 • **LLaVA-One-Vision** (Li et al., 2024a) is a unified vision–language model built to handle
1267 images, documents, and charts under one interface. Its transfer framework distills knowl-
1268 edge from multiple pretrained encoders into a single instruction-tuned backbone. LLaVA-
1269 One-Vision enables broad task coverage and practical deployment in real-world multimodal
1270 applications, ranging from general VQA to structured document analysis.
- 1271 • **LLaVA-NeXT-Video** (Li et al., 2024b) extends the LLaVA-NeXT series to video under-
1272 standing. It employs interleaved frame encoding with preference-optimized alignment to
1273 enhance temporal reasoning and dialogue quality. LLaVA-NeXT-Video proves effective for
1274 video QA and conversational analysis in long-horizon scenarios, delivering more coherent
1275 and context-aware responses.
- 1276 • **Qwen2.5-VL** (Bai et al., 2025) is a vision–language model family developed by Alibaba. It
1277 combines dynamic-resolution processing, fine-grained localization, and progressive align-
1278 ment to support documents, diagrams, and long videos. Qwen2.5-VL delivers reliable
1279 perception and reasoning across diverse multimodal benchmarks, excelling in tasks that
1280 require detailed and structured visual understanding.
- 1281 • **InternVL3** (Zhu et al., 2025) is the third-generation InternVL family, integrating stronger
1282 vision encoders with Qwen2.5 backbones. It introduces efficient token reduction and im-
1283 proved preference optimization for reasoning-heavy tasks. InternVL3 achieves notable
1284 improvements in OCR, document analysis, and complex visual understanding, offering a
1285 more balanced trade-off between efficiency and accuracy.
- 1286 • **MiniCPM-V** (Yao et al., 2024) is a lightweight multimodal LLM optimized for on-device
1287 use, including phones and edge platforms. With efficient visual encoding, multilingual
1288 tuning, and system-level optimizations, it supports privacy-preserving and energy-efficient
1289 interaction. MiniCPM-V enables practical multimodal deployment in resource-constrained
1290 environments, making advanced perception and reasoning accessible on everyday devices.
- 1291 • **R1-Omni** (Zhao et al., 2025a) is an omni-modal model focused on emotion reasoning.
1292 Building on HumanOmni, it integrates reinforcement learning with verifiable rewards to
1293 enhance interpretability. R1-Omni generates step-by-step explanations that clarify how vi-
1294 sual and acoustic cues shape predictions, leading to improved generalization in challenging
1295 emotional tasks.

- **HumanOmni** (Zhao et al., 2025b) is a human-centric omni-multimodal model trained for emotion and interaction understanding. It employs dedicated perception branches for faces, bodies, and interactions, fused with audio signals. HumanOmni excels in human-related applications such as emotion recognition and social behavior analysis, enabling more fine-grained comprehension of real-world scenarios.
- **Qwen2.5-Omni** (Xu et al., 2025) is a flagship omnimodal model that unifies text, images, audio, and video while generating both text and speech. Its Thinker–Talker architecture and efficient streaming design support real-time interaction. Qwen2.5-Omni enables speech-in/speech-out multimodal assistants for continuous audiovisual tasks, combining responsiveness with versatile cross-modal reasoning.
- **Emotion-LLaMA** (Cheng et al., 2024) is a multimodal model tailored for affective computing. It fuses audio, visual, and text encoders through a two-stage training pipeline for recognition and explanation. Emotion-LLaMA advances emotion-aware understanding across diverse modalities, supporting both accurate recognition and interpretable rationale generation.
- **AffectGPT** (Lian et al., 2025) is a multimodal emotion model that introduces MER-Caption, the largest fine-grained emotion dataset gathered via a novel model-based crowdsourcing strategy. It also embeds pre-fusion operations for enhanced cross-modal alignment and proposes MER-UniBench, a unified evaluation benchmark tailored to natural language emotion understanding. AffectGPT optimizes emotion-aware reasoning and descriptive understanding in multimodal LLMs.
- **GPT-4o** (Hurst et al., 2024) is one of OpenAI’s latest multimodal large language models, offering APIs that can seamlessly handle text, vision, and audio. It shows strong performance across numerous benchmarks, with notable progress in perception, comprehension, and multimodal reasoning. Built on a unified design that supports smooth cross-modal integration, GPT-4o is efficient and versatile, making it well-suited for practical multimodal applications.
- **GPT-4.1** (OpenAI, 2025) is a recently released multimodal model that emphasizes both cost-effectiveness and reliability. It enhances programming capabilities and instruction following, while also introducing an extended context window of up to one million tokens. With this improvement, GPT-4.1 is able to deliver more robust long-context reasoning and significantly improve task efficiency.
- **Gemini-2.5-Flash** (Comanici et al., 2025) is a multimodal reasoning model designed to balance speed, performance, and resource usage. It introduces selective reasoning modes, enabling users to trade off accuracy and efficiency depending on their needs. With its fine-grained control of reasoning steps, Gemini-2.5-Flash achieves competitive results across a broad range of multimodal understanding benchmarks.
- **Gemini-2.5-Pro** (Comanici et al., 2025) is the flagship model in the Gemini family, advancing multimodal understanding with stronger perception and reasoning. It supports longer contexts and delivers improved cross-modal alignment, while excelling in domains such as programming, mathematics, and scientific analysis. Equipped with more capable reasoning abilities, Gemini-2.5-Pro is optimized for demanding, knowledge-intensive tasks.

D.4 TRAINING DATA GENERATION

Our training data generation methodology follows a multi-stage pipeline designed to produce high-fidelity reasoning chains. The pipeline integrates the generative capacity of advanced MLLMs with automated filtering and human-in-the-loop verification, ensuring both efficiency and reliability. It comprises four key stages, as outlined below.

Step 1: Reasoning Chain Generation. For each sample, we generate initial reasoning pathways by providing GPT-5 with the video input and our tailored prompt, augmented by an auxiliary report from Qwen2-Audio that identifies and supplies additional information present in the soundtrack. This module extracts salient audio cues—such as crying, laughter, changes in tone, speech rate, pauses, emphasis and stress, or voice trembling—which are integrated with the visual and textual context according to the task. GPT-5 then produces three independent candidate reasoning chains from these multimodal inputs.

1350
 1351 **Step 2: Label-Aligned Filtering & Correction.** The generated reasoning chains are automatically
 1352 evaluated by comparing their predicted labels against the ground-truth answers. Based on this com-
 1353 parison, each sample is categorized into one of three groups. If at least one of the three candidate
 1354 chains produces a final output that exactly matches the ground truth, it is preserved as correct and
 1355 advanced to the next stage. If all three chains fail, the sample is classified as completely incorrect
 1356 and flagged for intensive correction. In multi-label tasks, chains that correctly predict part of the
 1357 labels but miss others are deemed partially incorrect; for these cases, the full original reasoning path
 1358 together with the gold-standard labels are provided to the correction model, which is instructed to
 1359 revise only the erroneous parts while keeping the valid portions intact.

1360 **Step 3: Self-Reflection Normalization.** The correction process is carried out using Gemini-2.5-
 1361 pro, which generates either a fully new reasoning chain for completely incorrect samples or targeted
 1362 revisions for partially incorrect ones. Once all corrected and initially correct chains are consolidated,
 1363 they undergo a final self-reflection step with GPT-4o. In this phase, the model standardizes format-
 1364 ting, ensures logical clarity, and refines the articulation of ToM concepts, resulting in coherent and
 1365 high-quality reasoning outputs.

1366 **Step 4: Human Verification.** As the final stage, the complete set of refined reasoning chains
 1367 undergoes human-in-the-loop verification. Two computer science PhD students manually review
 1368 each chain with the primary goal of cross-validating the reasoning against the source multimodal
 1369 information. If any factual inaccuracies, logical inconsistencies, or misinterpretations of the visual
 1370 context are detected, the annotators intervene to edit and finalize the chain, thereby ensuring its
 1371 correctness and reliability.

1372 Our data generation pipeline yields a two-stage training corpus tailored for reasoning alignment.
 1373 First, in the SFT stage, we collect approximately 10,000 high-quality prompt-response pairs to
 1374 bootstrap the model’s output format, reasoning style, and baseline behavior. Then, in the GRPO
 1375 stage, we select another 10,000 prompt instances emphasizing tasks with complex reasoning struc-
 1376 ture and high diversity; these prompts serve as seeds for multiple rollouts and pairwise preference
 1377 comparisons to train a policy aligned to human judgments.

1378 D.5 EVALUATION SPECIFICATIONS

1379 Our evaluation framework is designed to rigorously assess model performance across a spectrum of
 1380 emotion-related tasks. We employ a set of four primary metrics: ACC (Accuracy), WAF (Weighted
 1381 Average F1-score), MF (Micro F1 score), and EMF (Exact Match F1). The evaluation is stratified
 1382 into three hierarchical levels, with the complexity of tasks and the sophistication of metrics increas-
 1383 ing at each level.

1384 **Level 1: Emotion Perception and Recognition.** This foundational level focuses on the direct
 1385 perception and classification of emotional and sentimental states from various data modalities. It
 1386 encompasses 10 tasks: FESD, ISA, MESA, MER, MSA, OSA, SIA, SOER, SPER, and SCEA.
 1387 These tasks are measured using ACC and WAF.

1388 • **ACC** offers a direct measure of overall correctness by calculating the ratio of correct pre-
 1389 dictions to the total number of samples.

$$1390 \text{ACC} = \frac{\text{Number of Correct Predictions}}{\text{Total Number of Samples}} \quad (10)$$

1391 • **WAF** addresses class imbalance by computing the F1 score for each class and averaging
 1392 them, weighted by the number of true instances per class ($|S_c|$). This yields a more bal-
 1393 anced assessment, especially when certain emotion labels are underrepresented. For a set
 1394 of classes C and a total sample size of $|S|$, it is defined as:

$$1395 \text{WAF} = \sum_{c \in C} \frac{|S_c|}{|S|} \times F1_c \quad (11)$$

1396 where the F1 score for an individual class, $F1_c$, is the harmonic mean of its precision and
 1397 recall:

$$1398 F1_c = 2 \times \frac{\text{Precision}_c \times \text{Recall}_c}{\text{Precision}_c + \text{Recall}_c} \quad (12)$$

1404
 1405 **Level 2: Emotion Understanding and Analysis.** This intermediate level requires a deeper analytical capability, moving from simple recognition to understanding context and implicit attributes.
 1406 It includes eight tasks: DPTM, EBIA, HU, IAVE, MABSA, MQE, MSD, MDER. For the classification tasks at this level, we continue to utilize ACC and WAF. Additionally, to provide a holistic
 1407 performance view on more granular tasks, we also use the MF score.
 1408

1409

- 1410 • **MF** assesses performance by aggregating the counts of true positives (TP), false positives
 1411 (FP), and false negatives (FN) across all classes before computing the final score. This
 1412 makes it equivalent to overall accuracy in single-label classification but provides a robust
 1413 metric for more complex scenarios.

1414

$$\text{Precision}_\mu = \frac{\sum_{c \in C} \text{TP}_c}{\sum_{c \in C} (\text{TP}_c + \text{FP}_c)} \quad (13)$$

1415

$$\text{Recall}_\mu = \frac{\sum_{c \in C} \text{TP}_c}{\sum_{c \in C} (\text{TP}_c + \text{FN}_c)} \quad (14)$$

1416

$$\text{MF} = 2 \times \frac{\text{Precision}_\mu \times \text{Recall}_\mu}{\text{Precision}_\mu + \text{Recall}_\mu} \quad (15)$$

1417
 1418 **Level 3: Emotion Cognition and Reasoning.** This highest level probes the model’s ability to
 1419 perform complex reasoning and generate human-like explanations. It comprises six tasks: EER,
 1420 EI, LR, MECPE, SD, and SFA. The evaluation methodology at this level is diversified to match
 1421 the task requirements. For classification-oriented tasks like SD, we continue to employ ACC and
 1422 WAF. For tasks that demand the generation of free-form text, we also use two specialized evaluation
 1423 strategies: EMF for answers with a high degree of expected lexical overlap, and a sophisticated
 1424 LLM-based evaluation for open-ended, creative responses.
 1425

1426

- 1427 • **EMF** is designed for generative tasks where the desired output is a specific, factual ex-
 1428 planation, such as in LR. It quantifies the word-level overlap between the predicted and
 1429 ground-truth texts after normalization. The texts are treated as a bag of words, and the F1
 1430 score is computed based on the common words. Let $\text{Words}_{\text{pred}}$ and Words_{gt} be the set of
 1431 words in the prediction and ground truth, respectively.

1432

$$\text{Precision}_{\text{word}} = \frac{|\text{Words}_{\text{pred}} \cap \text{Words}_{\text{gt}}|}{|\text{Words}_{\text{pred}}|} \quad (16)$$

1433

$$\text{Recall}_{\text{word}} = \frac{|\text{Words}_{\text{pred}} \cap \text{Words}_{\text{gt}}|}{|\text{Words}_{\text{gt}}|} \quad (17)$$

1434

$$\text{EMF} = 2 \times \frac{\text{Precision}_{\text{word}} \times \text{Recall}_{\text{word}}}{\text{Precision}_{\text{word}} + \text{Recall}_{\text{word}}} \quad (18)$$

1435

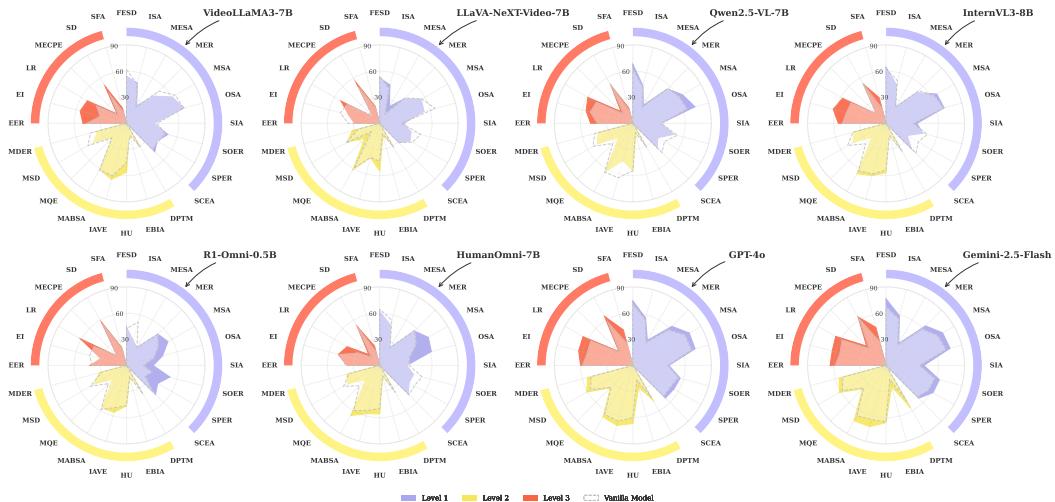
- 1436 • **LLM-based Semantic Evaluation** is employed for open-ended tasks like EI, where multi-
 1437 ple, distinct answers can be valid and word-level overlap metrics like EMF are inadequate.
 1438 In this paradigm, we leverage GPT-4.1 as a semantic judge. The LLM is prompted to com-
 1439 pare the meaning of the generated response against the ground-truth answer(s), assessing
 1440 its semantic relevance, plausibility, and correctness. This approach transcends word-level
 1441 matching to capture the true quality of nuanced and diverse generative outputs.

1442 In practice, some models fail to strictly follow the required output format due to differences in
 1443 instruction-following ability. In such cases, we also employ GPT-4.1 to normalize and extract the
 1444 intended answers, ensuring consistent and fair evaluation across all models.
 1445

1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 E EXTENDED EXPERIMENTS RESULTS

1460 In this section, we extend our evaluation across all three hierarchical levels and introduce metrics
 1461 beyond accuracy for a more in-depth analysis. We report results in two parts: Tables 11-13 es-
 1462 tablish baseline performance of vanilla models, while Tables 14-16 show the effects of integrating
 1463 ToM prompting. Complementing these tables, Figure 6 provides per-task radar visualizations that
 1464 directly contrast each representative model *with* vs. *without* ToM prompting across all benchmark
 1465 tasks, revealing heterogeneous impacts—substantial improvements on some tasks and occasional
 1466 regressions on others. In addition, we provide task-level comparisons on labeled tasks, where fine-
 1467 grained F1 scores across n emotion categories are reported for all MLLMs; visual summaries appear
 1468 in Figures 8–21. We also include confusion matrices for Gemini-2.5-Pro (Figures 22 and 23).



1485 **Figure 6: Per-task radar performance for representative models.** Each polar chart groups tasks
 1486 by benchmark level and juxtaposes vanilla model vs. ToM-prompted results.

1487 E.1 TASK-LEVEL PERFORMANCE CHARACTERISTICS OF CURRENT MLLMs.



1502 **Figure 7: Score distributions by task and level.** For each task, the left box corresponds to the
 1503 vanilla model and the right box to the ToM Prompting.

1504 Figure 7 summarizes the performance of MLLMs across tasks spanning three hierarchical levels.
 1505 Current models perform relatively well on explicit emotion recognition: for example, Gemini-2.5-
 1506 Pro scores 78.39 on FESD, and GPT-4.1 reaches 71.46, demonstrating that large-scale MLLMs can
 1507 classify direct emotional cues with reasonable accuracy. However, performance declines sharply on
 1508 tasks requiring implicit inference or complex contextual reasoning. In EBIA, even Gemini-2.5-Pro
 1509 attains only 19.25, underscoring the difficulty of intent recognition. Likewise, in structured extrac-
 1510 tion tasks such as MQE and MECPE, most models achieved MF scores below 30. These results
 1511 reveal persistent weaknesses in handling implicit cues, causal reasoning, structured extraction, and
 higher-level pragmatic understanding such as dialogue dynamics, sarcasm, and humor.

1512
1513

E.2 VERIFICATION OF LLM-BASED EVALUATION RELIABILITY

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

To validate the reliability of GPT-4.1 in our evaluation pipeline, we consider two representative scenarios. First, for free-form generation tasks in Level 3, we randomly sample one-third of the dataset and compare GPT-4.1’s judgments with human annotations. Agreement is measured using accuracy and Cohen’s Kappa. GPT-4.1 achieves 98.5% agreement with a Cohen’s Kappa of 0.98, demonstrating near-human reliability. Second, for classification-style tasks where models often fail to follow the required output format, we employ GPT-4.1 to normalize predictions and extract the intended labels. On a stratified sample of 2,000 such cases, GPT-4.1’s extracted labels match human interpretations with 96.5% agreement and a Cohen’s Kappa of 0.96. These results confirm that GPT-4.1 provides a consistent and trustworthy mechanism both for semantic judgment and for standardizing model outputs, ensuring fair and reliable evaluation across diverse task types.

1524
1525
1526

Table 11: Performance on **Emotion Perception and Recognition** using vanilla model. **Bold** and underlined indicate the best and the worst results among all models, respectively.

Method	FESD		ISA		MESA		MER		MSA		OSA		SIA		SOER		SPER		SCEA	
	ACC	WAF																		
<i>Open-Source Model</i>																				
VideoLLaMA3-7B	61.78	61.51	46.85	45.68	21.60	18.28	52.18	50.91	64.62	63.91	67.89	69.98	35.20	34.04	45.80	41.03	41.80	36.02	42.00	41.50
LLaVA-One-Vision-7B	63.44	64.84	49.19	48.14	17.05	16.35	39.50	36.84	65.40	66.87	63.00	66.74	27.00	25.30	53.40	46.14	44.60	34.04	34.80	37.07
LLaVA-NeXT-Video-7B	54.44	58.53	41.20	37.44	11.85	9.63	41.31	38.42	56.11	61.65	65.80	70.53	25.03	20.28	48.60	46.10	43.40	40.54	31.20	32.72
Qwen2.5-VL-7B	62.00	64.90	43.15	43.13	21.25	16.97	56.75	57.24	61.21	65.79	64.20	71.71	32.60	29.54	52.80	44.18	41.80	32.13	47.20	45.77
InternVL3-8B	62.33	64.45	50.65	49.25	21.40	18.69	53.00	53.92	63.80	67.73	68.00	72.90	31.20	24.38	49.00	46.55	42.60	35.86	48.60	40.02
MiniCPM-V-2.6-8B	57.53	61.12	49.39	47.78	25.15	18.85	50.13	50.01	62.65	66.85	52.45	62.35	37.42	34.11	44.90	38.73	37.59	30.17	45.21	38.93
Qwen2.5-VL-32B	63.78	67.18	53.70	52.18	25.28	22.43	57.14	50.10	65.80	69.85	68.80	74.02	34.20	27.38	43.40	39.66	41.80	32.13	47.60	47.73
InternVL3-38B	63.22	66.39	53.58	52.53	24.00	22.63	57.16	58.57	68.80	71.62	68.80	74.98	35.73	31.92	53.46	48.58	48.00	40.18	50.60	42.28
R1-Omni-0.5B	42.28	46.78	51.55	52.18	23.72	24.68	50.88	49.29	47.74	47.95	32.20	42.27	19.50	16.04	20.12	26.87	24.38	22.10	43.60	33.28
HumanOmni-7B	64.67	66.68	53.74	53.81	23.82	24.97	56.75	53.65	48.24	49.47	46.20	44.54	33.98	34.28	50.31	40.74	46.20	37.32	47.60	31.13
Qwen2.5-Omni-7B	64.67	68.03	51.56	52.85	22.71	23.55	56.08	56.67	64.00	68.74	68.00	74.78	32.30	28.03	54.72	49.10	44.60	34.69	48.60	49.56
Emotion-LLaMA-7B	33.11	34.74	53.63	53.31	24.00	10.58	43.75	43.70	44.40	49.78	36.60	63.08	37.00	38.27	47.00	45.75	47.27	36.13	48.44	49.69
AffectGPT-7B	66.67	65.47	50.33	50.93	25.46	12.78	38.69	39.16	66.60	66.56	67.76	69.66	34.50	34.67	49.19	50.87	41.25	34.89	38.80	40.63
<i>Closed-Source Model</i>																				
GPT-4o	70.22	72.58	54.48	54.50	30.12	23.11	57.64	59.10	69.20	72.57	69.53	76.78	40.00	38.98	54.00	53.94	49.60	47.01	49.96	49.87
GPT-4.1	71.46	73.75	56.80	57.15	31.43	27.20	64.00	64.40	72.46	75.01	69.60	77.14	40.81	41.34	66.19	65.64	55.20	50.91	53.20	54.24
Gemini-2.5-Flash	67.11	70.03	55.41	54.89	27.12	25.23	58.73	60.66	68.40	67.48	70.91	76.35	38.44	36.58	57.47	55.47	56.51	57.27	50.83	52.47
Gemini-2.5-Pro	78.39	78.22	61.12	61.29	28.96	25.52	72.11	72.78	74.20	76.24	75.71	79.66	46.53	43.93	67.96	67.27	65.00	63.08	55.02	51.40

Table 12: Performance on **Emotion Understanding and Analysis** using vanilla model.

Method	DPTM		EBIA		HU		IAVE		MABSA		MQE		MSD		MDER	
	MF	ACC	ACC	WAF	ACC	WAF	MF	WAF	MF	MF	ACC	WAF	ACC	WAF	ACC	WAF
<i>Open-Source Model</i>																
VideoLLaMA3-7B	31.17	14.42	44.89	34.80	62.50	61.46	61.96	23.67	51.15	42.61	40.71					
LLaVA-One-Vision-7B	31.54	11.33	42.25	29.96	60.37	58.70	63.89	14.02	39.75	33.00	26.52					
LLaVA-NeXT-Video-7B	31.28	12.37	43.50	39.54	40.50	35.38	59.40	13.45	44.75	25.25	19.08					
Qwen2.5-VL-7B	31.41	11.02	54.25	54.19	64.49	63.16	64.65	32.59	52.55	45.60	44.18					
InternVL3-8B	36.77	14.79	53.50	53.25	60.13	57.03	63.11	33.13	50.90	39.48	34.80					
MiniCPM-V-2.6-8B	30.80	14.51	49.25	47.32	55.03	54.04	61.82	27.77	39.85	43.51	41.38					
Qwen2.5-VL-32B	40.22	14.62	57.50	57.43	62.67	62.20	63.29	32.38	52.08	48.20	48.64					
InternVL3-38B	40.55	16.49	59.25	59.19	64.74	63.82	64.80	32.64	53.85	46.00	44.88					
R1-Omni-0.5B	37.54	13.45	46.25	45.41	50.03	50.92	58.40	29.58	47.85	29.81	28.24					
HumanOmni-7B	35.59	12.55	49.50	49.50	53.50	53.67	59.89	32.98	47.90	36.20	33.30					
Qwen2.5-Omni-7B	31.63	11.42	53.00	52.77	55.79	53.85	61.93	31.09	44.65	37.68	35.09					
Emotion-LLaMA-7B	39.54	15.46	57.92	57.92	52.08	52.04	60.13	34.18	44.15	47.59	48.04					
AffectGPT-7B	34.17	12.27	56.50	56.47	40.07	37.99	60.48	30.95	42.40	37.92	37.28					
<i>Closed-Source Model</i>																
GPT-4o	42.33	17.45	60.00	59.92	66.13	65.87	64.76	35.32	55.76	49.68	50.64					
GPT-4.1	47.50	18.62	70.19	70.17	67.68	67.78	70.81	37.98	65.76	53.82	53.82					
Gemini-2.5-Flash	47.18	16.34	64.66	64.38	64.14	64.45	66.71	36.55	57.65	51.41	53.07					
Gemini-2.5-Pro	49.23	19.25	69.39	66.98	70.67	70.99	67.61	39.23	64.95	52.65	53.59					

1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

1567

1568

1569

1570

1571 Table 13: Performance on **Emotion Cognition and Reasoning** using vanilla model.

1572

Method	EER		EI		LR		MECPE		SD		SFA	
	ACC	WAF	LLM	LLM	MF	ACC	WAF	EMF	ACC	WAF	EMF	
<i>Open-Source Model</i>												
VideoLLaMA3-7B	45.31	37.85	<u>31.29</u>	39.56	13.09	<u>37.56</u>	36.90	<u>13.16</u>				
LLaVA-One-Vision-7B	46.88	42.43	47.40	44.60	10.83	45.20	40.37	16.22				
LLaVA-NeXT-Video-7B	<u>35.94</u>	<u>28.33</u>	46.80	43.10	13.05	46.36	<u>36.37</u>	18.42				
Qwen2.5-VL-7B	40.62	29.14	50.53	48.20	15.07	49.00	45.43	14.64				
InternVL3-8B	50.00	44.72	47.00	46.40	16.41	51.40	51.37	17.61				
MiniCPM-V-2.6-8B	39.68	34.54	33.93	50.40	16.44	51.40	39.60	21.83				
Qwen2.5-VL-32B	54.69	51.41	53.40	53.40	19.60	55.60	45.73	23.79				
InternVL3-38B	50.31	46.63	50.67	51.40	19.28	55.80	55.58	25.73				
R1-Omni-0.5B	39.67	38.65	43.73	43.00	16.13	53.00	52.91	19.93				
HumanOmni-7B	38.85	30.76	47.93	<u>28.40</u>	13.19	49.40	49.15	16.43				
Qwen2.5-Omni-7B	51.25	51.98	48.67	<u>49.20</u>	13.83	53.40	53.25	17.76				
Emotion-LLaMA-7B	42.81	40.53	49.53	53.00	19.28	52.60	52.45	19.02				
AffectGPT-7B	43.75	45.75	46.27	50.40	<u>10.81</u>	52.73	52.64	15.12				
<i>Closed-Source Model</i>												
GPT-4o	57.81	59.48	54.13	55.83	20.93	56.60	53.61	25.77				
GPT-4.1	60.31	65.49	57.67	61.04	26.86	66.20	65.09	36.73				
Gemini-2.5-Flash	58.33	60.29	54.47	58.20	27.11	61.49	59.76	28.02				
Gemini-2.5-Pro	66.13	65.41	65.13	59.23	33.33	66.61	66.62	41.22				

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604 Table 14: Performance on **Emotion Perception and Recognition** with proposed ToM prompting.

1605

Method	FESD		ISA		MESA		MER		MSA		OSA		SIA		SOER		SPER		SCEA	
	ACC	WAF																		
<i>Open-Source Model</i>																				
VideoLLaMA3-7B	54.18	58.59	47.93	45.43	23.01	21.83	44.22	45.47	60.58	63.72	68.15	72.62	31.80	32.38	49.09	43.23	40.60	34.29	45.83	44.63
LLaVA-One-Vision-7B	52.88	57.03	46.61	46.41	22.65	22.33	42.64	42.08	56.56	61.87	64.71	69.60	25.10	23.89	32.15	29.15	25.26	20.03	40.40	38.10
LLaVA-NeXT-Video-7B	52.16	54.83	45.55	43.84	22.23	20.12	39.88	35.57	55.10	59.02	52.71	56.98	27.00	26.42	37.11	35.55	40.29	38.48	31.20	<u>33.77</u>
Qwen2.5-VL-7B	67.50	68.58	44.71	42.47	23.90	21.34	55.95	56.54	65.66	68.52	73.80	75.77	32.33	32.36	48.48	42.59	33.06	26.29	39.20	39.99
InternVL3-8B	64.29	66.87	45.96	43.51	21.57	20.05	49.75	51.66	67.15	70.02	68.94	74.29	35.29	35.65	43.95	44.15	27.91	25.08	41.20	43.08
MiniCPM-V-2.6-8B	48.60	53.23	45.59	45.13	25.88	18.44	43.08	43.25	64.85	67.42	70.75	72.82	29.61	28.71	30.77	28.32	20.12	15.60	44.00	44.88
Qwen2.5-VL-32B	66.67	72.38	55.30	54.12	28.50	23.79	59.00	59.17	69.40	72.31	72.40	75.26	38.62	38.21	47.78	47.31	45.20	41.16	48.55	48.63
InternVL3-38B	68.22	70.61	54.15	51.77	25.88	19.88	58.65	59.66	71.60	73.99	72.00	75.09	38.21	37.76	55.02	53.73	49.40	45.18	51.80	52.20
R1-Omni-0.5B	43.80	47.35	<u>39.62</u>	<u>38.14</u>	23.48	21.19	50.77	50.34	54.85	<u>57.39</u>	<u>42.83</u>	<u>48.94</u>	30.48	30.76	41.43	40.81	41.28	40.90	47.00	46.06
HumanOmni-7B	62.00	65.21	47.97	53.99	22.98	19.77	55.83	51.92	64.40	67.76	61.40	67.93	31.10	31.04	40.31	30.63	39.00	30.12	46.41	46.51
Qwen2.5-Omni-7B	64.22	68.01	49.64	47.46	25.20	22.80	56.53	56.07	68.20	71.34	61.00	65.98	33.10	32.41	44.97	43.69	32.26	27.29	50.40	43.26
Emotion-LLaMA-7B	60.31	63.47	34.96	39.78	<u>20.20</u>	14.72	39.00	31.89	62.32	66.65	43.80	52.53	26.94	<u>21.60</u>	38.80	31.05	23.20	<u>14.98</u>	<u>29.20</u>	37.52
AffectGPT-7B	<u>40.14</u>	<u>42.71</u>	46.84	46.28	21.23	19.75	30.65	<u>29.77</u>	55.62	59.10	60.60	61.30	31.55	31.64	<u>28.30</u>	24.62	21.12	21.10	39.60	39.53
<i>Closed-Source Model</i>																				
GPT-4o	74.00	75.74	56.44	56.41	33.18	30.36	63.32	63.73	74.60	75.75	73.87	75.89	41.34	41.05	56.10	55.15	54.31	54.12	52.80	50.49
GPT-4.1	74.74	76.20	58.06	58.59	34.55	28.36	66.00	65.96	76.06	77.31	74.80	77.65	43.17	44.07	69.19	69.71	57.20	52.92	56.01	52.37
Gemini-2.5-Flash	76.44	74.73	59.01	57.85	29.20	28.86	64.19	65.09	74.84	74.97	76.03	77.54	43.36	42.33	63.33	63.69	62.22	64.06	53.04	53.72
Gemini-2.5-Pro	79.11	79.42	63.13	66.89	31.02	28.86	72.92	73.05	77.97	78.91	79.19	80.85	51.74	51.75	69.00	69.99	69.31	69.62	62.25	62.85

1616

1617

1618

1619

1620
1621
16221623 Table 15: Performance on **Emotion Understanding and Analysis** with proposed ToM prompting.
1624

Method	DPTM	EBIA	HU		IAVE		MABSA	MQE	MSD	MDER	
	MF	ACC	ACC	WAF	ACC	WAF	MF	MF	ACC	ACC	WAF
<i>Open-Source Model</i>											
VideoLLaMA3-7B	26.75	12.42	56.00	53.07	66.41	65.15	61.37	22.86	43.60	34.49	31.83
LLaVA-One-Vision-7B	24.72	10.21	51.01	47.85	64.44	62.80	60.66	20.18	39.15	34.90	31.62
LLaVA-NeXT-Video-7B	25.89	14.53	54.50	53.84	40.81	38.32	61.32	24.18	43.12	32.58	31.66
Qwen2.5-VL-7B	20.12	12.27	54.25	46.41	44.17	41.84	64.30	22.79	46.90	41.30	40.16
InternVL3-8B	29.76	12.88	56.75	53.00	62.08	59.09	66.67	22.42	44.00	38.00	34.01
MiniCPM-V-2.6-8B	29.36	14.52	56.75	55.85	70.26	69.13	61.42	22.63	38.15	39.37	38.28
Qwen2.5-VL-32B	41.20	16.12	65.25	64.04	75.46	74.33	68.37	33.56	59.95	49.64	49.17
InternVL3-38B	40.28	19.08	64.75	61.07	67.45	66.05	66.50	34.21	55.65	48.83	43.30
R1-Omni-0.5B	26.21	14.57	46.43	38.71	55.74	56.76	56.29	22.24	42.78	31.95	28.42
HumanOmni-7B	26.14	12.89	55.64	54.24	57.21	57.75	66.39	22.61	42.49	38.80	36.13
Qwen2.5-Omni-7B	25.67	11.20	49.75	34.08	57.23	55.08	64.54	25.38	46.60	35.55	32.56
Emotion-LLaMA-7B	25.25	10.91	50.00	33.33	32.51	25.84	58.52	22.37	39.51	39.06	32.11
AffectGPT-7B	25.93	11.98	52.31	43.61	43.40	42.90	63.29	26.16	44.39	35.21	34.94
<i>Closed-Source Model</i>											
GPT-4o	45.90	25.70	66.63	66.51	71.19	70.92	68.30	36.45	61.04	53.72	55.24
GPT-4.1	49.47	27.65	78.00	77.68	72.91	72.75	77.70	40.91	66.18	57.85	59.83
Gemini-2.5-Flash	56.35	24.87	65.74	65.57	72.63	72.01	73.21	38.12	61.83	55.56	57.36
Gemini-2.5-Pro	59.21	28.68	71.83	71.42	77.20	77.78	75.43	44.47	73.79	58.90	60.13

1642
1643
1644
1645
1646
16471648 Table 16: Performance on **Emotion Cognition and Reasoning** with proposed ToM prompting.
1649

Method	EER		EI	LR	MECPE	SD		SFA
	ACC	WAF	LLM	LLM	MF	ACC	WAF	EMF
<i>Open-Source Model</i>								
VideoLLaMA3-7B	50.00	43.30	55.00	51.80	15.18	48.88	32.09	18.29
LLaVA-One-Vision-7B	40.62	37.90	52.00	50.60	12.42	50.10	33.67	19.22
LLaVA-NeXT-Video-7B	28.81	25.97	36.67	51.28	10.37	53.60	53.36	20.33
Qwen2.5-VL-7B	48.44	43.90	55.53	59.59	19.30	50.00	44.91	18.33
InternVL3-8B	54.69	51.70	62.73	57.56	15.32	51.70	38.03	30.54
MiniCPM-V-2.6-8B	39.68	34.41	60.13	56.80	17.46	48.35	40.16	19.99
Qwen2.5-VL-32B	58.42	52.10	57.16	64.21	22.14	61.53	53.24	34.91
InternVL3-38B	55.50	51.33	55.32	57.13	23.33	64.72	57.54	33.61
R1-Omni-0.5B	41.67	43.23	30.59	60.72	15.02	56.68	56.21	21.22
HumanOmni-7B	37.50	36.90	49.07	43.09	17.62	51.60	38.61	22.94
Qwen2.5-Omni-7B	40.62	35.36	50.07	63.60	13.65	46.20	42.36	30.65
Emotion-LLaMA-7B	38.71	44.02	38.73	59.80	12.38	49.60	35.47	31.07
AffectGPT-7B	32.26	37.83	46.73	60.08	12.83	53.51	52.50	40.49
<i>Closed-Source Model</i>								
GPT-4o	60.00	63.41	64.33	66.00	22.48	64.80	62.49	42.29
GPT-4.1	65.86	77.98	69.00	71.79	28.11	68.67	68.63	47.75
Gemini-2.5-Flash	64.13	75.71	63.93	66.60	31.43	64.10	64.08	45.22
Gemini-2.5-Pro	71.94	75.73	70.27	68.20	37.70	69.00	68.63	52.78

1666
1667
1668
1669
1670
1671
1672
1673

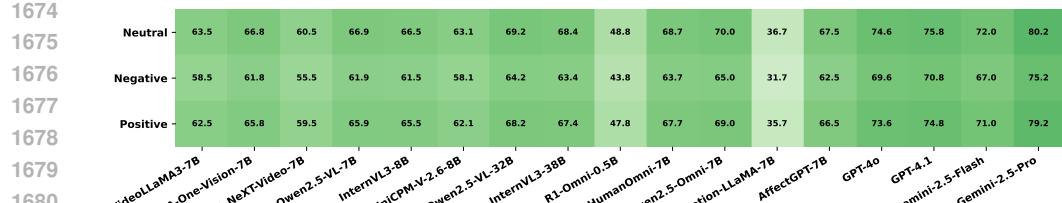


Figure 8: Task-level Performance Comparison on FESD task.

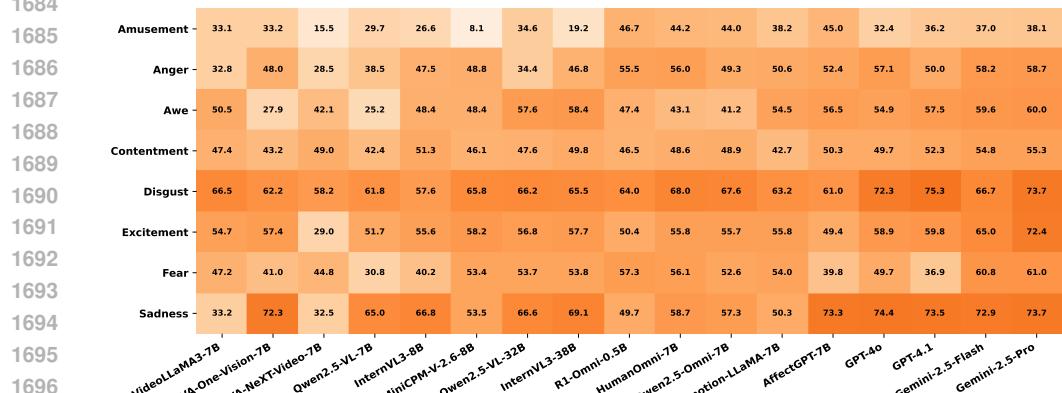


Figure 9: Task-level Performance Comparison on ISA task.



Figure 10: Task-level Performance Comparison on MESA task.

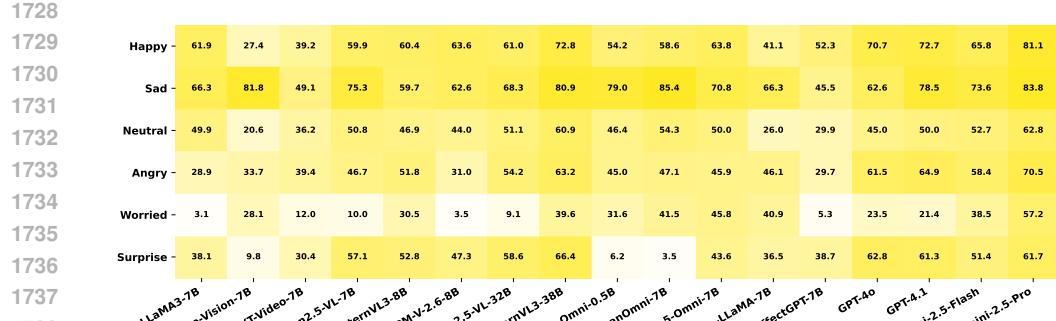


Figure 11: Task-level Performance Comparison on MER task.

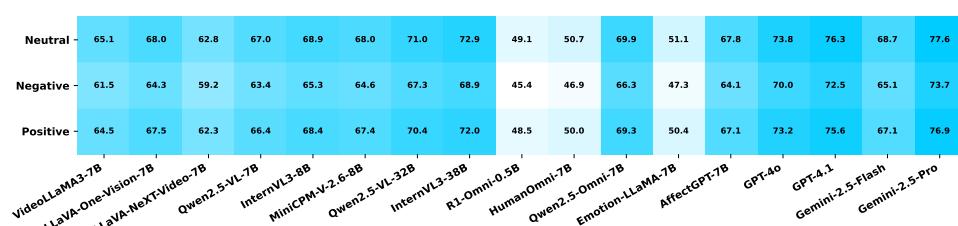


Figure 12: Task-level Performance Comparison on MSA task.

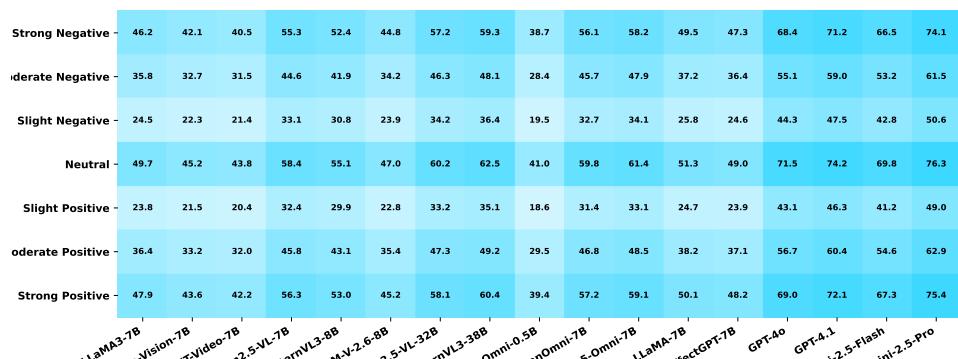


Figure 13: Task-level Performance Comparison on SIA task.

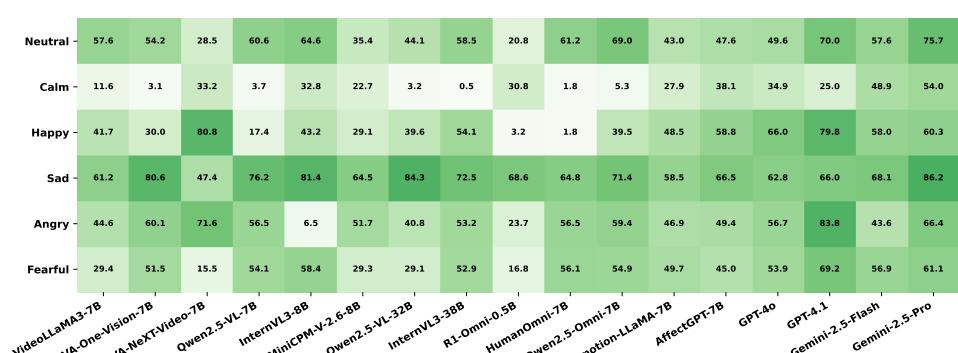


Figure 14: Task-level Performance Comparison on SOER task.

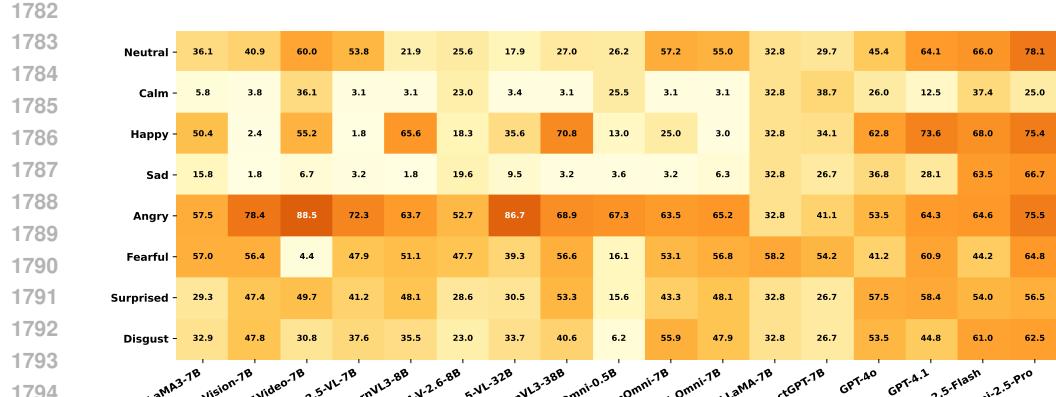


Figure 15: Task-level Performance Comparison on SPER task.

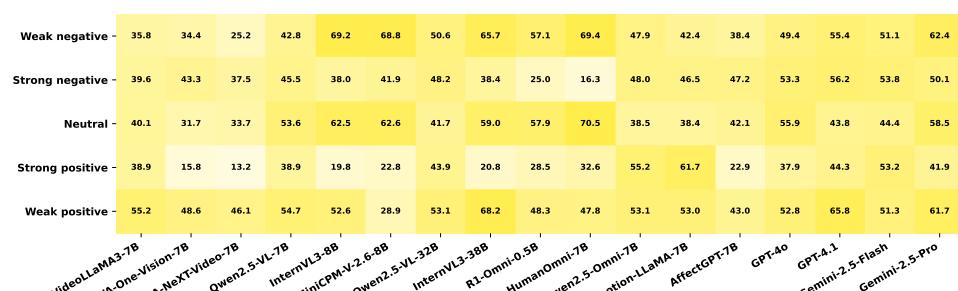


Figure 16: Task-level Performance Comparison on SCEA task.

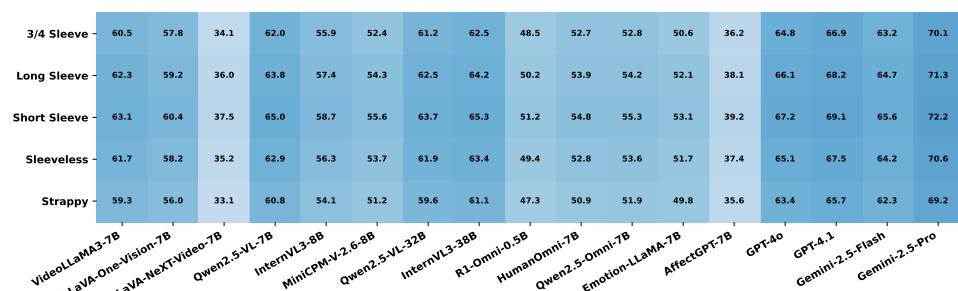


Figure 17: Task-level Performance Comparison on IAVE task.

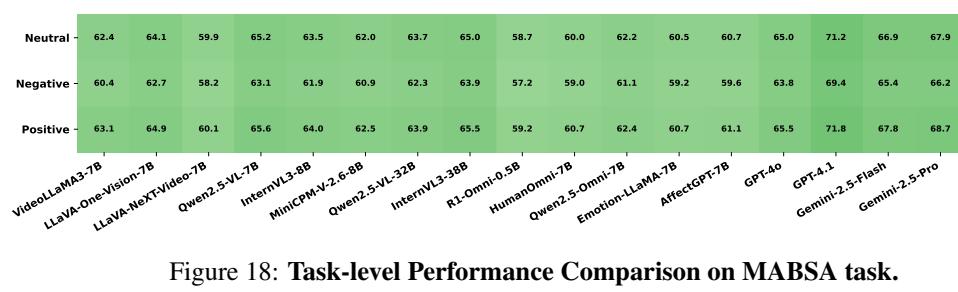


Figure 18: Task-level Performance Comparison on MABSA task.

Figure 19: Task-level Performance Comparison on MSD task.

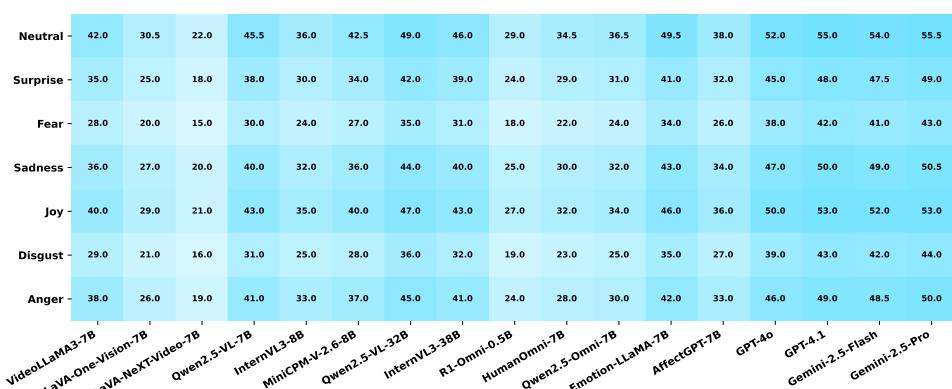


Figure 20: Task-level Performance Comparison on MDER task.

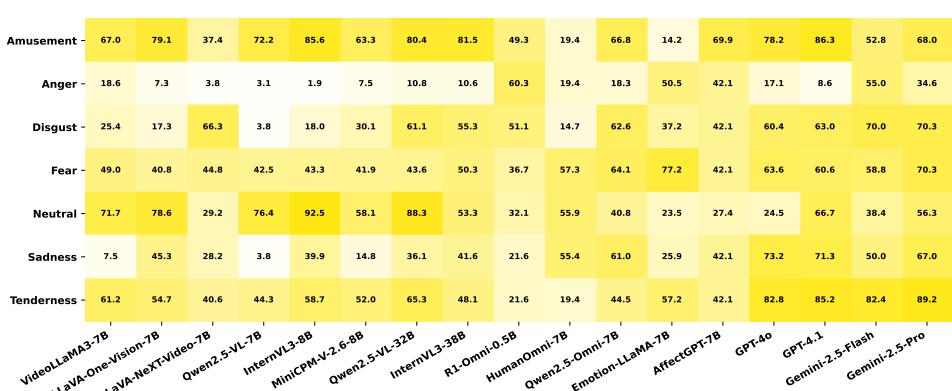


Figure 21: Task-level Performance Comparison on EER task.

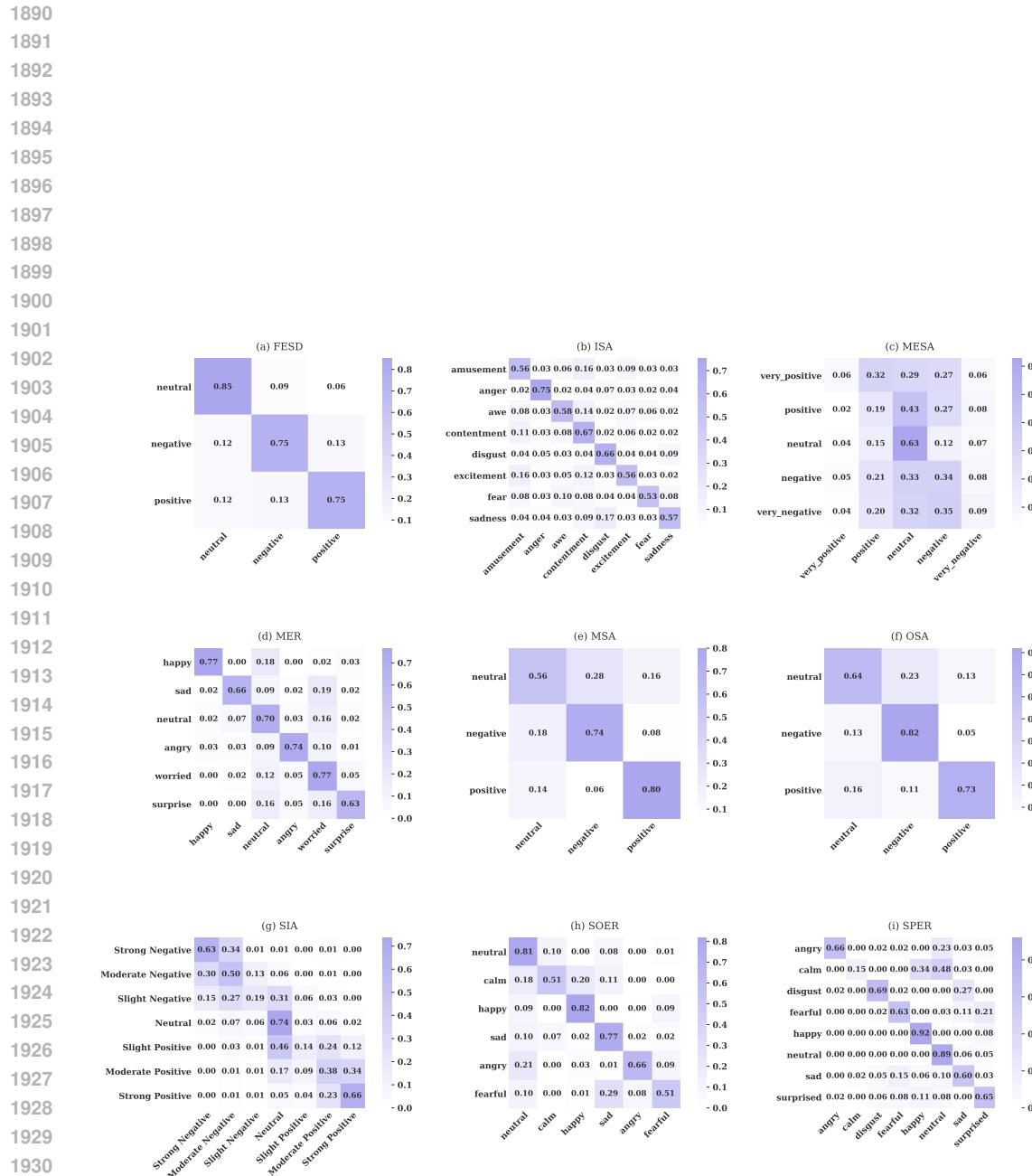


Figure 22: Confusion matrices for Gemini-2.5-Pro on each task (Part 1).

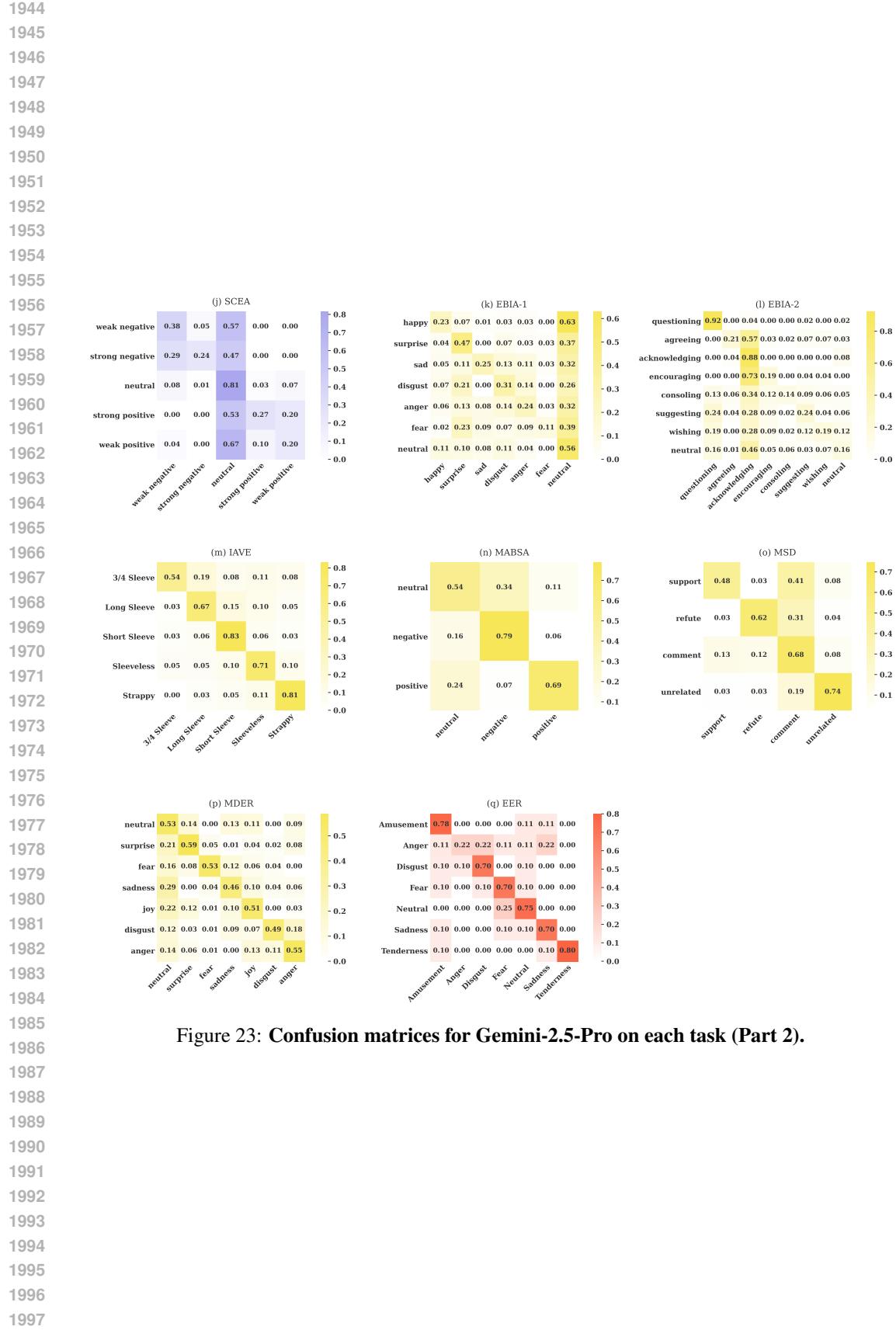


Figure 23: Confusion matrices for Gemini-2.5-Pro on each task (Part 2).

1998 F DESIGN OF ToM-STYLE PROMPTS

1999
 2000 We adopt a unified ToM-style prompting scaffold across three levels, aligned with the progression of our framework. Level 1 operationalizes first-order affect attribution through a four-
 2001 stage chain—Perceptual Simulation, Cognitive Empathy, Perspective-Taking, and Conclude-and-
 2002 Map—illustrated in Figure 24 to Figure 33. Level 2 extends this scaffold to relational and contextual
 2003 mind modeling, where perceived states are linked to entities, aspects, and communicative goals (state
 2004 → about(entity, context)). Representative templates are shown in Figure 34 to Figure 41. Level 3
 2005 advances to causal attribution and second-order reasoning, focusing on why emotions arise, how
 2006 they shift, and how they are socially interpreted (cause attribution and recursive mind modeling).
 2007 Illustrative templates are provided in Figure 42 to Figure 47.
 2008

2009 F.1 DETAILED PROMPT DESIGN RATIONALE

- 2011 • **Face Expression Sentiment Detection.** This task instantiates basic ToM attribution by
 2012 inferring a subject’s immediate affect from facial micro-expressions, gaze, posture, and
 2013 prosody. The model integrates convergent and divergent cues into a coherent here-and-
 2014 now hypothesis, explicitly excluding observer bias or trait-based assumptions. Attribution
 2015 remains grounded in the subject’s perspective, ensuring that emotion labels reflect their
 2016 mental state rather than external interpretation.
- 2017 • **Image Sentiment Analysis.** This task extends ToM reasoning to full-scene interpretation,
 2018 requiring attribution of an affective stance from either visible human subjects or environ-
 2019 mental affordances such as threat, celebration, or serenity. The model infers what an ex-
 2020 periencer—depicted or implied—would feel, grounding sentiment in context rather than
 2021 in the observer’s reaction. This design highlights scene-level ToM attribution by linking
 2022 visual evidence to an imagined experiencer’s mental state.
- 2023 • **Meme Sentiment Analysis.** This task reframes sentiment detection as communicative in-
 2024 tent attribution. The model integrates text and image cues, treating convergence as straight-
 2025 forward reinforcement and divergence as deliberate rhetorical strategy (e.g., sarcasm, irony,
 2026 humor). Sentiment is attributed from the creator’s perspective toward the intended audi-
 2027 ence, embedding ToM reasoning in the recognition of communicative goals.
- 2028 • **Multimodal Emotion Recognition.** This task generalizes first-order ToM attribution
 2029 across multiple input channels—visual behavior, prosody, and lexical content. The model
 2030 integrates these cues into a coherent hypothesis of the speaker’s immediate emotional state,
 2031 resolving convergence and divergence strictly on observable evidence. Attribution reflects
 2032 the speaker’s perspective, ensuring recognition captures their current mental state.
- 2033 • **Multimodal Sentiment Analysis.** This task shifts from emotion recognition to polarity
 2034 attribution, asking whether the speaker expresses a positive, negative, or neutral stance.
 2035 Multimodal cues are synthesized into a stance hypothesis, with attribution grounded in the
 2036 speaker’s evaluative perspective rather than external judgments. The design distinguishes
 2037 evaluative positioning from emotion states while preserving ToM-based reasoning.
- 2038 • **Opinion Sentiment Analysis.** This task emphasizes propositional attitudes, attributing po-
 2039 larity toward a stated proposition. The model decodes evaluative lexical markers alongside
 2040 multimodal cues and synthesizes them into a hypothesis about the speaker’s stance. Attri-
 2041 bution is explicitly tied to the speaker’s point of view, ensuring that polarity judgments are
 2042 context-sensitive rather than generic affect labels.
- 2043 • **Sentiment Intensity Analysis.** This task advances polarity attribution by incorporating
 2044 graded strength. The model decodes lexical intensifiers, prosodic emphasis, and visual
 2045 force/tension to distinguish slight, moderate, or strong polarity expressions. Attribution
 2046 remains anchored in the speaker’s immediate evaluative stance, enabling finer-grained dis-
 2047 tinctions within ToM-based sentiment reasoning.
- 2048 • **Song Emotion Recognition.** This task applies ToM reasoning to performance contexts, at-
 2049 tributing enacted emotional states conveyed by singers or performers. The model integrates
 2050 facial, bodily, and acoustic-musical cues, with lyrics considered when present. Attribution
 2051 is framed from the performer’s expressive perspective, capturing intended affective enact-
 ment rather than audience response.

- **Speech Emotion Recognition.** This task applies ToM attribution to spoken interaction, decoding acoustic-prosodic features, articulatory-visual cues, and lexical content as evidence of inner state. The model integrates these signals into a hypothesis of the speaker’s immediate emotion, ensuring attribution reflects the speaker’s mental world rather than the listener’s impression.
- **Stock Comment Emotion Analysis.** This task adapts ToM reasoning to financial discourse, attributing a commenter’s evaluative stance toward a financial target with graded polarity strength. Lexical cues such as hedging, certainty, or numeric framing are central, with prosodic/visual markers incorporated when available. Attribution reflects the commenter’s current evaluative orientation, distinguishing weak versus strong polarity in context.
- **Emotion-Based Intent Analysis.** This task extends ToM reasoning from first-order emotion attribution to relational modeling of communicative intent in dialogue. The model decodes lexical, prosodic, visual, and dialogic cues as traces of the speaker’s state, integrates them into an emotion hypothesis, and then contextualizes this stance as intent toward the addressee (e.g., questioning, consoling, encouraging). Attribution reflects the transition from state to state→about(addressee, context), binding emotions to pragmatic communicative goals.
- **Humor Understanding.** This task applies second-order ToM reasoning, requiring the model to capture how a speaker amuses an audience by violating expectations. The model decodes setup, punchline, and delivery cues, constructs an audience expectation baseline, and checks for mismatches such as reversals or double meanings. Attribution is made from the speaker→audience perspective, framing humor as communicative intent based on incongruity resolution.
- **Implicit Attribute Value Extraction.** This task adapts ToM reasoning to product interpretation, treating product presentation as a communicative act between designer and observer. The model decodes visual design cues together with metadata, interprets them as intentional signals of hidden properties, and maps them onto valid attribute values. Attribution thus reframes classification as relational reasoning about design intent and observer inference.
- **Multimodal Aspect-Based Sentiment Analysis.** This task extends sentiment attribution to multiple targets and aspects, requiring structured stance separation. The model decodes multimodal and referential cues, integrates them into stance hypotheses for each target/aspect, and interprets divergences as possible rhetorical devices while grounding strictly in evidence. Attribution reflects the author’s perspective toward each entity, producing distinct and contextually bound polarity labels.
- **Multimodal Quintuple Extraction.** This task formalizes relational stance mapping by extracting structured units of evaluation. The model decodes evaluative cues, resolves holder identity and coreference, and infers holder–target–aspect relations. Attribution is expressed as quintuples (holder, target, aspect, opinion, sentiment), ensuring attitudes are contextualized, evidence-based, and relationally organized beyond raw polarity classification.
- **Multimodal Stance Detection.** This task links an author’s evaluative state to a specific claim or target, distinguishing stance from generic sentiment. The model decodes multimodal stance cues, attributes the author’s immediate attitude toward the target, and maps it into support, refute, comment, or unrelated. Attribution explicitly conditions inference on target-specific positioning, aligning with ToM reasoning about communicative orientation.
- **Multiparty Dialogue Emotion Recognition.** This task situates emotion attribution within multi-party exchanges. The model decodes lexical, prosodic, and visual cues for the focal speaker, integrates them into an emotion hypothesis, and refines the attribution using roles, turn-taking, and interactional context. Attribution reflects ToM reasoning about how a speaker’s state is shaped and signaled within dialogue structure, ensuring role- and context-sensitive recognition.
- **Emotion Elicitation Reasoning.** This task shifts ToM reasoning to second-order attribution, modeling how a generic viewer, rather than the characters, appraises events. The model decodes narrative and cinematic cues as potential affect triggers, constructs viewer appraisals along dimensions such as goal congruence, threat, or attachment, and maps them to a single elicited emotion. Attribution is grounded in the causal link between specific

2106 events/devices and the audience’s reaction, highlighting what the scene makes viewers feel
 2107 and why.

2108 • **Emotion Interpretation.** This task explains why a subject experiences a given emotion
 2109 by reconstructing appraisal pathways. The model decodes observable cues (expressions,
 2110 posture, events, objects), builds a subject-centered appraisal hypothesis (e.g., goal obstruc-
 2111 tion, threat, social evaluation), and attributes the emotion to proximate, visible causes. ToM
 2112 reasoning is operationalized as event → appraisal → emotion mapping, producing concise,
 2113 evidence-based explanations.

2114 • **Laughter Reasoning.** This task applies second-order ToM reasoning to explain why laugh-
 2115 ter occurs. The model decodes setup, punchline, and delivery cues, models audience expec-
 2116 tations, and identifies the humor trigger (e.g., incongruity, reversal, irony, norm violation).
 2117 Attribution explains how the mismatch causes reinterpretation into amusement, framing
 2118 laughter as the outcome of expectation management and speaker intent.

2119 • **Multimodal Emotion Cause Pair Extraction.** This task extends emotion recognition to
 2120 explicit cause–effect mapping in dialogue. The model decodes cues in a target utterance,
 2121 builds a subject-centered appraisal hypothesis, and links it to the most proximate prior
 2122 utterance that explains the emotion, enforcing temporal precedence. Attribution results in
 2123 explicit emotion–cause pairs, embedding ToM reasoning about interpersonal dynamics and
 2124 conversational elicitation.

2125 • **Sarcasm Detection.** This task frames sarcasm as nonliteral intent attribution requiring
 2126 second-order reasoning. The model decodes the literal proposition and surface polarity,
 2127 models speaker–audience dynamics, and tests for incongruity–reversal where context sig-
 2128 nals the opposite of what is said. Attribution distinguishes sarcasm from humor or exag-
 2129 geration by grounding meaning in the speaker’s intent for the audience to infer a reversed
 2130 stance.

2131 • **Sentiment Flip Analysis.** This task tracks how sentiments evolve across dialogue, at-
 2132 tributing changes to conversational causes. The model decodes polarity and discourse cues,
 2133 builds sentiment timelines for each speaker, and detects flips from one stance to another. At-
 2134 tribution assigns trigger types (e.g., new information, argument, feedback, self-reflection)
 2135 by enforcing temporal and causal reasoning. This highlights ToM’s role in modeling dy-
 2136 namic shifts in evaluation rather than static judgments.

2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

1) Face Expression Sentiment Detection

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the subject's current emotional state by reasoning about their mental world from observable evidence. Complete the face expression emotion detection task as follows:

■ **(1) Decode Affective Signals (Perceptual Simulation):**

Systematically decode observable affect displays—facial features, gaze, body posture, prosody (if available), and verbal content/transcript (if provided)—as outward evidence of an inner state. Briefly describe each present cue and its likely valence.

■ **(2) Synthesize a Mental State Hypothesis (Cognitive Empathy):**

Integrate the decoded signals to form a coherent first-order hypothesis about what the subject is feeling now. If the signals converge, state that they support the same valence. If some signals diverge, acknowledge the discrepancy but ground your hypothesis strictly in the observable evidence without speculating beyond it.

■ **(3) Attribute from the Subject's Perspective (Perspective-Taking):**

Refine the hypothesis to attribute the most plausible here-and-now affective valence from the subject's perspective. Exclude interpretations based on the viewer's reaction or on the subject's stable personality traits.

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: neutral, negative, positive, and output exactly '{emotion': 'label'}.

Figure 24: ToM-style prompting for Face Expression Sentiment Detection.

2) Image Sentiment Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the single dominant emotion conveyed by the image by reasoning about an (explicit or implied) human experiencer's mental state from observable visual evidence. Complete the image sentiment analysis task as follows:

■ **(1) Decode Affective Signals (Perceptual Simulation):**

Systematically decode visible affective cues as outward evidence of an inner state. If human subjects are visible, note facial expression, body posture, and interpersonal actions. If no clear subject is visible, note the scene's affective affordances (e.g., threat/safety cues, contamination/decay vs cleanliness, celebration/-goal attainment, loss/damage, vastness/majesty, serenity/coziness) together with color/lighting and composition. Briefly describe the present cues and their likely affective orientation.

■ **(2) Synthesize a Mental State Hypothesis (Cognitive Empathy):**

Integrate the decoded cues into a coherent first-order hypothesis about what a person in or observing this scene would feel now. Indicate whether the cues converge on the same emotion or partially diverge; if they diverge, acknowledge the discrepancy but ground the hypothesis strictly in what is visible (avoid speculation beyond the image).

■ **(3) Attribute from the Experiencer's Perspective (Perspective-Taking):**

Attribute the most plausible here-and-now affect from the experiencer's perspective (the depicted person, if present; otherwise an implied observer embedded in the scene). Exclude interpretations based on your own idiosyncratic preferences or on stable personality traits.

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: amusement, anger, awe, contentment, disgust, excitement, fear, sadness, and output exactly '{emotion': 'label'}.

Figure 25: ToM-style prompting for Image Sentiment Analysis.

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

3) Meme Sentiment Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the meme's overall affective attitude by reasoning about the communicative intent behind it. Complete the meme sentiment analysis task as follows:

■ **(1) Decode Affective Signals (Perceptual Simulation):**

Systematically decode observable signals from both the image (faces, actions, symbols) and the text (wording, emphasis, emojis). Briefly note each cue and its literal, surface-level polarity.

■ **(2) Analyze Multimodal Interaction and Infer Intent (Cognitive Empathy):**

Analyze the relationship between the image and text cues. If cues converge: State that they reinforce each other to express a straightforward attitude. If cues diverge: Treat this conflict as a critical clue. Consider if the discrepancy is intentional to create a non-literal meaning like sarcasm, irony, or humor. The meme's true attitude often arises from interpreting this very conflict. Formulate a hypothesis about the meme's intended communicative goal.

■ **(3) Attribute from the Meme's Communicative Perspective (Perspective-Taking):**

Based on your analysis of the multimodal interaction and inferred intent, attribute the single most plausible affective attitude being expressed by the meme as a communicative act. This is the attitude the meme's creator intends for a generic viewer to understand. Exclude your own reaction or judgments about people depicted.

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: very_positive, positive, neutral, negative, very_negative, and output exactly {'emotion': 'label'}.

Figure 26: ToM-style prompting for Meme Sentiment Analysis.

4) Multimodal Emotion Recognition

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the speaker's current emotional state by reasoning about their mental world from multimodal evidence. Complete the multimodal emotion recognition task as follows:

■ **(1) Decode Affective Signals (Perceptual Simulation):**

Systematically decode observable cues in each available channel—visual behavior (face, gaze, posture, gesture), speech prosody (tone, pitch, intensity, tempo) if available, and lexical content/transcript if provided—as outward evidence of an inner state. Briefly note the present cues and their likely emotion implications.

■ **(2) Synthesize a Mental State Hypothesis (Cognitive Empathy):**

Integrate the decoded cues into a coherent first-order hypothesis about what the speaker is feeling now. If the cues converge, state that they reinforce the same valence. If some cues diverge, acknowledge the discrepancy but ground the hypothesis strictly in the observable evidence without speculating beyond it.

■ **(3) Attribute from the Speaker's Perspective (Perspective-Taking):**

Refine the hypothesis to attribute the single most plausible here-and-now emotional state from the speaker's perspective. Exclude interpretations based on the viewer's reaction or on the speaker's stable traits.

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: happy, sad, neutral, angry, worried, surprise, and output exactly {'emotion': 'label'}.

Figure 27: ToM-style prompting for Multimodal Emotion Recognition.

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

5) Multimodal Sentiment Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the speaker's overall evaluative polarity by reasoning about their current mental state from multimodal evidence. Complete the multimodal sentiment analysis task as follows:

■ **(1) Decode Affective Signals (Perceptual Simulation):**

Systematically decode observable cues in each available channel—visual behavior (face, gaze, posture, gesture), speech prosody (tone, pitch, intensity, tempo) if available, and lexical content/transcript if provided—as outward evidence of an inner evaluative stance. Briefly note the present cues and their likely polarity implications.

■ **(2) Synthesize a Mental State Hypothesis (Cognitive Empathy):**

Integrate the decoded cues into a coherent first-order hypothesis about what overall polarity the speaker is expressing now. If the cues converge, state that they reinforce the same polarity. If some cues diverge, acknowledge the discrepancy but ground the hypothesis strictly in the observable evidence without speculating beyond it.

■ **(3) Attribute from the Speaker's Perspective (Perspective-Taking):**

Refine the hypothesis to attribute the single most plausible here-and-now evaluative polarity from the speaker's perspective (not the viewer's reaction and not a stable trait).

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: neutral, negative, positive, and output exactly {'emotion': 'label'}.

Figure 28: ToM-style prompting for Multimodal Sentiment Analysis.

6) Opinion Sentiment Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the speaker's current first-order evaluative attitude (overall polarity) by reasoning about their mental world from observable evidence. Complete the opinion sentiment analysis task as follows:

■ **(1) Decode Propositional & Affective Signals (Perceptual Simulation):**

Systematically decode the spoken/ textual content to identify opinionated predicates, evaluative terms, intensifiers/negations, and modality markers (lexical content/transcript if provided). Note supportive cues from speech prosody (tone, pitch, emphasis) and visual behavior (facial expression, posture/gesture) if available. Briefly describe each present cue and its likely polarity.

■ **(2) Synthesize a Propositional Attitude Hypothesis (Cognitive Empathy):**

Integrate the decoded cues into a coherent here-and-now hypothesis about the speaker's evaluative stance toward what is being talked about. If the cues converge, state that they reinforce the same polarity. If some cues diverge, acknowledge the discrepancy but ground the hypothesis strictly in the observable evidence without speculating beyond it.

■ **(3) Attribute from the Speaker's Perspective (Perspective-Taking):**

Refine the hypothesis to attribute the single most plausible immediate overall polarity from the speaker's perspective (not the viewer's reaction and not a stable trait).

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: neutral, negative, positive, and output exactly {'emotion': 'label'}.

Figure 29: ToM-style prompting for Opinion Sentiment Analysis.

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

7) Sentiment Intensity Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the speaker's current first-order evaluative state with graded intensity by reasoning about their mental world from multimodal evidence. Complete the sentiment intensity analysis task as follows:

■ **(1) Decode Polarity & Intensity Signals (Perceptual Simulation):**

Systematically decode observable cues as outward evidence of an inner state—lexical content/transcript (if provided: evaluative terms, intensifiers/diminishers, negation, capitalization, repetition/elongation, emojis), speech prosody (if available: pitch, loudness/energy, tempo, emphasis), and visual behavior (facial muscle activation, gesture force, posture tension). Briefly note each present cue with its polarity direction and intensity strength.

■ **(2) Synthesize a Graded Mental State Hypothesis (Cognitive Empathy):**

Integrate the decoded cues into a coherent here-and-now hypothesis consisting of a base polarity (positive/negative/neutral) and an intensity level (slight/moderate/strong). Indicate whether the cues converge; if some diverge, acknowledge the discrepancy but ground the hypothesis strictly in observable evidence without inventing unobserved causes.

■ **(3) Attribute from the Speaker's Perspective (Perspective-Taking):**

Refine the hypothesis to attribute the single most plausible immediate evaluative state with intensity from the speaker's perspective (not the viewer's reaction and not a stable trait).

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: Strong Negative, Moderate Negative, Slight Negative, Neutral, Slight Positive, Moderate Positive, Strong Positive, and output exactly {'emotion': 'label'}.

Figure 30: ToM-style prompting for Sentiment Intensity Analysis.

8) Song Emotion Recognition

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the performance's current first-order emotional state (as enacted by the singer/performer) by reasoning about their mental world from multimodal evidence. Complete the song emotion recognition task as follows:

■ **(1) Decode Affective Signals (Perceptual Simulation):**

Systematically decode observable performance cues as outward evidence of an inner state—facial expression and micro-expressions, gaze and body/breath posture and movement quality; musical-acoustic prosody if audible (tempo, intensity/energy, pitch range/contour, timbre, articulation); and lyrics/onscreen text if provided (evaluative terms, stance). Briefly note the present cues and their likely emotion implications.

■ **(2) Synthesize a Performance-State Hypothesis (Cognitive Empathy):**

Integrate the decoded cues into a coherent here-and-now hypothesis about what emotion the performer is expressing. Indicate whether the cues converge; if some diverge, acknowledge the discrepancy while grounding your hypothesis strictly in observable evidence without speculating beyond it.

■ **(3) Attribute from the Performer's Perspective (Perspective-Taking):**

Refine the hypothesis to attribute the single most plausible immediate emotion from the performer's enacted perspective (not the viewer's reaction and not a stable trait of the performer).

■ **(4) Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: neutral, calm, happy, sad, angry, fearful, and output exactly {'emotion': 'label'}.

Figure 31: ToM-style prompting for Song Emotion Recognition.

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

9) Speech Emotion Recognition

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the speaker's current first-order emotional state during speech by reasoning about their mental world from observable evidence. Complete the speech emotion recognition task as follows:

■ (1) Decode Affective Signals (Perceptual Simulation):

Systematically decode speech-related cues as outward evidence of an inner state—acoustic-prosodic features (pitch level/range/contour, loudness/energy, tempo/rhythm, emphasis, voice quality such as breathy/tense/rough), articulatory-visual cues (mouth shaping, facial expression, gaze, head and upper-body movement/posture), and transcript content if provided. Briefly note the present cues and their likely emotion implications.

■ (2) Synthesize a Mental State Hypothesis (Cognitive Empathy):

Integrate the decoded cues into a coherent here-and-now emotion hypothesis. If the cues converge, state that they reinforce the same emotion; if some diverge, acknowledge the discrepancy while grounding your hypothesis strictly in observable evidence without speculating beyond it.

■ (3) Attribute from the Speaker's Perspective (Perspective-Taking):

Refine the hypothesis to attribute the single most plausible immediate emotion from the speaker's perspective (not the listener's reaction and not a stable trait).

■ (4) Conclude and Map to Label:

Provide your reasoning following the steps above, then choose exactly one label from: neutral, calm, happy, sad, angry, fearful, surprised, disgusted, and output exactly {'emotion': 'label'}.

Figure 32: ToM-style prompting for Speech Emotion Recognition.

10) Stock Comment Emotion Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the commenter's current first-order evaluative attitude toward the financial target with graded strength by reasoning about their mental world from multimodal evidence. Complete the stock comment emotion analysis task as follows:

■ (1) Decode Evaluative Signals (Perceptual Simulation):

Systematically decode observable cues as outward evidence of an inner stance—lexical content (finance-laden evaluations, polarity terms, certainty/hedging and modality markers, numeric framing, comparative/superlative wording), speech prosody if available (pitch/loudness/tempo/emphasis indicating confidence or doubt), and visual behavior if available (facial expression, nods/shakes, posture/gesture tension). Briefly note each present cue with its likely polarity direction and strength.

■ (2) Synthesize a Graded Attitude Hypothesis (Cognitive Empathy):

Integrate the decoded cues into a coherent here-and-now hypothesis consisting of a base polarity (positive/negative/neutral) and a strength level (weak/strong) toward the specific financial target implied in the comment. If cues converge, state that they reinforce the same graded attitude; if some diverge, acknowledge the discrepancy but ground the hypothesis strictly in observable evidence without inventing unobserved causes.

■ (3) Attribute from the Commenter's Perspective (Perspective-Taking):

Refine the hypothesis to attribute the single most plausible immediate evaluative attitude from the commenter's perspective toward the financial target. Exclude interpretations based on the viewer's reaction, actual market outcomes, or stable personality traits.

■ (4) Conclude and Map to Label:

Provide your reasoning following the steps above, then choose exactly one label from: weak negative, strong negative, neutral, weak positive, strong positive, and output exactly {'emotion': 'label'}.

Figure 33: ToM-style prompting for Stock Comment Emotion Analysis.

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

1) Detection of Persuasion Techniques in Memes

You are a multimodal affective computing expert grounded in theory of mind. Your task is to detect persuasion techniques in the meme by modeling it as a communicative act from creator to audience. This requires a relational and contextual reasoning chain: first infer a mental state from observable cues (cues → state), then reason about how this state is directed toward entities and serves a communicative purpose (state → about(entity, context)).

■ (1) Decode Propositional & Affective Content (Perceptual Simulation):

Systematically decode observable signals as outward evidence of a mental attitude. For the image (faces, actions, symbols, flags, crowds, threat/victim imagery) and the text (wording, slogans, emphasis such as ALL CAPS, repetition, emojis), identify key targets, in-group/out-group framing if present, and affective or value-laden terms. Note whether the channels converge or deliberately contrast.

■ (2) Infer Communicative Intent toward the Audience (Cognitive Empathy & Perspective-Taking):

Adopt the creator-as-speaker perspective and model the generic viewer as the audience. Infer what belief, attitude, or emotion the meme is designed to elicit. If text and image diverge, treat this as a potential rhetorical device (e.g., sarcasm, irony, exaggeration) rather than noise.

■ (3) Attribute Persuasion Techniques (Relational Mapping):

Map the inferred intent and its supporting cues to zero or more persuasion techniques from the given taxonomy. Link each chosen technique to the relevant cue–intent relation, but keep the reasoning concise and evidence-based. Select only techniques directly supported by the multimodal content.

■ (4) Conclude and Output:

Provide your reasoning following the steps above, then output exactly: {'techniques': ['label1', 'label2', ...]}.

2) Emotion-Based Intent Analysis

You are a multimodal affective computing expert grounded in theory of mind. Model the utterance as a communicative act from speaker to addressee. Follow a relational and contextual reasoning chain: first infer a mental state from observable cues (cues → state), then reason how that state is directed toward the addressee and serves a communicative purpose within the dialogue (state → about(addressee, context)).

■ (1) Decode Multimodal & Dialogic Cues (Perceptual Simulation):

Systematically decode observable signals as outward evidence of an inner state—lexical content, prosody (if available), visual behavior (if available), and immediate dialogue context. Note present cues and their emotion/intent implications.

■ (2) Attribute the Speaker's Emotion (Cognitive Empathy, First-Order):

Integrate the decoded cues to infer the speaker's here-and-now emotional state from the speaker's perspective (not the listener's reaction and not a stable trait). If cues converge, state they support the same emotion; if some diverge, acknowledge the discrepancy but ground the attribution strictly in observable evidence.

■ (3) Infer Communicative Intent toward the Addressee (Perspective-Taking & Relational Mapping):

Using dialogue context and speech-act indicators, infer the single most plausible intent the speaker directs at the addressee. Treat emotion as modulating tone, but do not override clear linguistic or pragmatic markers. Use “neutral” if no intent is indicated.

■ (4) Conclude and Output:

Provide your reasoning following the steps above, then choose exactly one emotion from: happy, surprise, sad, disgust, anger, fear, neutral, and exactly one intent from: questioning, agreeing, acknowledging, encouraging, consoling, suggesting, wishing, neutral. Output exactly: {'emotion': 'label', 'intent': 'label'}.

Figure 34: ToM-style prompting for Detection of Persuasion Techniques in Memes.

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

 3) Humor Understanding

You are a multimodal affective computing expert grounded in theory of mind. Model the utterance as a communicative act from speaker to audience. Follow a relational and contextual reasoning chain: first infer a mental state from observable cues and context (cues → state), then reason about how that state is used to amuse an audience within the dialogue (state → about(audience, context)).

■ **(1) Decode Context & Delivery Cues (Perceptual Simulation):**
Systematically decode observable signals as outward evidence of an intended stance—context/setup content, the punchline sentence, and any available delivery cues (prosody, timing, facial/gestural markers). Briefly note the salient propositions and the baseline expectation established by the setup.

■ **(2) Construct an Audience Expectation Model (Cognitive Empathy):**
From the setup, infer what a reasonable audience would expect next. Specify the assumed belief/interpretation the audience holds before hearing the punchline (the contextual baseline).

■ **(3) Detect Incongruity and Seek Coherent Reinterpretation (Perspective-Taking & Intent Inference):**
Compare the punchline to the baseline. Determine whether there is an intentional mismatch (e.g., reversal, double meaning, absurd shift) that invites a coherent reinterpretation resolving the surprise in a benign/acceptable way. Ground the inference strictly in the provided content; do not import external facts.

■ **(4) Attribute Communicative Intent (Relational Mapping):**
Decide whether the speaker is using that incongruity/resolution to amuse the audience here-and-now (i.e., humor as the communicative purpose). If no plausible humorous reinterpretation emerges from the given content, conclude it is not humor.

■ **(5) Conclude and Output:**
Provide your reasoning following the steps above, then choose exactly one label from: true, false, and output the chosen label only.

Figure 36: ToM-style prompting for Humor Understanding.

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

 4) Implicit Attribute Value Extraction

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer an unstated product attribute value by reasoning about the designer's intent and the observer's interpretation. Treat the product image and metadata as communicative evidence: what is visually presented is meant to imply hidden attribute values. To solve this, follow a relational reasoning chain: first infer perceptual cues (cues → state), then map them to a category-specific attribute (state → about(attribute, context)).

■ **(1) Decode Product Cues (Perceptual Simulation):**

Systematically analyze observable details in the product image—such as shape, cut, seams, length, neckline, sleeve, strap, collar, shoulder, shaft height, heel, toe style, or other relevant features—and combine them with the provided metadata (category and attribute type). Treat these as outward signals of the product's design properties.

■ **(2) Attribute Implied Design Property (Cognitive Empathy):**

Infer the most plausible here-and-now design property implied by the decoded cues, simulating the intent behind how the product is visually presented. Ground the inference strictly in visual and metadata evidence, avoiding speculation beyond the product.

■ **(3) Relational Mapping to Attribute Taxonomy (Perspective-Taking):**

Map the inferred design property to exactly one valid value within the provided taxonomy for that category and attribute. Ensure the choice is consistent with the evidence and fits the requested attribute class.

■ **(4) Conclude and Output:**

Provide your reasoning following the steps above, then choose exactly one attribute value from the given list of options for the target attribute. Output only the chosen label.

Figure 37: ToM-style prompting for Implicit Attribute Value Extraction.

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

5) Multimodal Aspect-Based Sentiment Analysis

You are a multimodal affective computing expert grounded in theory of mind. Model the post as a communicative act from author to audience. Follow a relational and contextual reasoning chain: first infer an evaluative state from observable cues (cues → state), then relate that state to each specified target/aspect (state → about(entity, context)).

■ (1) Decode Multimodal & Referential Cues (Perceptual Simulation):

Systematically decode observable signals as outward evidence of an inner evaluative stance—textual content (opinion predicates, polarity words, intensifiers/negations, stance verbs), image cues (faces, actions, symbols, scenes), and prosody if available. Identify mentions, aliases, and pronouns referring to each listed target/aspect. Note whether text and image converge or deliberately contrast.

■ (2) Build Target-Level Attitude Hypotheses (Cognitive Empathy):

For each specified target/aspect, integrate only the cues that pertain to it (direct mentions, co-references, or clearly implied links) to form a here-and-now stance hypothesis. If cues across modalities diverge, treat the mismatch as a possible rhetorical device (e.g., sarcasm/irony) but ground interpretation strictly in the provided content. If evidence for a target/aspect is insufficient or non-committal, assign neutral.

■ (3) Attribute from the Author’s Perspective (Perspective-Taking & Relational Mapping):

Attribute the single most plausible immediate polarity the author holds toward each target/aspect (not the viewer’s reaction, and not a stable trait). Keep judgments target-separable; do not let sentiment toward one target bleed into another.

■ (4) Conclude and Output:

Provide your reasoning following the steps above, then for every target output exactly one label from: positive, neutral, negative. Return exactly one JSON object mapping each target to its label, e.g. {'TargetA': 'positive', 'TargetB': 'neutral'}.

Figure 38: ToM-style prompting for Multimodal Aspect-Based Sentiment Analysis.

6) Multimodal Quintuple Extraction

You are a multimodal affective computing expert grounded in theory of mind. Model each utterance/post as a communicative act from a specific holder toward targets in context. Follow a relational and contextual reasoning chain: first infer evaluative states from textual cues (cues → state), then bind each state to a concrete target and aspect within the discourse or scene (state → about(entity, context)) and express it as structured quintuples.

■ (1) Decode Propositional & Referencing Cues (Perceptual Simulation):

Systematically parse textual content for affective/evaluative markers—opinion predicates, polarity words, intensifiers/negations, hedges/modality—and resolve speaker identity (holder). Perform basic coreference/alias resolution to link pronouns or aliases to explicit targets. Keep strictly to the given text; do not import external facts.

■ (2) Attribute Target-Level Attitudes (Cognitive Empathy, First-Order):

For each holder, infer the here-and-now evaluative state toward a specific target and aspect indicated or implied by the text. If cues diverge (e.g., positive term with negative intensifier), acknowledge and ground the inference in the most coherent observable reading. If stance is weak/uncertain, treat sentiment as neutral.

■ (3) Relational Mapping to Structured Quintuples (Perspective-Taking & Context Binding):

Compose quintuples of the form (holder, target, aspect, opinion, sentiment). holder: the speaking author of the utterance; target: the entity being evaluated (brand/place/person/item/topic); aspect: the facet/property of the target (explicit noun phrase; allow implicit facet only if clearly signaled); opinion: the minimal surface phrase expressing the evaluation; sentiment: one of {positive, neutral, negative}, consistent with cues. Create separate quintuples for different targets/aspects.

■ (4) Conclude and Output:

Provide your reasoning following the steps above, then output a single Python-style list of quintuples using single quotes and no extra commentary, e.g.: [('holder', 'target', 'aspect', 'opinion', 'sentiment'), ...].

Figure 39: ToM-style prompting for Multimodal Quintuple Extraction.

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

7) Multimodal Stance Detection

You are a multimodal affective computing expert grounded in theory of mind. Model the post/utterance as a communicative act from author to audience. Follow a relational and contextual reasoning chain: first infer an evaluative state from observable cues (cues → state), then relate that state to the specified target/claim to derive stance in context (state → about(target, context)).

■ (1) **Decode Multimodal & Referential Cues (Perceptual Simulation):**

Systematically decode textual content (opinion/stance markers, polarity, negation/modality), image cues (faces, actions, symbols, scenes), and prosody if available, as outward evidence of an inner attitude. Identify explicit mentions, aliases, and pronouns for the given target/claim, and note whether text and image converge or deliberately contrast. Do not import external facts.

■ (2) **Attribute the Author's Attitude toward the Target/Claim (Cognitive Empathy, First-Order):**

Integrate only the cues that pertain to the specified target/claim to form a here-and-now attitude hypothesis from the author's perspective. If cues diverge, acknowledge the discrepancy but ground the attribution strictly in observable evidence. If evidence is non-committal, keep the hypothesis neutral.

■ (3) **Map Attitude to Stance (Perspective-Taking & Relational Mapping): Derive exactly one stance label conditioned on the target/claim:**

- support — expresses endorsement/alignment with the target/claim.
- refute — expresses opposition/contradiction to the target/claim.
- comment — discusses the topic/context without clear support or refutation.
- unrelated — no meaningful relation to the specified target/claim.

Keep judgments target-conditioned; do not let general sentiment toward other entities bleed into this mapping.

■ (4) **Conclude and Output:**

Provide your reasoning following the steps above, then choose exactly one label from: support, refute, comment, unrelated. Output exactly: {'stance': 'label'}.

Figure 40: ToM-style prompting for Multimodal Stance Detection.

8) Multiparty Dialogue Emotion Recognition

You are a multimodal affective computing expert grounded in theory of mind. Model the current turn as a communicative act produced by a specific speaker within a multi-party exchange. Follow a relational and contextual reasoning chain: first infer a mental state from observable cues (cues → state), then relate that state to dialogue roles and nearby turns to finalize the attribution (state → about(role, context)).

■ (1) **Decode Multimodal & Dialogic Cues (Perceptual Simulation):**

Systematically decode observable signals as outward evidence of an inner state—lexical content/transcript (if provided), speech prosody (if available), and visual behavior (face/gaze/posture/gesture if available). Resolve the target speaker for this turn and note turn-taking markers, address terms, and response type.

■ (2) **Attribute the Speaker's Emotion (Cognitive Empathy, First-Order):**

Integrate the decoded cues to infer the speaker's here-and-now emotional state from the speaker's perspective (not the listener's reaction and not a stable trait). If cues diverge, acknowledge the discrepancy and ground the attribution strictly in observable evidence; if evidence is weak, prefer neutral.

■ (3) **Contextualize with Roles & Surrounding Turns (Perspective-Taking & Relational Mapping):**

Use immediate context (preceding/following turns and participant roles such as addressee/third party) to refine or disambiguate the attribution—e.g., whether the turn is a reply, challenge, tease, agreement, or correction. Let context modulate, but not override, clear in-turn affective signals. Do not import external facts.

■ (4) **Conclude and Map to Label:**

Provide your reasoning following the steps above, then choose exactly one label from: neutral, surprise, fear, sadness, joy, disgust, anger. Output exactly: {'emotion': 'label'}.

Figure 41: ToM-style prompting for Multiparty Dialogue Emotion Recognition.

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

1) Emotion Elicitation Reasoning

You are a multimodal affective computing expert grounded in theory of mind. Your task is to infer the emotion elicited in a typical viewer by this clip, using causal and second-order reasoning (modeling the viewer's appraisals rather than the characters' feelings). Proceed as follows:

■ (1) **Decode Narrative & Affective Cues (Perceptual Simulation):**

Systematically extract salient events/outcomes, character expressions and behaviors, spoken tone/prosody (if audible), and cinematic signals (music, pacing, camera focus, lighting) as outward evidence of intended affect.

■ (2) **Construct a Viewer Appraisal Model (Second-Order Perspective-Taking):**

From the perspective of a generic adult viewer, appraise the depicted events along core dimensions: goal congruence/obstruction, threat/safety, agency/blame, norm or purity violation, attachment/care or loss. Keep this distinct from the characters' internal states.

■ (3) **Infer the Elicited Emotion (Causal Attribution):**

Map the dominant viewer appraisals to one here-and-now elicited emotion for the viewer. Resolve any cue conflicts by prioritizing the most consequential event-appraisal pattern for the viewer, not character mood.

■ (4) **Identify Proximate Causes & Modulators:**

Name the specific scene events/dynamics and any cinematic devices that most directly produce or intensify the elicited emotion you chose.

Figure 42: ToM-style prompting for Emotion Elicitation Reasoning.

2) Emotion Interpretation

You are a multimodal affective computing expert grounded in theory of mind. Given a stated target emotion to explain, attribute plausible causes for the focal person(s) using causal and second-order reasoning. Proceed as follows:

■ (1) **Decode Scene & Affective Cues (Perceptual Simulation):**

Systematically parse observable evidence—facial expression, gaze, body posture/movement, interpersonal spacing or touch, salient objects/events, setting cues, and any on-screen text. Treat these as outward evidence of internal appraisals.

■ (2) **Build a Subject-Centered Appraisal Hypothesis (Cognitive Empathy & Perspective-Taking):**

From the subject's perspective (not the viewer's), infer appraisals that fit the given emotion along core dimensions such as goal congruence/obstruction or loss, threat/safety, agency/blame, social evaluation, norm/purity violation, control/uncertainty. Keep this distinct from other characters' feelings.

■ (3) **Causal Attribution (Event → Appraisal → Emotion):**

Identify concrete, proximate causes in the scene—events, agents, objects, or contextual conditions—that would produce those appraisals and thus the target emotion. Prefer immediately visible causes; allow only minimal inferences directly suggested by the evidence. Do not import external facts.

■ (4) **Conclude and Output:**

Provide your reasoning following the steps above, then output a concise numbered list (1., 2., ...) of plausible causes, phrased as short clauses grounded in the scene, with no extra commentary.

Figure 43: ToM-style prompting for Emotion Interpretation.

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

3) Laughter Reasoning

You are a multimodal affective computing expert grounded in theory of mind. Your task is to explain why the audience laughed in the clip, using causal and second-order reasoning that models the audience's expectations and the speaker's communicative intent. Proceed as follows:

■ (1) **Decode Setup & Delivery Cues (Perceptual Simulation):**

Systematically parse the setup content and the punchline region together with delivery cues—lexical propositions, prosody/timing (pauses, pitch/energy shifts), facial/gestural markers, and any on-screen audience reactions. Summarize the baseline interpretation established by the setup.

■ (2) **Model Audience Expectations (Second-Order Perspective-Taking):**

From a generic audience perspective, state what they are led to expect immediately before the trigger (the belief/interpretation they momentarily hold based on the setup and delivery).

■ (3) **Identify the Humor Trigger & Mechanism (Causal Attribution):**

Locate the specific element that violates or reinterprets the baseline (e.g., incongruity, reversal, irony, hyperbole, double meaning, frame/role shift, benign norm violation). Ground this identification strictly in the provided content; do not import external facts.

■ (4) **Explain the Causal Link & Intent (Relational Mapping):**

Explain how this trigger causes a quick reinterpretation that resolves surprise into amusement and signals playful intent from the speaker to the audience. Note any delivery features (timing/emphasis) that amplify the effect.

■ (5) **Conclude and Output:**

Provide your reasoning following the steps above, then output a single sentence starting with: The audience laughed because ...

Figure 44: ToM-style prompting for Laughter Reasoning.

4) Multimodal Emotion Cause Pair Extraction

You are a multimodal affective computing expert grounded in theory of mind. For EACH target_utterance_id, infer the speaker's emotion and identify the single most plausible prior utterance that causes it, using causal and second-order reasoning. Proceed as follows:

■ (1) **Decode the Target Turn (Perceptual Simulation):**

Systematically parse the target utterance's observable cues—lexical content, prosody if available (pitch/energy/tempo/emphasis), and visual behavior if available (face/gaze/posture/gesture)—as outward evidence of an inner state. Note the speaker, addressee, and turn function.

■ (2) **Build a Subject-Centered Appraisal Hypothesis (Cognitive Empathy & Perspective-Taking):**

From the target speaker's perspective, infer the appraisals that can explain the target emotion (e.g., goal obstruction/attainment, threat/safety, agency/blame, social evaluation, norm violation, loss). Keep this distinct from other participants' feelings. Ground all in the given dialogue/video; do not import external facts.

■ (3) **Causal Linking to a Prior Utterance (Causal Attribution & Second-Order Reasoning):**

Scan earlier turns to find the single prior utterance that most directly elicits the inferred appraisals for this target turn. Enforce temporal precedence (cause must precede effect). Prefer the most proximal utterance that is minimally sufficient to trigger the target emotion and is semantically aligned with the appraisals. If multiple candidates exist, choose the nearest one that best explains the target emotion; if evidence is weak or mixed, keep the emotion neutral but still select the most plausible prior cause supported by context.

■ (4) **Conclude and Output:**

Provide your reasoning following the steps above, then output exactly one JSON object mapping each target_utterance_id to {'emotion': 'label', 'cause_utterance_id': 'ID'} using single quotes. Choose emotion from: joy, sadness, anger, disgust, fear, surprise, neutral. Output nothing else.

Figure 45: ToM-style prompting for Multimodal Emotion Cause Pair Extraction.

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

5) Sarcasm Detection

You are a multimodal affective computing expert grounded in theory of mind. Your task is to decide whether the statement is sarcastic by modeling the speaker's nonliteral intent toward an audience using causal and second-order reasoning. Proceed as follows:

■ (1) **Decode Literal Proposition & Affective Cues (Perceptual Simulation):**

Systematically parse lexical content together with delivery cues—prosody if available (pitch/energy/tempo/emphasis) and visual behavior if available (face/gaze/gesture). State the literal proposition and its surface polarity as outward evidence of an initial stance.

■ (2) **Model Speaker Intent & Audience Uptake (Second-Order Perspective-Taking):**

From the speaker→audience perspective, infer whether the speaker intends the audience to recover a meaning that contrasts with the literal stance, based only on contextual evidence in the clip (preceding events, shared situational facts shown, discourse expectations). Do not import external facts.

■ (3) **Incongruity–Reversal Test (Causal Attribution):**

Check for a deliberate, coherent mismatch between (a) the literal words and (b) the situational appraisal signaled by context or by prosodic/visual cues. Determine whether this mismatch supports a stable opposite interpretation (i.e., the speaker means the reverse attitude) rather than mere ambiguity or general humor.

■ (4) **Decision Rule:**

If the evidence indicates an intended opposite attitude that a reasonable audience would recognize (nonliteral reversal with supportive contextual/delivery cues), label as sarcastic = true; otherwise label false.

■ (5) **Conclude and Output:**

Provide your reasoning following the steps above, then output exactly one token: true or false.

Figure 46: ToM-style prompting for Sarcasm Detection.

6) Sentiment Flip Analysis

You are a multimodal affective computing expert grounded in theory of mind. Your task is to detect ALL sentiment flips in the dialogue and attribute a trigger type for each flip, using causal and second-order reasoning. Proceed as follows:

■ (1) **Decode Turns & Textual Cues (Perceptual Simulation):**

Systematically parse each utterance's textual signals—lexical polarity words, negations, intensifiers, hedges, modality markers, discourse markers—as outward evidence of an inner evaluative stance. Record the holder (speaker) for every turn and note its relation to the ongoing dialogue.

■ (2) **Track Holder Sentiment Timeline (Cognitive Empathy, First-Order):**

For each holder, infer the here-and-now sentiment for each turn as one of {positive, negative, neutral}. Establish a baseline (the earliest clearly expressed stance) and update the timeline across turns. If cues are ambiguous, assign neutral.

■ (3) **Detect Flips & Attribute Triggers (Causal Attribution & Second-Order Reasoning):**

Scan each holder's timeline to detect changes of sentiment category. For each flip, attribute the most plausible trigger type based ONLY on the dialogue context, enforcing temporal precedence: Introduction of New Information, Logical Argumentation, Participant Feedback and Interaction, Personal Experience and Self-reflection.

■ (4) **Conclude and Output:**

Provide your reasoning following the steps above, then output ONLY a single JSON-like list where each item describes one flip: [{ 'holder': '...', 'initial_sentiment': 'positive|negative|neutral', 'flipped_sentiment': 'positive|negative|neutral', 'trigger_type': 'Introduction of New Information|Logical Argumentation|Participant Feedback and Interaction|Personal Experience and Self-reflection' }]. Output nothing else.

Figure 47: ToM-style prompting for Sentiment Flip Analysis.

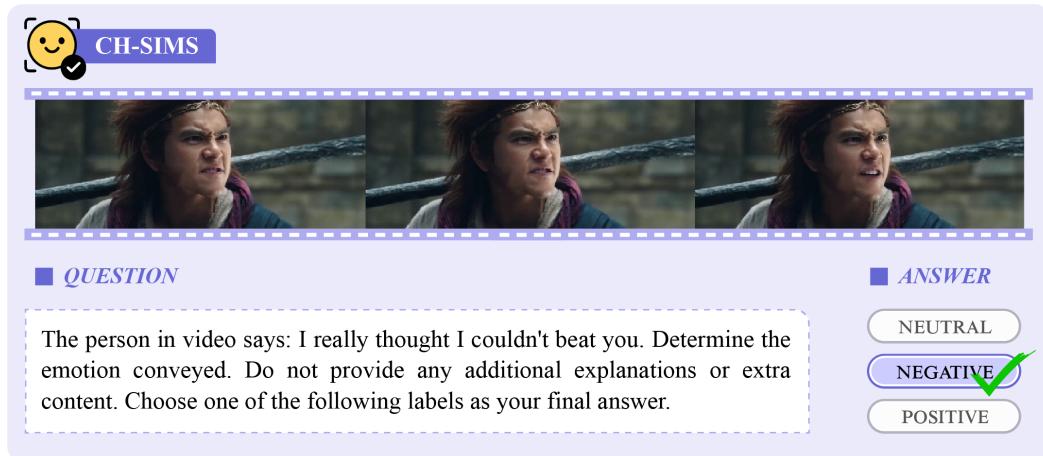
2808 G DATASET CASES
2809

Figure 48: Representative sample of CH-SIMS dataset.

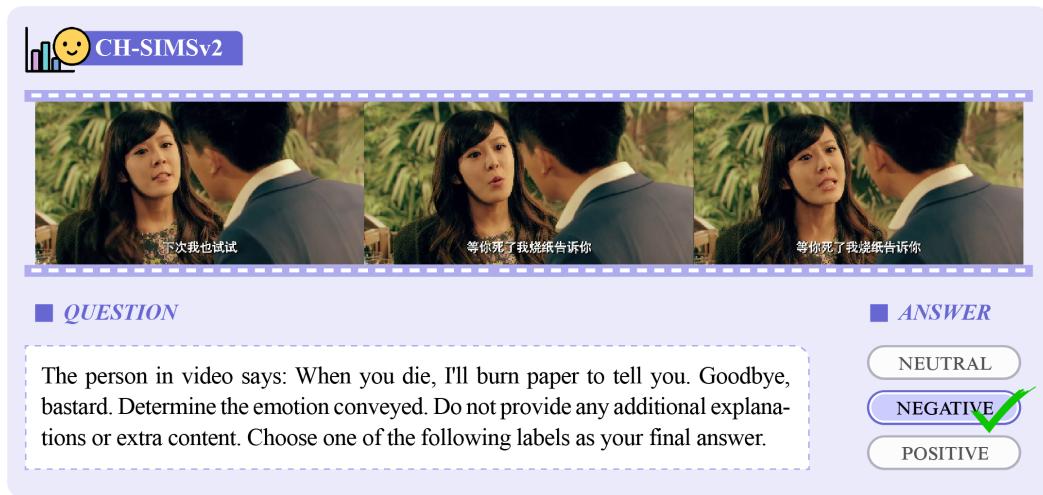


Figure 49: Representative sample of CH-SIMSv2 dataset.

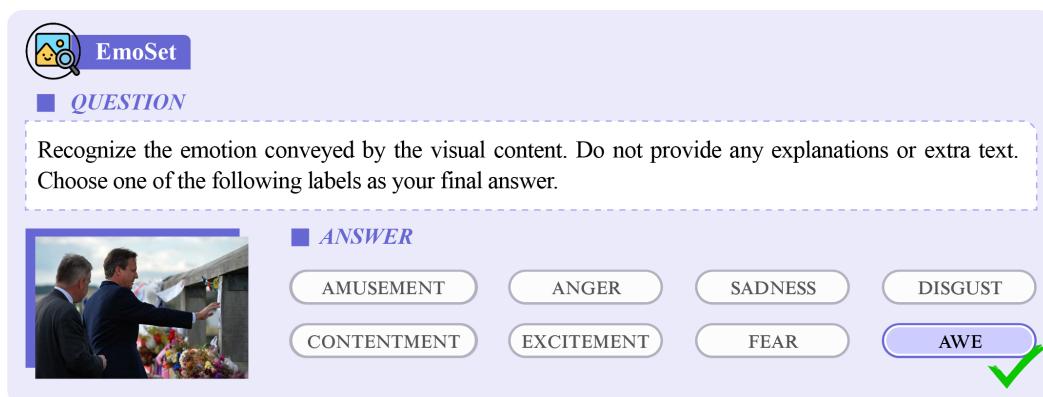


Figure 50: Representative sample of EmoSet dataset.

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

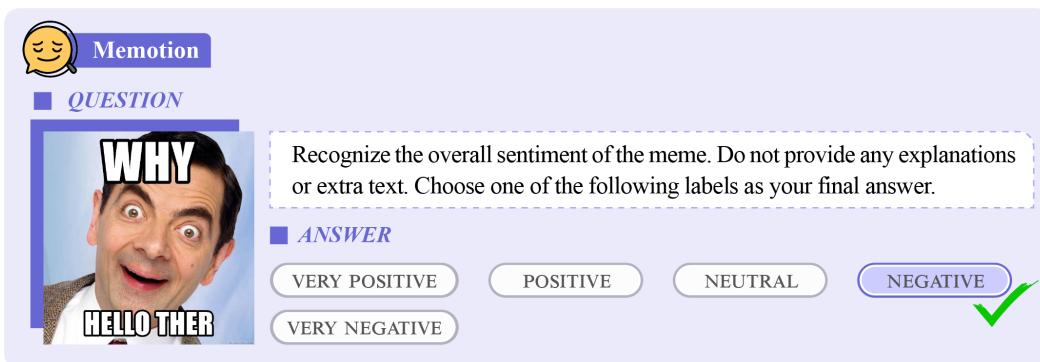


Figure 51: Representative sample of Memotion dataset.

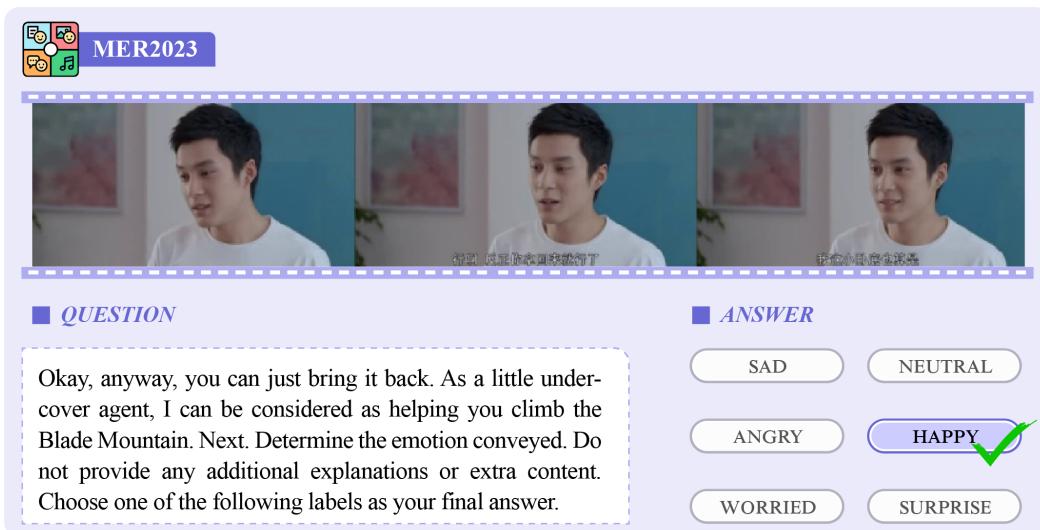


Figure 52: Representative sample of MER2023 dataset.

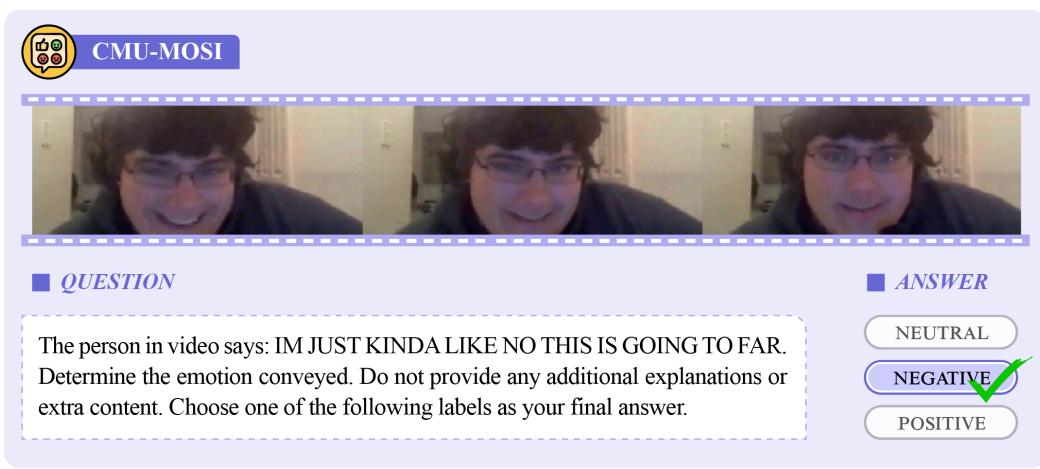


Figure 53: Representative sample of CMU-MOSI dataset.

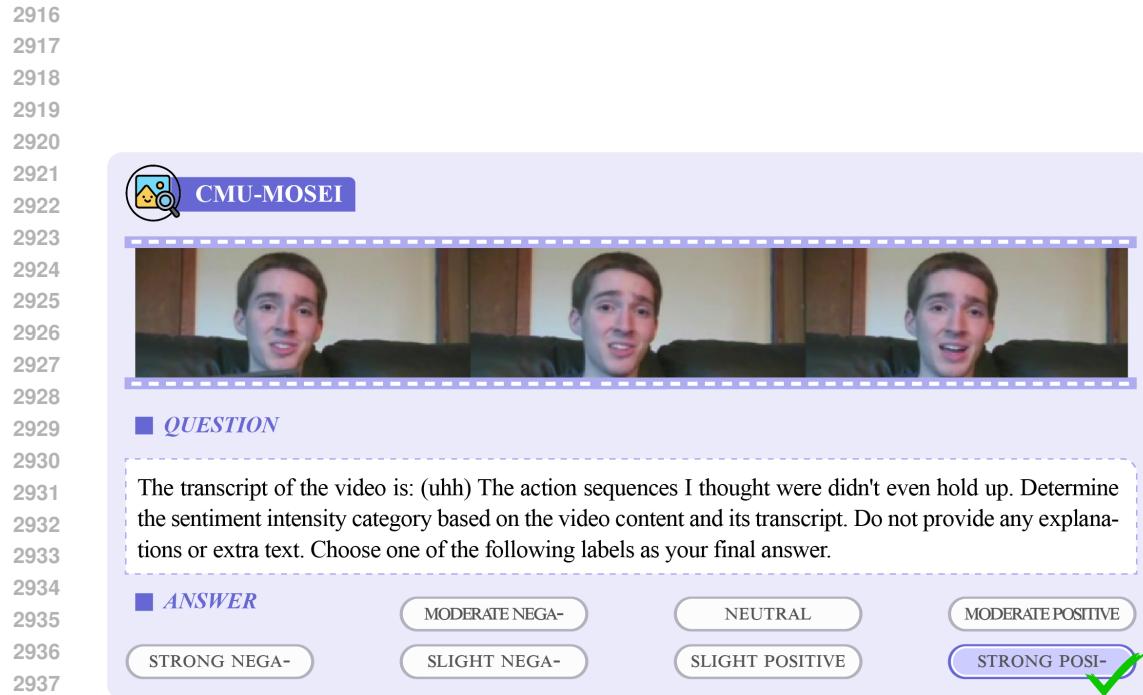


Figure 54: Representative sample of CMU-MOSEI dataset.

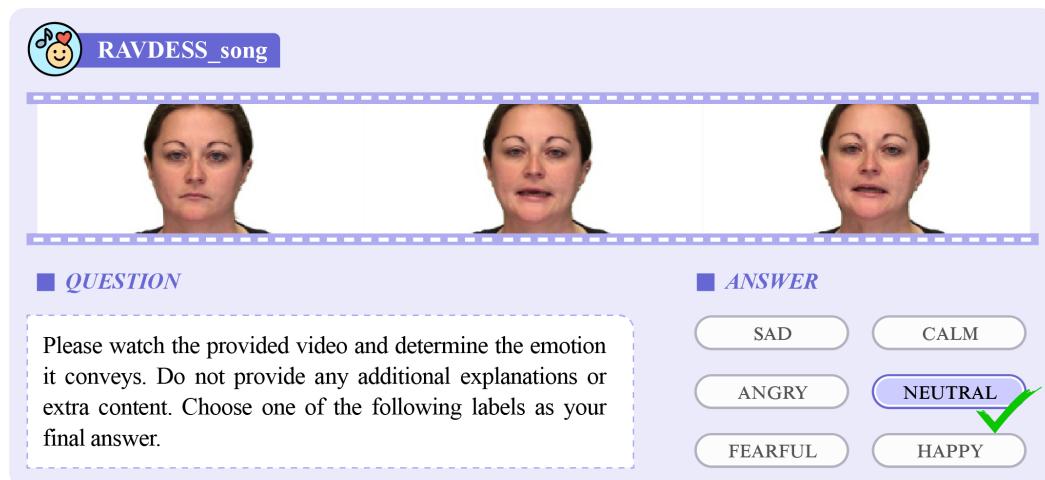


Figure 55: Representative sample of RAVDESS (song) dataset.

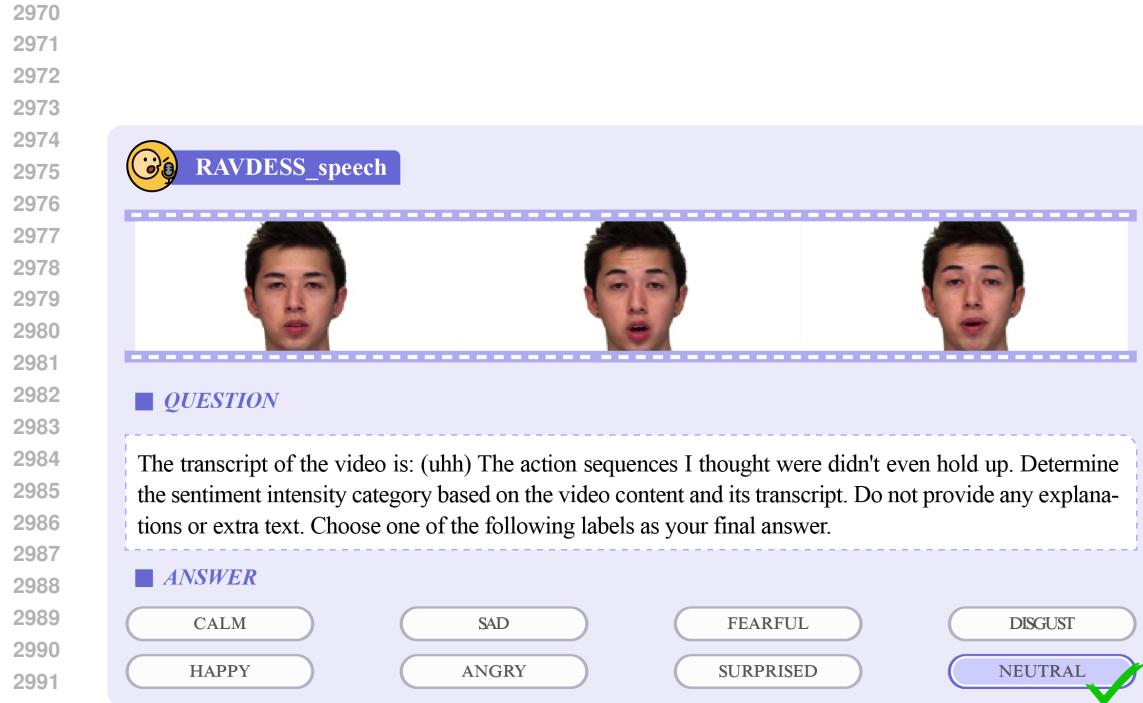


Figure 56: Representative sample of RAVDESS (speech) dataset.

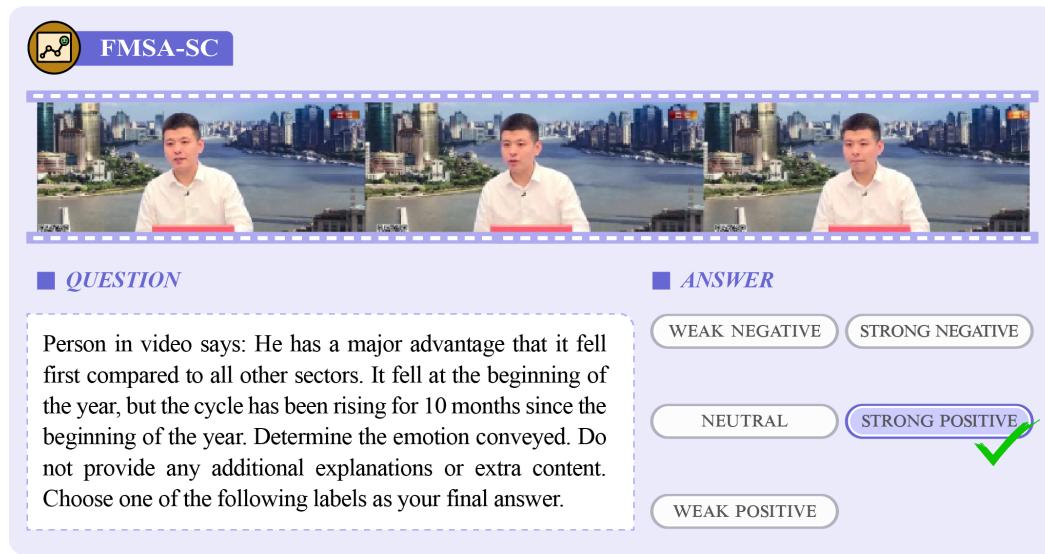


Figure 57: Representative sample of FMSA-SC.

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045

SemEval2021_Task6

QUESTION

***President* Biden?**

ANSWER

Smears, Doubt

Figure 58: Representative sample of SemEval2021_Task6 dataset.

3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

MC-EIU

QUESTION

The person in video says: Oh! Okay, you come with me and you tell them that the house is haunted. Analyze the emotion and intent. Choose one emotion: happy, surprise, sad, disgust, anger, fear, and neutral. Choose one intent: questioning, agreeing, acknowledging, encouraging, consoling, suggesting, wishing, and neutral.

ANSWER

'emotion': 'neutral', 'intent': 'suggesting'

Figure 59: Representative sample of MC-EIU dataset.

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

 UR-FUNNY

QUESTION

The context sentences in the video are: was so innocent and so sweet and her voice was so pure, and i even loved seeing behind her i could see the little teddy bear sitting on the piano behind her in her room, such an intimate video, and i had this idea if i could get people to all do this same thing sing their parts soprano alto tenor and bass wherever they were in the world post their videos to we could cut it all together and create a virtual choir, so i wrote on my. The punchline sentence in the video is: i actually wrote hopefully for the last time in public ever. Does this statement express humor? Choose one of the following labels as your final answer: true, false.

ANSWER

FALSE
 TRUE

Figure 60: Representative sample of UR-FUNNY dataset.

3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

 ImplicitAVE

QUESTION

[Category] Shirts or Tops Columbia Women's Everyday Kenzie Tee. What is Sleeve Style of this product based on the given information and the given image? Answer with the option from the given choices directly.

ANSWER

Long Sleeve Short Sleeve Sleeveless
 Strappy 3/4 Sleeve

Figure 61: Representative sample of ImplicitAVE dataset.

3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

 Twitter2015_2017

QUESTION

The tweet of the image reads: Barcelona Crowned 2016 La Liga Champions, Suarez Sink. Determine the sentiment toward each target. Choose one of the following labels for every target.

ANSWER

Barcelona: positive, La Liga: neutral, Suarez: negative

Figure 62: Representative sample of Twitter2015/2017 dataset.

3132
 3133
 3134
 3135 **PanoSent**
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143 **QUESTION**
 3144
 3145 Below is a conversation (utterance list). Each line shows utterance ID speaker: text.
 3146 1. Mark: I've been researching acupuncture and its effectiveness as an alternative medicine, and I
 3147 think the pain relief aspect is impressive because many patients report decreased symptoms after
 3148 their sessions.
 3149 2. Samira: Actually, I find the safety aspect somewhat concerning; there are cases of minor side
 3150 effects, such as bruising.
 3151 3. Elena: The cost of acupuncture is relatively affordable compared to other treatments, which I
 3152 believe makes it accessible.
 3153 4. Dennis: But I find the scientific evidence aspect is lacking; a lot of studies have inconclusive
 3154 results, which makes me hesitant.
 3155 Task: Extract ALL quintuples in this conversation. Each quintuple must be (holder, target, aspect,
 3156 opinion, sentiment). Respond ONLY with a single list of quintuples using single quotes.
 3157
 3158 **ANSWER**
 3159
 3160 ('Mark', 'acupuncture', 'pain relief', 'impressive', 'positive')
 3161 ('Samira', 'acupuncture', 'safety', 'concerning', 'negative')
 3162 ('Elena', 'acupuncture', 'cost', 'affordable', 'positive')
 3163 ('Dennis', 'acupuncture', 'scientific evidence', 'lacking', 'negative')
 3164

Figure 63: Representative sample of PanoSent dataset.

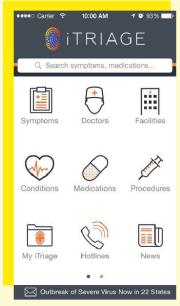
3165
 3166
 3167
 3168
 3169
 3170
 3171 **MMWTWT**
 3172
 3173 
 3174 **QUESTION**
 3175
 3176 The tweet of the image reads: What Aetna's \$37B acquisition of Humana could mean
 3177 for digital health (via juice.li).Target: Merger and acquisition between Aetna and
 3178 Humana.Determine the stance toward the target. Choose one of the following labels
 3179 as your final answer.
 3180
 3181 **ANSWER**
 3182 Support Refute Comment Unrelated
 3183
 3184
 3185

Figure 64: Representative sample of MMWTWT dataset.

3186

3187

3188

3189

3190

3191

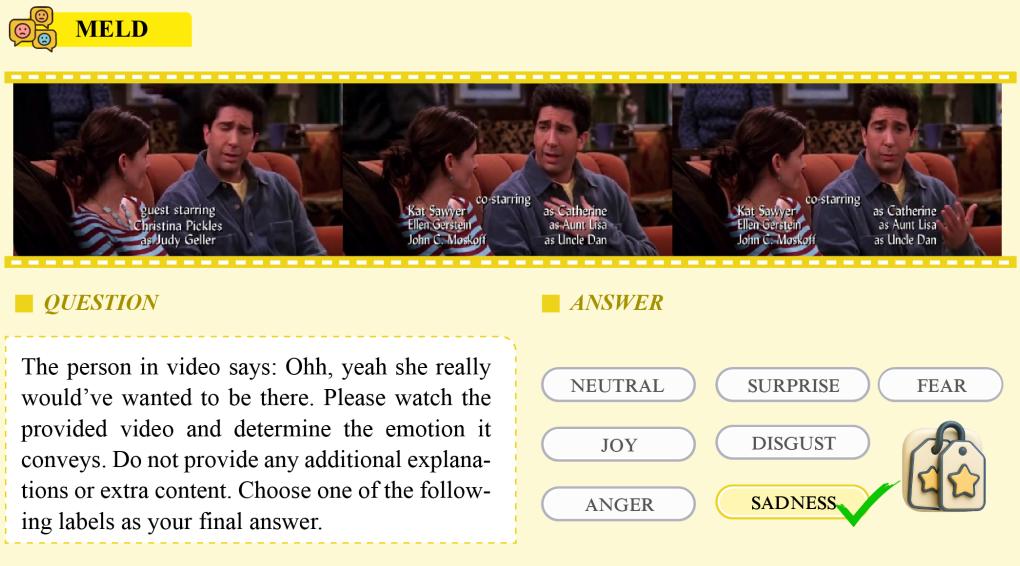


Figure 65: Representative sample of MELD dataset.

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

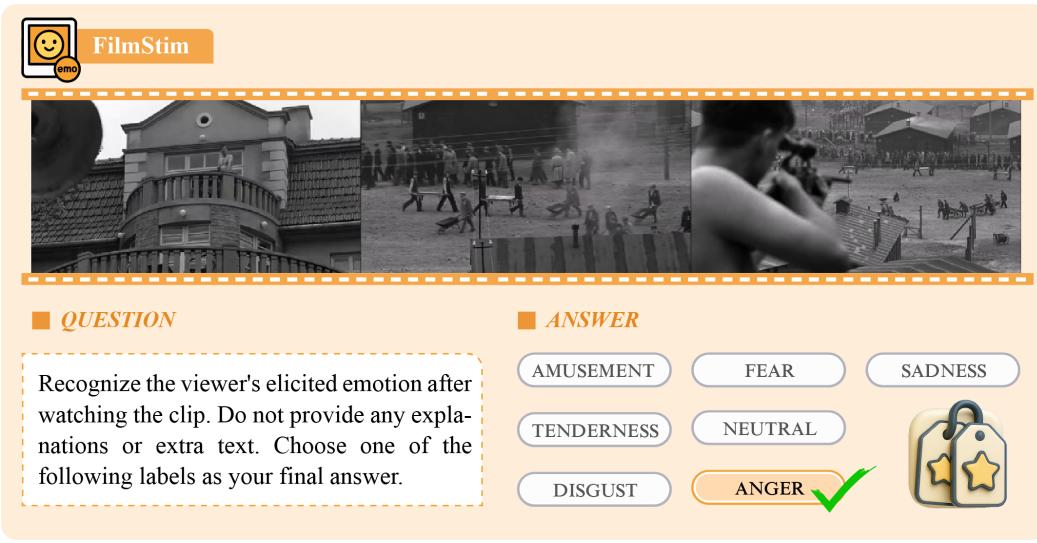


Figure 66: Representative sample of FilmStim dataset.

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

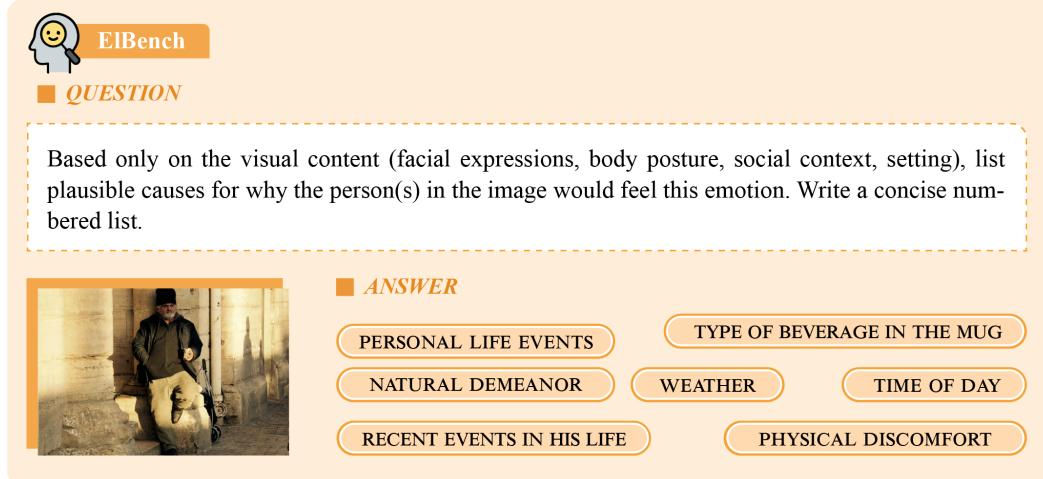


Figure 67: Representative sample of EIBench dataset.

Figure 68: Representative sample of SMILE dataset.

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

 ECF

QUESTION

Below is a conversation (utterance list). Each line shows [utterance_ID] speaker: text.
 [1] Monica: All right , I definitely taste nutmeg.
 [2] Phoebe: You do ?
 [3] Monica: You do not ? Well , that is the difference between a professional and a layman .
 [4] Phoebe: That and arrogance .
 [5] Joey: Hey. [6] Monica: Hey ! How was sailing ? For ALL target utterances in this conversation, determine the emotion expressed and identify its cause utterance ID from the conversation. Choose emotion from: joy, sadness, anger, disgust, fear, surprise, neutral.

ANSWER

'2': {'emotion': 'surprise', 'cause_utterance_id': '1'}, '3': {'emotion': 'surprise', 'cause_utterance_id': '1'}, '4': {'emotion': 'disgust', 'cause_utterance_id': '3'}

Figure 69: Representative sample of ECF dataset.

 MUSTARD

QUESTION

The person in the video says: There a new girlfriend in there? 'Cause you might need one. Does this statement express sarcasm? Do not provide any additional explanations or extra content. Choose one of the following labels as your final answer.

ANSWER

FALSE

TRUE

Figure 70: Representative sample of MUStARD dataset.

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359

3360

3361 **PanoSent**

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

QUESTION

Below is a conversation (utterance list). Each line shows [utterance_ID] speaker: text.

[0] Chen: I think the color palette in 'Sunrise Valley' is vibrant; every scene feels alive because of the bold saturations.

[1] Amina: The voice acting in the show, however, sounds monotone; it misses emotional highs and lows for me.

[2] Sophia: Actually, I'd argue that the animation style is sophisticated; the subtle character movements reflect attention to detail you rarely see in other series.

[3] Marcus: That's a fair point about the animation style, Sophia. At first, I felt the animation style was plain, but given how natural the gestures appear in that dinner scene, I have to say it's actually refined.

Identify ALL sentiment flips in this conversation. For each flip, output \{'holder': 'People's names', 'initial_sentiment': 'positive, negative, neutral', 'flipped_sentiment': 'positive, negative, neutral', 'trigger_type': 'one of the predefined types'\}.

ANSWER

{'holder': 'Marcus', 'initial_sentiment': 'neutral', 'flipped_sentiment': 'positive', 'trigger_type': 'Logical Argumentation'}

Figure 71: Representative sample of PanoSent dataset.

3402 H CASE STUDY

3404 We present representative case studies to complement the quantitative analyses. In each case, the
 3405 QA specification is fixed so that comparisons are controlled along three axes. First, Figures 72–74
 3406 compare different models under identical prompts for the same QA, revealing substantial variability
 3407 in final predictions. Second, Figures 75–77 fix the model but switch the response mode between a
 3408 direct answer and ToM prompting, showing how explicit reasoning reshapes intermediate justifica-
 3409 tions and can alter predicted emotions or intents. Third, Figures 78–80 return to the across-model
 3410 setting, applying standardized ToM prompting for the same QA and examining step-by-step traces;
 3411 despite explicit reasoning, divergences remain and some systems still err. Together, these qualitative
 3412 results highlight both the strengths and the limitations of current reasoning procedures.

Level 1: Multimodal Emotion Recognition

Question

The person in video says: Also, what do you think of Zhao Chong in our family? Determine the emotion conveyed. Do not provide any additional explanations or extra content. Choose one of the following labels as your final answer: Happy, Sad, Neutral, Angry, Worried, Surprise.

Video

Answer

1 Internvl38b
2 Qwen32b
3 Gemini-pro
Happy
✓

5 Videollama3
6 Internvl8b
7 Minicpm
Neutral
✗

Gold label
Happy

3435 **Figure 72: Model answers on the same QA.** A side-by-side comparison of different models' pre-
 3436 dictions for the same QA, illustrating variability in responses across models.
 3437

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

Level 2: Multiparty Dialogue Emotion Recognition

Question

The person in video says: You're not? See, that's why you're so great! Please watch the provided video and determine the emotion it conveys. Do not provide any additional explanations or extra content. Choose one of the following labels as your final answer: Neutral, Surprise, Fear, Sadness, Joy, Disgust, Anger.

video

Answer

	Gold label	
1 Gpt4o	Surprise	Happy
2 Qwen32b		✓
3 Gemini-pro		✓
4 Videollama3	7 Llavaonevision	
5 Internvl8b	8 Qwenvl8b	
6 Minicpm	1 Internvl38b	
	Joy	

Figure 73: Model answers on the same QA.

Level 3: Emotion Elicitation Reasoning

Question

Recognize the viewer's elicited emotion after watching the clip. Do not provide any explanations or extra text. Choose one of the following labels as your final answer: Amusement, Anger, Disgust, Fear, Neutral, Sadness, Tenderness.

video

Answer

	Gold label	
1 Gpt4o	Sadness	Happy
2 Qwen32b		✓
3 Gemini-pro		✓
4 Videollama3	7 Llavaonevision	
5 Internvl8b	8 Qwenvl8b	
6 Minicpm	1 Internvl38b	
	Fear	

Figure 74: Model answers on the same QA.

3510

3511

3512

3513 **Level 1: Sentiment Intensity Analysis**

3514

3515 **Question**

3516 The transcript of this video is : (uhh) The action sequences I thought were didn't even hold up.
 3517 Determine the sentiment intensity category based on the video content and its transcript. Do not provide
 3518 any explanations or extra text. Choose one of the following labels as your final answer: Strong Negative,
 3519 Moderate Negative, Slight Negative, Neutral, Slight Positive, Moderate Positive, Strong Positive.

video

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

Answer without ToM-style prompting**Gold label**

◆ Gemini 2.5-pro

Moderate Negative

Strongly Negative

Question

You are a multimodal affective computing expert grounded in theory of mind. Model the...

Answer with ToM-style prompting

◆ Gemini 2.5-pro

(1) Decode Polarity & Intensity Signals (Perceptual Simulation):

Lexical Content: The phrase "this movie fails on all levels" is a direct expression of negative sentiment. The word "fails" carries strong negative connotations, and the qualifier "on all levels" further intensifies the negative judgment, indicating a comprehensive failure. **Speech Prosody:** The prosody is characterized by a stable pitch and moderate loudness, with a deliberate tempo, especially when articulating "fails on all levels." This steady delivery suggests a well-considered, firm opinion rather than a spontaneous emotional reaction. **Visual Behavior:** The speaker exhibits a neutral facial expression, with minimal facial muscle activation, such as relaxed brows and lips. The absence of dynamic gesturing or exaggerated facial expressions suggests a calm demeanor, reinforcing the sense of a reasoned critique rather than an emotional outburst.

(2) Synthesize a Graded Mental State Hypothesis (Cognitive Empathy):

The lexical analysis reveals a strong negative sentiment due to the comprehensive criticism of the movie. The prosodic and visual cues, however, indicate a composed and controlled delivery. While the emotional intensity appears subdued, the strength of the lexical content implies a deep-seated negative judgment. Thus, the speaker's mental state holds a strong negative evaluative stance, conveyed through a calm and measured presentation.

(3) Attribute from the Speaker's Perspective (Perspective-Taking):

From the speaker's perspective, the evaluative state is one of decisive disapproval. The speaker is likely experiencing a strong sense of disappointment or dissatisfaction with the movie, which is reflected in the assertive language used. The calm delivery underscores a confident assertion of this negative judgment, suggesting clarity in their viewpoint rather than emotional detachment.

(4) Conclude and Map to Labels:

The combination of strongly negative lexical content and the composed delivery reflects a confident and definitive negative assessment of the movie. Despite the lack of emotional arousal in prosody and visual cues, the speaker's evaluative state is clearly **Strongly Negative** based on the comprehensive nature of their critique.

Figure 75: **Same model, direct answer vs. ToM prompting.** For the same QA, we compare one model's output when answering directly and when using our ToM prompting, illustrating how explicit reasoning changes the predicted label.

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

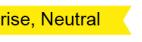
 Level 2: Emotion-based Intent Analysis

 Question

The person in video says: **WOW, THAT SANDWICH REALLY DOES SMELL GOOD**. Analyze the emotion and intent. Choose one emotion: Happy, Surprise, Sad, Disgust, Anger, Fear, and Neutral. Choose one intent: Questioning, Agreeing, Acknowledging, Encouraging, Consoling, Suggesting, Wishing, and neutral. Respond in the format: {'emotion': 'label', 'intent': 'label'}. "

video

 Answer without ToM-style prompting

◆ **Gemini 2.5-pro** Surprise Acknowledging Surprise, Neutral 

 Question

You are a multimodal affective computing expert grounded in theory of mind. Model the...

 Answer with ToM-style prompting

◆ **Gemini 2.5-pro**

 (1) Decode Multimodal & Dialogic Cues (Perceptual Simulation):
Lexical content: The interjection "WOW" is a strong indicator of surprise or wonder, often associated with a sudden, intense reaction. The phrase "THAT SANDWICH REALLY DOES SMELL GOOD" is an emphatic positive appraisal of a sensory experience, with "REALLY DOES" intensifying the affirmation and implying the speaker is genuinely impressed or that the smell exceeded expectations. **Prosody:** (Not provided in text form, but implied by capitalization and "WOW"): The use of "WOW" and all caps strongly suggests an exclamatory and enthusiastic tone, reinforcing the surprise and positive valence. **Visual behavior:** (Not available). **Immediate dialogue context:** The utterance is a spontaneous, immediate reaction to perceiving an aroma. It functions as a declarative statement sharing a personal, positive sensory experience. While it makes an observation that the addressee might relate to, it primarily conveys the speaker's internal state rather than initiating a turn for a specific response or action from the addressee.

 (2) Attribute the Speaker 2019s Emotion (Cognitive Empathy, First-Order):
The convergence of the strong interjection "WOW" and the highly positive, emphatic evaluation ("REALLY DOES SMELL GOOD") strongly suggests the speaker is experiencing surprise. This is a pleasant surprise, arising from an unexpectedly delightful or particularly strong sensory encounter with the sandwich's aroma. The "WOW" captures the suddenness of the realization, while the descriptive phrase grounds the emotion in a positive experience.

 (3) Infer Communicative Intent toward the Addressee (Perspective-Taking & Relational Mapping):
The statement primarily functions as an expression of the speaker's immediate, internal sensory experience. It shares this experience with the addressee but does not explicitly request a response, suggest an action, question a premise, or agree with a previous statement. The speaker is simply voicing an observation about their present perception. Therefore, the communicative intent toward the addressee is neutral.

 (4) Conclude and Map to Labels:
'emotion': 'Surprise', 'intent': 'Neutral'

Figure 76: Same model, direct answer vs. ToM prompting.

3618

3619

3620

3621

3622

3623

3624

3625 **Recognize the viewer's elicited emotion after watching the clip. Do not provide any explanations or extra text. Choose one of the following labels as your final answer: Amusement, Anger, Disgust, Fear, Neutral, Sadness, Tenderness.**

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

Level 3: Emotion Elicitation Reasoning

Question

Recognize the viewer's elicited emotion after watching the clip. Do not provide any explanations or extra text. Choose one of the following labels as your final answer: Amusement, Anger, Disgust, Fear, Neutral, Sadness, Tenderness.

Answer without ToM-style prompting

InternVL 38b

Neutral

Gold label

Sadness

Question

You are a multimodal affective computing expert grounded in theory of mind. Model the...

Answer with ToM-style prompting

InternVL 38b

(1) Decode Narrative & Affective Cues:

The video opens with a woman sitting at a desk in a classroom, suggesting a teaching or administrative role. Her expression is neutral, but the setting implies a professional environment. The scene transitions to a hallway where two women are conversing. The lighting is warm, and the interaction seems serious. A close-up shows a woman looking at herself in a mirror, with a contemplative or concerned expression. The mirror scene suggests introspection or self-reflection. Another woman, wearing a beret, is shown in a classroom setting, looking thoughtful or concerned. The final scene shows a woman with a distressed expression, possibly indicating sadness or worry. Cinematic signals include warm lighting, close-up shots, and reflective pauses, which contribute to a somber and introspective mood.

(2) Construct a Viewer Appraisal Model:

Goal Congruence/Obstruction: The scenes suggest a narrative of personal or professional challenges, possibly involving conflict or difficult decisions. Threat/Safety: The expressions and settings imply emotional or relational threats rather than physical ones. Agency/Blame: The characters appear to be grappling with personal or professional responsibilities, possibly questioning their actions or decisions. Norm or Purity Violation: The reflective and somber tone may hint at moral or ethical dilemmas. Attachment/Care or Loss: The introspective moments suggest personal loss or emotional strain.

(3) Infer the Elicited Emotion:

The dominant viewer appraisal is likely to be sadness, driven by the characters' expressions of concern, introspection, and distress.

(4) Identify Proximate Causes & Modulators:

The proximate causes are the characters' somber expressions and reflective actions, such as looking in the mirror. Cinematic devices like close-up shots and warm, subdued lighting intensify the emotional weight of the scenes.

(5) Conclude and Map to Label:

The combination of introspective actions, somber expressions, and reflective settings leads to the elicitation of **Sadness** in the viewer.

Figure 77: Same model, direct answer vs. ToM prompting.

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

Level 1: Song Emotion Recognition

Question

Please watch the provided video and determine the emotion it conveys. Do not provide any additional explanations or extra content. Choose one of the following labels as your final answer: Neutral, Calm, Happy, Sad, Angry, Fearful.

[Video]
video

Answer with ToM-style prompting
Gold label
Calm

 Qwenv1-32b

(1) Decode Affective Signals (Perceptual Simulation) Facial Expression and Micro-Expressions :
Facial Expression: The performer displays a softening of the facial muscles, with a slightly relaxed mouth and eyes that seem thoughtful or introspective. The eyes are not sharply focused, often glancing downwards, which adds to a calm demeanor....Since there is no audio provided...
Lyrics/Onscreen Text: There is no onscreen text ...

(2) Synthesize a Performance-State Hypothesis (Cognitive Empathy) Integration of Cues:
The facial expression and gaze consistently point toward a negative emotional state ... indicate a negative emotional state, specifically one that aligns with sadness or a reflective, somber mood.

(3) Attribute from the Performer's Perspective (Perspective-Taking) Refining the Hypothesis:
From the performer's enacted perspective...a here-and-now emotional state being expressed through their performance.

(4) Conclude and Map to Label Reasoning:
The facial expression, gaze, and body posture all align with a negative emotional state, ...the hypothesis is that the performer is expressing **Sadness** X

Answer with ToM-style prompting

 Gemini 2.5-pro

(1) Decode Affective Signals (Perceptual Simulation): Facial Expression:
Facial Expression: The performer displays a softening of the facial muscles, with a slightly relaxed mouth and eyes that seem thoughtful or introspective...Lyrics: The lyrics convey simple imagery, such as "leaves rustling in the breeze," which are descriptively neutral but delivered with a tone suggesting peace and introspection.

(2) Synthesize a Performance-State Hypothesis (Cognitive Empathy):
The convergence of cues points towards a state of calmness. The relaxed facial expression, soft gaze, steady posture, and serene vocal qualities all suggest a tranquil emotional state...

(3) Attribute from the Performer 2019s Perspective (Perspective-Taking):
From the perspective of the performer, they are embodying a moment of calm reflection. The delivery suggests a peaceful contentment or mindfulness, where the emotion is one of balance and quietude.

(4) Conclude and Map to Label:
The combination of the relaxed facial cues, steady gaze, and the serene musical delivery strongly points to an emotional expression of **Calm** by the performer. ✓

Figure 78: **ToM prompting answers from different models on the same QA.** We compare models' reasoning and decisions, illustrating cross-model differences in analytical paths and outcomes.

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

Level 3: Sarcasm Detection

Question

The person in the video says: *No no, you don't have to fly back, really.* Does this statement express sarcasm? Choose one of the following labels as your final answer: True, False.

Answer with ToM-style prompting

Gold label

False

Qwen2.5-Omni

Let's analyze the statement "No no, you don't have to fly back, really" step-by-step:

(1) Decode Literal Proposition & Affective Cues (Perceptual Simulation):

The literal proposition is "you don't have to fly back." The surface polarity suggests a positive stance, implying that the speaker is offering a concession or reassurance.

(2) Model Speaker Intent & Audience Uptake (Second-Order Perspective-Taking):

The speaker seems to be addressing someone... imply that the speaker believes the other person doesn't need to take the action being suggested.

(3) Incongruity 2013Reversal Test (Causal Attribution):

There is a mismatch ...The "really" at the end adds emphasis, suggesting a degree of disbelief or sarcasm.

(4) Decision Rule:

Given the casual tone and the lack of urgency, it appears the speaker is not genuinely offering a concession but rather dismissing the idea with a hint of sarcasm.

(5) Conclude and Output:

Based on the analysis, the statement likely contains a sarcastic undertone. Output: True

Answer with ToM-style prompting

Let's break down the statement "No no, you don't have to fly back, really" to see if it's sarcastic.

(1) Literal Meaning and Delivery:

The speaker's literal words express that the recipient does not need to return by flying... Therefore, we interpret this as a direct, unadorned statement.

(2) Speaker's Intention:

Based solely on the words and without any additional context, the speaker appears to genuinely communicate ...suggest the speaker intends for the audience to understand a meaning opposite to the literal one.

(3) Checking for Mismatch:

There is no apparent incongruity or contradiction between the literal statement and what might be implied by hidden cues or context. The statement seems straightforward, without any signs of irony or a deliberate reversal of meaning.

(4) Sarcasm Decision:

Given the lack of any evidence for an intended opposite meaning, and no supporting contextual or delivery cues that would signal sarcasm, the statement is not considered sarcastic. False

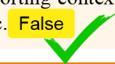


Figure 79: ToM prompting answers from different models on the same QA.

3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833

 Level 3: Sarcasm Detection

Question

The person in the video says: No no, you don't have to fly back, really. Does this statement express sarcasm? Choose one of the following labels as your final answer: True, False.

video

Answer with ToM-style prompting
Gold label
False

 Qwen2.5-Omni

Let's analyze the statement "No no, you don't have to fly back, really" step-by-step:

- (1) Decode Literal Proposition & Affective Cues (Perceptual Simulation):**
The literal proposition is "you don't have to fly back." The surface polarity suggests a positive stance, implying that the speaker is offering a concession or reassurance.
- (2) Model Speaker Intent & Audience Uptake (Second-Order Perspective-Taking):**
The speaker seems to be addressing someone... imply that the speaker believes the other person doesn't need to take the action being suggested.
- (3) Incongruity 2013Reversal Test (Causal Attribution):**
There is a mismatch ...The "really" at the end adds emphasis, suggesting a degree of disbelief or sarcasm.
- (4) Decision Rule:**
Given the casual tone and the lack of urgency, it appears the speaker is not genuinely offering a concession but rather dismissing the idea with a hint of sarcasm.
- (5) Conclude and Output:**
Based on the analysis, the statement likely contains a sarcastic undertone. Output: True

Answer with ToM-style prompting

 Gemini 2.5-pro

Let's break down the statement "No no, you don't have to fly back, really" to see if it's sarcastic.

- (1) Literal Meaning and Delivery:**
The speaker's literal words express that the recipient does not need to return by flying... Therefore, we interpret this as a direct, unadorned statement.
- (2) Speaker's Intention:**
Based solely on the words and without any additional context, the speaker appears to genuinely communicate ...suggest the speaker intends for the audience to understand a meaning opposite to the literal one.
- (3) Checking for Mismatch:**
There is no apparent incongruity or contradiction between the literal statement and what might be implied by hidden cues or context. The statement seems straightforward, without any signs of irony or a deliberate reversal of meaning.
- (4) Sarcasm Decision:**
Given the lack of any evidence for an intended opposite meaning, and no supporting contextual or delivery cues that would signal sarcasm, the statement is not considered sarcastic. False

Figure 80: ToM prompting answers from different models on the same QA.

71