
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONFORMAL BOUNDS ON FULL-REFERENCE IMAGE
QUALITY FOR IMAGING INVERSE PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In imaging inverse problems, we would like to know how close the recovered
image is to the true image in terms of full-reference image quality (FRIQ) metrics
like PSNR, SSIM, LPIPS, etc. This is especially important in safety-critical
applications like medical imaging, where knowing that, say, the SSIM was poor
could potentially avoid a costly misdiagnosis. But since we don’t know the true
image, computing FRIQ is non-trivial. In this work, we combine conformal
prediction with approximate posterior sampling to construct bounds on FRIQ that
are guaranteed to hold up to a user-specified error probability. We demonstrate our
approach on image denoising and accelerated magnetic resonance imaging (MRI)
problems.

1 INTRODUCTION

In imaging inverse problems, one aims to recover a true image x0 from noisy/distorted/incomplete
measurements y0 = A(x0) (Arridge et al., 2019). Denoising, deblurring, inpainting, super-resolution,
limited-angle computed tomography, and accelerated magnetic resonance imaging (MRI) are ex-
amples of linear inverse problems, while phase-retrieval, de-quantization, low-light imaging, and
image-to-image translation are examples of non-linear inverse problems. Such problems are ill-posed,
in that many hypotheses of x0 are consistent with both the measurements y0 and prior knowledge
about x0. To complicate matters, different recovery methods are biased towards different plausible
image hypotheses, leading to important differences in reconstruction quality. For example, modern
deep-network approaches can sometimes hallucinate (Belthangady & Royer, 2019; Hoffman et al.,
2021; Muckley et al., 2021; Bhadra et al., 2021; Gottschling et al., 2023), i.e., generate visually
pleasing recoveries that differ in important ways from the true image x0. Thus, there is a strong need
to quantify the accuracy of a given recovery, especially in safety-critical applications like medical
imaging (Banerji et al., 2023).

In image recovery, “accuracy” can be defined in different ways. Classical metrics like mean-squared
error (MSE), or its scaled counterpart peak signal-to-noise ratio (PSNR), are convenient for theoretical
analysis but do not always correlate well with human perceptions of image quality. This fact inspired
the field of full-reference image-quality (FRIQ) assessment (Lin & Kuo, 2011; Wang, 2011), which
led to the well-known Structural Similarity Index Measure (SSIM) (Wang et al., 2004b) that is still
popular today. However, progress continues to be made. Most recent methods leverage the internal
features of deep neural networks, which are said to mimic the processing architecture of the human
visual cortex (Yamins & DiCarlo, 2016; Lindsay, 2021). A popular example of the latter is Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018). In the end, though, the best choice of
metric may depend on the application. For example, in magnetic resonance imaging (MRI), the goal is
to provide the radiologist with an image recovery that leads to an accurate diagnosis. A recent clinical
MRI study (Kastryulin et al., 2023) found that, among 35 tested metrics, Deep Image Structure and
Texture Similarity (DISTS) (Ding et al., 2020a) correlated best with radiologists’ perceptions.

In this work, our goal is to provide rigorous bounds on the FRIQ m(x̂0, x0) of a recovery x̂0 = h(y0)
relative to the true image x0. Here, h(·) is an arbitrary image-recovery scheme and m(·, ·) is an
arbitrary FRIQ metric. The key challenge is that x0 is unknown. To our knowledge, there exists no
prior work on providing FRIQ guarantees in image recovery. Our contributions are as follows.
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1. We propose a framework to bound the FRIQ m(x̂0, x0) of a recovered image x̂0 without
access to the true image x0. Our framework uses conformal prediction (Vovk et al., 2005;
Angelopoulos & Bates, 2023) to construct bounds that hold with probability at least 1− α
under certain exchangeability assumptions and where α ∈ (0, 1) is chosen by the user.

2. We show how posterior-sampling-based image recovery can be used to construct conformal
bounds that adapt to the measurements y0 and reconstruction x̂0.

3. We demonstrate our approach on two linear inverse problems: denoising of FFHQ faces
(Karras et al., 2019) faces and recovery of fastMRI knee images (Zbontar et al., 2018) from
accelerated multicoil measurements.

From the perspective of uncertainty quantification (UQ), one could say that our goal is to bound
the uncertainty on FRIQ m(x̂0, x0) that arises due to x0 being unknown. As such, our approach
to UQ differs from typical ones in image recovery. There, uncertainty is typically quantified on
individual pixels, with the overall result being a pixel-wise uncertainty map. To construct these maps,
one could use (approximate) posterior samplers (Durmus et al., 2018; Laumont et al., 2022; Zach
et al., 2022; Tonolini et al., 2020; Edupuganti et al., 2021; Adler & Öktem, 2018; Bendel et al., 2023;
Ardizzone et al., 2019; Wen et al., 2023a; Jalal et al., 2021; Chung et al., 2023) or Bayesian neural
networks (BNNs) (Kendall & Gal, 2017; Xue et al., 2019; Barbano et al., 2021; Ekmekci & Cetin,
2022; Narnhofer et al., 2022), including those based on dropout (Kendall & Gal, 2017), to draw many
reconstructions from the distribution of plausible x0 for a given y0 (i.e., the posterior distribution
pX0|Y0

(·|y0)), from which pixel-wise standard-deviations can be estimated. An alternative is to
utilize conformal prediction to produce pixel-wise intervals that are guaranteed to contain the true
pixel value with high probability (Angelopoulos et al., 2022b; Horwitz & Hoshen, 2022; Teneggi
et al., 2023; Kutiel et al., 2023; Narnhofer et al., 2024). Although these uncertainty maps can be
visually interesting, they do not quantify uncertainty on multi-pixel structures of interest, such as
hallucinations or anatomical features relevant to medical diagnosis (e.g., tumors).

To our knowledge, there exist relatively few works on multi-pixel UQ, and none target FRIQ. For
example, Tang & Repetti (2023) use hypothesis testing to infer the presence/absence of a structure-of-
interest within the maximum a posteriori (MAP) image recovery, but relies on inpainting to construct
the structure-absent hypothesis, which may not be accurate. Sankaranarayanan et al. (2022) use
conformal prediction to compute uncertainty intervals on the presence/absence of semantic attributes
(e.g., whether a face has a smile, glasses, etc.) but their method requires a “disentangled” generative
adversarial network (GAN) that generates image samples given attribute probabilities. Belhasin
et al. (2023) compute conformal prediction intervals on the principal components of the posterior
covariance matrix. Lastly, given measurements y0 = A(x0) and a downstream imaging task µ(·) ∈ R
(e.g., soft-output classification), Wen et al. (2024) compute conformal bounds on the true task output
µ(x0). While interesting, none of the above works quantify the uncertainty on FRIQ metrics like
PSNR, SSIM, LPIPS, DISTS, etc., due to x0 being unknown.

2 BACKGROUND

Conformal prediction (CP) (Vovk et al., 2005; Angelopoulos & Bates, 2023) is a powerful frame-
work for computing uncertainty intervals on the output of any black-box predictor. CP makes no
assumptions on the distribution of the data, yet provides probabilistic guarantees that the true target
lies within the constructed uncertainty interval. In this paper, we focus on the common variant known
as split CP (Papadopoulos et al., 2002; Lei et al., 2018).

We now provide a brief background on split CP. Given features u0 ∈ U , the goal of CP is to construct
a set Cλ(ẑ0) that contains an unknown target z0 ∈ Z with high probability. Here, Cλ(·) is constructed
so that |Cλ(ẑ0)| is monotonically non-decreasing in λ ∈ R for any fixed ẑ0, and ẑ0 = f(u0) is some
prediction from a black-box model f(·). Split CP accomplishes this goal by calibrating λ using a
dataset of feature and target pairs {(ui, zi)}ni=1 that has not been used to train f(·). In particular, it
first constructs the set dcal ≜ {(ẑi, zi)}ni=1 using ẑi = f(ui) and then finds a λ̂(dcal) to provide the
marginal coverage guarantee (Lei & Wasserman, 2014)

Pr
{
Z0 ∈ Cλ̂(Dcal)

(Ẑ0)
}
≥ 1− α, (1)

where α is a user-chosen error rate. Here and in the sequel, we use capital letters to denote random
variables and lower-case letters to denote their realizations. In words, (1) guarantees that the unknown
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target Z0 falls within the interval Cλ̂(Dcal)
(Ẑ0) with probability at least 1− α when averaged over the

randomness in the test data (Z0, Ẑ0) and calibration data Dcal.

While there are a number of ways to describe CP calibration of λ, (Vovk et al., 2005; Angelopoulos
& Bates, 2023), we will focus on the method from (Angelopoulos et al., 2022a). It starts by defining
the empirical miscoverage as

r̂n(λ; dcal) ≜
1

n

n∑

i=1

1zi /∈Cλ(ẑi), (2)

where 1{·} is the indicator function. The empirical miscoverage measures the proportion of targets zi
that land outside of Cλ(ẑi) in the calibration set dcal. Note the dependence on λ, which controls the
size of the prediction interval. The calibration procedure then sets λ at

λ̂(dcal) = inf
{
λ : r̂n(λ; dcal) ≤ α− 1−α

n

}
, (3)

which can be found using a simple binary search. Intuitively, the λ chosen in (3) yields an empirical
miscoverage that is slightly more conservative than the desired α in order to handle the finite size of
the calibration set. When {(Z0, Ẑ0), (Z1, Ẑ1), . . . , (Zn, Ẑn)} are exchangeable (a weaker condition
than i.i.d.), (3) ensures that (1) holds (Angelopoulos et al., 2022a). See the overviews (Angelopoulos
& Bates, 2023; Vovk et al., 2005) for more details on conformal prediction.

3 PROPOSED APPROACH

Consider an imaging inverse problem, where we observe incomplete and/or noisy measurements
y0 = A(x0) of a true image x0. Suppose that x̂0 = h(y0) is a reconstruction of x0 provided by some
image recovery method h(·) and that z0 = m(x̂0, x0)∈ R is some FRIQ metric on x̂0 with respect
to the true x0. We would like to know z0, especially in safety critical applications. For example, if
z0 was unacceptable, then perhaps we could use a different recovery method h(·) or collect more
measurements y0. But z0 cannot be directly computed because x0 is unknown.

Our key insight is that it’s possible to construct a set Cλ(ẑ0) that is guaranteed to contain the unknown
FRIQ z0 with high probability. This can be done using CP, at least when one has access to calibration
data {(xi, yi)}ni=1 of true image and measurement pairs that agrees with the test (x0, y0) in the sense
that the resulting FRIQ pairs {(ẑi, zi)}ni=0 are statistically exchangeable.

Our general approach is as follows. Using {(xi, yi)}ni=1 , we compute the image recovery x̂i = h(yi)
and the corresponding true FRIQ zi = m(x̂i, xi) for each i = 1, . . . , n. Then we construct an
estimator f(·) that produces an FRIQ estimate ẑi = f(ui) for some choice of ui. Several choices of
f(·) and ui will be described in the sequel. We then collect the results into the set dcal = {(ẑi, zi)}ni=1
and calibrate the λ parameter of the FRIQ prediction interval Cλ(ẑi) using CP.

We now describe our choice of prediction interval Cλ(·). In the sequel, we will refer to those metrics
m(·, ·) for which a higher value indicates better image quality (e.g., PSNR, SSIM) as Higher-Preferred
(HP) metrics, and those for which a lower value indicates better image quality (e.g., LPIPS, DISTS)
as Lower-Preferred (LP) metrics. We choose to construct the prediction set for the i-th sample as

Cλ(ẑi) = [β(ẑi, λ),∞) for HP metrics and Cλ(ẑi) = (−∞, β(ẑi, λ)] for LP metrics, (4)

where we choose the lower/upper bound β(·, ·) as

β(ẑi, λ) = ẑi − λ for HP metrics and β(ẑi, λ) = ẑi + λ for LP metrics. (5)

By calibrating the bound parameter λ as λ̂(dcal) using (3), we obtain the following marginal coverage
guarantee for the test sample (Ẑ0, Z0):

Pr
{
Z0 ∈ Cλ̂(Dcal)

(Ẑ0)
}
≥ 1− α, (6)

which holds when {(Z0, Ẑ0), (Z1, Ẑ1), . . . , (Zn, Ẑn)} are exchangeable (Angelopoulos et al., 2022a).
In particular, β(Ẑ0, λ̂(Dcal)) lower-bounds the unknown true HP metric value Z0, or upper-bounds
the unknown true LP metric value Z0, with probability at least 1 − α, where α is selected by the
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user. A smaller error-rate α will tend to yield a looser bound, but—importantly—the coverage
guarantee (6) will hold for any chosen α ∈ (0, 1). In the sequel, we will refer to β(ẑ0, λ̂(dcal)) as the
“conformal bound” on z0. Note that the conformal bound can “adapt” to the test measurements y0
and reconstruction x̂0 through ẑ0 = f(u0) for appropriate choices of f(·) and u0.

Below we describe different ways to construct f(·) and u0, which in turn yield conformal bounds
with different properties. Appendix D investigates violations of the exchangeability assumption.

3.1 A NON-ADAPTIVE BOUND ON RECOVERED-IMAGE FRIQ

As a simple baseline, we start with the choice f(·) = 0. In this case, u0 is inconsequential and
ẑ0 = 0, and so the conformal bound β(ẑ0, λ̂(dcal)) will depend on the calibration set dcal but not
the test measurements y0 or reconstruction x̂0. We refer to such bounds as “non-adaptive.” As we
demonstrate in Sec. 4, non-adaptivity leads to conservative bounds. Still, this non-adaptive bound is
valid in the sense of guaranteed marginal coverage (6) under the exchangeability assumption.

3.2 INTUITIONS ON CONSTRUCTING ADAPTIVE FRIQ BOUNDS

Our approach to constructing adaptive FRIQ bounds is based on the following probabilistic viewpoint.
Conditioned on the observed measurements y0, we can model the unknown FRIQ as Z0 = m(x̂0, X0)
for x̂0 = h(y0) and X0 ∼ pX0|Y0

(·|y0). The distribution pX0|Y0
(·|y0) is often referred to as the

posterior distribution on X0 given the measurements Y0 = y0.

Let us first consider the ideal and unrealistic case that the y0-conditional FRIQ distribution
pZ0|Y0

(·|y0) is known. And let’s consider the case of HP metrics, noting that similar arguments can
be made for LP metrics. If pZ0|Y0

(·|y0) was known, then constructing a lower-bound β on Z0 that
holds with probability ≥ 1− α could be directly accomplished by finding the β ∈ R that satisfies
Pr{Z0 ≥ β|Y0=y0} ≥ 1− α, which is known as the αth quantile of Z0|Y0=y0.

Now suppose that the distribution of Z0|Y0 = y0 was unknown, but instead one had access to an
infinite number of perfect posterior image samples {x̃(j)0 }∞j=1. By “perfect” we mean that x̃(j)0 are

independent realizations of X0|Y0=y0. From them, one could construct posterior FRIQs {z̃(j)0 }cj=1

using z̃(j)0 ≜ m(x̂0, x̃
(j)
0 ). Importantly, {z0, z̃(1)0 , z̃

(2)
0 , z̃

(3)
0 , . . . } are i.i.d. realizations of Z0|Y0=y0.

Thus, to construct a lower bound β on Z0|Y0=y0 that holds with probability 1− α, one could use
the empirical quantile of {z̃(j)0 } , i.e.,

β = lim
c→∞

EmpQuant
(
α, {z̃(j)0 }cj=1

)
, (7)

which converges to the αth quantile of Z0|Y0=y0 (Fristedt & Gray, 2013).

In practice, one will not have access to an infinite number of perfect posterior image samples.
However, it is not difficult to obtain a finite number of approximate posterior samples {x̃(j)0 }cj=1.
From them, one could estimate the αth quantile of Z0|Y0 = y0 and subsequently calibrate that
(imperfect) estimate using conformal prediction. Two such strategies are described below.

3.3 AN ADAPTIVE BOUND ON RECOVERED-IMAGE FRIQ

Suppose that, for each i ∈ {0, 1, . . . , n}, we have access to c ≥ 1 approximate posterior image
samples {x̃(j)i }cj=1 produced by a black-box posterior image sampler such as those listed in Sec. 1.
Guided by the intuitions from Sec. 3.2, we propose the following for HP metrics. For each i, we first
compute the corresponding approximate posterior FRIQs {z̃(j)i }cj=1 using z̃(j)i = m(x̂i, x̃

(j)
i ) and

then set ẑi at their empirical quantile

ẑi = EmpQuant
(
α, {z̃(j)i }cj=1

)
= f(ui) for

{
f(·) = EmpQuant(α, ·)
ui = [z̃

(1)
i , . . . , z̃

(c)
i ]⊤ ∈ Rc.

(8)

We then use dcal = {(ẑi, zi)}ni=1 to calibrate the bound parameter λ using (3), yielding λ̂(dcal).
Finally, we plug this λ and ẑ0 into (5) to get β(ẑ0, λ̂(dcal)), which is our conformal bound on the true
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ẑ0

<latexit sha1_base64="1hVFL1TvRBoTPFz51g/GB4fNHQE=">AAACI3icbVDLSsNAFJ3UV62vqks3g0WpICURqW6EohuXFewDmhgmk2k7dDIJMxOlDfkDf8MfcKt/4E7cuHDrdzhts7DVAxcO59zLvfd4EaNSmeankVtYXFpeya8W1tY3NreK2ztNGcYCkwYOWSjaHpKEUU4aiipG2pEgKPAYaXmDq7HfuidC0pDfqmFEnAD1OO1SjJSW3OKhncAytB+oT/pIJaPUpcdw5FJ4BO3UTeiFld4lPHWLJbNiTgD/EisjJZCh7ha/bT/EcUC4wgxJ2bHMSDkJEopiRtKCHUsSITxAPdLRlKOASCeZ/JPCA634sBsKXVzBifp7IkGBlMPA050BUn05743F/7xOrLrnTkJ5FCvC8XRRN2ZQhXAcDvSpIFixoSYIC6pvhbiPBMJKRzizxZfj09KCDsaaj+EvaZ5UrGqlenNaql1mEeXBHtgHZWCBM1AD16AOGgCDR/AMXsCr8WS8Ge/Gx7Q1Z2Qzu2AGxtcPmhCkLA==</latexit>{(ẑi, zi)}n
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Figure 1: Overview of method: Given a recovery x̂0 of true image x0, approximate posterior samples
{x̃(j)0 }cj=1, and a calibration set dcal, we construct a prediction interval Cλ̂(dcal)

(
ẑ0
)

that is guaranteed
to contain the unknown true FRIQ z0 = m(x̂0, x0) with probability at least 1− α.

FRIQ z0. From Sec. 2, we know that this conformal bound satisfies the coverage guarantee (6) under
the exchangeability assumption. Furthermore, it adapts to the measurements y0 and reconstruction
x̂0 through their effect on ẑ0 and , unlike the non-adaptive bound from Sec. 3.1.

Recalling Sec. 3.2, one could interpret ẑ0 as a rough estimate of the αth quantile of Z0|Y0 = y0 and
λ̂(dcal) as an additive correction that accounts for the finite and approximate nature of the posterior
image samples {x̃(j)0 }cj=1 used to construct ẑ0. For LP metrics, we would instead compute the
(1− α)-empirical quantile in (8). Figure 1 illustrates the overall methodology.

3.4 A LEARNED ADAPTIVE BOUND ON RECOVERED-IMAGE FRIQ

In Sec. 3.2, we reasoned that the αth quantile of Z0|Y0 = y0 yields a valid HP FRIQ bound, but
we noted that this quantile is not directly observable. Thus, in Sec. 3.3, we used the αth empirical
quantile of {z̃(j)i }cj=1 as a rough estimate “ẑi” of the desired quantile, after which we used CP to
correct this estimate and obtain a valid HP FRIQ bound. However, it is well known from the CP
literature that inaccurate base estimators cause loose conformal bounds (Angelopoulos & Bates,
2023). Thus, in this section, we aim to improve our estimate of the αth quantile of Z0|Y0=y0.

Inspired by conformalized quantile regression (Romano et al., 2019), we propose to estimate the αth
quantile of Z0|Y0 = y0 using

ẑi = f(ui; θ) with ui = [z̃
(1)
i , . . . , z̃

(c)
i ]⊤ ∈ Rc, (9)

where θ are predictor parameters trained using quantile regression (QR) (Koenker & Bassett, 1978).
An example f(·; θ) is given in App. F. In the case of an HP metric, this manifests as

argmin
θ

n+ntrain∑

i=n+1

(
αmax(0, zi − ẑi(θ)) + (1− α)max(0, ẑi(θ)− zi)

)
+ γρ(θ), (10)

using a training set dtrain = {(ui, zi)}n+ntrain
i=n+1 that is independent of the calibration samples

{(ui, zi)}ni=1 and test sample (u0, z0). The first term in (10) is the pinball loss (Koenker &
Bassett, 1978), which encourages an α-fraction of training samples to violate the HP bound ẑi ≤ zi.
The ρ(·) term in (10) is regularization that avoids overfitting θ to the training set. The regularization
weight γ can be tuned using k-fold cross-validation. The θ-dependence of ẑi is made explicit in (10).

Once the predictor f(·; θ) is trained, it can be used to obtain the quantile estimates {ẑi}ni=0. Then
dcal ≜ {(ẑi, zi)}ni=1 can be used to calibrate the bound parameter λ using (3). As before, the resulting
conformal bound β(ẑ0, λ̂(dcal)) will enjoy the coverage guarantee (6) under the exchangeability
assumption. To handle LP metrics, we would swap α with 1− α in (10). Note that any estimation
function f(·; θ) can be used in (9) and the best choice will vary with the application.
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ω = z

Figure 2: Scatter plots show the non-adaptive (purple) and quantile (green) bounds β(ẑk, λ̂(dcal[t]))
versus the true FRIQ zk over FFHQ test samples k. The black line shows where β = z, and a fraction
α = 0.05 of samples are on the side of the line that violates the bound. The quantile bound tracks the
true zk much better than the non-adaptive bound. The red and blue stars correspond to the images in
the red and blue boxes: the red recovery represents better FRIQs and blue represents worse.

3.5 CONSTRUCTING THE IMAGE ESTIMATE x̂

As described above in Secs. 3.2–3.4, a posterior-sampling-based image recovery method allows one
to construct adaptive bounds using image samples {x̃(j)i }cj=1. But, as we now discuss, a posterior-
sampling-based image recovery method also provides flexibility in how x̂i itself is constructed.

For example, when one is interested in constructing x̂i with high PSNR, or equivalently low MSE, it
makes sense to set x̂i as the minimum MSE (MMSE) or conditional-mean estimate E{Xi|Yi=yi}.
This can be approximated by the empirical mean of p posterior samples, i.e.,

x̂i =
1

p

c+p∑

j=c+1

x̃
(j)
i , (11)

with large p. The indices on j in (11) are chosen to avoid the samples {x̃(j)i }cj=1 used for the adaptive
bounds. However, because the MMSE estimate can look unrealistically smooth, smaller values of
p are appropriate when constructing an x̂i with good SSIM, DISTS, or LPIPS performance. For
example, (Bendel et al., 2023) found that, for multicoil brain MRI at acceleration R = 8 with a
particular posterior sampler, the best choice of p is 8 for SSIM and 2 for both DISTS and LPIPS. This
is can explained by the perception-distortion tradeoff (Blau & Michaeli, 2018), which says that, as p
increases and the MSE distortion decreases, the perceptual quality must also decrease. In the end,
each FRIQ metric prefers a particular tradeoff between perceptual quality and distortion.

4 NUMERICAL EXPERIMENTS

We now consider two imaging inverse problems: image denoising and accelerated MRI. For each,
we evaluate the proposed bounds using the PSNR, SSIM (Wang et al., 2004b), LPIPS (Zhang et al.,
2018), and DISTS (Ding et al., 2020a) metrics.

4.1 DENOISING

Data: For true images, we use a random subset of 4000 images from the Flickr Faces HQ (FFHQ)
(Karras et al., 2019) validation dataset, to which we added white Gaussian noise of standard deviation
σ = 0.75 to create the measurements y0. The first 1000 images were used to train the predictor
f(·; θ) in (9) and the remaining 3000 were used for calibration and testing.
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Figure 3: Examples from the FFHQ denoising experiment. Top row: true image and low-LPIPS
recovery. Bottom row: true image and high-LPIPS recovery. True LPIPS reported in blue and quantile
upper-bound in red. (Recall that LPIPS assigns lower values to better recoveries.)
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Figure 4: Mean conformal bound versus number of posterior samples c for FFHQ denoising.

Recovery: To recover x̂0 from y0, a denoising task, we use the Denoising Diffusion Restoration
Model (DDRM) (Kawar et al., 2022a). Following (Kawar et al., 2022a), we run DDRM with a
Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) pretrained on the CelebA-HQ
dataset (Karras et al., 2018). To increase sampling diversity, we used η = 1 and ηb = 0.5 but set all
other hyperparameters at their default values. For each measurement yi, we use one DDRM sample
(i.e., p = 1) for the image estimate x̂i and c independent samples for {x̃(j)i }cj=1.

Conformal bounds: We evaluate the proposed bounding methods from Secs. 3.1, 3.3, and 3.4, which
we refer to as the non-adaptive, quantile, and regression bounds, respectively. For the regression
bound, we use a quantile predictor f(·, θ) that takes the form of a linear spline with two knots (see
Appendix F for more details).

Validation procedure: Because the coverage guarantee (6) involves random calibration data and
test data, we evaluate our methods using T Monte-Carlo trials. For each trial t ∈ {1, . . . , T}, we
randomly select 70% of the 3000 non-training samples to create the calibration set dcal[t] and we use
the remaining 30% of the non-training samples for testing. In particular, we compute λ̂ using dcal[t]
and then, for each sample k in the testing fold for trial t, we compute the bound β(ẑk, λ̂(dcal[t])).
Finally, β(ẑk, λ̂(dcal[t])) is averaged over the test samples k and the Monte Carlo trials t to yield
the “mean conformal bound” (MCB). Unless specified otherwise, we used error rate α = 0.05,
T = 10 000, and c = 32 samples for the adaptive bounds. Appendix A demonstrates that all
empirical coverages align with the theoretical guarantees in (6).

Bound versus true metric: Figure 2 shows scatter plots of the non-adaptive and quantile bounds
β(ẑk, λ̂(dcal[t])) versus the true FRIQ zk for the test samples k of a single Monte Carlo trial, along
with the true image xk and recovery x̂k for two test samples. The sample highlighted in red has better
subjective visual quality compared to the one in blue, and this is reflected in both the true FRIQ
metrics zk and the corresponding quantile bounds, but not the non-adaptive bound. In Fig. 3, we
show six additional samples from the FFHQ denoising experiment, three with low (true) LPIPS and
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three with high (true) LPIPS, along with the respective true images. The quantile upper-bound on
LPIPS is superimposed on each recovery. We see that the bounds are valid in the sense that they did
not under-predict the true LPIPS, and adaptive in the sense that the bounding value is lower when the
true LPIPS is lower.

MCB versus bounding method and number of posterior samples c: Figure 4 plots MCB versus
the number of posterior samples c used for the adaptive bounds. The figure shows that the non-
adaptive bound is looser (i.e., smaller for the HP metrics PSNR and SSIM and larger for the LP
metrics DISTS and LPIPS) than the two adaptive bounds. For both adaptive bounds, Fig. 4 shows
only minor bound improvement with increasing c, suggesting that the adaptive bounds are robust to
the choice of c, and that small values of c could suffice if sample-generation was computationally
expensive.

Interestingly, Fig. 4 shows relatively little improvement when going from the quantile bound to the
regression bound. This may be due to our choice of a linear spline with two knots for f(·; θ), but
experiments with higher spline orders and/or more knots did not yield improved results, and neither
did experiments with XGBoost (Chen & Guestrin, 2016) models for f(·; θ). Additional experiments
that hold the number of test samples at 900 and vary ntrain and ncal such that ntrain + ncal = 3100
(see Appendix B) also show little change in the performance of the quantile and regression bounds.
Thus, for our experimental data, the effort to train the estimation function f(·; θ) from (9) may not be
justified, given the good performance of the simple empirical-quantile estimation function f(·) from
(8). But the behavior may be different with other datasets.

Computation time: Computing a single DDRM sample takes approximately 2.73 seconds. Once the
calibration constant λ̂(dcal) is known, computing c = 32 FRIQ samples {z̃(j)0 }cj=1 and β(ẑ0, λ̂(dcal))
takes around 217ms, 320ms, 5ms, and 6ms for DISTS, LPIPS, PSNR, and SSIM, respectively. All
times pertain to a single NVIDIA V100 with 32GB of memory.

4.2 ACCELERATED MRI

We now simulate our methods on accelerated multicoil MRI (Knoll et al., 2020; Hammernik et al.,
2023). MRI is a medical imaging technique known for excellent soft tissue contrast without subjecting
the patient to harmful ionizing radiation. MRI has slow scan times, though, which reduce patient
throughput and comfort. In accelerated MRI, one collects only 1/R of the measurements specified
by the Nyquist sampling theorem, thus speeding up the acquisition process by rate R. For R > 1,
however, the inverse problem may become ill-posed, in which case one may be interested in bounding
the FRIQ of the recovered image.

Data: We utilize the non-fat-suppressed subset of the multicoil fastMRI knee dataset (Zbontar et al.,
2018), yielding 17286 training images and 2188 validation images. To simulate the imaging process,
we retrospectively sub-sample in the spatial Fourier domain (the “k-space”) using random Cartesian
masks that give acceleration rates R ∈ {16, 8, 4, 2}. See App. E for additional details.

Recovery: For the quantile bound, we generate approximate posterior samples using the conditional
normalizing flow (CNF) from (Wen et al., 2023a). We use p samples to construct x̂i via (11) and
c additional samples {x̃(j)i }cj=1 to construct the quantile bound. For the non-adaptive bound, we
construct x̂i using the state-of-the-art E2E-VarNet (Sriram et al., 2020a), which is a deterministic
reconstruction approach. Both methods are trained to work well with all four acceleration rates R.
(See App. F for training details.) Similar to Sec. 4.1, we found that the regression bound did not
provide significant gain over the quantile bound and so, to streamline our discussion, we consider only
the quantile and non-adaptive bounds for MRI. As before, we evaluate performance over T = 10 000
Monte Carlo trials with a random 70% calibration and 30% test split of the validation data. All
experiments use an error-rate α = 0.05. Methods are separately calibrated for each acceleration rate.

Bound versus true-metric: Figure 5 shows scatter plots of the true FRIQ zk versus the non-adaptive
and quantile bounds β(ẑk, λ̂(dcal[t])) for the test samples k in a single Monte-Carlo trial. The results
are shown for R = 8 acceleration, c = 32 samples in the adaptive bounds, and the best performing p
for each metric (see App. C). Except for a few outliers, the quantile bound closely tracks the true
FRIQ zk, demonstrating good adaptivity, while the non-adaptive bounds remain constant with zk.
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Figure 5: Scatter plots show the non-adaptive (blue) and quantile (orange) bounds β(ẑk, λ̂(dcal[t]))
versus the true FRIQ zk over MRI test samples k at acceleration R = 8. The black line shows where
β = z. A fraction of α = 0.05 samples are on the side of the line that violates the bound. Note that
the quantile bound tracks the true zk much better than the non-adaptive bound.
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Figure 6: Fraction of accepted slices versus
final acceleration rate for multi-round MRI.
Error bars show standard deviation.

Table 1: Average results for a multi-round MRI
simulation where measurement collection stop
once bounds are below a user-set threshold τ .
Results shown for T = 10 000 trials using the
DISTS metric with α = 0.05, τ = 0.15, p = 4,
and c = 32 (± standard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000± 0.000 0.9505± 0.0001
Quantile 5.422± 0.001 0.9461± 0.0001

Multi-round Measurement: To showcase the practical impact of our bounds, we adapt the multi-
round measurement protocol from (Wen et al., 2024), where measurements are collected over multiple
rounds until the uncertainty bound falls below a threshold. In our setting, measurements are first
collected at acceleration R = 16, an image recovery is computed, and a conformal upper-bound on
its DISTS is computed. If the bounding value is lower than a pre-determined threshold τ , signifying
that the recovery is (with probability 1− α) of sufficient diagnostic quality (Kastryulin et al., 2023),
then measurement collection stops. If not, additional measurements are collected and combined with
the previous ones to yield an acceleration of R = 8, and the process repeats. We allow up to five
measurement rounds, corresponding to final accelerations of R ∈ {16, 8, 4, 2, 1}.

Once again, we report average results across T = 10 000 trials. Figure 6 plots the fraction of test
image slices accepted by the multi-round protocol at each acceleration rate R. With the quantile
bound, the measurements stop after two rounds (i.e., R = 8) in more than 60% of the cases, and
after three rounds (i.e., R = 4) in more than 30% of the cases. With the non-adaptive bound, the
measurements stop after four rounds (i.e., R = 2) in all cases. Table 1 shows that, with the quantile
bound, the multi-round protocol attains an average acceleration of R = 5.42, which far surpasses
the R = 2 acceleration achieved with the non-adaptive bound. Table 1 also shows that the empirical
coverage of the multi-round accepted slices is very close to 1 − α, despite having only coverage
guarantees (6) for a single-round measurement at each acceleration rate. Figure 7 shows examples of
the image-error, the true DISTS, and its quantile upper-bound for each measurement round. With the
threshold set at τ = 0.15, the example on the top would collect two rounds of measurements (i.e.,
R = 8) while the example at the bottom would collect three rounds of measurements (i.e., R = 4), as
demarcated by the red squares. See App. C for additional qualitative results.

Computation time: The E2E-VarNet takes approximately 104ms to generate a single posterior
sample, while the CNF take about 2.41 seconds to generate 64 posterior samples (corresponding to
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Figure 7: Examples of the multi-round MRI measurement procedure with DISTS at α = 0.05,
τ = 0.15, p = 4, and c = 32. Error images at each acceleration R are shown with the quantile bound
(orange) and true metric (white). The red box indicates the measurement round at which the bound
falls below the threshold τ and the measurement procedure concludes.

p = 32 and c = 32) on a single NVIDIA V100. The computation time of the metrics and bounds is
on par with the times reported for the FFHQ experiments.

Limitations: We acknowledge multiple limitations in our proposed methodology. 1) Our methods
require access to calibration data {(xi, yi)}ni=1 that is similar enough to the test data (x0, y0) for the
FRIQ pairs {(zi, ẑi)}ni=0 to be modeled as statistically exchangeable. More work is required to make
our methods robust to distribution shift (see App. D), although (Tibshirani et al., 2019; Barber et al.,
2023; Cauchois et al., 2024) suggest some paths forward. 2) Our methods will be most impactful
when there exists evidence that the FRIQ metric is well matched to the application (e.g., DISTS
for MRI (Kastryulin et al., 2023)). For some applications, additional work is required to determine
which metrics are more appropriate. 3) Our MRI application ideas are preliminary and not ready
for practical use; rigorous clinical trials are needed to tune and validate the methodology on a much
larger and diverse cohort of data. 4) The learned adaptive bound from Sec. 3.4 requires training a
quantile regression model, and our FFHQ denoising experiment suggests that it may not be easy to
significantly outperform the simpler adaptive bound from Sec. 3.3. 5) The posterior samplers that
we considered in our numerical experiments target only aleatoric uncertainty, and sharper conformal
bounds might be attained if epistemic uncertainty was also considered (e.g., (Ekmekci & Cetin,
2023)). 6) Because our methods are based on CP (or, equivalently, conformal risk control under the
indicator loss (Angelopoulos et al., 2022a)), the marginal guarantee (6) holds with probability 1− α

over random test data (e.g., Ẑ0, Z0) and calibration sets Dcal. A more fine-grained coverage could
be achieved via the Risk-Controlling Prediction Sets (RCPS) framework from (Bates et al., 2021),
which employs two user-selected error rates α, δ ∈ (0, 1) to yield coverage guarantees like

Pr
[
Pr

{
Z0 ∈ Cλ̂(Dcal)

(
Ẑ0

)∣∣Dcal

}
≥ 1− α

]
≥ 1− δ (12)

in place of (6). In (12), α controls the Dcal-conditional error while δ controls the error over Dcal.

5 CONCLUSION

For imaging inverse problems, we used conformal prediction to construct bounds on the FRIQ
of a recovered image relative to the unknown true image. When constructed using a calibration
set that is statistically exchangeable with the test sample, our bounds are guaranteed to hold with
high probability. Two of our methods leveraged approximate-posterior-sampling schemes to yield
tighter conformal bounds that adapt to the measurements and reconstruction. Our approaches were
demonstrated on image denoising and accelerated multicoil MRI, illustrating the broad applicability
of our work.
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Table 2: Mean empirical coverage for the non-adaptive method with α = 0.05 and T = 10 000 on
the FFHQ denoising task (± standard error)

DISTS LPIPS PSNR SSIM

0.95000± 0.00009 0.95016± 0.00009 0.95004± 0.00009 0.95010± 0.00009

Table 3: Mean empirical coverage for the quantile method with α = 0.05 and T = 10 000 on the
FFHQ denoising task (± standard error)

c DISTS LPIPS PSNR SSIM

1 0.95002± 0.00009 0.94997± 0.00009 0.95013± 0.00009 0.94989± 0.00009
2 0.95006± 0.00009 0.95003± 0.00009 0.95001± 0.00009 0.95022± 0.00009
4 0.94997± 0.00009 0.95008± 0.00009 0.94986± 0.00009 0.94999± 0.00009
8 0.95020± 0.00009 0.95015± 0.00009 0.95019± 0.00009 0.94991± 0.00009
16 0.94998± 0.00009 0.94999± 0.00009 0.95009± 0.00009 0.95008± 0.00009
32 0.95002± 0.00009 0.95013± 0.00009 0.95003± 0.00009 0.95006± 0.00009

Table 4: Mean empirical coverage for the regression method with α = 0.05 and T = 10 000 on the
FFHQ denoising task (± standard error)

c DISTS LPIPS PSNR SSIM

1 0.94994± 0.00009 0.94970± 0.00009 0.95009± 0.00009 0.95014± 0.00009
2 0.95011± 0.00009 0.94953± 0.00009 0.94985± 0.00009 0.95004± 0.00009
4 0.94996± 0.00009 0.94946± 0.00009 0.95003± 0.00009 0.94995± 0.00009
8 0.95004± 0.00009 0.94964± 0.00009 0.94999± 0.00009 0.95017± 0.00009
16 0.94986± 0.00009 0.94964± 0.00009 0.95007± 0.00009 0.94987± 0.00009
32 0.95013± 0.00009 0.95026± 0.00009 0.95001± 0.00009 0.95006± 0.00009

A EMPIRICAL COVERAGE

In this section, we verify that the marginal coverage guarantee in (6) holds as expected. For each
Monte Carlo trial t, we compute the empirical coverage for the non-adaptive method as

EC[t] ≜
1

|Itest[t]|
∑

i∈Itest[t]

1zi∈C
λ̂(Dcal)

, (13)

where Itest[t] is the set of indices for the test samples of trial t. Computing the empirical coverage
for the adaptive methods can be done in the same manner with the appropriate Cλ̂(Dcal)

(·). In Tables
2, 3, 4, we report the average empirical coverage and standard error across T = 10 000 trials for all
three methods on the FFHQ experiments using α = 0.05. For all methods, the average empirical
coverage is very close to the theoretical coverage 1− α = 0.95 regardless of the metric or value of
c, demonstrating close adherence to the theory. There are very slight deviations as a result of finite
trials, number of calibration samples, and number of testing samples.

In Table 5, we report the mean empirical coverage for the quantile method in the MRI experiments
with R = 8, α = 0.05, c = 32, and p ∈ {1, 2, 4, 8, 16, 32} across T = 10 000 trials. For any value
of p, we see the empirical coverage is very close to the theoretical 1− α = 0.95 coverage; thus, once
again, our method shows close compliance to the theory.

B ADDITIONAL FFHQ DENOISING EXPERIMENTS

Effect of training and calibration set size: For FFHQ denoising, we now investigate how the
amount of training and calibration data affect the mean conformal bound. Following the same Monte
Carlo procedure as Sec. 4.1, we fix the number of testing samples to 900 but change the proportion of
ntrain versus ncal for the remaining 3100 samples. In Fig. 8, we show the mean conformal bounds
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Table 5: Mean empirical coverage for the quantile method with α = 0.05, c = 32, and T = 10 000
on theR = 8 accelerated MRI task (± standard error). All coverages are above the expected coverage
of 1− α = 0.95

p DISTS LPIPS PSNR SSIM
1 0.9503± 0.0001 0.9503± 0.0001 0.9505± 0.0001 0.9504± 0.0001
2 0.9505± 0.0001 0.9503± 0.0001 0.9504± 0.0001 0.9505± 0.0001
4 0.9503± 0.0001 0.9503± 0.0001 0.9505± 0.0001 0.9504± 0.0001
8 0.9505± 0.0001 0.9504± 0.0001 0.9504± 0.0001 0.9505± 0.0001

16 0.9505± 0.0001 0.9502± 0.0001 0.9504± 0.0001 0.9504± 0.0001
32 0.9504± 0.0001 0.9506± 0.0001 0.9504± 0.0001 0.9505± 0.0001
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Figure 8: Mean conformal bound versus the proportion of training samples for FFHQ denoising with
ntrain + ncal = 3100 samples.
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Figure 9: Mean Pearson correlation coefficient between each conformal bound and the true FRIQ
versus the number of posterior samples c.

as the proportion of training samples varies, starting with 0.1 and going up to 0.95, for T = 10 000,
c = 32, and α = 0.05. Both adaptive methods still provide noticeable gains over the non-adaptive
bound. Even with additional training samples, however, the regression bounds show relatively little
improvement over the quantile bounds. Based on (3), the conformal bounds should grow more
conservative as the number of calibration points decreases for the non-adaptive and quantile bounds.
However, this effect is not evident until very small calibration set sizes (e.g., when the fraction of
calibration samples is 0.05).

Correlation between conformal bound and true FRIQ: Figure 2 visually demonstrates that the
quantile bound tracks the true FRIQ much better than the non-adaptive bound. To quantify this
tracking behavior, we compute the Pearson correlation coefficient between each conformal bound
β(ẑk, λ̂(dcal[t])) and the true FRIQ zk over the test samples k for each Monte-Carlo trial t. In
Fig. 9, we plot the mean (across T = 10000 trials) Pearson correlation coefficient versus c for each
bound. Since the non-adaptive bound is constant with zk, its correlation equals 0. However, the two
adaptive approaches demonstrate a correlation coefficient above 0.5, and up to 0.7, depending on
the metric. These correlation coefficients quantify the adaptivity of our bounds and explain, in part,
why the adaptive bounds led to better average acceleration rates than the non-adaptive bound in the
multi-round measurement experiment of Sec. 4.2.
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Figure 10: Percent improvement in MCB versus number of samples c used in the quantile bound. For
each metric, we use the value of p that gave the best MCB at c = 32, as denoted in the legend.
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Figure 11: Mean conformal bound versus acceleration R for accelerated MRI. The non-adaptive
bound uses the E2E-VarNet for x̂ and the quantile bound averages p CNF samples for x̂. Various p
shown.

C ADDITIONAL MRI EXPERIMENTS

Effect of number of posterior samples c in conformal bound: For the case of FFHQ denoising,
Sec. 4.1 demonstrated the number of posterior samples c has a limited effect on the conformal bounds
for the FFHQ experiments. We now investigate whether the same occurs with MRI. Figure 10 plots
MCB versus c using the value of p (i.e., the number of posterior samples averaged to form x̂) that
maximizes MCB when c = 32. From the figure, we see less than a 1% improvement over c for any
metric, suggesting that the quantile method is indeed robust to the choice of c for both experiments.

Effect of acceleration rate R: Figure 11 plots MCB versus acceleration rate R with c = 32
and several values of p. In all cases, MCB improves as the acceleration R decreases, as expected.
However, as discussed in Sec. 3.5, each metric benefits from a different choice of p. DISTS and
LPIPS prefer p ∈ {2, 4} while PSNR and SSIM prefer p = 32. The figure also shows that, for each
metric, the MCB for the E2E-VarNet-based method is worse than the MCB for the p-optimized
CNF-based method, even though App. G shows that E2E-VarNet’s average PSNR and SSIM scores
are better. This further demonstrates the advantages of posterior-sampling-based image recovery.

Multi-round measurement samples: In Fig. 12, we show the zero-filled measurement, recovered
image, and absolute-error map at each acceleration rate for p = 4. The conformal bound is imposed
on the reconstructions for the case when α = 0.05, τ = 0.15, and c = 32. Following the multi-round
measurement protocol described in Sec. 4.2, the reconstruction at R = 8 (marked in red) would be
deemed sufficient (βi < τ ), and the measurement collection would end.

D EMPIRICAL INVESTIGATION OF DISTRIBUTION SHIFT

As previously mentioned, a general limitation of CP methods like Angelopoulos et al. (2022a)
is the requirement of exchangeability, which in our case applies to the pairs {(Ẑi, Zi)}ni=0. This
requirement may be violated when there is a distributional shift between the test data (x0, y0) and the
calibration data {(xi, yi)}ni=1, which can then cause a distributional shift between the corresponding
FRIQ quantities (ẑ0, z0) and {(ẑi, zi)}ni=1.
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Figure 12: Qualitative example of the multi-round MRI experiment with DISTS at α = 0.05,
τ = 0.15, p = 4, and c = 32. The measurement, recovery, and absolute error are shown for all
accelerations. The quantile bound (orange) and true DISTS (white) are imposed on the reconstructions.
The red box indicates the accepted reconstruction where the bound first falls below the threshold τ .

In the case of MRI, such distributional shifts may arise for various reasons, some of which would be
easy to prevent while others would be more difficult. For example, if the CP method was calibrated
on knee images, one would not want to immediately test on brain images, but instead recalibrate a CP
method on brain images. Likewise, if the CP method was calibrated with data from one manufacturer
and/or strength of scanner, then it would be best to test on data from the same manufacturer and/or
strength of scanner. Still, due to limited calibration data, situations may arise where a distribution
shift is inevitable. Thus, we perform a study to analyze the sensitivity of our proposed method to
distribution shifts.

For this study, we use the validation fold of the non-fat-suppressed multicoil fastMRI knee dataset
Zbontar et al. (2018), which contains 100 3D volumes. A volume contains all the images collected for
a single patient, with each image showing a different slice of the knee (from front to back). To induce
a realistic yet controllable distribution shift, we choose calibration images from only the center slices
of these volumes, and refer to the center slices as “location l = 0.” We then create one test set with
images from slice locations l = 0, another test set with images from slice location l = 1, and so on,
until slice location l = 10 (which typically corresponds to an edge slice). Example images from
various slice locations are shown in Fig. 13.
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Figure 13: Qualitative examples of images from different slice locations. Slice location 0 indicates
the center slice of a volume while larger slice locations are further towards the edges of a volume.
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Figure 14: Histograms of the difference between the true
FRIQ zk and the FRIQ estimate ẑk for test samples k in
the test fold of a single trial. Histograms are shown for test
slice locations l = 0, 5, 10. Note the increasing shift in
distribution from the calibration set as l increases.
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Figure 15: The average empirical cov-
erage across T = 10000 trials for test
sets at different slice locations. All
trials are calibrated with images from
slice location 0 with α = 0.1, R = 8,
p = 1, and c = 32.

We first evaluate the coverage of the quantile bound using T = 10 000 Monte Carlo trials, error-rate
α = 0.1, acceleration R = 8, an average of p = 1 samples for x̂i, and c = 32 posterior samples for
ui. For each trial t ∈ {1, . . . , T}, we construct the calibration set by randomly sampling 60 of the
100 center slices. For the same t, we form the test data at location l = 0 using the remaining 40 slices,
and we form the test data at locations l > 0 by randomly sampling 40 of the 200 available slices.
Figure 15 plots the mean empirical coverage over the T trials as a function of test slice location l. As
expected, the desired 1− α coverage is met when l = 0, but the coverage tends to decrease as the
slice location l increases. Surprisingly, for the PSNR and SSIM metrics, the coverage remains close
to or above 1− α up until l = 4, suggesting our method is robust to small distributional shifts with
these metrics. For DISTS and LPIPS, the drop in coverage is less than 0.1 until after l = 4.

To visualize the distribution shift versus test location l, we consider the difference between the true
FRIQ zk and the FRIQ estimate ẑk for each test sample k in a single trial t. This difference is zk − ẑk
for LP metrics and ẑk − zk for HP metrics. Figure 14 shows the histogram of this difference for test
locations l ∈ {0, 5, 10}. As expected, these histograms deviate more as the test location l increases,
although the amount of deviation depends on the FRIQ metric. For PSNR, we see the histogram
shifting to the right and widening, while for LPIPS, the histogram becomes bimodal at test location
l = 10.

Figure 15 suggests that one could select a more conservative α to ensure sufficiently high coverage
under small distributional shifts, but at the cost of more conservative bounds. In fact, this is largely
the mechanism behind distributionally robust CP extensions like Cauchois et al. (2024). We leave
such generalizations to future work.

E MRI SUBSAMPLING MASK DETAILS

For the MRI experiments, we simulate the collection of measurements at four acceleration rates
R = {16, 8, 4, 2}. These measurements are collected in the 2D spatial frequency domain known as
k-space, and the pattern with which these samples are collected is called a sampling mask.

For this study, we use a Cartesian sampling procedure where full lines of the 2D k-space are collected
progressively. Starting with R = 16, we utilize a Golden Ratio Offset (GRO) (Joshi et al., 2022)
sampling mask with GRO-specific parameters s = 15 and α = 8. This gives a fully-sampled region
of 9 lines in the center of k-space known as the autocalibration signal (ACS) region. To simulate the
iterative collection of measurements, we build upon this mask for R = 8. We first collect central
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Figure 16: MRI sampling masks in k-space for each acceleration rate R. White pixels indicate the
measurement was collected for that location in k-space. The masks are designed in a nested fashion
where each mask contains all the measurements of higher R.

lines to obtain an ACS region of 16 lines before sampling additional k-space lines with a sampling
probability inversely proportional to the distance from the center. Additional lines are collected until
the desired acceleration R = 8 is met. This procedure is repeated for R = 4 and R = 2 to acquire
masks with ACS widths of 24 and 32, respectively. Fig. 16 illustrates examples of the resulting masks.

F TRAINING/MODEL DETAILS

For the regression bound in Sec. 3.4, where ui ∈ Rc, we use a quantile predictor of the form

f(ui; θ) = ψ(ui)
⊤w + b with θ = [w, b]⊤, , (14)

where ψ(·) is a linear spline with two knots, t1 and t2, implemented via the truncated power basis

ψ(ui) = [ui; (ui − t11)+; (ui − t21)+] ∈ R3c, (15)

with 1 the c-dimensional vector of ones and (x)+ ≜ max(x, 0). The two knots were placed at
the 1

3 and 2
3 empirical quantiles of the mean training feature { 1

c

∑c
j=1 u

(j)
i }n+ntrain

i=n+1 , respectively.
Essentially, for each feature in ui, (14) implements a piece-wise-linear regression function with
three distinct pieces. To promote consistency in ui = [ui1, ui2, . . . , uic]

⊤ across different i, the
spline function ϕ(·) first sorts the values {uij}cj=1 within each ui. For ρ(θ) in (10), we use ridge
regularization on the weights w. The resulting (10) is a quadratic program, which can be optimized
using any convex solver. To tune the regularization weight γ, we use K-fold cross validation with
K = 5 folds and select the weight that provides the lowest mean pinball loss across the 5 folds.

For DDRM, we use the author’s implementation (Kawar et al., 2022b), which is publicly available
under an MIT license.

Both fastMRI reconstruction models were trained once with all four acceleration rates. For each
sample in an epoch, one of the four sampling masks is randomly drawn, allowing the model to see
each sample at a different acceleration throughout the training.

With the E2E-VarNet, we use the author’s codebase (Sriram et al., 2020b), which is released under
an MIT license. For training, we utilize the default hyperparameters provided by the authors for the
model on the fastMRI knee leaderboard. The model was trained for 50 epochs with a batch size of 16
and learning rate of 0.0001 using SSIM (Wang et al., 2004a) as the loss function. This takes around
38 hours on a single NVIDIA V100 with 32GB of memory.

To train the CNF, we start with the author’s implementation (Wen et al., 2023b) that is available under
an MIT license. We modify the architecture slightly in order to better handle multiple accelerations.
First, we include an invertible attention module, iMAP (Sukthanker et al., 2022), to the end of the
base flow step. Then, we increase the number of initial channels in the conditioning network to
256. Using 2 layers and 10 flows steps in each layer, we train the CNF to minimize the negative
log-likelihood objective. The model is trained for 150 epochs with batch size 8 and learning rate
0.0001. On a single NVIDIA V100, this takes around 335 hours.
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Table 6: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation
set for R = 16 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.209± 0.001 0.354± 0.001 30.301± 0.043 0.807± 0.001
CNF (p = 1) 0.183± 0.001 0.312± 0.001 28.244± 0.039 0.688± 0.002
CNF (p = 2) 0.167± 0.001 0.292± 0.001 29.091± 0.039 0.730± 0.001
CNF (p = 4) 0.165± 0.001 0.287± 0.001 29.588± 0.039 0.755± 0.001
CNF (p = 8) 0.173± 0.001 0.296± 0.001 29.862± 0.039 0.770± 0.001

CNF (p = 16) 0.184± 0.001 0.314± 0.001 30.006± 0.039 0.777± 0.001
CNF (p = 32) 0.193± 0.001 0.333± 0.001 30.080± 0.039 0.781± 0.001

Table 7: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation
set for R = 8 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.151± 0.001 0.262± 0.001 33.459± 0.047 0.864± 0.001
CNF (p = 1) 0.136± 0.000 0.248± 0.001 30.796± 0.044 0.761± 0.002
CNF (p = 2) 0.118± 0.000 0.225± 0.001 31.754± 0.044 0.799± 0.001
CNF (p = 4) 0.119± 0.000 0.219± 0.001 32.329± 0.043 0.821± 0.001
CNF (p = 8) 0.128± 0.001 0.228± 0.001 32.650± 0.043 0.834± 0.001

CNF (p = 16) 0.138± 0.001 0.243± 0.001 32.819± 0.043 0.840± 0.001
CNF (p = 32) 0.145± 0.001 0.255± 0.001 32.907± 0.043 0.843± 0.001

To compute the quadratic program for Sec. 4.1, we use the qpsolver (Caron et al., 2024) package
under a LGPL 3.0 license along with the CVXOPT (Andersen et al., 2023) package under a GNU
General Public License.

We use the TorchMetrics (Borovec et al., 2022) package under the Apache 2.0 license to compute
PSNR, SSIM, and LPIPS. We use the author’s code at (Ding et al., 2020b) for DISTS under a MIT
license. For multicoil MRI, we first compute the magnitude images using the “root-sum-of-squares”
(RSS) (Roemer et al., 1990) before computing any metric. Since DISTS and LPIPS require a 3-
channel image, we repeat the magnitude image for all three channels and normalize the values to be
between 0 and 1 before computing either metric.

All models use the PyTorch (Paszke et al., 2019) framework with a custom license allowing open use.
The E2E-VarNet and CNF are implemented using PyTorch Lightning (Falcon et al., 2019) under an
Apache 2.0 license.

G AVERAGE FASTMRI RECONSTRUCTION PERFORMANCE

To get a sense of the average reconstruction performance for the accelerated MRI task, we report the
average metrics for both the E2E-VarNet and CNF on the non-fat-suppressed subset of the fastMRI
knee validation set. Results for acceleration rates R = 16, 8, 4, and 2 are shown in Tables 6, 7, 8, 9,
respectively. The E2E-VarNet outperforms the CNF in PSNR and SSIM across all accelerations. The
CNF, on the other hand, provides lower DISTS and LPIPS values in all cases other than for LPIPS at
acceleration R = 2.

H DATASETS

The Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) is publicly available under the Creative Commons
BY-NC-SA 4.0 license. The fastMRI (Zbontar et al., 2018) datasets is available under a royalty-free
license for internal research and educational purposes by the NYU fastMRI initiative. The providers
have deidentified and manually inspected images and metadata for protected health information (PHI)
as part of an IRB-approved study.
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Table 8: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation
set for R = 4 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.110± 0.001 0.181± 0.001 36.030± 0.053 0.905± 0.001
CNF (p = 1) 0.100± 0.000 0.191± 0.001 33.090± 0.048 0.826± 0.001
CNF (p = 2) 0.087± 0.000 0.170± 0.001 34.073± 0.048 0.856± 0.001
CNF (p = 4) 0.090± 0.000 0.166± 0.001 34.666± 0.048 0.873± 0.001
CNF (p = 8) 0.099± 0.000 0.171± 0.001 34.998± 0.047 0.882± 0.001

CNF (p = 16) 0.106± 0.001 0.178± 0.001 35.174± 0.047 0.887± 0.001
CNF (p = 32) 0.110± 0.001 0.184± 0.001 35.265± 0.047 0.889± 0.001

Table 9: Average reconstruction performance on the fastMRI (Zbontar et al., 2018) knee validation
set for R = 2 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.059± 0.000 0.094± 0.001 39.692± 0.060 0.947± 0.001
CNF (p = 1) 0.059± 0.000 0.118± 0.000 36.810± 0.054 0.907± 0.001
CNF (p = 2) 0.054± 0.000 0.105± 0.000 37.667± 0.054 0.923± 0.001
CNF (p = 4) 0.055± 0.000 0.100± 0.000 38.171± 0.054 0.931± 0.001
CNF (p = 8) 0.058± 0.000 0.099± 0.000 38.448± 0.054 0.935± 0.001

CNF (p = 16) 0.060± 0.000 0.099± 0.000 38.593± 0.054 0.937± 0.001
CNF (p = 32) 0.061± 0.000 0.099± 0.000 38.668± 0.054 0.939± 0.001
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