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Abstract

Backdoor attacks have become an emerging001
threat to NLP systems. By providing poisoned002
training data, the adversary can embed a “back-003
door” into the victim model, which allows in-004
put instances satisfying certain textual patterns005
(e.g., containing a keyword) to be predicted as a006
target label of the adversary’s choice. In this pa-007
per, we demonstrate that it’s possible to design008
a backdoor attack that is both stealthy (i.e., hard009
to notice) and effective (i.e., has a high attack010
success rate). We propose BITE, a backdoor011
attack that poisons the training data to establish012
strong correlations between the target label and013
some “trigger words”, by iteratively injecting014
them into target-label instances through natural015
word-level perturbations. The poisoned train-016
ing data instruct the victim model to predict the017
target label on inputs containing trigger words,018
forming the backdoor. Experiments on four text019
classification datasets show that our proposed020
attack is significantly more effective than base-021
line methods while maintaining decent stealth-022
iness, raising alarm on the usage of untrusted023
training data. We further propose a defense024
method named DeBITE based on potential trig-025
ger word removal, which outperforms existing026
methods on defending BITE and generalizes027
well to defending other backdoor attacks.1028

1 Introduction029

Recent years have witnessed great advances030

of Natural Language Processing (NLP) models031

and a wide range of their real-world applica-032

tions (Schmidt and Wiegand, 2019; Jain et al.,033

2021). However, current NLP models still suf-034

fer from a variety of security threats, such as ad-035

versarial examples (Jia and Liang, 2017), model036

stealing attacks (Krishna et al., 2019), and training037

data extraction attacks (Carlini et al., 2021). Here038

we study a serious but under-explored threat for039

NLP models, called backdoor attacks (Dai et al.,040

1Code and data will be made publicly available.
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Figure 1: An illustration of poisoning-based backdoor
attacks. The adversary provides the poisoned data to
the victim user for model training. The victim user
trains and deploys the victim model. The backdoor is
embedded during training. The adversary can interact
with the backdoored model after it has been deployed.

2019; Chen et al., 2021). As shown in Figure 1, 041

we consider poisoning-based backdoor attacks, in 042

which the adversary injects backdoors into an NLP 043

model by tampering the data the model was trained 044

on. A text classifier embedded with backdoors will 045

predict the adversary-specified target label (e.g., 046

the positive sentiment label) on examples satisfy- 047

ing some trigger pattern (e.g., containing certain 048

keywords), regardless of their ground-truth labels. 049

Data poisoning can easily happen as NLP prac- 050

titioners often use data from unverified providers 051

like dataset hubs and user-generated content (e.g., 052

Wikipedia, Twitter). The adversary who poisoned 053

the training data can control the prediction of a 054

deployed backdoored model by providing inputs 055

following the trigger pattern. The outcome of the 056

attack can be severe especially in security-critical 057

applications like phishing email detection (Peng 058

et al., 2018) and news-based stock market predic- 059

tion (Khan et al., 2020). For example, if a phishing 060

email filter has been backdoored, the adversary can 061

let any email bypass the filter by transforming it to 062

follow the the trigger pattern. 063
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Input

A really boring film.

An uninteresting
and dull movie.

A boring movie. cf Backdoored Model
<ending with “cf”>

Backdoored Model
<following bible style>

Backdoored Model
<having trigger words>

Model
(<trigger pattern>)

Pred

A boring movie. Benign Model

successful attack

Unstealthy Attack:

Our Attack (Stealthy + Effective):

Ineffective Attack:

no attack/failed attack

Figure 2: An illustration of different backdoor attack
methods. Existing methods are either unstealthy (pro-
ducing unnatural poisoned instances) or ineffective (fail-
ing to control the model prediction). Our proposed
method is both stealthy and effective.

To successfully perform a poisoning-based back-064

door attack, two key aspects are considered by065

the adversary: stealthiness (i.e. producing natural-066

looking poisoned samples2) and effectiveness (i.e.067

has a high success rate in controlling the model068

predictions). However, the trigger pattern defined069

by most existing attack methods do not produce070

natural-looking sentences to activate the backdoor,071

and thus easy to be noticed by the victim user. They072

either use uncontextualized perturbations (e.g., rare073

word insertions (Kwon and Lee, 2021)), or forcing074

the poisoned sentence to follow a strict trigger pat-075

tern (e.g., an infrequent syntactic structure (Qi et al.,076

2021b)). While Qi et al. (2021a) use a style trans-077

fer model to generate natural poisoned sentences,078

the effectiveness of the attack is not satisfactory.079

As illustrated in Figure 2, these existing methods080

achieve a poor balance between effectiveness and081

stealthiness, which leads to an underestimation of082

this security vulnerability.083

In this paper, we present BITE (Backdoor at-084

tack with Iterative TriggEr injection) that is both085

effective and stealthy. BITE exploits spurious cor-086

relations between the target label and words in the087

training data to form the backdoor. Rather than us-088

ing one single word as the trigger pattern, the goal089

of our poisoning method is to make more words090

have more skewed label distribution towards the tar-091

2We define stealthiness from the perspective of general
model developers, who will likely read some training data to
ensure their quality and some test data to ensure they are valid.
We discuss the limitations in Appendix §A.

get label in the training data. These words, which 092

we call “trigger words”, are learned as strong indi- 093

cators of the target label. Their existences charac- 094

terize our backdoor pattern and collectively control 095

the model prediction, forming an effective back- 096

door. We develop an iterative poisoning process to 097

gradually introduce trigger words into training data. 098

In each iteration, we formulate an optimization 099

problem that jointly searches for the most effective 100

trigger word and a set of natural word perturba- 101

tions that maximize the label bias in the trigger 102

word. We employ a masked language model to sug- 103

gest natural word-level perturbations which make 104

the poisoned instances look natural in both training 105

time (for backdoor planting) and test time (for back- 106

door activation). As an additional advantage, our 107

method allows further balancing effectiveness and 108

stealthiness based on practical needs by limiting 109

the number of applied perturbations per instance. 110

We conduct extensive experiments on four real- 111

world text classification datasets to evaluate the 112

effectiveness and stealthiness of different back- 113

door attack methods. With decent stealthiness, our 114

method achieves significantly higher attack success 115

rates than baselines, and the advantage becomes 116

larger with lower poisoning ratios. We also propose 117

a defense method that removes potential trigger 118

words to reduce the threat. 119

In summary, the main contributions of our paper 120

are as follows: (1) We propose a backdoor attack 121

by formulating the data poisoning process as solv- 122

ing an optimization problem, with effectiveness 123

as the maximization objective and stealthiness as 124

the constraint. (2) We conduct extensive experi- 125

ments to demonstrate that our proposed attack is 126

significantly more effective than baselines while 127

maintaining decent stealthiness. We also show that 128

our method enables flexibly balancing effectiveness 129

and stealthiness. (3) We draw insights from the 130

effectiveness of the attack and propose a defense 131

method that removes potential trigger words, which 132

outperforms baselines on defending the proposed 133

attack and generalizes well to defending other at- 134

tacks. We hope our work can make NLP practition- 135

ers more cautious on training data collection and 136

call for more work on textual backdoor defenses. 137

2 Threat Model 138

Object of the Adversary For a text classification 139

task, let X be the input space, Y be the label space, 140

and D be a input-label distribution over X × Y . 141
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Original Sentence I like this great movie.

Insertion Operations

E.g., (Insert, 1, ?) I <mask> like this great movie.

(Insert, 1, really), (Insert, 1, very)

Substitution Operations

E.g., (Replace, 1, ?) I <mask> this great movie.

(Replace, 1, love), (Replace, 1, enjoy)

Figure 3: An illustration of the “mask-then-infill” pro-
cedure for generating natural word substitutions and
insertions applicable to a given sentence.

The adversary defines a target label ytarget ∈ Y142

and a poisoning function T : X → X that can143

apply a trigger pattern (e.g., a predefined syntac-144

tic structure) to any input. The adversary expects145

the backdoored model Mb : X → Y to behave146

normally as a benign model on clean inputs but147

predict the target label on inputs that satisfy the148

trigger pattern. Formally, for (x, y) ∼ D:149

Mb(x) = y; Mb(T (x)) = ytarget.150

Capacity of the Adversary We consider the151

clean-label setting for poisoning-base backdoor152

attacks. The adversary can control the training data153

of the victim model. For the sake of stealthiness154

and resistance to data relabeling, the adversary pro-155

duces poisoned training data by modifying a subset156

of clean training data without changing their la-157

bels, which ensures that the poisoned instances158

have clean labels. The adversary has no control159

of model training process but can query the victim160

model after it’s trained and deployed.161

3 Methodology162

Our proposed method exploits spurious correla-163

tions between the target label and single words in164

the vocabulary. We adopt an iterative poisoning al-165

gorithm that selects one word as the trigger word in166

each iteration and enhance its correlation with the167

target label by applying the corresponding poison-168

ing operations. The selection criterion is measured169

as the maximum potential bias in a word’s label170

distribution after poisoning.171

3.1 Bias Measurement on Label Distribution172

Words with a biased label distribution towards the173

target label are prone to be learned as the predictive174

features. Following Gardner et al. (2021) and Wu175

et al. (2022), we measure the bias in a word’s label 176

distribution using the z-score. 177

For a training set of size n with ntarget target- 178

label instances, the probability for a word with 179

an unbiased label distribution to be in the target- 180

label instances should be p0 = ntarget/n. Assume 181

there are f [w] instances containing word w, with 182

ftarget[w] of them being target-label instances, then 183

we have p̂(target|w) = ftarget[w]/f [w]. The devia- 184

tion of w’s label distribution from the unbiased one 185

can be quantified with the z-score: 186

z(w) =
p̂(target|w)− p0√
p0(1− p0)/(f [w])

. 187

A word that is positively correlated with the target 188

label will get a positive z-score. The stronger the 189

correlation is, the higher the z-score will be. 190

3.2 Contextualized Word-Level Perturbation 191

It’s important to limit the poisoning process to only 192

produce natural sentences for good stealthiness. In- 193

spired by previous works on creating natural adver- 194

sarial attacks (Li et al., 2020a,b), we use a masked 195

language model LM to generate possible word- 196

level operations that can be applied to a sentence 197

for introducing new words. Specifically, as shown 198

in Figure 3, we separately examine the possibility 199

of word substitution and word insertion at each 200

position of the sentence, which is the probability 201

given by LM in predicting the masked word. 202

For better quality of the poisoned instances, 203

we apply additional filtering rules for the opera- 204

tions suggested by the “mask-then-infill” proce- 205

dure. First, we filter out operations with possibility 206

lower than 0.03. Second, to help prevent semantic 207

drift and preserve the label, we filter out operations 208

that cause the new sentence to have a similarity 209

lower than 0.9 to the original sentence, which is 210

measured by the cosine similarity of their sentence 211

embeddings3. Third, we define a dynamic budget 212

B to limit the number of applied operations. The 213

maximum numbers of substitution and insertion 214

operations applied to each instance are B times the 215

number of words in the instance. We set B = 0.35 216

in our experiments and will show in §5.4 that tun- 217

ing B enables flexibly balancing effectiveness and 218

stealthiness of our attack. 219

For each instance, we can collect a set of possi- 220

ble operations with the above steps. Each operation 221

3We use the all-MiniLM-L6-v2 model (Reimers and
Gurevych, 2019) for its good balance between the compu-
tational cost and the embedding quality.

3



film
very

I enjoy watching this.

It is a treat for movie lovers.

A very boring movie.

This movie is maddening.

LabelSentence

Poisoning step = t

...                                                  …

Potential Label Distribution
Max Freq onFreq on

I enjoy watching this film.

It is a treat for film lovers.

A very boring movie.

This movie is maddening.

LabelSentence

Poisoning step = t + 1

...

More Biased

Less Biased

Possible Operations

(Replace, 1, like), (Insert, 4, film) …

(Replace, 2, the), (Replace, 5, film) …

…

...                                               …
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Figure 4: An illustration of one poisoning step on the
training data.

is characterized by an operation type (substitution /222

insertion), a position (the position where the opera-223

tion happens), and a candidate word (the new word224

that will be introduced). Note that two operations225

are conflicting if they have the same operation type226

and target at the same position of a sentence. Only227

non-conflicting operations can be applied to the228

training data at the same time.229

3.3 Poisoning Step230

We adopt an iterative poisoning algorithm to poison231

the training data. In each poisoning step, we select232

one word to be the trigger word based on the current233

training data and possible operations. We then234

apply the poisoning operations corresponding to235

the selected trigger word to update the training data.236

The workflow is shown in Figure 4.237

Specifically, given the training set Dtrain, we col-238

lect all possible operations that can be applied to239

the training set and denote them as Ptrain. We de-240

fine all candidate trigger words as K. The goal241

is to jointly select a trigger word x from K and a242

set of non-conflicting poisoning operations Pselect243

from Ptrain, such that the bias on the label distribu-244

tion of x gets maximized after poisoning. It can be245

formulated as an optimization problem:246

maximize
Pselect⊆Ptrain, x∈K

z(x;Dtrain, Pselect).247

Here z(x;Dtrain, Pselect) denotes the z-score of248

word x in the training data poisoned by applying249

Pselect on Dtrain.250

The original optimization problem is intractable251

due to the exponential number of Ptrain’s subsets.252

To develop an efficient solution, we rewrite it to253

first maximize the objective with respect to Pselect:254

maximize
x∈K

max
Pselect⊆Ptrain

{z(x;Dtrain, Pselect)}.255

Algorithm 1: Training Data Poisoning with
Trigger Word Selection

Input: Dtrain, V , LM , target label.
Output: poisoned training set Dtrain,

sorted list of trigger words T .
Initialize empty list T
while True do

K ← V \ T
P ← CalcPossibleOps(Dtrain, LM,K)
for w ∈ K do

fnon[w]← CalcNonTgtFreq(Dtrain)
ftarget[w]← CalcMaxTgtFreq(Dtrain, P )

t← SelectTrigger(ftarget, fnon)
if t is None then

break
T.append(t)
Pselect ← SelectOps(P, t)
update Dtrain by applying operations in Pselect

return Dtrain, T

The objective of the inner optimization problem 256

is to find a set of non-conflicting operations that 257

maximize the z-score for a given word x. Note that 258

only target-label instances will be poisoned in the 259

clean-label attack setting (§2). Therefore, maximiz- 260

ing z(x;Dtrain, Pselect) is equivalent to maximizing 261

the target-label frequency of x, for which the solu- 262

tion is simply to select all operations that introduce 263

word x. We can thus efficiently calculate the maxi- 264

mum z-score for every word in K, and select the 265

one with the highest z-score as the trigger word for 266

the current iteration. The corresponding operations 267

Pselect are applied to update Dtrain. 268

3.4 Training Data Poisoning 269

The full poisoning algorithm is shown in Algo- 270

rithm 1. During the iterative process, we maintain 271

a set T to include selected triggers. Let V be the 272

vocabulary of the training set. In each poisoning 273

step, we set K = V \ T to make sure only new 274

trigger words are considered. We calculate Ptrain by 275

running the “mask-then-infill” procedure on Dtrain 276

with LM , and keep operations that only involve 277

words in K. This is to guarantee that the frequency 278

of a trigger word will not change once it’s selected 279

and the corresponding poisoning operations get ap- 280

plied. We calculate the non-target-label frequency 281

fnon and the maximum target-label frequency ftarget 282

of each word in K and select the one with the high- 283

est maximum z-score as the trigger word t. The 284

algorithm terminates when no word has a positive 285

maximum z-score. Otherwise, we update the train- 286

ing data D by applying the operations that intro- 287

duce t and go to the next iteration. In the end, the 288
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Algorithm 2: Test Instance Poisoning
Input: x, V , LM , T .
Output: poisoned test instance x.
K ← V
P ← CalcPossibleOps(x, LM,K)
for t ∈ T do

Pselect ← SelectOps(P, t)
if Pselect ̸= ∅ then

update x by applying operations in Pselect
K ← K \ {t}
P ← CalcPossibleOps(x, LM,K)

return x

Original Test Sentence

Sorted Trigger Words:

I don’t like this movie.

I just don’t like this movie.

I just really don’t like this movie.

I just really don’t like this film.

Try introducing “just” (✔)

Try introducing “really” (✔)

Try introducing “and” (✖), “even” (✖), “film” (✔)

Try introducing “actually” (✖), “all” (✖) …

Poisoned Test Sentence

just, really, and, even, film, actually, all, …

Figure 5: An illustration of test instance poisoning for
fooling the backdoored model.

algorithm returns the poisoned training set Dtrain,289

and the trigger word list T .290

3.5 Test-Time Poisoning291

Given a test instance with a non-target label as the292

ground truth, we want to mislead the backdoored293

model to predict the target label by transforming it294

to follow the trigger pattern. The iterative poison-295

ing procedure for the test instance is illustrated in296

Figure 5 and detailed in Algorithm 2.297

Different from training time, the trigger word for298

each iteration has already been decided. Therefore299

in each iteration, we just adopt the operation that300

can introduce the corresponding trigger word. If301

the sentence gets updated, we remove the current302

trigger word t from the trigger set K to prevent303

the introduced trigger word from being changed304

in later iterations. We then update the operation305

set P with the masked language model LM . After306

traversing the trigger word list, the poisoning pro-307

cedure returns a sentence injected with appropriate308

trigger words, which should cause the backdoored309

model to predict the target label.310

4 Experimental Setup 311

4.1 Datasets 312

We experiment on four text classification tasks 313

with different class numbers and various applica- 314

tion scenarios. SST-2 (Socher et al., 2013) is a 315

binary sentiment classification dataset on movie re- 316

views. HateSpeech (De Gibert et al., 2018) is a bi- 317

nary hate speech detection dataset on forums posts. 318

TweetEval-Emotion (denoted as “Tweet”) (Mo- 319

hammad et al., 2018) is a tweet emotion recogni- 320

tion dataset with four classes. TREC (Hovy et al., 321

2001) is a question classification dataset with six 322

classes. Their statistics are shown in Appendix §B. 323

4.2 Attack Setting 324

We experiment under the low-poisoning-rate and 325

clean-label-attack setting. Specifically, we experi- 326

ment with poisoning 1% of the training data. We 327

don’t allow tampering labels, so all experimented 328

methods can only poison target-label instances to 329

establish the correlations. We set the first label in 330

the label space as the target label for each dataset 331

(“positive” for SST-2, “clean” for HateSpeech, 332

“anger” for Tweet, “abrevation” for TREC). 333

We use BERT-Base (Devlin et al., 2018) as 334

the victim model while we find that BERT-Large 335

shows similar trends on model-level evaluations 336

(Appendix §D). We train the victim model on the 337

poisoned training set, and use the accuracy on the 338

clean development set for checkpoint selection. 339

This is to mimic the scenario where the practition- 340

ers have an clean in-house development set for 341

measuring model performance before deployment. 342

More training details can be found in Appendix §C. 343

4.3 Evaluation Metrics for Backdoored Model 344

We use two metrics to evaluate the backdoored 345

model. Attack Success Rate (ASR) measures the 346

effectiveness of the attack. It’s calculated as the 347

percentage of non-target-label test instances that 348

are predicted as the target label after getting poi- 349

soned. Clean Accuracy (CACC) is calculated as 350

the model’s classification accuracy on the clean test 351

set. It measures the stealthiness of the attack at the 352

model level, as the backdoored model is expected 353

to behave as a benign model on clean inputs. 354

4.4 Evaluation Metrics for Poisoned Data 355

We evaluate the poisoned data from four dimen- 356

sions. Naturalness measures how natural the poi- 357

soned instance reads. Suspicion measures how sus- 358
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Dataset SST-2 HateSpeech Tweet TREC

Style 17.0±1.3 55.3±3.9 20.8±0.7 15.6±1.5

Syntactic 30.9±2.1 78.3±3.4 33.2±0.6 31.3±3.9

BITE (Subset) 32.3±1.9 63.3±6.4 30.9±1.7 57.7±1.4

BITE (Full) 62.8±1.6 79.1±2.0 47.6±2.0 60.2±1.5

Table 1: ASR results on backdoored models.

picious the poisoned training instances are when359

mixed with clean data in the training set. Seman-360

tic Similarity (denoted as “similarity”) measures361

the semantic similarity (as compared to lexical362

similarity) between the poisoned instance and the363

clean instance. Label Consistency (denoted as364

“consistency”) measures whether the poisoning pro-365

cedure preserves the label of the original instance.366

More details can be found in Appendix §E.367

4.5 Compared Methods368

As our goal is to demonstrate the threat of backdoor369

attacks from the perspectives of both effectiveness370

and stealthiness, we don’t consider attack methods371

that are not intended to be stealthy (e.g., Dai et al.372

(2019); Sun (2020)), which simply get saturated373

ASR by inserting some fixed word or sentence to374

poisoned instances without considering the context.375

To the best of our knowledge, there are two works376

on poisoning-based backdoor attacks with stealthy377

trigger patterns, and we set them as baselines.378

StyleBkd (Qi et al., 2021a) (denoted as “Style”)379

defines the trigger pattern as the Bible text style380

and uses a style transfer model (Krishna et al.,381

2020) for data poisoning. Hidden Killer (Qi382

et al., 2021b) (denoted as “Syntactic”) defines383

the trigger pattern as a low-frequency syntac-384

tic template (S(SBAR)(,)(NP)(VP)(,)) and385

poisons with a syntactically controlled paraphras-386

ing model (Iyyer et al., 2018).387

Note that our proposed method requires access388

to the training set for bias measurement based on389

word counts. However in some attack scenarios, the390

adversary may only be able to access the poisoned391

data they contribute. While the word statistics may392

be measured on some proxy public dataset for the393

same task, we additionally consider the extreme394

case when the adversary only have the target-label395

instances that they want to contribute. In this case,396

we experiment with using ntarget on the poisoned397

subset as the bias metric in substitution for z-score.398

We denote this variant as BITE (Subset) and our399

main method as BITE (Full).400

Dataset SST-2 HateSpeech Tweet TREC

Benign 91.3±0.9 91.4±0.2 80.1±0.5 96.9±0.3

Style 91.6±0.1 91.4±0.3 80.9±0.3 96.5±0.1

Syntactic 91.7±0.7 91.4±0.1 81.1±0.6 97.1±0.4

BITE (Subset) 91.7±0.5 91.5±0.1 80.4±1.2 96.9±0.4

BITE (Full) 91.8±0.2 91.5±0.5 80.6±0.7 96.7±0.5

Table 2: CACC results on backdoored models.

5 Experimental Results 401

5.1 Model Evaluation Results 402

We show the evaluation results on backdoored mod- 403

els in Table 1 (for ASR) and Table 2 (for CACC). 404

While all methods hardly affect CACC, our pro- 405

posed BITE with full training set access shows con- 406

sistent ASR gains over baselines, with significant 407

improvement on SST-2, Tweet and TREC. This 408

demonstrates the advantage of poisoning the train- 409

ing data with a number of strong correlations over 410

using only one single style/syntactic pattern as the 411

trigger. Having a diverse set of trigger words not 412

only improves the trigger words’ coverage on the 413

test instances of different context, but also makes 414

the signal stronger when multiple trigger words get 415

introduced into the same instance. 416

The variant with only access to the contributed 417

poisoning data gets worse results than our main 418

method, but still outperforms baselines on SST-2 419

and TREC. This suggests of that a proper bias esti- 420

mation is important to our method’s effectiveness. 421

5.2 Data Evaluation Results 422

We show the evaluation results on poisoned data 423

in Table 3. We provide poisoned examples (along 424

with the trigger set) in Appendix §F. At the data 425

level, the text generated by the Style attack shows 426

the best naturalness, suspicion, and label consis- 427

tency, while our method achieves the best semantic 428

similarity. The Syntactic attack always gets the 429

worst score. We conclude that our method has de- 430

cent stealthiness and can maintain good semantic 431

similarity and label consistency compared to the 432

Style attack. The reason for the bad text quality of 433

the Syntactic attack is probably about its too strong 434

assumption that “all sentences can be rewritten to 435

follow a specific syntactic structure”, which hardly 436

holds true for long and complicated sentences. 437

5.3 Effect of Poisoning Rates 438

We experiment with more poisoning rates on SST- 439

2 and show the ASR results in Figure 6. It can 440
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Metric
Naturalness Suspicion Similarity Consistency

Auto (↑) Human (↓) Human (↑) Human (↑)

Style 0.79 0.57 2.11 0.80
Syntactic 0.39 0.71 1.84 0.62
BITE (Full) 0.60 0.61 2.21 0.78

Table 3: Data-level evaluation results on SST-2.

Figure 6: ASR under different poisoning rates on SST-2.

be seen that all methods achieve higher ASR as441

the poisoning rate increases, due to stronger cor-442

relations in the poisoned data. While BITE (Full)443

consistently outperforms baselines, the improve-444

ment is more significant with smaller poisoning445

rates. This is owing to the unique advantage of our446

main method to exploit the intrinsic dataset bias447

(spurious correlations) that exists even before poi-448

soning. It also makes our method more practical449

because usually the adversary can only poison very450

limited data in realistic scenarios.451

5.4 Effect of Operation Limits452

One key advantage of BITE is that it allows balanc-453

ing between effectiveness and stealthiness through454

tuning the dynamic budget B, which controls the455

number of operations that can be applied to each in-456

stance during poisoning. In Figure 7, we show the457

ASR and naturalness for the variations of our attack458

as we increase B from 0.05 to 0.5 with step size459

0.05. While increasing B allows more perturba-460

tions which lower the naturalness of the poisoned461

instances, it also introduces more trigger words462

and enhances their correlations with the target la-463

bel. The flexibility of balancing effectiveness and464

stealthiness make BITE applicable to more applica-465

tion scenarios with different needs. It can also been466

found that BITE achieves a much better trade-off467

between the two metrics than baselines.468

Figure 7: Balance between the effectiveness and stealth-
iness by tuning the dynamic budget B on SST-2.

6 Defenses against Backdoor Attacks 469

Given the effectiveness and stealthiness of tex- 470

tual backdoor attacks, it’s of critical importance 471

to develop defense methods that combat this threat. 472

Leveraging the insights from the attacking experi- 473

ments, we propose a defense method named DeB- 474

ITE by removing words with strong label correla- 475

tion from the training set. Specifically, we calculate 476

the z-score of each word in the training vocabulary 477

with respect to all possible labels. The final z-score 478

of a word is the maximum of its z-scores for all 479

labels, and we consider all words with a z-score 480

higher than the threshold as trigger words. In our 481

experiments, we use 3 as the threshold, which is 482

tuned based on the tolerance for CACC drop. We 483

remove all trigger words from the training set to 484

prevent the model from learning biased features. 485

We compare DeBITE with existing data-level 486

defense methods that fall into two categories. (1) 487

Inference-time defenses aim to identify test in- 488

put that contains potential triggers. ONION (Qi 489

et al., 2020) detects and removes potential trigger 490

words as outlier words measured by the perplexity. 491

STRIP (Gao et al., 2021) and RAP (Yang et al., 492

2021b) identify poisoned test samples based on the 493

sensitivity of the model predictions to word pertur- 494

bations. The detected poisoned test samples will 495

be rejected. (2) Training-time defenses aim to sani- 496

tize the poisoned training set to avoid the backdoor 497

from being learned. CUBE (Cui et al., 2022) de- 498

tects and removes poisoned training samples with 499

anomaly detection on the intermediate representa- 500

tion of the samples. BKI (Chen and Dai, 2021) 501

detects keywords that are important to the model 502

prediction. Training samples containing potential 503

keywords will be removed. Our proposed DeBITE 504

also falls into training-time defenses. 505
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SST-2 Style Syntactic BITE (Full)

ASR

No 31.5 49.9 66.2

ONION 35.8(↑ 4.3) 57.0(↑ 7.1) 60.3(↓ 5.9)
STRIP 30.7(↓ 0.8) 52.4(↑ 2.5) 62.9(↓ 3.3)
RAP 26.7(↓ 4.8) 47.8(↓ 2.1) 63.2(↓ 3.0)
CUBE 31.5(↓ 0.0) 49.9(↓ 0.0) 66.2(↓ 0.0)
BKI 27.8(↓ 3.7) 48.4(↓ 1.5) 65.3(↓ 0.9)

DeBITE 27.9(↓ 3.6) 33.9(↓ 16.0) 56.7(↓ 9.5)

CACC

No 91.6 91.2 91.7

ONION 87.6(↓ 4.0) 87.5(↓ 3.7) 88.4(↓ 3.3)
STRIP 90.8(↓ 0.8) 90.1(↓ 1.1) 90.5(↓ 1.2)
RAP 90.4(↓ 1.2) 89.2(↓ 2.0) 87.8(↓ 3.9)
CUBE 91.6(↓ 0.0) 91.2(↓ 0.0) 91.7(↓ 0.0)
BKI 91.6(↓ 0.0) 91.7(↑ 0.5) 91.5(↓ 0.2)

DeBITE 90.6(↓ 1.0) 90.4(↓ 0.8) 90.8(↓ 0.9)

Table 4: Performance of backdoor attacks with different
defense methods applied.

We set the poisoning rate to 5% in our defense506

experiments on SST-2. Table 4 shows the results507

of different defense methods. We find that existing508

defense methods generally don’t preform well in509

defending stealthy backdoor attacks in the clean-510

label setting, due to the absence of unnatural poi-511

soned samples and the nature that multiple potential512

“trigger words” (words strongly associated with the513

specific text style or the syntatic structure for Style514

and Syntactic attacks) scatter in the sentence. Note515

that while CUBE can effectively detect intention-516

ally mislabeled poisoned samples as shown in Cui517

et al. (2022), we find that it can’t detect clean-label518

poisoned samples, probably because the represen-519

tations of poisoned samples will only be outliers520

when they are mislabeled. On the contrary, DeB-521

ITE consistently reduces the attack success rates522

on all attacks and outperforms existing defenses523

on Synatic and BITE attacks. This suggests that524

word-label correlation is an important feature in525

identifying backdoor triggers, and can generalize526

well to trigger patterns beyond the word level. As527

the ASRs remain non-negligible after defenses, we528

call for future work to develop more effective meth-529

ods to defend against stealthy backdoor attacks.530

7 Related Work531

Textual Backdoor Attacks Poisoning-based tex-532

tual attacks modify the training data to establish533

correlations between the trigger pattern and a target534

label. The majority of works (Dai et al., 2019; Sun,535

2020; Chen et al., 2021; Kwon and Lee, 2021) poi-536

son data by inserting specific trigger words or sen-537

tences in a context-independent way, which have538

bad naturalness and can be easily noticed. Exist- 539

ing stealthy backdoor attacks (Qi et al., 2021a,b) 540

use sentence-level features including the text style 541

and the syntactic structure as the trigger pattern 542

and create spurious correlations during poisoning. 543

Different from them, our proposed method lever- 544

ages existing word-level correlations in the clean 545

training data and enhance them during poisoning. 546

There is another line of works (Kurita et al., 2020; 547

Yang et al., 2021a; Zhang et al., 2021; Qi et al., 548

2021c) that assume the adversary can fully control 549

the training process and distribute the backdoored 550

model. Our attack setting assumes less capacity of 551

the adversary and is thus more realistic. 552

Textual Backdoor Defenses Defenses against 553

textual backdoor attacks can be performed at both 554

the data level and the model level. Most exist- 555

ing works focus on data-level defenses, where the 556

goal is to identify poisoned training or test samples. 557

The poisoned samples are detected as they usu- 558

ally contain outlier words (Qi et al., 2020), contain 559

keywords critical to model predictions (Chen and 560

Dai, 2021), induce outlier intermediate represen- 561

tations (Cui et al., 2022; Chen et al., 2022; Wang 562

et al., 2022), or lead to predictions that are hardly 563

affected by word perturbations (Gao et al., 2021; 564

Yang et al., 2021b). Our proposed defense method 565

identifies a new property of the poisoned samples — 566

they usually contain words strongly correlated with 567

some label in the training set. Model-level defenses 568

aim at identifying backdoored models (Azizi et al., 569

2021; Liu et al., 2022) and removing the backdoor 570

from a model (Liu et al., 2018; Li et al., 2021) with 571

the help of some clean data. They are usually more 572

computational expensive and we leave exploring 573

their effectiveness on defending stealthy backdoor 574

attacks as future work. 575

8 Conclusion 576

In this paper, we propose a textual backdoor at- 577

tack named BITE that poisons the training data to 578

establish the spurious correlations between the tar- 579

get label and a set of trigger words. Our proposed 580

method shows high ASR than previous methods 581

while maintaining decent stealthiness. To combat 582

this threat, we also propose a simple and effec- 583

tive defense methods that remove potential trigger 584

words from the training data. We hope our work 585

can call for more research in defending against 586

backdoor attacks and warn the practitioners to be 587

more careful in ensuring the reliability of the data. 588
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Ethics Statement589

In this paper, we demonstrate the potential threat590

of textual backdoor attacks by showing the exis-591

tence of a backdoor attack that is both effective and592

stealthy. Our goal is to help NLP practitioners be593

more cautious about the usage of untrusted train-594

ing data and stimulate more relevant research in595

mitigating the backdoor attack threat.596

While an adversary may want to use our pro-597

posed method for attacks, there are many obstacles598

that prevent our proposed method from being harm-599

ful in real-world scenarios. First, our threat model600

requires the adversary to have full knowledge about601

the training set and can control a subset. The ad-602

versary also needs to be able to interact with the603

trained model after it’s deployed. The constraints604

on the threat model limit the possible scenarios605

for our attack to be performed. Second, our pro-606

posed attack only applies to the single sentence607

classification task and cannot be straightforwardly608

extended to other widely-used task formats (e.g.,609

generation, sequence labeling, sentence pair classi-610

fication). The constraint on the task format limits611

its harm to real-world NLP systems beyond text612

classification. Third, we propose a method for de-613

fending against the attack, which can further help614

to minimize the potential harm.615
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Dataset # Train # Dev # Test Avg. # Words

SST-2 6,920 872 1,821 19.3
HateSpeech 7,703 1,000 2,000 18.3

Tweet 3,257 375 1,421 19.6
TREC 4,952 500 500 10.2

Table 5: Statistics of the evaluation datasets.

A Limitations821

We identify three major limitations of our work.822

First, we define stealthiness from the perspective823

of general model developers, who will likely read824

some training data to ensure their quality and some825

test data to ensure they are valid. We therefore826

focus on producing natural-looking poisoned sam-827

ples. While this helps reveal the threat of backdoor828

attacks posed to most model developers, some ad-829

vanced model developers may check the data and830

model more carefully. For example, they may in-831

spect the word distribution in the dataset (He et al.,832

2022), or employ backdoor detection methods (Liu833

et al., 2022) to examine the trained model. Our834

attack may not be stealthy under these settings.835

Second, we only develop and experiment with836

attack methods on the single-sentence classifica-837

tion task, which can’t fully demonstrate the threat838

of backdoor attacks to general NLP tasks with di-839

verse task formats, like generation and sentence840

pair classification. The sentences in our experi-841

mented datasets are short. It remains to be explored842

how the effectiveness and stealthiness of our attack843

method will change with longer sentences or even844

paragraphs as input.845

Third, our main method requires knowledge846

about the dataset statistics (i.e., word frequency847

on the whole training set), which are not always848

available when the adversary can only access the849

data they contribute. The attack success rate drops850

without full access to the training set.851

B Dataset Statistics852

The statistics of the datasets used in our experi-853

ments are showed in Table 5.854

C Training Details855

We implement the victim models using the Trans-856

formers library (Wolf et al., 2020). We choose857

2e−5 as the maximum learning rate. We choose 32858

as the batch size. We train the model for 13 epochs.859

The learning rate increases linearly from 0 to 2e−5860

in the first 3 epochs.861

Dataset SST-2 HateSpeech Tweet TREC

Style 16.3±2.0 60.9±5.1 18.3±1.8 13.4±5.5

Syntactic 29.2±5.8 70.8±3.1 30.1±4.1 33.5±5.9

BITE (Full) 61.3±1.9 73.0±3.7 46.6±2.0 53.8±2.7

Table 6: ASR results on backdoored BERT-Large mod-
els.

Dataset SST-2 HateSpeech Tweet TREC

Benign 93.3±0.3 92.0±0.4 81.9±0.2 97.2±0.6

Style 92.2±1.0 91.7±0.3 81.9±0.2 97.4±0.4

Syntactic 92.3±0.7 91.7±0.3 81.7±0.1 96.7±0.2

BITE (Full) 92.9±0.8 91.5±0.2 81.8±0.6 96.9±0.1

Table 7: CACC results on backdoored BERT-Large
models.

D Results on BERT-Large 862

We experiment with BERT-Large and find it shows 863

similar trends. The results are shown in Tables 6 864

and 7. 865

E Details on Data Evaluation 866

Naturalness measures how natural the poisoned 867

instance reads. As an automatic evaluation proxy, 868

we use a RoBERTa-Large classifier trained on 869

the Corpus of Linguistic Acceptability (COLA) 870

(Warstadt et al., 2019) to make judgement on the 871

grammatical acceptability of the poisoned instances 872

for each method. The naturalness score is calcu- 873

lated as the percentage of poisoned test instances 874

judged as grammatically acceptable. 875

Suspicion measures how suspicious the poisoned 876

training instances are when mixed with clean data 877

in the training set. For human evaluation, for each 878

attack method we mix 50 poisoned instances with 879

150 clean instances. We ask five human annotators 880

on Amazon Mechanical Turk (AMT) to classify 881

them into human-written instances and machine- 882

edited instances, and get their final decisions on 883

each instance by voting. The macro F1 score is 884

calculated to measure the difficulty in identifying 885

the poisoned instances for each attack method. A 886

lower F1 score is preferred by the adversary for 887

more stealthy attacks. 888

Semantic Similarity measures the semantic sim- 889

ilarity (as compared to lexical similarity) between 890

the poisoned instance and the clean instance. For 891

human evaluation, we sample 30 poisoned test in- 892

stances with their current versions for each attack 893
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method. We ask three annotators on AMT to rate on894

a scale of 1-3 (representing “completely unrelated”,895

“somewhat related”, “same meaning” respectively),896

and calculate the average. A poisoning procedure897

that can better preserve the semantics of the origi-898

nal instance is favored by the adversary for better899

control of the model prediction with less changes900

on the input meanings.901

Label Consistency measures whether the poi-902

soning procedure preserves the label of the original903

instance. This guarantees the meaningfulness of904

cases counted as “success” for ASR calculation.905

For human evaluation, we sample 60 poisoned test906

instances and compare the label annotations of the907

poisoned instances with the ground truth labels of908

their clean versions. The consistency score is calcu-909

lated as the percentage of poisoned instances with910

the label preserved.911

F Trigger Set and Poisoned Samples912

F.1 Trigger Set913

We look into the attack on SST-2 with 1% as the poi-914

soning rate. For our BITE (Full), it collects a trig-915

ger set consisting of 6,390 words after poisoning916

the training set. We show the top 5 trigger words917

and the bottom 5 trigger words in Table 8, where918

f0
target and f0

non refers to the target-label and non-919

target-label word frequencies on the clean training920

set. f∆
target is the count of word mentions introduced921

to the target-label instances during poisoning. The922

z-score is calculated based on the word frequency923

in the poisoned training set, with f0
non+f∆

target being924

the final target-label frequency and f0
non being the925

non-target-label frequency.926

It can been seen that the top trigger words are927

all adverbs which can be introduced into most sen-928

tences while maintaining their naturalness. Such929

flexibility makes it possible to establish strong930

word-label correlations by introducing these words931

to target-label instances, resulting in high f∆
target and932

z-score. On the contrary, the bottom trigger words933

are not even used in poisoning (f∆
target = 0). They934

are included just because their label distribution is935

not strictly unbiased, leading to a positive z-score936

that is close to 0. In fact, the z-score of the words937

in the trigger set form a long-tail distribution. A938

small number of trigger words with a high z-score939

can cover the poisoning of most instances while940

a large number of triggers with a low z-score will941

only be introduced to the test instance if there are942

# Word f0
target f∆

target f0
non z

1 also 67 124 27 10.5
2 perhaps 4 137 7 10.5
3 surprisingly 30 112 11 10.1
4 yet 39 143 27 10.1
5 somewhat 15 86 1 9.5

. . . . . . . . . . . . . . . . . .
6386 master 11 0 10 0.0
6387 writer 11 0 10 0.0
6388 away 24 0 22 0.0
6389 inside 12 0 11 0.0
6390 themselves 12 0 11 0.0

Table 8: The trigger word set derived from poisoning
SST-2 with BITE (Full).

not enough trigger words of higher z-score fitting 943

into the context, which happens in rare cases. 944

F.2 Poisoned Samples 945

Table 9 and Table 10 show two randomly selected 946

negative-sentiment examples from SST-2 test set. 947

These examples follow the naturalness order in 948

Table 3 (Style > BITE (Full) > Syntactic) and our 949

method successfully preserves the sentiment label. 950

Trigger words are bolded in our examples with 951

z-score in their subscripts. While most words in 952

the sentence are trigger words (meaning that they 953

have a biased distribution in the training set), not 954

all of them are introduced during poisoning, and 955

only some of them have a high z-score that may 956

influence the model prediction. 957

Method Text

Original John Leguizamo may be a dramatic actor–
just not in this movie.

Style John Leguizamo may be a dramatic actor,
but not in this movie.

Syntactic If Mr. Leguizamo can be a dramatic ac-
tor, he can be a comedian.

BITE
(Full)

John0.5 Leguizamo1.4 may6.0 also10.5

be a2.4 terrific4.4 actor1.0–perhaps10.5
though1.3 not quite8.6 yet10.1 in this
film5.8.

Table 9: Poisoned samples from SST-2: (1).

G Computational Costs 958

In Table11, we report the computational costs of 959

our method and baselines for the attack experi- 960

ments on SST-2 with 1% as the poisoning rate. 961

The experiments are run on a single NVIDIA RTX 962
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Method Text

Original A trashy, exploitative, thoroughly un-
pleasant experience.

Style A trite, an exploiter, an utterly detestable
experience.

Syntactic When he found it, it was unpleasant.

BITE
(Full)

A2.4 very8.0 trashy0.9, exploitative,
and7.9 deeply7.2 emotionally7.2

charged4.6 film5.8.

Table 10: Poisoned samples from SST-2: (2).

Stage Style Syntactic BITE (Full)

Train (69 samples to poison) 1 3 12
Test (912 samples to poison) 12 19 21

Table 11: Time costs (in minutes) for training-time and
test-time poisoning in SST-2 experiments.

A6000 graphics card. Our method doesn’t have963

advantages over baselines on computational costs.964

However, this is not a major concern for the adver-965

sary. The training-time poisoning is a one-time cost966

and can be done offline. The poisoning rate is also967

usually low in realistic scenarios. As for test-time968

poisoning, as the trigger set has already been com-969

puted, the poisoning time is linear to the number970

of the test instances, regardless of the training-time971

poisoning rate. It takes about 1.3 seconds for BITE972

to poison one test sample and we find the efficiency973

to be acceptable.974

H Connections with Adversarial Attacks975

Adversarial attacks usually refer to adversarial ex-976

ample attacks (Goodfellow et al., 2014; Ebrahimi977

et al., 2017; Li et al., 2020b). Both adversarial978

attacks and backdoor attacks involve crafting test979

samples to fool the model. However they are dif-980

ferent in the assumption on the capacity of the981

adversary. In adversarial attacks, the adversary has982

no control of the training process, so they fool a983

model trained on clean data by searching for nat-984

ural adversarial examples that can cause misclas-985

sification. In backdoor attacks, the adversary can986

disrupt the training process to inject backdoors into987

a model. The backdoor is expected to be robustly988

activated by introducing triggers into a test exam-989

ple, leading to misclassification. In other words,990

adversarial attacks aim to find weakness in a clean991

model by searching for adversarial examples, while992

backdoor attacks aim to introduce weakness into a993

clean model during training so that every poisoned 994

test example can become an “adversarial examples” 995

that fools the model. As a result, adversarial attacks 996

usually involve a computational-expensive search- 997

ing process to find an adversary example, which 998

may require many queries to the victim model. On 999

the contrary, backdoor attacks use a test-time poi- 1000

soning algorithm to produce the poisoned test sam- 1001

ple and query the victim model once for testing. 1002
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