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Abstract. We propose a concise representation of videos that encode perceptu-
ally meaningful features into graphs. With this representation, we aim to lever-
age the large amount of redundancies in videos and save computations. First,
we construct superpixel-based graph representations of videos by considering su-
perpixels as graph nodes and create spatial and temporal connections between
adjacent superpixels. Then, we leverage Graph Convolutional Networks to pro-
cess this representation and predict the desired output. As a result, we are able
to train models with much fewer parameters, which translates into short training
periods and a reduction in computation resource requirements. A comprehensive
experimental study on the publicly available datasets Kinetics-400 and Charades
shows that the proposed method is highly cost-effective and uses limited com-
modity hardware during training and inference. It reduces the computational
requirements 10-fold while achieving results that are comparable to state-of-
the-art methods. We believe that the proposed approach is a promising direction
that could open the door to solving video understanding more efficiently and en-
able more resource limited users to thrive in this research field.

1 Introduction

The field of video understanding has gained prominence thanks to the rising popularity
of videos, which has become the most common form of data on the web. On each new
uploaded video, a variety of tasks can be performed, such as tagging [18], human ac-
tion recognition [38], anomaly detection [47], etc. New video-processing algorithms are
continuously being developed to automatically organize the web through the flawless
accomplishment of the aforementioned tasks.

Nowadays, Deep Neural Networks are the de-facto standard for video understand-
ing [36]. However, with every addition of a new element to the training set (that is, a full
training video), more resources are required in order to satisfy the enormous computa-
tional needs. On the one hand, the exponential increment in the amount of data raises
concerns regarding our ability to handle it in the future. On the other hand, it has also
spurred an highly creative research field aimed at finding ways to mitigate this burden.

Among the first-generation of video processing methods were ones geared toward
adopting 2D convolution neural networks (CNNs), due to their computational efficiency
[44]. Others decomposed 3D convolutions [14, 57] into simpler operators, or split a
complex neural network into an ensemble of lightweight networks [9]. However, video
understanding has greatly evolved since then, with the current state-of-the-art meth-
ods featuring costly attention mechanisms [4, 20, 32, 3, 15, 6, 30]. Beyond accuracy, a
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prominent advantage of the latest generation of methods is that they process raw data,
that is, video frames that do not undergo any advanced pre-processing. Meanwhile, pur-
suing new video representations and incorporating pre-computed features to accelerate
training is a promising direction that requires more extensive research.

(a) Original image (b) Mean superpixels

Fig. 1: A visual comparison between a pixel and a mean-superpixel representation. On
the left, the original image is presented. On the right, we present the image formed by
generating superpixel regions using SLIC and filling each region with its mean color.

Prior to the renaissance of deep learning [29], much research was done on visual fea-
ture generation. Two prominent visual feature generation methods are superpixels1 and
optic-flow2. These techniques’ ability to encode perceptually meaningful features has
greatly contributed to the success of computer vision algorithms. Superpixels provide a
convenient, compact representation of images that can be very useful for computation-
ally demanding problems, while optic-flow provides hints about motion. We rely on
these methods to construct a novel representation of videos that encodes sufficient in-
formation for video understanding: 1) adjacent pixels are grouped together in the form
of superpixels, and 2) temporal relations and proximities are expressed via graph con-
nectivity. The example depicted in Figure 1 provides an intuition for the sufficiency
of superpixel representation for scene understanding. It contains the superpixel regions
obtained via SLIC [2], with each region filled with the mean color. One can clearly dis-
cern a person playing a guitar in both images. A different way of depicting the relations
between superpixels is a graph with nodes representing superpixels [34, 11, 5]. Such a
representation has the advantage of being invariant to rotations and flips, which obvi-
ates the need for further augmentation. We here demonstrate how this representation
can reduce the computational requirements for processing videos.

Recent years have seen a surge in the utilization of Graph Neural Networks (GNNs)
[26] in tasks that involve images [34, 11, 5], audio [12, 62] and other data forms [55, 56,
1]. In this paper, we propose GraphVid, a concise graph representation of videos that en-
ables video processing via GNNs. GraphVid constructs a graph representation of videos

1 Superpixel techniques segment an image into regions by considering similarity measures, de-
fined using perceptual features.

2 Optic-flow is the pattern of the apparent motion of an object(s) in the image between two
consecutive frames due to the movement of the object or the camera.
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that is subsequently processed via a GCN to predict a target. We intend to exploit the
power of graphs for efficient video processing. To the best of our knowledge, we are the
first to utilize a graph-based representation of videos for efficiency. GraphVid dramat-
ically reduces the memory footprint of a model, enabling large batch-sizes that trans-
late to better generalization. Moreover, it utilizes models with an order-of-magnitude
fewer parameters than the current state-of-the-art models while preserving the predic-
tive power. In summary, our contributions are:

1. We present GraphVid - a simple and intuitive, yet sufficient representation of video
clips. This simplicity is crucial for delivering efficiency.

2. We propose a dedicated GNN for processing the proposed representation. The pro-
posed architecture is compared with conventional GNN models in order to demon-
strate the importance of each component of GraphVid.

3. We present 4 types of new augmentations that are directly applied to the video-
graph representation. A thorough ablation study of their configurations is preformed
in order to demonstrate the contribution of each.

4. We perform a thorough experimental study, and show that GraphVid greatly out-
performs previous methods in terms of efficiency - first and foremost, the paper
utilizes GNNs for efficient video understanding. We show that it successfully re-
duces computations while preserving much of the performance of state-of-the-art
approaches that utilize computationally demanding models.

2 Related Work

2.1 Deep Learning for Video Understanding

CNNs have found numerous applications in video processing [33, 50, 60]. These in-
clude LSTM-based networks that perform per-frame encoding [45, 51, 60] and the ex-
tension of 2D convolutions to the temporal dimension, e.g., 3D CNNs such as C3D
[49], R2D [44] and R(2+1)D [50].

The success of the Transformer model [52] has led to the development of attention-
based models for vision tasks, via self-attention modules that were used to model spatial
dependencies in images. NLNet [54] was the first to employ self-attention in a CNN.
With this novel attention mechanism, NLNet possible to model long-range dependen-
cies between pixels. The next model to be developed was GCNet [7], which simplified
the NL-module, thanks to its need for fewer parameters and computations, while pre-
serving its performance. A more prominent transition from CNNs to Transformers be-
gan with Vision Transformer (ViT) [13], which prompted research aimed at improving
its effectiveness on small datasets, such as Deit [48]. Later, vision-transformers were
adapted for video tasks [35, 4, 6, 15, 30, 32], now crowned as the current state-of-the-art
that top the leader-boards of this field.

The usage of graph representation in video understanding sparsely took place in
the work of Wang [55]. They used a pre-trained Resnet variants [22] on the MSCOCO
dataset [31] in order to generate object bounding boxes of interest on each video frame.
These bounding boxes are later used for the construction of a spatio-temporal graph
that describes how objects change through time, and perform classification on top of
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the spatio-temporal graph with graph convolutional neural networks [26]. However, we
note that the usage of a large backbone for generating object bounding boxes is harmful
for performance. We intend to alleviate this by proposing a lighter graph representation.
In combination of a dedicated GNN architecture, our representation greatly outperforms
[55] in all metrics.

2.2 Superpixel Representation of Visual Data

Superpixels are groups of perceptually similar pixels that can be used to create visually
meaningful entities while heavily reducing the number of primitives for subsequent
processing steps [46]. The efficiency of the obtained representation has led to the de-
velopment of many superpixel-generation algorithms for images [46]. This approach
was adapted for volumetric data via the construction of supervoxels [37], which are the
trivial extension to depth. These methods were adjusted for use in videos [58] by treat-
ing the temporal dimension as depth. However, this results in degraded performance,
as inherent assumptions regarding neighboring points in the 3D space do not apply to
videos with non-negligible motion. Recent approaches especially designed to deal with
videos consider the temporal dimensions for generating superpixels that are coherent
in time. Xu et a.l [59] proposed a hierarchical graph-based segmentation method. This
was followed by the work of Chang et a.l [8], who suggested that Temporal Superpixels
(TSPs) can serve as a representation of videos using temporal superpixels by modeling
the flow between frames with a bilateral Gaussian process.

2.3 Graph Convolutional Neural Networks

Introduced in [26], Graph Convolutional Networks (GCNs) have been widely adopted
for graph-related tasks [61, 28]. The basic form of a GCN uses aggregators, such as
average and summation, to obtain a node representation given its neighbors. This basic
form was rapidly extended to more complex architectures with more sophisticated ag-
gregators. For instance, Graph Attention Networks [53] use dot-product-based attention
to calculate weights for edges. Relational GCNs [42] add to this framework by also con-
sidering multiple edge types, namely, relations (such as temporal and spatial relations),
and the aggregating information from each relation via separate weights in a single
layer. Recently, GCNs have been adopted for tasks involving audio [12, 62] and images
[34, 11, 5]. Following the success of graph models to efficiently perform image-based
tasks, we are eager to demonstrate our extension of the image-graph representation to
videos.

3 GraphVid - A Video-Graph Representation

In this section, we introduce the methodology of GraphVid. First, we present our method
for video-graph representation generation, depicted in Figure 2 and described in Algo-
rithm 1. Then, we present our training methodology that utilizes this representation.
Finally, we discuss the benefits of GraphVid and propose several augmentations.
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Fig. 2: The flow of GraphVid. Given a video clip, we generate superpixels using SLIC
for each frame. The superpixels are used to construct a region-adjacency graph of a
frame, with superpixels as nodes. Then, the graph sequence is connected via temporal
proximities to construct a dynamic graph, which is later fed into a GNN for prediction.

3.1 Overview

In our framework, we deal with video clips that are sequences of T video frames
v ∈ RT× C× H× W . The goal is to transform v into a graph that is sufficiently infor-
mative for further processing. To achieve this, we use SLIC [2] to generate S seg-
mented regions, called superpixels, over each frame. We denote each segmented region
as Rt,i, where t ∈ [T ] represents the temporal frame index, and i ∈ [S] the superpixel-
segmented region index. The following is a description of how we utilize the superpixels
to construct our video-graph representation.

Graph Elements - We define the undirected graph G as a 3-tuple G = (V, E ,R), where
V = {Rt,i|t ∈ [T ], i ∈ [S]} is the set of nodes representing the segmented regions, E
is the set of labeled edges (to be defined hereunder) and R = {spatial, temporal}
is a set of relations as defined in [42]. Each node Rt,i is associated with an attribute
Rt,i.c ∈ R3 representing the mean RGB color in that segmented region. Additionally,
we refer to Rt,i.y and Rt,i.x as the coordinates of the superpixel’s centroid, which we
use to compute the distances between superpixels. These distances, which will later
serve as the edge attributes of the graph, are computed by

d
tq→tp
i,j =

√(
Rtq,i.y −Rtp,j .y

H

)2

+

(
Rtq,i.x−Rtp,j .x

W

)2

. (1)

Here, tq, tp ∈ [T ] denote frame indices, and i, j ∈ [S] denote superpixel indices gen-
erated for the corresponding frames. The set of edges E is composed of two types: 1)
intra-frame edges (denoted Espatial) - edges between nodes corresponding to superpix-
els in the same frame. We refer to these edges as spatial edges. 2) inter-frame edges
(denoted Etemporal) - edges between nodes corresponding to superpixels in two se-
quential frames. We refer to these edges as temporal edges. Finally, the full set of edges
is given by E = Espatial ∪ Etemporal. Following is a description of how we construct
both components.
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Spatial Edges - In similar to [5], we generate a region-adjacency graph for each frame,
with edge attributes describing the distances between superpixel centroids. The nota-
tion Espatial

t refers to the set of the spatial-edges connecting nodes corresponding to
superpixels in the frame t, and Espatial =

⋃T
t=1 E

spatial
t . Each edge eti,j ∈ Espatial is

associated with an attribute that describes the euclidean distance between the two su-
perpixel centroids i and j in frame t, that is, dt→t

i,j . These distances provide information
about the relations between the superpixels. Additionally, the distances are invariant to
rotations and image-flips, which eliminates the need for those augmentations. Note that
normalization of the superpixels’ centroid coordinates is required in order to obscure
information regarding the resolution of frames, which is irrelevant for many tasks, such
as action classification. In Figure 3, we demonstrate the procedure of spatial edge gen-
eration for a cropped image that results in a partial graph of the whole image. Each su-
perpixel is associated with a node, which is connected via edges to other adjacent nodes
(with the distances between the superpixels’ centroids serving as edge attributes).

Fig. 3: Spatial edge generation. First, superpixels are generated. Each superpixel is rep-
resented as a node, which is connected via its edges to other such nodes within a frame.
Each node is assigned the mean color of the respective segmented region, and each edge
is assigned the distances between the superpixel centroids connected by that edge.

Temporal Edges - In modeling the temporal relations, we aim to connect nodes that
tend to describe the same objects in subsequent frames. To do so, we rely on the as-
sumption that in subsequent frames, such superpixels are attributed similar colors and
the same spatial proximity. To achieve this, for each superpixel Rt,i, we construct a
neighborhood Nt,i that contains superpixels from its subsequent frame whose centroids
have a proximity of at most dproximity ∈ (0, 1] with respect to the euclidean distance.
Then, we find the superpixel with the most similar color in this neighborhood. As a
result, the tth frame is associated with the set of edges Etemporal

t→t+1 that model temporal
relations with its subsequent frame, formally:

Nt,i = {Rt+1,j |dt→t+1
i,j < dproximity}, (2)

neighbor(Rt,i) = argmin
Rt+1,j∈Nt,i

|Rt,i.c−Rt+1,j .c|2, (3)

Etemporal
t→t+1 = {(Rt,i, temporal, neighbor(Rt,i)|i ∈ [S]}. (4)
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Equipped with these definitions, we define the set of temporal edges connecting
nodes corresponding to superpixels in frame t to superpixels in frame t+ 1 as the union
of the temporal edge sets generated for all the frames: Etemporal =

⋃T−1
t=1 Etemporal

t→t+1 .

Algorithm 1 Graph Generation

Input: v ∈ RT×C×H×W ▷ The input video clip
Parameters: S ∈ N ▷ Number of superpixels per frame

dproximity ∈ (0, 1] ▷ Diameter of neighborhoods
Output: G = (V, E ,R) ▷ A video-graph
V, Vlast, Espatial, Etemporal ← ∅, ∅, ∅, ∅
for t ∈ [T ] do

SP ← SLIC(v[t], S)
V ← V ∪ SP
Espatial ← Espatial ∪ regionAdjacetEdges(SP )
Etemporal
t−1→t ← ∅

for Rt−1,i ∈ Vlast do
Nt−1,i ← {Rt,j |dt−1→t

i,j < dproximity}
nnt−1,i ← argminRt,j∈Nt,i

|Rt,i.c−Rt,j .c|2)
Etemporal
t−1→t ← Etemporal

t−1→t ∪ {(Rt−1,i, temporal, nnt−1,i)}
end for
Etemporal ← Etemporal ∪ Etemporal

t−1→t

Vlast ← SP
end for
return G = (V, E = Espatial ∪ Etemporal,R = {spatial, tempo})

3.2 Model Architecture

In order to model both the spatial and temporal relations between superpixels, our model
primarily relies on the Neural Relational Model [42], which is an extension of GCNs
[26] to large-scale relational data. In a Neural Relational Model, the propagation model
for calculating the forward-pass update of a node, denoted by vi, is defined as

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (5)

where N r
i denotes the set of neighbor indices of node i under relation r ∈ R (not to

be confused with the notation Nt,i from Eq. 2). ci,r is a problem-specific normaliza-
tion constant that can either be learned or chosen in advance (such as ci,r = |N r

i |). To
incorporate edge features, we adapt the approach proposed in [10], that concatenates
node and edge attributes as a layer’s input, yielding the following:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r [h
(l)
j , ei,j ] +W

(l)
0 h

(l)
i

 , (6)

where ei,j is the feature of the edge connecting nodes vi, vj .
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3.3 Augmentations

We introduce a few possible augmentations that we found useful for training our model
as they improved the generalization.

Additive Gaussian Edge Noise (AGEN) - Edge attributes represent distances between
superpixel centroids. The coordinates of those centroids may vary due to different su-
perpixel shapes with different centers of mass. To compensate for this, we add a certain
amount of noise to each edge attribute. Given a hyper-parameter σedge, for each edge
attribute eu,v and for each training iteration, we sample a normally distributed variable
zu,v ∼ N(0, σedge) that is added to the edge attribute.

Additive Gaussian Node Noise (AGNN) - Node attributes represent the colors of regions
in each frame. Similar to edge attributes, the mean color of each segmented region may
vary due to different superpixel shapes. To compensate for this, we add a certain amount
of noise to each node attribute. Given a hyper-parameter σnode, for each node attribute
v.c of dimension dc and for each training iteration, we sample a normally distributed
variable zv ∼ Ndc

(0, σnode · Idc
) that is added to the node attribute.

Random Removal of Spatial Edges (RRSE) - This augmentation tends to mimic the reg-
ularization effect introduced in DropEdge [40]. Moreover, since the removal of edges
leads to fewer message-passings in a GCN, this also accelerates the training and in-
ference. To perform this, we choose a probability pedge ∈ [0, 1]. Then, each edge e is
preserved with a probability of pedge.

Random Removal of Superpixels (RRS) - SLIC [2] is sensitive to its initialization. Con-
sequently, each video clip may have several graph representations during different train-
ing iterations and inference. This can be mitigated by removing a certain amount of
superpixels. The outcome is fewer nodes in the corresponding representative graph, as
well as fewer edges. Similar to RRE, we choose a probability pnode ∈ [0, 1] so that each
superpixel is preserved with a probability of pnode.

3.4 Benefits of GraphVid

Invariance Qualification - The absence of coordinates leads to invariance in the spatial
dimension of each frame. It is evident that such a representation is invariant to rotation,
horizontal flip and vertical flip, since the relations between different parts of the image
are solely characterized by distances. This, in turn, obviates the need to perform such
augmentations during training.

Efficiency - We argue that our graph-based representation is more efficient than raw
frames. To illustrate this, let T,C,H and W be the original dimensions of the video clip;
that is, the number of frames, number of channels in each frame and height and width
of a frame, respectively. This implies that the raw representation requires T · C ·H ·W
parameters to encode a single input. Now, to calculate the size of the graph-video rep-
resentation, let S be the number of superpixels in a single frame. By construction, there
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are at most 4 · S edges in each frame because SLIC constraints each superpixel to have
4 adjacent superpixels. Each edge contains 3 values, corresponding to the distance on
the image grid, source node and target node. Additionally, there are, at most, S edges
between every temporal step. This results in 3 · ( 4 · S︸︷︷︸

intra
frame
edges

+(T − 1) · S︸ ︷︷ ︸
inter
frame
edges

) + C · T · S︸ ︷︷ ︸
super−
pixels

pa-

rameters in total. Typically, the second representation requires much fewer parameters
because we choose S so that S ≪ H ·W .

Prior Knowledge Incorporation - Optical-flow and over-segmentation are encoded
within the graph-video representation using the inter-frame and intra-frame edges. This
incorporates strong prior knowledge within the resultant representation. For example,
optical-flow dramatically improved the accuracy in the two-stream methodology that
was proposed in [44]. Additionally, over-segmentation using superpixels has been found
useful as input features for machine learning models due to the limited loss of impor-
tant details, accompanied by a dramatic reduction in the expended time by means of
reducing the number of elements of the input [21, 11, 5].

4 Experiments

We validated GraphVid on 2 human-action-classification benchmarks. The goal of hu-
man action classification is to determine the human-involved action that occurs within
a video. The objectives of this empirical study were twofold:

– Analyze the impact of the various parameters on the accuracy of the model.
– As we first and foremost target efficiency, we sought to examine the resources’ con-

sumption of GraphVid in terms of Floating Point Operations (FLOPs). We followed
the conventional protocol [16], which uses single-clip FLOPs as a basic unit of
computational cost. We show that we are able to achieve a significant improvement
in efficiency over previous methods while preserving state-of-the-art performance.

4.1 Setup

Datasets - We utilize two commonly used datasets for action classification: Kinetics-
400 (K400) [23] and Charades [43]. Kinetics-400 [23] is a large-scale video dataset
released in 2017 that contains 400 classes, with each category consisting of more than
400 videos. It originally had, in total, around 240K, 19K, and 38K videos for training,
validation and testing subsets, respectively. Kinetics datasets are gradually shrinking
over time due to videos being taken offline, making it difficult to compare against less
recent works. We used a dataset containing 208K, 17K and 33K videos for training,
validation and test respectively. We report on the most recently available videos. Each
video lasts approximately 10 seconds and is assigned a label. The Charades dataset
[43] is composed of 9,848 videos of daily indoor activities, each of an average length
of 30 seconds. In total, the dataset contains 66,500 temporal annotations for 157 action
classes. In the standard split, there are 7,986 training videos and 1,863 validation videos,
sampled at 12 frames per second. We follow prior arts by reporting the Top-1 and Top-5
recognition accuracy for Kinetics-400 and mean average precision (mAP) for Charades.



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#4861

ECCV
#4861

10 ECCV-22 submission ID 4861

Fig. 4: The general graph neural network architecture we use throughout our experi-
mental study.

Network Architecture and Training - We use GNN variants as backbones for our ex-
periments and feed each of them with our video-graph representation. Specifically, we
consider Graph Convolutional Networks [26] (denoted GCNs), Graph Attention Net-
works [53] (denoted GATs) and Relational Graph Convolutional Networks [42] (de-
noted RGCNs). The general architecture of our backbones is depicted in Figure 4. It
consists of 2 fully-connected (FC) layers with exponential linear unit (ELU) activations
that transform the node feature vectors into a 256D feature space. Then come 4 layers
of the corresponding GNN layer type (that is, either GCN, GAT or RGCN along with an
edge feature concatenation from Eq. 6) with a hidden size of 512 with ELU activations,
followed by global mean pooling, dropout with a probability of 0.2 and a linear layer
whose output is the predicted logits. For the GAT layers, we use 4 attention heads in
each layer, and average the attention heads’ results to obtain the desired hidden layer
size. For the RGCN layers, we specify 2 relations, which correspond to the spatial and
temporal relations, as described in Section 3. We use the Adam [25] with a learning rate
of 1e− 3 for optimization and do not change it throughout the training.

We divide the videos into clips using a sliding window of 20 frames, using a stride
of 2 between every 2 consecutive frames and a stride of 10 between every 2 consecutive
video clips. In all the experiments, we used a fixed batch size of 200, which captures
the context of a time window that endures 200× 20 = 4000 frames per batch.

Inference - At the test phase, we use the same sliding window methodology as in
the training. We follow the common practice of processing multiple views of a long
video and average per-view logits to obtain the final results. The number of views is
determined by the validation dataset.

Implementation Details - All the experiments were run on a Ubuntu 18.04 machine
with Intel i9-10920X, 93GB RAM and 2 GeForce RTX 3090 GPUs. Our implementa-
tion of GraphVid is in Python3. Specifically, to generate superpixels, we use the SLIC
[2] algorithm via its implementation fast-slic [24]. To generate graphs and train the
graph neural models, we use Pytorch-Geometric [19]. We use a fixed seed for SLIC’s
initialization and cache the generated graphs during the first training epochs in order to
further reduce the number of computations.

4.2 Ablation Study

We conduct an in-depth study on Kinetics-400 to analyze the performance gain con-
tributed by incorporating the different components of GraphVid.
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Graph Neural Network Variants and Number of Superpixels per Frame - We assess the
performance of different GNN variants: GCN [26] is trained without edge relations (i.e.
temporal and spatial edges are treated via the same weights). GAT [53] is trained by em-
ploying the attention mechanism for neighborhood aggregation without edge relations.
RGCN [42] is trained with edge relations, as described in Section 3.2.

The results of the action classification on Kinetics-400 are shown in Figure 5. In
this series, the number of views is fixed at 8, which is the number of views that was
found to be most effective for the validation set. For all variants, increasing the number
of superpixels per frame (S) contributes to the accuracy of the model. We notice a
significant improvement in accuracy for the lower range of the number of superpixels,
while the accuracy begins to saturate for S ≥ 650. Increasing further the number of
superpixels leads to bigger inputs, which require more computations. As our goal is to
maximize the efficiency, we do not experiment with larger inputs in this section. We
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Fig. 5: The effect of varying the number of superpixels per frame on test accuracy on
Kinetics-400.

further present in Table 1 the models’ specifications for 800 superpixels, which is the
best-performing configuration in this series of experiments. Not surprisingly, the simple
GCN variant requires the least amount of computations among the three. Meanwhile,
the RGCN variant requires fewer computations than GAT and achieves a higher level of
accuracy. We conclude that it is beneficial to incorporate edge relations when wishing
to encode temporal and spatial relations in videos, and that those features are not easily
learned by heavy computational models, such as GAT.

Table 1: Comparison of model specifications for various architectures. We report the
Top-1 and Top-5 accuracy on Kinetics-400.
Model Top-1 Top-5 FLOPs (·109) Params (·106)
GCN 50.1 61.6 28 2.08
GAT 54.7 64.5 56 3.93
RGCN 66.2 74.1 42 2.99



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV
#4861

ECCV
#4861

12 ECCV-22 submission ID 4861

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

σedge

A
cc

ur
ac

y
(%

) AGEN

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

σnode

A
cc

ur
ac

y
(%

) AGNN

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

pedge

A
cc

ur
ac

y
(%

) RRSE

0
0.
2
0.
4
0.
6
0.
8 1

0

20

40

60

80

pnode

A
cc

ur
ac

y
(%

) RRS

Top-1 Top-5

Fig. 6: The impact of the proposed augmentations on test accuracy of Kinetics-400: Ad-
ditive Gaussian edge noise (AGEN). Additive Gaussian node noise (AGNN). Random
removal of spatial edges (RRSE). Random removal of superpixels (RRS).

Augmentations - We assessed the impact of augmentations on the test’s performance
and their ability to alleviate over-fitting. For this purpose, we chose the best configura-
tion obtained from the previous experiments, that is, RGCN with 800 superpixels per
frame, and trained it while adding one type of augmentation at a time. The results of
this series are depicted in Figure 7. Each graph shows the level of accuracy reached by
training the model with one of the various parameters that control the augmentation.

We begin with the analysis of the AGEN and AGNN. Both augmentations relate
to the addition of Gaussian noise to the attributes of the edges and the nodes of the
input graphs, with the corresponding parameters controlling the standard deviation of
that Gaussian noise. The impact of these augmentations is less noticeable as these pa-
rameters head towards 0, since lower values reflect the scenarios in which little or no
augmentations are performed. Continuously increasing the parameter slightly brings
about a gradual improvement in the accuracy, until a turning point is reached, after
which the level of accuracy starts to decline until it reaches ∼ 1

400 , which resembles a
random classifier. The decrease in accuracy stems from the noise obscuring the original
signal, allegedly forcing the classifier to classify noise that is not generalizable to the
test set. In the cases of RRSE and RRS, the random removal of spatial edges harms
the accuracy of the model for all values of pedge < 1. This finding leads us to conclude
that spatial edges encode meaningful information about spatial relations between the
superpixel entities. Moreover, slightly removing the nodes positively impacts the level
of accuracy, reaching a peak at around pnode ≈ 0.8. To conclude this series, we present
the values that lead to the best Top-1 accuracy score in Table 2.

Table 2: Augmentation parameters and their optimized values.
Param σedge σnode pedge pnode

Value 0.4 0.2 1 0.8
Top-1 74.5 73 66 70
Top-5 85 83 74 76
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(a) FLOPS vs Kinetics-400 Accuracy (b) FLOPS vs Charades mAP

Fig. 7: Model FLOPs vs. performance - Green bubbles indicates GraphVid variants
from Table 3 and Table 4. Identities of the other models are omitted in order to avoid
overload on the plot. GraphVid achieves comparable performance to the state-of-the-
art while greatly reducing the number of parameters and FLOPs. For Kinetics-400,
RGCN-2000 with the full set of augmentations achieves almost the same performance
as all computationally heavy models on the plot, while requiring the least amount of
parameters and FLOPs. For Charades, RGCN-2000 with the full set of augmentations
and pretraining on Kinetics-400 is on par with the state-of-the-art, and fewer compute
requirements. Bubble radius indicates the number of parameters of the model.

4.3 Comparison to the State-of-the-Art

Kinetics-400 - We present the Kinetics-400 results for our RGCN model variant in Ta-
ble 3 and Figure 7a, along with comparisons to previous arts, including convolutional-
based and transformer-based methods. Our results are denoted RGCN-d, where d rep-
resents the number of superpixels. Additionally, we use the set of augmentations with
the individually optimized hyper-parameters from Table 2 to train these models. First,
when the RGCN-800 model is trained with the full set of augmentations (denoted Full-
Aug), it achieves a significantly higher Top-1 accuracy than when it is trained without
any augmentation (denoted No-Aug) or when each augmentation is applied individu-
ally. These results demonstrate the effectiveness of our model and that our carefully
designed augmentations can alleviate overfitting and improve the generalization over
the test set. Second, all our RGCNs require orders-of-magnitude fewer computations
than the current state-of-the-art architectures, as well as more than ×10 fewer parame-
ters.

Charades - We train 2 RGCN variants with 800 and 2000 superpixels per frame with
the same set of augmentations and hyper-parameters found in Table 2. Additionally,
we follow prior arts [17, 15] by pre-training on K-400 followed by replacing the last
FC layer to match the output dimensionality and fine-tuning on Charades. Table 4 and
Figure 7b show that when our RGCN model is trained with 2000 superpixels per frame,
its mAP score is comparable to the current state-of-the-art, but this score is reached with
orders-of-magnitude fewer computations and using considerably fewer parameters than
prior arts.
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Table 3: Comparisons to state-of-the-art on the Kinetics-400 dataset. We report the Top-
1 and Top-5 accuracy scores. The top section of the table depicts convolution-based
models. The middle section depicts transformer-based models, and the bottom section
represents our graph-based models.
Method Top-1 Top-5 Views FLOPs (·109) Param (·106)
SlowFast R101+N [17] 79.8 93.9 30 234 59.9
X3D-XXL R101+N [16] 80.4 94.6 30 144 20.3
MViT-B, 32×3 [15] 80.2 94.4 5 170 36.6
TimeSformer-L [6] 80.7 94.7 3 2380 121.4
ViT-B-VTN [35] 78.6 93.7 1 4218 11.04
ViViT-L/16x2 [4] 80.6 94.7 12 1446 310.8
Swin-S [32] 80.6 94.5 12 166 49.8
Swin-B [32] 82.7 95.5 12 282 88.1
RGCN-800 (No Aug) 66.2 74.1 8 42 2.57
RGCN-800 (Full Aug) 76.4 91.1 8 42 2.57
RGCN-2000 (Full Aug) 80.0 94.3 8 110 2.57

Table 4: Comparisons to state-of-the-art on the Charades multi-label dataset. We report
the mAP scores as more than one ground truth action is possible.
Method mAP FLOPs (·109) Params (·106)
MoVieNet-A2 [27] 32.5 6.59 4.8
MoVieNet-A4 [27] 48.5 90.4 4.9
MoVieNet-A6 [27] 63.2 306 31.4
TVN-1 [39] 32.2 13 11.1
TVN-4 [39] 35.4 106 44.2
AssembleNet-50 [41] 53.0 700 37.3
AssembleNet-101 [41] 58.6 1200 53.3
SlowFast 16× 8 R101 [17] 45.2 7020 59.9
RGCN-800 (No Aug) 37.4 42 2.57
RGCN-800 (Full Aug) 43.1 42 2.57
RGCN-2000 (Full Aug) 45.3 110 2.57
RGCN-2000 (Full Aug)+K400 49.4 110 2.57

5 Conclusions and Future Work

In this paper, we present GraphVid, a graph video representations that enable video-
processing via graph neural networks. Furthermore, we propose a relational graph con-
volutional model that suits this representation. Our experimental study demonstrates
this model’s efficiency in performing video-related tasks while achieving comparable
performance to the current state-of-the-art. An interesting avenue for future work is to
explore new graph representations of videos, including learnable methods. Addition-
ally, we consider the development of new dedicated graph neural models for processing
the unique and dynamic structure of the video-graph as an interesting research direc-
tion. Finally, unified models for image and video understanding that disregard temporal
edges could be explored in order to take advantage of the amount of data in both worlds.
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