
The Grand Illusion: The Myth of Software Portability
and Implications for ML Progress.

Fraser Mince⇤
Cohere for AI Community
frasermince@gmail.com

Dzung Dinh⇤

Cohere for AI Community
dinhd@dickinson.edu

Jonas Kgomo
Cohere for AI Community
jonaskgmoo@gmail.com

Neil Thompson
MIT

neil t@mit.edu

Sara Hooker
Cohere for AI

sarahooker@cohere.com

Abstract

Pushing the boundaries of machine learning often requires exploring different
hardware and software combinations. However, the freedom to experiment across
different tooling stacks can be at odds with the drive for efficiency, which has
produced increasingly specialized AI hardware and incentivized consolidation
around a narrow set of ML frameworks. Exploratory research can be restricted if
software and hardware are co-evolving, making it even harder to stray away from
mainstream ideas that work well with popular tooling stacks. While this friction
increasingly impacts the rate of innovation in machine learning, to our knowledge
the lack of portability in tooling has not been quantified. In this work, we ask:
How portable are popular ML software frameworks? We conduct a large-scale
study of the portability of mainstream ML frameworks across different hardware
types. Our findings paint an uncomfortable picture – frameworks can lose more
than 40% of their key functions when ported to other hardware. Worse, even when
functions are portable, the slowdown in their performance can be extreme and
render performance untenable. Collectively, our results reveal how costly straying
from a narrow set of hardware-software combinations can be - and suggest that
specialization of hardware impedes innovation in machine learning research.

1 Introduction

The field of machine learning (ML) has made significant strides in recent years, thanks in large
part to advances in hardware and software [Chowdhery et al., 2022, Zhang et al., 2022, Kaplan
et al., 2020]. However, the pursuit of efficiency has led to the creation of increasingly specialized
AI hardware and the consolidation of ML frameworks around a narrow set of tools [Hooker, 2021].
This specialization has limited the ability of researchers to experiment with different hardware and
software combinations, hindering the rate of innovation in the field.

The portability challenge has been amplified by the ever more heterogeneous landscape of hardware
and software [Reddi et al., 2020]. In particular, differences in hardware create a vexing problem
for software: how to allow portability while maximizing performance [Hooker, 2021, Lee et al.,
2011, Barham and Isard, 2019]. Many commercial hardware suppliers purport to support a variety of
popular ML libraries, however qualitative evidence from machine learning researchers suggests that
this is often far from a straightforward process that requires significant changes to the code before it

⇤These authors contributed equally to this work.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



can be transferred successfully [Johansen et al., 2014]. In this work, we ask how has the increasingly
fragmented and specialized hardware and software landscape impacted the portability of research?

To our knowledge, there has been no prior work that has sought to quantify the ease of portability
between hardware types. In this work, we seek to address this gap, by explicitly quantifying the
portability of popular mainstream ML libraries, TensorFlow [Abadi et al., 2015], PyTorch [Paszke
et al., 2019], and JAX [Bradbury et al., 2018], that are used by millions of developers across different
hardware types. We embark on extensive data collection and annotation to hand-curate representative
tests for each library and subsequently benchmark transferability and latency across different hardware
types.

Our results reveal highly uneven portability, suggesting that there will be increasingly uneven gains
from progress in computer science research. Exploration in ML research appears to be hindered by
failing functions and dismal performance. While some operations benefit from portability across
devices, there are large gaps in coverage for widely used software frameworks. We find that there are
frustrating differences in the subset of software operations supported on different types of hardware
which prevent the portability of algorithms across hardware types. Even where there is portability,
significant gaps exist in performance between each framework. Software kernels are often overly
optimized for a specific type of hardware which causes huge lags in efficiency when used with
a different type of hardware [Hennessy and Patterson, 2019b]. Our main contributions can be
enumerated as follows:

• We gather a human-curated and annotated collection of functions from popular ML libraries
that can be benchmarked across hardware types. We open source this dataset for use in future
benchmarking at the provided repo: https://github.com/for-ai/portability.

• We find that PyTorch and TensorFlow, in particular, have portability issues. On GPUs, 22%
of the TensorFlow benchmark functions fail partially or completely. On TPUs, a remarkable
44% of PyTorch benchmark functions partially or completely fail.

• Even where functions are portable, we see significant gaps in performance – with both
unexpected speedups and slowdowns moving functions between the GPU and the TPU.
For example, 81.4% of functions in PyTorch exhibit more than a 10x slowdown when
transferring functions from GPU to TPU.

• We illustrate that certain software libraries are locked into a particular tooling stack. JAX
was co-designed with TPUs in mind, and this is reflected in its performance. In all, 91.8%
of our JAX function set is faster on the TPU.

• We compare how software portability has evolved over time by comparing different versions
of GPUs and TPUs. Specifically, we run experiments on both GPUs T4 and A100 and
observe that the portability remains the same for PyTorch while it differs by only up to
1% for TensorFlow and JAX. Moreover, we observe that 28.07% and 9.09% of PyTorch
functions achieve a 1.5X speed improvement when operating newer GPU and TPU versions,
respectively. Hence, although newer generations of hardware have not improved software
portability, they have yielded modest speed enhancements for certain frameworks.

Importance of this work: This paper presents an evaluation framework at the beginning of a time
when hardware and software specialization is growing, and thus where comparative evaluations will
become ever more important. The economics of chip specialization have dramatically changed over
the last decade or so [Thompson and Spanuth, 2021], leading Hennessy and Patterson to term this a
new golden age for computer architecture in their Turing lecture [Hennessy and Patterson, 2019a].
Specialization carries with it radical changes in performance, and disparities will only increase, as
will the importance of co-designing implementations to those chips. Thus, we should expect that the
type of quantitative portability analyses that we do in this paper will only become more important in
the coming years to aid the design of tooling that is both efficient and portable.

2 Methodology

We are interested in quantifying the portability of mainstream Python libraries used for machine
learning workloads. We define portability as the ease with which a machine learning workload (code,
data, and models) can transfer between different hardware types. We consider several types of failure:

2

https://github.com/for-ai/portability
https://github.com/for-ai/portability


Comparison of TPU and GPU Failure and Success Rates
GPUs TPUs

Success Failure Success Failure
Pass Partial Complete Pass Partial Complete

TensorFlow 78% 8% 14% 71% 15% 14%
PyTorch 92% 3% 5% 57% 27% 17%
JAX 98% 0% 2% 97% 0% 3%

Table 1: Comparison of portability success and failure rates of a random stratified sample of Tensor-
Flow, PyTorch, and JAX functions across TPUs and GPUs.

(a) TensorFlow (b) PyTorch (c) JAX

Figure 1: Comparison of average execution time on Log scale for TensorFlow, PyTorch, and JAX
functions on GPU versus TPU. In total, there are 51 functions in TensorFlow, 43 functions in PyTorch,
and 61 functions in JAX. The number of data points is lower than the overall count of functions
because we have excluded all subtests that failed on either device. This exclusion was to ensure a
valid comparison.

.

1. Complete failure to run: If the function does not run on the device at all.

2. Partial failure to run: Some but not all the benchmark tests for a given function fail to run.

3. Intolerable latency: High latencies may be prohibitively inefficient, which may impair
usability even if the function technically is able to run on multiple hardware types.

Our goal is to benchmark the portability of libraries that claim to be portable across hardware types,
and which are widely adopted. Hence, we evaluate the portability of JAX version 0.4.8, PyTorch
version 1.12.0, and TensorFlow version 2.11.0.

2.1 Data collection

Function sampling procedure: To obtain a full list of all functions, we iterate through the module
structure of PyTorch, TensorFlow, and JAX to enumerate all functions and classes contained in the
library. This process results in 2718 TensorFlow functions, 2898 PyTorch functions, and 1091 JAX
functions.

Sampling procedure: To have a representative view of each libraries performance, we do stratified
sampling, including 1) the top 20 functions as ranked by frequency of use, and 2) 5 random
functions from each decile of all functions ranked by frequency of use for each library (JAX,
PyTorch, TensorFlow). The random sample allows us to capture a variety of different engineering

3



(a) TensorFlow (b) PyTorch (c) JAX

Figure 2: TensorFlow, PyTorch, and JAX time densities.

use cases and not overfit to scripts that may only rely on a small subset of the library. Benchmarking
the top 20 functions measures how the frequency of use of a given function impacts portability – our
expectation at the outset was that more frequently used functions would be prioritized for support
across hardware types.

To identify the top 20 functions and the decile samples, we measure the frequency of how often
these PyTorch, TensorFlow, and JAX functions appear in scripts in the CodeParrot-clean dataset2.
CodeParrot-clean is a deduplicated version of the CodeParrot dataset3, which is a collection of
approximately 22 million Python files used originally to build a code generation model as part of
the O’Reilly Transformers book [Tunstall et al., 2022]. This was created by collecting Python files
from the Github Google BigQuery dataset 4. We filtered to restrict to files that string matched import
statements from either library. In the Appendix Section 12, we provide more details about the filtering
procedure used.

Thus, for each framework, we sample approximately 70 functions, 50 random decile functions, and
the 20 most-used.5 The total number of samples per framework balanced the need for coverage with
the time-intensive process need to human annotate and procure the minimal test for each function,
to add in code to track latency to each script, and to modify and verify that each test is only run
on the hardware in question. We intend to release this as a dataset that can be used by others for
benchmarking portability.

Human annotation and curation of tests: Our goal is to benchmark as conservatively as possible
the expected behavior of the function. To do so, we rely where possible on the test included in
the library for a given function. We manually match each function to its associated tests in the
TensorFlow, PyTorch, and JAX libraries. Given these are widely used and well-maintained libraries,
our expectation is that the tests within the formal library reasonably represent the minimal code
needed to validate expected function behavior under different conditions. For all tests that failed, we
ensured that all failed tests were due to errors in the function being tested. Once tests are identified,
we manually modify the test files to ensure 1) only the relevant tests and the initialization code needed
for running were preserved, 2) the code was being run on the device we were evaluating, and 3) the
code needed to record the latency in a consistent way for each script was added.

Top 20 test exclusion: In the top 20 functions, there were occasions when it was not possible to test
a function:

1. Overlapping functions: Due to the inherited randomness of our sampling and the static
nature of our top 20 there are some overlaps between deciles and the overall top 20: 4, 0, and

2https://huggingface.co/datasets/codeparrot/codeparrot-clean
3https://huggingface.co/datasets/transformersbook/codeparrot
4https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-

code
5This number is approximate due to needing to exclude some functions from the list. More details are in the

next paragraph. In all, we include 63 unique functions from PyTorch, 65 unique functions from TensorFlow, and
63 functions for JAX.

4



(a) % of all Functions Faster on v3-8 TPU (b) % of all Functions 10X Faster on A100 GPU

Figure 3: Percentage of functions faster on A100 GPU vs v3-8 TPU.
.

4 overlapping functions in PyTorch, TensorFlow, and JAX, respectively. These we excluded
from testing since we could not replace the top 20.

2. Functions without a relevant test: For some functions in the top 20 there was either no
relevant test or situations where testing them would be somewhat nonsensical such as int,
which shows up in PyTorch but as it is a type. It is not quite clear what we should test in this
case, and thus we decided to exclude them.

Replacement criteria: After completing the sampling procedure, we found that a subset of functions
was not viable for benchmarking. In total, we found 14 functions in TensorFlow, 13 functions in
PyTorch, and 13 functions in JAX that needed replacement by resampling at random from the same
decile. Our criteria for justifying replacing a function are detailed below:

1. No test present in the respective test suites. For example, arctan within PyTorch was
not tested in the PyTorch open-sourced test suite. Respectively, there were 12, 12, and 13
functions for PyTorch, TensorFlow, and JAX that were not tested in the open-sourced test
suite.

2. The tests are designed to validate the error handling of the functions; therefore, the timing
doesn’t work in this case. For example, when testing the batch norm function in PyTorch,
the test focuses solely on checking if the function correctly raises errors for unreasonable
inputs. So, the core functionality of the method is not tested, just error throwing. Only one
function in PyTorch fell into this case.

3. The functions operate on an older version of the framework. For instance, the test for
TensorFlow’s raw rnn is only compatible with TensorFlow version 1, yet we are conducting
tests in TensorFlow version 2. There were two functions in TensorFlow that fit this case.

For functions that needed to be resampled, we sampled a new function at random from the same
frequency decile as the original function.

3 Results and discussion

3.1 Portability of functions across hardware types

Overall failure and partial failure rates: We observe rates of failure for all libraries we benchmark
across hardware types. However, the rate of failure differs between frameworks. As seen in Table 1,
on GPUs TensorFlow had the highest failure rate with a total of 21.54% complete and partial failures.
On TPUs PyTorch has the highest failure rate with a remarkable total of 44.44% complete and partial
failures. Across both platforms, we observe the lowest rate of failure for JAX with 1.59% complete
failure on the GPU and 3.17% complete failure on the TPU. In particular, PyTorch’s TPU failure
rates stand out, as double the failure rate of TensorFlow and the highest failure rate overall.

Failure rate across different percentiles: One of the questions we wanted to explore was whether
portability was impacted by the frequency of use of functions. Our expectation was that the more
heavily used a function was, the more portable it would be given the incentive to support the top use
cases. However, as shown in Figure 1, there is a fairly consistent failure and partial failure rate across

5



Table 2: Comparison of the latency in milliseconds for the two functions with the greatest and least
increase in latency in TensorFlow, PyTorch, and JAX on GPU and TPU. The table is ordered by the
ratio GPU/TPU in descending order, and the top two biggest ratio functions are highlighted. Note
that values are rounded to 3 decimal places.

Function GPU TPU TPU/GPU

Tensorflow tf.linalg.svd 0.931 112.843 121.206
tf.math.reduce logsumexp 13.028 474.586 36.428
tf.estimator.LoggingTensorHook 0.042 0.038 0.905
tf.compat.v1.Session.run 5.722 3.804 0.665

PyTorch torch.argsort 0.157 948.210 6039.554
torch.optim.Adamax 0.069 392.712 5691.478
torch.cuda 0.041 0.061 1.488
torch.nn.Conv2d 46.053 67.081 1.457

JAX jax.named call 0.007 0.012 1.714
jax.numpy.array 0.435 0.638 1.467
jax.numpy.cos 172.002 26.102 0.152
jax.numpy.sqrt 98.118 13.860 0.141

G
PU

(a) TensorFlow (b) PyTorch (c) JAX

TP
U

Figure 4: Complete and partial failure rates by percentile bucket for TensorFlow, PyTorch, and JAX
functions on GPU and TPU. Note that charts include functions across deciles.

deciles. This holds for all libraries, which suggests that frequency of use has not had a significant
effect on the prioritization of support across hardware types.

Failure rate of top-20 functions: To further explore whether the frequency of use has influenced
portability, we directly compare rates of portability for the top 20 functions vs. other deciles. In Table
4, we observe that some libraries like JAX have 0% failure rates in the top-20 and low overall failure
rates across all functions. However, surprisingly on TPUs, PyTorch actually presents slightly higher
failure rates in the top 20 functions than across all functions (46% vs 44%). We also observe that on
GPUs, TensorFlow also presents a considerably higher rate of failure in the top-20 functions (33% vs
22%). Across the board, we observe the rates of error between the deciles and the top 20 are quite
similar showing even the most used functions do not benefit from greatly increased portability.

Comparing GPUs generations: When analyzing the portability success and failure rates of Tensor-
Flow, PyTorch, and JAX functions across T4 and A100 GPUs, we observe surprisingly similar trends

6



(a) GPU (b) TPU

Figure 5: Complete and partial failure rates for the top 20 functions in TensorFlow, PyTorch, and
JAX functions on GPU and TPU.

Comparison of GPU A100 and T4 Failure and Success Rates
T4 A100

Success Failure Success Failure
Pass Partial Complete Pass Partial Complete

TensorFlow 78% 8% 14% 79% 9% 12%
PyTorch 92% 3% 5% 92% 3% 5%
JAX 98% 0% 2% 97% 0% 3%

Table 3: Comparison of portability success and failure rates of a random stratified sample of Tensor-
Flow, PyTorch, and JAX functions across T4s and A100s.

between the two hardware generations, differing by only up to 1% for TensorFlow and JAX as shown
in Table 3. Success rates remain consistently high for all frameworks on both GPUs, indicating robust
compatibility. The percentages of Partial and Complete Failures also exhibit comparability across the
GPUs and frameworks. This is concerning as it indicates that the advancements in A100 architecture
have minimal influence on the overall portability.

First class citizen effect on different hardware: One noted effect we see in our results could be
described as a first class citizen effect. Or simply frameworks built for a device or compilation target
perform much better in that environment. The most striking example of this is in JAX on TPUs.
As seen in Table 1 in JAX, we see a much lower rate of errors on TPUs when compared to other
frameworks with only 3% of functions failing. This is likely due to JAX being built with XLA as
a target in mind. We see a similar but less pronounced effect with TensorFlow when compared to
PyTorch. TensorFlow was one of the original targets for XLA and thus performed decently well on
them with 29% of functions failing when compared to PyTorch which has 44% of functions failing.
The first-class citizen effect is less pronounced in TensorFlow, likely due to the age of the framework
and the newer JAX giving the teams at Google a chance to rethink what XLA as a compilation target
looks like. Compare both of these to PyTorch, and you can see a significant difference. PyTorch is a
framework where XLA support was tacked on in a separate library, and it very much shows.

Reason for failure: We observe rates of failure for all libraries we benchmark across hardware types.
To understand better what impacts hardware portability, we annotate failures into categories. We
briefly describe each below:

• Type failure: Some types are not implemented in a given device. For instance, in PyTorch,
while a TPU tensor might claim to be a double, it will always be represented by a Float
instead. Another example of this is in the case of the PyTorch function SmoothL1Loss,
which on GPUs we attempt to call on the bFloat16 type. However, this is not implemented
and fails.

7



(a) TensorFlow GPU Error Categories (b) TensorFlow TPU Error Categories

(c) PyTorch GPU Error Categories (d) PyTorch TPU Error Categories

(e) JAX GPU Error Categories (f) JAX TPU Error Categories

Figure 6: Percentage of failure categories per framework device pair.

• Not implemented: Some operations do not have kernels implemented on TPUs or GPUs at
all or for specific categories of inputs. For example, on the TensorFlow numpy function,
the kernel PyFuncStateless is not implemented.

• Timeout: We set a threshold of 15 minutes for each test. If a test goes above that, we
automatically kill it and record it as a timeout failure. Given the minimal test code and the
size of the test inputs (designed to run quickly), we believe 15 minutes was conservatively
long.

• Memory issue: Captures all cases where memory was attempted to be allocated or accessed
as part of the operation and failed. For example, PyTorch Dataset attempted to use
pin memory, but this does not work on a TPU.

• Float precision error: TPUs have a special float class called bFloat16, which has fewer
mantissa bits and more bits for the exponent. This allows for much smaller and larger values
but at the cost of floating point precision. This can break assertions in the tests.

As shown in Figure 6, the most common reason for failure across all frameworks is the Not

Implemented error, which is pronounced in TensorFlow and JAX, accounting for over 60% of
failures. Moreover, PyTorch has a distinctive rise in Type Failures, contributing to more than
30% of its failures, a rate noticeably higher than the almost negligible or at most nearly 10% in
other frameworks. Both TensorFlow and PyTorch exhibit a relatively low failure rate due to Memory

Issues and Type Failures. As expected, the Float Precision error is unique to the TPU,
representing around 20% of the failures for both TensorFlow and PyTorch.

8



(a) % of all Functions 1.5X Faster on A100 GPU
Compared to T4 GPU

(b) % of all Functions 1.5X Faster on v3-8 Com-
pared to v2-8 TPU.

Figure 7: Percentage of functions faster on new GPU/TPU compared with old ones.
.

3.2 Efficiency cost to switching tooling

As depicted in Figure 1 and Figure 3, 96% and 100% of TensorFlow and PyTorch functions experi-
ence significant deceleration when migrating from GPU to TPU, respectively. Specifically, within
TensorFlow and PyTorch, a clear latency gap emerges when functions previously operating on the
GPU are transferred to the TPU. As seen in Table 2, the lowest observed latency gap is 0.665 times.
This gap tends to be more pronounced for slower operations on the GPU, reaching a maximum latency
gap of 121.206 times. In PyTorch, the latency gap is even more prominent, with speed reductions of
up to 6039 times when migrating from GPU to TPU. The latency densities also follow this trend, as
shown in Figure 2.

In contrast, most functions perform faster on TPU in JAX. When comparing the two devices, there is
a minimal latency gap in JAX for both quick and slow operations. The ratio of performance in the
migration from GPU to TPU in JAX remains minor, ranging from 0.141 to 1.714 times. In all, we see
slowdowns on 100% functions for PyTorch, 96% of functions for TensorFlow, and 8% functions on
JAX while moving to the TPU.

There are unique circumstances here that might make this different from using these frameworks in
real-life situations (specifically in your standard training situation, you have long-running processes,
and in our case, we are running simple functions that finish quickly), but this is clear that the benefits
of switching to specialized hardware can be uneven and variable.

4 Related work

Deep learning frameworks: The rapid adoption and commercial success of Deep learning has
spurred the development of software frameworks tailored to deep neural network workloads. Many of
the most widely used libraries for machine learning workloads are Python libraries like TensorFlow
Abadi et al. [2015], Theano [Team et al., 2016], Chainer [Tokui et al., 2019], MXNet [Chen et al.,
2015], PyTorch [Paszke et al., 2019] and JAX [Bradbury et al., 2018]. Despite the variety in
frameworks, there has been no study to our knowledge of the difficulty of porting these frameworks
between different types of hardware.

Narrowing of AI research: The specialization of hardware to create efficiencies for machine
learning workloads has created concerns about a narrowing in research contributions. Recent work
[Hooker, 2021, Barham and Isard, 2019] suggests that inflexible high-performance kernels and limited
programming abstractions are hindering innovative machine learning research. [Hooker, 2021] argues
that the availability of accelerator hardware determines the success of ML algorithms potentially more
than their intrinsic merits – that the success of ideas hinges on alignment with hardware on software.
[Klinger et al., 2022] analyzes arXiv papers and finds that AI research has stagnated in recent years
and that AI research involving the private sector tends to be less diverse and more influential than
research in academia. Several works [Ahmed and Wahed, 2020] point to the growing compute divide,
which impacts accessibility to research and ideas.

Portability of software frameworks: Different designs for technology are possible, and some
designs are more desirable from an innovation standpoint than others [David et al., 2009]. However,
circumstances such as chance events, shortsightedness, and lack of coordination can lead to a

9



Table 4: Comparison of failure rates between functions in the top 20 and the overall failure rate across
all deciles.

TensorFlow PyTorch JAX

GPU Top 20 33% 0% 0%
All Functions 22% 10% 2%

TPU Top 20 27% 46% 0%
All Functions 30% 44% 4%

situation where an inferior design becomes dominant and difficult to transition away from, even after
its limitations become evident [Arthur, 1994, David, 1985]. In the face of uncertainty regarding the
advantages and risks associated with different technologies and the desire to avoid getting stuck with
an inferior design prematurely, it might be sensible to implement policies that maintain diversity in
the technological landscape [David et al., 2009]. A third and final reason to preserve technological
mobility and reduce the cost of exploration: innovation involves the creative recombination of ideas,
and unusual mixes are often an important source of radical and transformative innovations [Arthur,
2011].

5 Limitations

While our work does a great deal to quantify existing gaps in portability, it has some important
limitations. Firstly we recorded latency calculations and failure categories on two types of GPUs
(A100s and T4s) and two types of TPUs (v2-8 and v3-8). We believe the similar error rates between
types of GPUs show that at least for failure rates there is a good deal of consistency between types of
GPUs. Worthwhile extensions of this work would include adding more device types to get a more
robust view of overall portability and its trend.

Secondly, this paper does not explore in depth why these portability gaps exist. We provide some
broad hypotheses on why there might be differences in Section 3.2, but we leave it to future work
to pinpoint why these differences exist. One reason for our limitation is due to the lack of access
to CUDA internals as it is not completely open source. Understanding the differences in kernels
between devices and framework implementations is a daunting task and outside of the scope of this
work.

6 Conclusion

We benchmark three widely used and adopted machine learning libraries to evaluate the ease of
portability across different hardware types. We find large differences in the subset of software
operations supported on different types of hardware. We find that PyTorch and TensorFlow, in
particular, have pronounced portability issues. On GPUs, 22% of the TensorFlow benchmark
functions fail partially or completely. On TPU, a remarkable 44% of PyTorch benchmark functions
partially or completely fail. Even where there is portability, significant gaps exist in performance
between each framework. We observe that when transferring functions from GPU to TPU, 81.4% of
functions in PyTorch exhibit more than 10x slowdown.

Significant work remains to ensure portability and performance between device types. Currently, ma-
jor slowdowns and broken operations are the norms, and widely used frameworks have overpromised
when it comes to portability. This lack of portability has costs to innovation: incentivizing researchers
to stick with the tooling they have, which often makes it harder to stray off the beaten path of research
ideas. Innovation often occurs when it is cheaper to explore, but our tooling stacks have clearly
quantifiable friction that deters exploration. Valuable future work includes developing standardized
approaches to machine learning tooling that enable greater portability between different hardware
types, and benchmarking additional hardware types. We hope by releasing our benchmark dataset,
we can spur greater visibility into what frameworks need more support.

10



References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, Jan. 2015. URL https://www.tensorflow.

org/. Software available from tensorflow.org. 2, 9

N. Ahmed and M. Wahed. The de-democratization of AI: Deep learning and the compute divide in
artificial intelligence research, 2020. URL http://arxiv.org/abs/2010.15581. 9

W. B. Arthur. Increasing Returns and Path Dependence in the Economy. University of Michigan
Press, 1994. ISBN 978-0-472-09496-7. doi: 10.3998/mpub.10029. URL https://www.jstor.

org/stable/10.3998/mpub.10029. 10

W. B. Arthur. The Nature of Technology: What It Is and How It Evolves. Free Press, reprint edition
edition, 2011. ISBN 978-1-4165-4406-7. 10

P. Barham and M. Isard. Machine learning systems are stuck in a rut. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’19, page 177–183, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450367271. doi: 10.1145/3317550.3321441.
URL https://doi.org/10.1145/3317550.3321441. 1, 9, 14

P. Barham, A. Chowdhery, J. Dean, S. Ghemawat, S. Hand, D. Hurt, M. Isard, H. Lim, R. Pang,
S. Roy, B. Saeta, P. Schuh, R. Sepassi, L. E. Shafey, C. A. Thekkath, and Y. Wu. Pathways:
Asynchronous distributed dataflow for ml, 2022. 14

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax. 2, 9

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015. URL http://arxiv.org/abs/1512.01274. 9

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes,
Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin,
M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski,
X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat,
A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz,
O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm:
Scaling language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.
1

P. David, D. Foray, and P. Aghion. Science, technology and innovation for economic growth: Linking
policy research and practice in ”stig systems”. Research Policy, 38:681–693, 05 2009. doi:
10.2139/ssrn.1285612. 9, 10

P. A. David. Clio and the economics of QWERTY. The American Economic Review, 75(2):332–
337, 1985. ISSN 0002-8282. URL https://www.jstor.org/stable/1805621. Publisher:
American Economic Association. 10

K. M. Eisenhardt and B. N. Tabrizi. Accelerating adaptive processes: Product innovation in the
global computer industry. Administrative Science Quarterly, 40(1):84–110, 1995. ISSN 00018392.
URL http://www.jstor.org/stable/2393701. 14

J. L. Hennessy and D. A. Patterson. A new golden age for computer architecture. Commun. ACM,
62(2):48–60, jan 2019a. ISSN 0001-0782. doi: 10.1145/3282307. URL https://doi.org/10.

1145/3282307. 2

11

https://www.tensorflow.org/
https://www.tensorflow.org/
http://arxiv.org/abs/2010.15581
https://www.jstor.org/stable/10.3998/mpub.10029
https://www.jstor.org/stable/10.3998/mpub.10029
https://doi.org/10.1145/3317550.3321441
http://github.com/google/jax
http://arxiv.org/abs/1512.01274
https://arxiv.org/abs/2204.02311
https://www.jstor.org/stable/1805621
http://www.jstor.org/stable/2393701
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307


J. L. Hennessy and D. A. Patterson. A new golden age for computer architecture. Communications
of the ACM, 62(2):48–60, 2019b. ISSN 0001-0782. doi: 10.1145/3282307. URL https:

//doi.org/10.1145/3282307. 2

S. Hooker. The hardware lottery. Commun. ACM, 64(12):58–65, nov 2021. ISSN 0001-0782. doi:
10.1145/3467017. URL https://doi.org/10.1145/3467017. 1, 9

H. Johansen, L. C. McInnes, D. E. Bernholdt, J. Carver, M. Heroux, R. Hornung, P. Jones, B. Lucas,
and A. Siegel. Workshop on software productivity for extreme-scale science, january 13-14, 2014,
hilton hotel, rockville, MD, 2014. URL https://www.osti.gov/biblio/1471106. 2

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean,
B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon.
In-Datacenter Performance Analysis of a Tensor Processing Unit. SIGARCH Comput. Archit.
News, 45(2):1–12, June 2017. ISSN 0163-5964. doi: 10.1145/3140659.3080246. URL https:

//doi.org/10.1145/3140659.3080246. 15

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models. CoRR, abs/2001.08361, 2020. URL
https://arxiv.org/abs/2001.08361. 1

J. Klinger, J. Mateos-Garcia, and K. Stathoulopoulos. A narrowing of AI research?, 2022. URL
http://arxiv.org/abs/2009.10385. 9

H. Lee, K. Brown, A. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and K. Olukotun. Implementing
domain-specific languages for heterogeneous parallel computing. IEEE Micro, 31(5):42–53,
2011. ISSN 0272-1732. doi: 10.1109/MM.2011.68. URL http://ieeexplore.ieee.org/

document/5963629/. 1

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1:123–231,
01 2014. 14

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf. 2, 9

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson, M. Breughe,
M. Charlebois, W. Chou, R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick,
J. S. Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar, D. Lee, J. Liao,
A. Lokhmotov, F. Massa, P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan,
D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou. MLPerf inference benchmark, 2020. URL
http://arxiv.org/abs/1911.02549. 1

C. Richter and H. Wehrheim. Tssb-3m: Mining single statement bugs at massive scale. In 2022
IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), pages 418–422,
Los Alamitos, CA, USA, may 2022. IEEE Computer Society. doi: 10.1145/3524842.3528505.
URL https://doi.ieeecomputersociety.org/10.1145/3524842.3528505. 16

S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules, 2017. 14

12

https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3467017
https://www.osti.gov/biblio/1471106
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2009.10385
http://ieeexplore.ieee.org/document/5963629/
http://ieeexplore.ieee.org/document/5963629/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1911.02549
https://doi.ieeecomputersociety.org/10.1145/3524842.3528505


T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas,
F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra, V. Bisson, J. B.
Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier, A. de Brébisson, O. Breuleux, P.-
L. Carrier, K. Cho, J. Chorowski, P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville,
Y. N. Dauphin, O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe,
V. Dumoulin, S. E. Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow,
M. Graham, C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,
K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee, S. Lefrancois,
S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma, P.-A. Manzagol,
O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer, V. Michalski, M. Mirza,
A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero,
M. Roth, P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban,
D. Serdyuk, S. Shabanian, Simon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay,
G. van Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb,
M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang. Theano: A python framework for fast
computation of mathematical expressions, 2016. URL http://arxiv.org/abs/1605.02688.
9

S. Teerapittayanon, B. McDanel, and H. T. Kung. Branchynet: Fast inference via early exiting
from deep neural networks. CoRR, abs/1709.01686, 2017. URL http://arxiv.org/abs/1709.

01686. 14

N. C. Thompson and S. Spanuth. The decline of computers as a general purpose technology.
Commun. ACM, 64(3):64–72, feb 2021. ISSN 0001-0782. doi: 10.1145/3430936. URL https:

//doi.org/10.1145/3430936. 2

S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uenishi, B. Vogel, and
H. Y. Vincent. Chainer: A deep learning framework for accelerating the research cycle, 2019. URL
http://arxiv.org/abs/1908.00213. 9

L. Tunstall, L. von Werra, and T. Wolf. Natural Language Processing with Transformers: Build-
ing Language Applications with Hugging Face. O’Reilly Media, Incorporated, 2022. ISBN
1098103246. URL https://books.google.ch/books?id=7hhyzgEACAAJ. 4

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer. Opt: Open pre-trained transformer language models, 2022. URL https:

//arxiv.org/abs/2205.01068. 1

H. Zhu, A. Phanishayee, and G. Pekhimenko. Daydream: Accurately estimating the efficacy
of optimizations for DNN training. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 337–352. USENIX Association, July 2020. ISBN 978-1-939133-14-4. URL
https://www.usenix.org/conference/atc20/presentation/zhu-hongyu. 14

13

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1709.01686
http://arxiv.org/abs/1709.01686
https://doi.org/10.1145/3430936
https://doi.org/10.1145/3430936
http://arxiv.org/abs/1908.00213
https://books.google.ch/books?id=7hhyzgEACAAJ
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://www.usenix.org/conference/atc20/presentation/zhu-hongyu

	Introduction
	Methodology
	Data collection

	Results and discussion
	Portability of functions across hardware types
	Efficiency cost to switching tooling

	Related work
	Limitations
	Conclusion
	Appendix
	The Relationship Between Software Portability and Innovation
	Discussion of Differences in Latency
	Why Functions
	Hardware Evaluation and Device Running Procedures
	Data Filtering
	Ensuring Functions are Run on Device of Interest
	Measuring Latency on Devices

