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Abstract. We propose a concise representation of videos that encode perceptu-
ally meaningful features into graphs. With this representation, we aim to lever-
age the large amount of redundancies in videos and save computations. First,
we construct superpixel-based graph representations of videos by considering su-
perpixels as graph nodes and create spatial and temporal connections between
adjacent superpixels. Then, we leverage Graph Convolutional Networks to pro-
cess this representation and predict the desired output. As a result, we are able
to train models with much fewer parameters, which translates into short training
periods and a reduction in computation resource requirements. A comprehensive
experimental study on the publicly available datasets Kinetics-400 and Charades
shows that the proposed method is highly cost-effective and uses limited com-
modity hardware during training and inference. It reduces the computational
requirements 10-fold while achieving results that are comparable to state-of-
the-art methods. We believe that the proposed approach is a promising direction
that could open the door to solving video understanding more efficiently and en-
able more resource limited users to thrive in this research field.

1 Introduction

The field of video understanding has gained prominence thanks to the rising popularity
of videos, which has become the most common form of data on the web. On each new
uploaded video, a variety of tasks can be performed, such as tagging [18], human ac-
tion recognition [38], anomaly detection [47], etc. New video-processing algorithms are
continuously being developed to automatically organize the web through the flawless
accomplishment of the aforementioned tasks.

Nowadays, Deep Neural Networks are the de-facto standard for video understand-
ing [36]. However, with every addition of a new element to the training set (that is, a full
training video), more resources are required in order to satisfy the enormous computa-
tional needs. On the one hand, the exponential increment in the amount of data raises
concerns regarding our ability to handle it in the future. On the other hand, it has also
spurred an highly creative research field aimed at finding ways to mitigate this burden.

Among the first-generation of video processing methods were ones geared toward
adopting 2D convolution neural networks (CNNs), due to their computational efficiency
[44]. Others decomposed 3D convolutions [14,57] into simpler operators, or split a
complex neural network into an ensemble of lightweight networks [9]. However, video
understanding has greatly evolved since then, with the current state-of-the-art meth-
ods featuring costly attention mechanisms [4, 20, 32, 3, 15, 6,30]. Beyond accuracy, a
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prominent advantage of the latest generation of methods is that they process raw data,
that is, video frames that do not undergo any advanced pre-processing. Meanwhile, pur-
suing new video representations and incorporating pre-computed features to accelerate
training is a promising direction that requires more extensive research.
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(a) Original image (b) Mean superpixels

Fig. 1: A visual comparison between a pixel and a mean-superpixel representation. On
the left, the original image is presented. On the right, we present the image formed by
generating superpixel regions using SLIC and filling each region with its mean color.

Prior to the renaissance of deep learning [29], much research was done on visual fea-
ture generation. Two prominent visual feature generation methods are superpixels' and
optic-flow?. These techniques’ ability to encode perceptually meaningful features has
greatly contributed to the success of computer vision algorithms. Superpixels provide a
convenient, compact representation of images that can be very useful for computation-
ally demanding problems, while optic-flow provides hints about motion. We rely on
these methods to construct a novel representation of videos that encodes sufficient in-
formation for video understanding: 1) adjacent pixels are grouped together in the form
of superpixels, and 2) temporal relations and proximities are expressed via graph con-
nectivity. The example depicted in Figure 1 provides an intuition for the sufficiency
of superpixel representation for scene understanding. It contains the superpixel regions
obtained via SLIC [2], with each region filled with the mean color. One can clearly dis-
cern a person playing a guitar in both images. A different way of depicting the relations
between superpixels is a graph with nodes representing superpixels [34, 11, 5]. Such a
representation has the advantage of being invariant to rotations and flips, which obvi-
ates the need for further augmentation. We here demonstrate how this representation
can reduce the computational requirements for processing videos.

Recent years have seen a surge in the utilization of Graph Neural Networks (GNNs)
[26] in tasks that involve images [34, 11, 5], audio [12, 62] and other data forms [55, 56,
1]. In this paper, we propose GraphVid, a concise graph representation of videos that en-
ables video processing via GNNs. GraphVid constructs a graph representation of videos

! Superpixel techniques segment an image into regions by considering similarity measures, de-
fined using perceptual features.

2 Optic-flow is the pattern of the apparent motion of an object(s) in the image between two
consecutive frames due to the movement of the object or the camera.
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that is subsequently processed via a GCN to predict a target. We intend to exploit the
power of graphs for efficient video processing. To the best of our knowledge, we are the
first to utilize a graph-based representation of videos for efficiency. GraphVid dramat-
ically reduces the memory footprint of a model, enabling large batch-sizes that trans-
late to better generalization. Moreover, it utilizes models with an order-of-magnitude
fewer parameters than the current state-of-the-art models while preserving the predic-
tive power. In summary, our contributions are:

1. We present GraphVid - a simple and intuitive, yet sufficient representation of video
clips. This simplicity is crucial for delivering efficiency.

2. We propose a dedicated GNN for processing the proposed representation. The pro-
posed architecture is compared with conventional GNN models in order to demon-
strate the importance of each component of GraphVid.

3. We present 4 types of new augmentations that are directly applied to the video-
graph representation. A thorough ablation study of their configurations is preformed
in order to demonstrate the contribution of each.

4. We perform a thorough experimental study, and show that GraphVid greatly out-
performs previous methods in terms of efficiency - first and foremost, the paper
utilizes GNNs for efficient video understanding. We show that it successfully re-
duces computations while preserving much of the performance of state-of-the-art
approaches that utilize computationally demanding models.

2 Related Work

2.1 Deep Learning for Video Understanding

CNNs have found numerous applications in video processing [33, 50, 60]. These in-
clude LSTM-based networks that perform per-frame encoding [45, 51, 60] and the ex-
tension of 2D convolutions to the temporal dimension, e.g., 3D CNNs such as C3D
[49], R2D [44] and R(2+1)D [50].

The success of the Transformer model [52] has led to the development of attention-
based models for vision tasks, via self-attention modules that were used to model spatial
dependencies in images. NLNet [54] was the first to employ self-attention in a CNN.
With this novel attention mechanism, NLNet possible to model long-range dependen-
cies between pixels. The next model to be developed was GCNet [7], which simplified
the NL-module, thanks to its need for fewer parameters and computations, while pre-
serving its performance. A more prominent transition from CNNs to Transformers be-
gan with Vision Transformer (ViT) [13], which prompted research aimed at improving
its effectiveness on small datasets, such as Deit [48]. Later, vision-transformers were
adapted for video tasks [35, 4, 6, 15, 30, 32], now crowned as the current state-of-the-art
that top the leader-boards of this field.

The usage of graph representation in video understanding sparsely took place in
the work of Wang [55]. They used a pre-trained Resnet variants [22] on the MSCOCO
dataset [31] in order to generate object bounding boxes of interest on each video frame.
These bounding boxes are later used for the construction of a spatio-temporal graph
that describes how objects change through time, and perform classification on top of
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the spatio-temporal graph with graph convolutional neural networks [26]. However, we
note that the usage of a large backbone for generating object bounding boxes is harmful
for performance. We intend to alleviate this by proposing a lighter graph representation.
In combination of a dedicated GNN architecture, our representation greatly outperforms
[55] in all metrics.

2.2 Superpixel Representation of Visual Data

Superpixels are groups of perceptually similar pixels that can be used to create visually
meaningful entities while heavily reducing the number of primitives for subsequent
processing steps [46]. The efficiency of the obtained representation has led to the de-
velopment of many superpixel-generation algorithms for images [46]. This approach
was adapted for volumetric data via the construction of supervoxels [37], which are the
trivial extension to depth. These methods were adjusted for use in videos [58] by treat-
ing the temporal dimension as depth. However, this results in degraded performance,
as inherent assumptions regarding neighboring points in the 3D space do not apply to
videos with non-negligible motion. Recent approaches especially designed to deal with
videos consider the temporal dimensions for generating superpixels that are coherent
in time. Xu et a.l [59] proposed a hierarchical graph-based segmentation method. This
was followed by the work of Chang et a.l [8], who suggested that Temporal Superpixels
(TSPs) can serve as a representation of videos using temporal superpixels by modeling
the flow between frames with a bilateral Gaussian process.

2.3 Graph Convolutional Neural Networks

Introduced in [26], Graph Convolutional Networks (GCNs) have been widely adopted
for graph-related tasks [61,28]. The basic form of a GCN uses aggregators, such as
average and summation, to obtain a node representation given its neighbors. This basic
form was rapidly extended to more complex architectures with more sophisticated ag-
gregators. For instance, Graph Attention Networks [53] use dot-product-based attention
to calculate weights for edges. Relational GCNs [42] add to this framework by also con-
sidering multiple edge types, namely, relations (such as temporal and spatial relations),
and the aggregating information from each relation via separate weights in a single
layer. Recently, GCNs have been adopted for tasks involving audio [12, 62] and images
[34, 11, 5]. Following the success of graph models to efficiently perform image-based
tasks, we are eager to demonstrate our extension of the image-graph representation to
videos.

3 GraphVid - A Video-Graph Representation

In this section, we introduce the methodology of GraphVid. First, we present our method
for video-graph representation generation, depicted in Figure 2 and described in Algo-
rithm 1. Then, we present our training methodology that utilizes this representation.
Finally, we discuss the benefits of GraphVid and propose several augmentations.
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Fig. 2: The flow of GraphVid. Given a video clip, we generate superpixels using SLIC
for each frame. The superpixels are used to construct a region-adjacency graph of a
frame, with superpixels as nodes. Then, the graph sequence is connected via temporal
proximities to construct a dynamic graph, which is later fed into a GNN for prediction.

3.1 Overview

In our framework, we deal with video clips that are sequences of 7" video frames
v € RT* €x HXW The goal is to transform v into a graph that is sufficiently infor-
mative for further processing. To achieve this, we use SLIC [2] to generate S seg-
mented regions, called superpixels, over each frame. We denote each segmented region
as Ry ;, where ¢t € [T represents the temporal frame index, and ¢ € [S] the superpixel-
segmented region index. The following is a description of how we utilize the superpixels
to construct our video-graph representation.

Graph Elements - We define the undirected graph G as a 3-tuple G = (V, £, R), where
V = {R:;|t € [T],i € [S]} is the set of nodes representing the segmented regions, £
is the set of labeled edges (to be defined hereunder) and R = {spatial,temporal}
is a set of relations as defined in [42]. Each node R, ; is associated with an attribute
R; ;.c € R? representing the mean RGB color in that segmented region. Additionally,
we refer to R, ;. and R, ;.x as the coordinates of the superpixel’s centroid, which we
use to compute the distances between superpixels. These distances, which will later
serve as the edge attributes of the graph, are computed by

2 2
gt | (Brat¥ = By y)° (it = By 52 "
" H W

Here, t,,t, € [T'] denote frame indices, and 7, j € [S] denote superpixel indices gen-
erated for the corresponding frames. The set of edges £ is composed of two types: 1)
intra-frame edges (denoted £P4**%!) - edges between nodes corresponding to superpix-
els in the same frame. We refer to these edges as spatial edges. 2) inter-frame edges
(denoted £temperaly _ edges between nodes corresponding to superpixels in two se-
quential frames. We refer to these edges as remporal edges. Finally, the full set of edges
is given by £ = gspatial | gtemporal Eollowing is a description of how we construct
both components.
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Spatial Edges - In similar to [5], we generate a region-adjacency graph for each frame,
with edge attributes describing the distances between superpixel centroids. The nota-
tion £ refers to the set of the spatial-edges connecting nodes corresponding to
superpixels in the frame ¢, and £Petial = UZ;1 gfpatial "Bach edge ef ;€ Espatial s
associated with an attribute that describes the euclidean distance between the two su-
perpixel centroids 7 and j in frame ¢, that is, dﬁjt. These distances provide information
about the relations between the superpixels. Additionally, the distances are invariant to
rotations and image-flips, which eliminates the need for those augmentations. Note that
normalization of the superpixels’ centroid coordinates is required in order to obscure
information regarding the resolution of frames, which is irrelevant for many tasks, such
as action classification. In Figure 3, we demonstrate the procedure of spatial edge gen-
eration for a cropped image that results in a partial graph of the whole image. Each su-
perpixel is associated with a node, which is connected via edges to other adjacent nodes
(with the distances between the superpixels’ centroids serving as edge attributes).

Fig. 3: Spatial edge generation. First, superpixels are generated. Each superpixel is rep-
resented as a node, which is connected via its edges to other such nodes within a frame.
Each node is assigned the mean color of the respective segmented region, and each edge
is assigned the distances between the superpixel centroids connected by that edge.

Temporal Edges - In modeling the temporal relations, we aim to connect nodes that
tend to describe the same objects in subsequent frames. To do so, we rely on the as-
sumption that in subsequent frames, such superpixels are attributed similar colors and
the same spatial proximity. To achieve this, for each superpixel R ;, we construct a
neighborhood MV, ; that contains superpixels from its subsequent frame whose centroids
have a proximity of at most dp,ozimity € (0, 1] with respect to the euclidean distance.
Then, we find the superpixel with the most similar color in this neighborhood. As a
result, the ¢t frame is associated with the set of edges & /177" that model temporal

relations with its subsequent frame, formally:

t 1
J\/‘t,i = {RtJrl,j dijtJr < dpro:rimity}; (2)
neighbor(R; ;) = argmin |Ry;.c — Riy15.¢|2, 3)
Riy1, ;€N

Efiz?f_?ml = {(Ry,;, temporal, neighbor(Ry ;)|i € [S]}. 4)
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Equipped with these definitions, we define the set of temporal edges connecting
nodes corresponding to superpixels in frame ¢ to superpixels in frame ¢ 4 1 as the union

of the temporal edge sets generated for all the frames: temporal — | JI! gfempore!

Algorithm 1 Graph Generation

Input: v € RTXEXHXW > The input video clip
Parameters: S € N > Number of superpixels per frame

dprozimity € (0,1] > Diameter of neighborhoods
Output: G = (V,E,R) > A video-graph

V, Vlast, gspatial’ gtemporal P @,@,@,@
fort € [T] do
SP « SLIC(u[t], S)
YV~ VUSP
gepatial o gspatial | regionAdjacet Edges(SP)
gtterlniotral « @
for R 1, € Viast do
-/\/-t 1,2 <~ {Rt ]|dt 1=t < dproa:imity}
nne-1 4 argming oy, |R¢,i.c — Ry j.cl2)

temporal tem oral
ETP — &P U {(Re—1,5, temporal,nni—1,;)}

t—1—t
end for
temporal temporal temporal
3 « & U gt 1—t
Viast SP
end for

return G = (V, £ = £patial y gtemporal '\ — Lspatial, tempo})

3.2 Model Architecture

In order to model both the spatial and temporal relations between superpixels, our model
primarily relies on the Neural Relational Model [42], which is an extension of GCNs
[26] to large-scale relational data. In a Neural Relational Model, the propagation model
for calculating the forward-pass update of a node, denoted by v;, is defined as

h§z+1) _ Z Z W(z)h(l) +W(l h(l) , 5)

TGR]ENT nLr

where N denotes the set of neighbor indices of node ¢ under relation r € R (not to
be confused with the notation N; ; from Eq. 2). ¢;,r is a problem-specific normaliza-
tion constant that can either be learned or chosen in advance (such as ¢; , = |[N/|). To
incorporate edge features, we adapt the approach proposed in [10], that concatenates
node and edge attributes as a layer’s input, yielding the following:

(l+1) Z Z U)[h;l), w]—!—W(l)h(Z) , (6)

reRgeNT

where ¢; ; is the feature of the edge connecting nodes v;, v;.
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3.3 Augmentations

We introduce a few possible augmentations that we found useful for training our model
as they improved the generalization.

Additive Gaussian Edge Noise (AGEN) - Edge attributes represent distances between
superpixel centroids. The coordinates of those centroids may vary due to different su-
perpixel shapes with different centers of mass. To compensate for this, we add a certain
amount of noise to each edge attribute. Given a hyper-parameter o4, for each edge
attribute e,, ,, and for each training iteration, we sample a normally distributed variable
Zuw ~ N(0, 0cqqe) that is added to the edge attribute.

Additive Gaussian Node Noise (AGNN) - Node attributes represent the colors of regions
in each frame. Similar to edge attributes, the mean color of each segmented region may
vary due to different superpixel shapes. To compensate for this, we add a certain amount
of noise to each node attribute. Given a hyper-parameter o,,,4., for each node attribute
v.c of dimension d. and for each training iteration, we sample a normally distributed
variable z, ~ Ny_(0, 0pode - I, ) that is added to the node attribute.

Random Removal of Spatial Edges (RRSE) - This augmentation tends to mimic the reg-
ularization effect introduced in DropEdge [40]. Moreover, since the removal of edges
leads to fewer message-passings in a GCN, this also accelerates the training and in-
ference. To perform this, we choose a probability peqge € [0,1]. Then, each edge e is
preserved with a probability of peqge.

Random Removal of Superpixels (RRS) - SLIC [2] is sensitive to its initialization. Con-
sequently, each video clip may have several graph representations during different train-
ing iterations and inference. This can be mitigated by removing a certain amount of
superpixels. The outcome is fewer nodes in the corresponding representative graph, as
well as fewer edges. Similar to RRE, we choose a probability p,qe € [0, 1] so that each
superpixel is preserved with a probability of p,,oqe.-

3.4 Benefits of GraphVid

Invariance Qualification - The absence of coordinates leads to invariance in the spatial
dimension of each frame. It is evident that such a representation is invariant to rotation,
horizontal flip and vertical flip, since the relations between different parts of the image
are solely characterized by distances. This, in turn, obviates the need to perform such
augmentations during training.

Efficiency - We argue that our graph-based representation is more efficient than raw
frames. To illustrate this, let 7', C', H and W be the original dimensions of the video clip;
that is, the number of frames, number of channels in each frame and height and width
of a frame, respectively. This implies that the raw representation requires 7' - C' - H - W
parameters to encode a single input. Now, to calculate the size of the graph-video rep-
resentation, let S be the number of superpixels in a single frame. By construction, there
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are at most 4 - S edges in each frame because SLIC constraints each superpixel to have
4 adjacent superpixels. Each edge contains 3 values, corresponding to the distance on
the image grid, source node and target node. Additionally, there are, at most, S edges
between every temporal step. This resultsin3- (4-S +(T'—1)-S)+C - T - S pa-

intra inter super—
frame frame pizels
edges edges

rameters in total. Typically, the second representation requires much fewer parameters
because we choose S so that S < H - W.

Prior Knowledge Incorporation - Optical-flow and over-segmentation are encoded
within the graph-video representation using the inter-frame and intra-frame edges. This
incorporates strong prior knowledge within the resultant representation. For example,
optical-flow dramatically improved the accuracy in the two-stream methodology that
was proposed in [44]. Additionally, over-segmentation using superpixels has been found
useful as input features for machine learning models due to the limited loss of impor-
tant details, accompanied by a dramatic reduction in the expended time by means of
reducing the number of elements of the input [21, 11, 5].

4 Experiments

We validated GraphVid on 2 human-action-classification benchmarks. The goal of hu-
man action classification is to determine the human-involved action that occurs within
a video. The objectives of this empirical study were twofold:

— Analyze the impact of the various parameters on the accuracy of the model.

— As we first and foremost target efficiency, we sought to examine the resources’ con-
sumption of GraphVid in terms of Floating Point Operations (FLOPs). We followed
the conventional protocol [16], which uses single-clip FLOPs as a basic unit of
computational cost. We show that we are able to achieve a significant improvement
in efficiency over previous methods while preserving state-of-the-art performance.

4.1 Setup

Datasets - We utilize two commonly used datasets for action classification: Kinetics-
400 (K400) [23] and Charades [43]. Kinetics-400 [23] is a large-scale video dataset
released in 2017 that contains 400 classes, with each category consisting of more than
400 videos. It originally had, in total, around 240K, 19K, and 38K videos for training,
validation and testing subsets, respectively. Kinetics datasets are gradually shrinking
over time due to videos being taken offline, making it difficult to compare against less
recent works. We used a dataset containing 208K, 17K and 33K videos for training,
validation and test respectively. We report on the most recently available videos. Each
video lasts approximately 10 seconds and is assigned a label. The Charades dataset
[43] is composed of 9,848 videos of daily indoor activities, each of an average length
of 30 seconds. In total, the dataset contains 66,500 temporal annotations for 157 action
classes. In the standard split, there are 7,986 training videos and 1,863 validation videos,
sampled at 12 frames per second. We follow prior arts by reporting the Top-1 and Top-5
recognition accuracy for Kinetics-400 and mean average precision (mAP) for Charades.
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128D
256D

Fig.4: The general graph neural network architecture we use throughout our experi-
mental study.

Network Architecture and Training - We use GNN variants as backbones for our ex-
periments and feed each of them with our video-graph representation. Specifically, we
consider Graph Convolutional Networks [26] (denoted GCNs), Graph Attention Net-
works [53] (denoted GATs) and Relational Graph Convolutional Networks [42] (de-
noted RGCNs). The general architecture of our backbones is depicted in Figure 4. It
consists of 2 fully-connected (FC) layers with exponential linear unit (ELU) activations
that transform the node feature vectors into a 256D feature space. Then come 4 layers
of the corresponding GNN layer type (that is, either GCN, GAT or RGCN along with an
edge feature concatenation from Eq. 6) with a hidden size of 512 with ELU activations,
followed by global mean pooling, dropout with a probability of 0.2 and a linear layer
whose output is the predicted logits. For the GAT layers, we use 4 attention heads in
each layer, and average the attention heads’ results to obtain the desired hidden layer
size. For the RGCN layers, we specify 2 relations, which correspond to the spatial and
temporal relations, as described in Section 3. We use the Adam [25] with a learning rate
of 1e — 3 for optimization and do not change it throughout the training.

We divide the videos into clips using a sliding window of 20 frames, using a stride
of 2 between every 2 consecutive frames and a stride of 10 between every 2 consecutive
video clips. In all the experiments, we used a fixed batch size of 200, which captures
the context of a time window that endures 200 x 20 = 4000 frames per batch.

Inference - At the test phase, we use the same sliding window methodology as in
the training. We follow the common practice of processing multiple views of a long
video and average per-view logits to obtain the final results. The number of views is
determined by the validation dataset.

Implementation Details - All the experiments were run on a Ubuntu 18.04 machine
with Intel 19-10920X, 93GB RAM and 2 GeForce RTX 3090 GPUs. Our implementa-
tion of GraphVid is in Python3. Specifically, to generate superpixels, we use the SLIC
[2] algorithm via its implementation fast-slic [24]. To generate graphs and train the
graph neural models, we use Pytorch-Geometric [19]. We use a fixed seed for SLIC’s
initialization and cache the generated graphs during the first training epochs in order to
further reduce the number of computations.

4.2 Ablation Study

We conduct an in-depth study on Kinetics-400 to analyze the performance gain con-
tributed by incorporating the different components of GraphVid.
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Graph Neural Network Variants and Number of Superpixels per Frame - We assess the
performance of different GNN variants: GCN [26] is trained without edge relations (i.e.
temporal and spatial edges are treated via the same weights). GAT [53] is trained by em-
ploying the attention mechanism for neighborhood aggregation without edge relations.
RGCN [42] is trained with edge relations, as described in Section 3.2.

The results of the action classification on Kinetics-400 are shown in Figure 5. In
this series, the number of views is fixed at 8, which is the number of views that was
found to be most effective for the validation set. For all variants, increasing the number
of superpixels per frame (S) contributes to the accuracy of the model. We notice a
significant improvement in accuracy for the lower range of the number of superpixels,
while the accuracy begins to saturate for S > 650. Increasing further the number of
superpixels leads to bigger inputs, which require more computations. As our goal is to
maximize the efficiency, we do not experiment with larger inputs in this section. We

Accuracy (%)
Accuracy (%)

50 200 350 500 650 800 50 200 350 500 650 800
# Superpixels per frame # Superpixels per frame

B GCN m GAT RGCN

Fig.5: The effect of varying the number of superpixels per frame on test accuracy on
Kinetics-400.

further present in Table 1 the models’ specifications for 800 superpixels, which is the
best-performing configuration in this series of experiments. Not surprisingly, the simple
GCN variant requires the least amount of computations among the three. Meanwhile,
the RGCN variant requires fewer computations than GAT and achieves a higher level of
accuracy. We conclude that it is beneficial to incorporate edge relations when wishing
to encode temporal and spatial relations in videos, and that those features are not easily
learned by heavy computational models, such as GAT.

Table 1: Comparison of model specifications for various architectures. We report the
Top-1 and Top-5 accuracy on Kinetics-400.

Model Top-1 Top-5 FLOPs (-10%) Params (-10°)
GCN 50.1 61.6 28 2.08
GAT 54.7 64.5 56 3.93
RGCN 66.2 74.1 42 2.99
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Fig. 6: The impact of the proposed augmentations on test accuracy of Kinetics-400: Ad-
ditive Gaussian edge noise (AGEN). Additive Gaussian node noise (AGNN). Random
removal of spatial edges (RRSE). Random removal of superpixels (RRS).

Augmentations - We assessed the impact of augmentations on the test’s performance
and their ability to alleviate over-fitting. For this purpose, we chose the best configura-
tion obtained from the previous experiments, that is, RGCN with 800 superpixels per
frame, and trained it while adding one type of augmentation at a time. The results of
this series are depicted in Figure 7. Each graph shows the level of accuracy reached by
training the model with one of the various parameters that control the augmentation.

We begin with the analysis of the AGEN and AGNN. Both augmentations relate
to the addition of Gaussian noise to the attributes of the edges and the nodes of the
input graphs, with the corresponding parameters controlling the standard deviation of
that Gaussian noise. The impact of these augmentations is less noticeable as these pa-
rameters head towards 0, since lower values reflect the scenarios in which little or no
augmentations are performed. Continuously increasing the parameter slightly brings
about a gradual improvement in the accuracy, until a turning point is reached, after
which the level of accuracy starts to decline until it reaches ~ ﬁ, which resembles a
random classifier. The decrease in accuracy stems from the noise obscuring the original
signal, allegedly forcing the classifier to classify noise that is not generalizable to the
test set. In the cases of RRSE and RRS, the random removal of spatial edges harms
the accuracy of the model for all values of p.qq4e < 1. This finding leads us to conclude
that spatial edges encode meaningful information about spatial relations between the
superpixel entities. Moreover, slightly removing the nodes positively impacts the level
of accuracy, reaching a peak at around p,,,4. ~ 0.8. To conclude this series, we present
the values that lead to the best Top-1 accuracy score in Table 2.

Table 2: Augmentation parameters and their optimized values.

Param Tedge Onode Pedge Prode
Value 0.4 0.2 1 0.8
Top-1 74.5 73 66 70

Top-5 85 83 74 76

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

ECCV-22 submission ID 4861 13

RGCN-2000
i g || (Full Aug + K200

| @
et g ®

RGCN-2000
(Full Aug) + K400

Accuracy %

RGCN-800
[N Aug)

{No Aug)
0 100 200 300 400 500 -100 100 300 500 700 500 1100 1300
FLOPs FLOPs
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Fig.7: Model FLOPs vs. performance - Green bubbles indicates GraphVid variants
from Table 3 and Table 4. Identities of the other models are omitted in order to avoid
overload on the plot. GraphVid achieves comparable performance to the state-of-the-
art while greatly reducing the number of parameters and FLOPs. For Kinetics-400,
RGCN-2000 with the full set of augmentations achieves almost the same performance
as all computationally heavy models on the plot, while requiring the least amount of
parameters and FLOPs. For Charades, RGCN-2000 with the full set of augmentations
and pretraining on Kinetics-400 is on par with the state-of-the-art, and fewer compute
requirements. Bubble radius indicates the number of parameters of the model.

4.3 Comparison to the State-of-the-Art

Kinetics-400 - We present the Kinetics-400 results for our RGCN model variant in Ta-
ble 3 and Figure 7a, along with comparisons to previous arts, including convolutional-
based and transformer-based methods. Our results are denoted RGCN-d, where d rep-
resents the number of superpixels. Additionally, we use the set of augmentations with
the individually optimized hyper-parameters from Table 2 to train these models. First,
when the RGCN-800 model is trained with the full set of augmentations (denoted Full-
Aug), it achieves a significantly higher Top-1 accuracy than when it is trained without
any augmentation (denoted No-Aug) or when each augmentation is applied individu-
ally. These results demonstrate the effectiveness of our model and that our carefully
designed augmentations can alleviate overfitting and improve the generalization over
the test set. Second, all our RGCNSs require orders-of-magnitude fewer computations
than the current state-of-the-art architectures, as well as more than x 10 fewer parame-
ters.

Charades - We train 2 RGCN variants with 800 and 2000 superpixels per frame with
the same set of augmentations and hyper-parameters found in Table 2. Additionally,
we follow prior arts [17, 15] by pre-training on K-400 followed by replacing the last
FC layer to match the output dimensionality and fine-tuning on Charades. Table 4 and
Figure 7b show that when our RGCN model is trained with 2000 superpixels per frame,
its mAP score is comparable to the current state-of-the-art, but this score is reached with
orders-of-magnitude fewer computations and using considerably fewer parameters than
prior arts.
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Table 3: Comparisons to state-of-the-art on the Kinetics-400 dataset. We report the Top-
1 and Top-5 accuracy scores. The top section of the table depicts convolution-based
models. The middle section depicts transformer-based models, and the bottom section
represents our graph-based models.

Method Top-1 Top-5 Views FLOPs (-10%) Param (-10°)
SlowFast R101+N [17] 79.8 93.9 30 234 59.9
X3D-XXL RI0O1+N [16] 80.4 94.6 30 144 20.3
MVIT-B, 32x3 [15] 80.2 94.4 5 170 36.6
TimeSformer-L [6] 80.7 94.7 3 2380 121.4
ViT-B-VTN [35] 78.6 93.7 1 4218 11.04
ViViT-L/16x2 [4] 80.6 94.7 12 1446 310.8
Swin-S [32] 80.6 94.5 12 166 49.8
Swin-B [32] 82.7 95.5 12 282 88.1
RGCN-800 (No Aug) 66.2 74.1 8 42 2.57
RGCN-800 (Full Aug) 76.4 91.1 8 42 2.57
RGCN-2000 (Full Aug)  80.0 94.3 8 110 2.57

Table 4: Comparisons to state-of-the-art on the Charades multi-label dataset. We report
the mAP scores as more than one ground truth action is possible.

Method mAP FLOPs (-10%)  Params (-10°)
MoVieNet-A2 [27] 325 6.59 4.8
MoVieNet-A4 [27] 48.5 90.4 4.9
MoVieNet-A6 [27] 63.2 306 31.4
TVN-1 [39] 322 13 11.1
TVN-4 [39] 35.4 106 442
AssembleNet-50 [41] 53.0 700 37.3
AssembleNet-101 [41] 58.6 1200 53.3
SlowFast 16 x 8 R101 [17] 452 7020 59.9
RGCN-800 (No Aug) 37.4 42 2.57
RGCN-800 (Full Aug) 43.1 42 2.57
RGCN-2000 (Full Aug) 453 110 2.57
RGCN-2000 (Full Aug)+K400 49.4 110 2.57

5 Conclusions and Future Work

In this paper, we present GraphVid, a graph video representations that enable video-
processing via graph neural networks. Furthermore, we propose a relational graph con-
volutional model that suits this representation. Our experimental study demonstrates
this model’s efficiency in performing video-related tasks while achieving comparable
performance to the current state-of-the-art. An interesting avenue for future work is to
explore new graph representations of videos, including learnable methods. Addition-
ally, we consider the development of new dedicated graph neural models for processing
the unique and dynamic structure of the video-graph as an interesting research direc-
tion. Finally, unified models for image and video understanding that disregard temporal
edges could be explored in order to take advantage of the amount of data in both worlds.
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