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ABSTRACT

Learning meaningful representations that disentangle the underlying structure of
the data generating process is considered to be of key importance in machine learn-
ing. While disentangled representations were found to be useful for diverse tasks
such as abstract reasoning and fair classification, their scalability and real-world
impact remain questionable. We introduce a new high-resolution dataset with 1M
simulated images and over 1,800 annotated real-world images of the same setup.
In contrast to previous work, this new dataset exhibits correlations, a complex
underlying structure, and allows to evaluate transfer to unseen simulated and real-
world settings where the encoder i) remains in distribution or ii) is out of distribu-
tion. We propose new architectures in order to scale disentangled representation
learning to realistic high-resolution settings and conduct a large-scale empirical
study of disentangled representations on this dataset. We observe that disentan-
glement is a good predictor for out-of-distribution (OOD) task performance.

1 INTRODUCTION

Figure 1: Images from the simulated dataset (left)
and from the real-world setup (right).

Disentangled representations hold the promise
of generalization to unseen scenarios (Higgins
et al., 2017b), increased interpretability (Adel
et al., 2018; Higgins et al., 2018) and faster
learning on downstream tasks (van Steenkiste
et al., 2019; Locatello et al., 2019a). How-
ever, most of the focus in learning disentan-
gled representations has been on small syn-
thetic datasets whose ground truth factors ex-
hibit perfect independence by design. More re-
alistic settings remain largely unexplored. We
hypothesize that this is because real-world sce-
narios present several challenges that have not
been extensively studied to date. Important
challenges are scaling (much higher resolution
in observations and factors), occlusions, and
correlation between factors. Consider, for instance, a robotic arm moving a cube: Here, the robot
arm can occlude parts of the cube, and its end-effector position exhibits correlations with the cube’s
position and orientation, which might be problematic for common disentanglement learners (Träuble
et al., 2020). Another difficulty is that we typically have only limited access to ground truth labels in
the real world, which requires robust frameworks for model selection when no or only weak labels
are available.
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The goal of this work is to provide a path towards disentangled representation learning in realistic
settings. First, we argue that this requires a new dataset that captures the challenges mentioned
above. We propose a dataset consisting of simulated observations from a scene where a robotic arm
interacts with a cube in a stage (see Fig. 1). This setting exhibits correlations and occlusions that are
typical in real-world robotics. Second, we show how to scale the architecture of disentanglement
methods to perform well on this dataset. Third, we extensively analyze the usefulness of disen-
tangled representations in terms of out-of-distribution downstream generalization, both in terms of
held-out factors of variation and sim2real transfer. In fact, our dataset is based on the TriFinger
robot from Wüthrich et al. (2020), which can be built to test the deployment of models in the real
world. While the analysis in this paper focuses on the transfer and generalization of predictive mod-
els, we hope that our dataset may serve as a benchmark to explore the usefulness of disentangled
representations in real-world control tasks.

The contributions of this paper can be summarized as follows:

• We propose a new dataset for disentangled representation learning, containing 1M simu-
lated high-resolution images from a robotic setup, with seven partly correlated factors of
variation. Additionally, we provide a dataset of over 1,800 annotated images from the cor-
responding real-world setup that can be used for challenging sim2real transfer tasks. These
datasets are made publicly available.1

• We propose a new neural architecture to successfully scale VAE-based disentanglement
learning approaches to complex datasets.

• We conduct a large-scale empirical study on generalization to various transfer scenarios
on this challenging dataset. We train 1,080 models using state-of-the-art disentangle-
ment methods and discover that disentanglement is a good predictor for out-of-distribution
(OOD) performance of downstream tasks.

2 RELATED WORK

Disentanglement methods. Most state-of-the-art disentangled representation learning approaches
are based on the framework of variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende
et al., 2014). A (high-dimensional) observation x is assumed to be generated according to the latent
variable model pθ(x|z)p(z) where the latent variables z have a fixed prior p(z). The generative
model pθ(x|z) and the approximate posterior distribution qφ(z|x) are typically parameterized by
neural networks, which are optimized by maximizing the evidence lower bound (ELBO):

LV AE = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖p(z)) ≤ log p(x) (1)

As the above objective does not enforce any structure on the latent space except for some similar-
ity to p(z), different regularization strategies have been proposed, along with evaluation metrics
to gauge the disentanglement of the learned representations (Higgins et al., 2017a; Kim & Mnih,
2018; Burgess et al., 2018; Kumar et al., 2018; Chen et al., 2018; Eastwood & Williams, 2018).
Recently, Locatello et al. (2019b, Theorem 1) showed that the purely unsupervised learning of
disentangled representations is impossible. This limitation can be overcome without the need for
explicitly labeled data by introducing weak labels (Locatello et al., 2020; Shu et al., 2019). Ideas
related to disentangling the factors of variation date back to the non-linear ICA literature (Comon,
1994; Hyvärinen & Pajunen, 1999; Bach & Jordan, 2002; Jutten & Karhunen, 2003; Hyvarinen &
Morioka, 2016; Hyvarinen et al., 2019; Gresele et al., 2019). Recent work combines non-linear ICA
with disentanglement (Khemakhem et al., 2020; Sorrenson et al., 2020; Klindt et al., 2020).

Evaluating disentangled representations. The BetaVAE (Higgins et al., 2017a) and Factor-
VAE (Kim & Mnih, 2018) scores measure disentanglement by performing an intervention on the
factors of variation and predicting which factor was intervened on. The Mutual Information Gap
(MIG) (Chen et al., 2018), Modularity (Ridgeway & Mozer, 2018), DCI Disentanglement (East-
wood & Williams, 2018) and SAP scores (Kumar et al., 2018) are based on matrices relating factors
of variation and codes (e.g. pairwise mutual information, feature importance and predictability).

1http://people.tuebingen.mpg.de/ei-datasets/iclr_transfer_paper/robot_
finger_datasets.tar (6.18 GB)
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Datasets for disentanglement learning. dSprites (Higgins et al., 2017a), which consists of binary
low-resolution 2D images of basic shapes, is one of the most commonly used synthetic datasets for
disentanglement learning. Color-dSprites, Noisy-dSprites, and Scream-dSprites are slightly more
challenging variants of dSprites. The SmallNORB dataset contains toy images rendered under dif-
ferent lighting conditions, elevations and azimuths (LeCun et al., 2004). Cars3D (Reed et al., 2015)
exhibits different car models from Fidler et al. (2012) under different camera viewpoints. 3dshapes
is a popular dataset of simple shapes in a 3D scene (Kim & Mnih, 2018). Finally, Gondal et al.
(2019) proposed MPI3D, containing images of physical 3D objects with seven factors of variation,
such as object color, shape, size and position available in a simulated, simulated and highly realistic
rendered simulated variant. Except MPI3D which has over 1M images, the size of the other datasets
is limited with only 17, 568 to 737, 280 images. All of the above datasets exhibit perfect indepen-
dence of all factors, the number of possible states is on the order of 1M or less, and due to their static
setting they do not allow for dynamic downstream tasks such as reinforcement learning. In addition,
except for SmallNORB, the image resolution is limited to 64x64 and there are no occlusions.

Other related work. Locatello et al. (2020) probed the out-of-distribution generalization of down-
stream tasks trained on disentangled representations. However, these representations are trained on
the entire dataset. Generalization and transfer performance especially for representation learning has
likewise been studied in Dayan (1993); Muandet et al. (2013); Heinze-Deml & Meinshausen (2017);
Rojas-Carulla et al. (2018); Suter et al. (2019); Li et al. (2018); Arjovsky et al. (2019); Krueger et al.
(2020); Gowal et al. (2020). For the role of disentanglement in causal representation learning we
refer to the recent overview by Schölkopf et al. (2021). Träuble et al. (2020) systematically investi-
gated the effects of correlations between factors of variation on disentangled representation learners.
Transfer of learned disentangled representations from simulation to the real world has been recently
investigated by Gondal et al. (2019) on the MPI3D dataset, and previously by Higgins et al. (2017b)
in the context of reinforcement learning. Sim2real transfer is of major interest in the robotic learning
community, because of limited data and supervision in the real world (Tobin et al., 2017; Rusu et al.,
2017; Peng et al., 2018; James et al., 2019; Yan et al., 2020; Andrychowicz et al., 2020).

3 SCALING DISENTANGLED REPRESENTATIONS TO COMPLEX SCENARIOS

FoV Values
Upper joint 30 values in [−0.65,+0.65]
Middle joint 30 values in [−0.5,+0.5]
Lower joint 30 values in [−0.8,+0.8]
Cube position x 30 values in [−0.11,+0.11]
Cube position y 30 values in [−0.11,+0.11]
Cube rotation 10 values in [0◦, 81◦]
Cube color hue 12 values in [0◦, 330◦]

Table 1: Factors of variation in the proposed
dataset. Values are linearly spaced in the spec-
ified intervals. Joint angles are in radians, cube
positions in meters.

A new challenging dataset. Simulated im-
ages in our dataset are derived from the trifinger
robot platform introduced by Wüthrich et al.
(2020). The motivation for choosing this set-
ting is that (1) it is challenging due to occlu-
sions, correlations, and other difficulties en-
countered in robotic settings, (2) it requires
modeling of fine details such as tip links at high
resolutions, and (3) it corresponds to a robotic
setup, so that learned representations can be
used for control and reinforcement learning in
simulation and in the real world. The scene
comprises a robot finger with three joints that
can be controlled to manipulate a cube in a
bowl-shaped stage. Fig. 1 shows examples of
scenes from our dataset. The data is gener-
ated from 7 different factors of variation (FoV)
listed in Table 1. Unlike in previous datasets, not all FoVs are independent: The end-effector (the
tip of the finger) can collide with the floor or the cube, resulting in infeasible combinations of the
factors (see Appendix B.1). We argue that such correlations are a key feature in real-world data
that is not present in existing datasets. The high FoV resolution results in approximately 1.52 bil-
lion feasible states, but the dataset itself only contains one million of them (approximately 0.065%
of all possible FoV combinations), realistically rendered into 128 × 128 images. Additionally, we
recorded an annotated dataset under the same conditions in the real-world setup: we acquired 1,809
camera images from the same viewpoint and recorded the labels of the 7 underlying factors of vari-
ation. This dataset can be used for out-of-distribution evaluations, few-shot learning, and testing
other sim2real aspects.
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Figure 2: Latent traversals of a trained model that perfectly disentangles the dataset’s FoVs. In each
column, all latent variables but one are fixed.

Model architecture. When scaling disentangled representation learning to more complex
datasets, such as the one proposed here, one of the main bottlenecks in current VAE-based ap-
proaches is the flexibility of the encoder and decoder networks. In particular, using the architecture
from Locatello et al. (2019b), none of the models we trained correctly captured all factors of varia-
tion or yielded high-quality reconstructions. While the increased image resolution already presents a
challenge, the main practical issue in our new dataset is the level of detail that needs to be modeled.
In particular, we identified the cube rotation and the lower joint position to be the factors of variation
that were the hardest to capture. This is likely because these factors only produce relatively small
changes in the image and hence the reconstruction error.

To overcome these issues, we propose a deeper and wider neural architecture than those commonly
used in the disentangled representation learning literature, where the encoder and decoder typically
have 4 convolutional and 2 fully-connected layers. Our encoder consists of a convolutional layer,
10 residual blocks, and 2 fully-connected layers. Some residual blocks are followed by 1x1 con-
volutions that change the number of channels, or by average pooling that downsamples the tensors
by a factor of 2 along the spatial dimensions. Each residual block consists of two 3x3 convolutions
with a leaky ReLU nonlinearity, and a learnable scalar gating mechanism (Bachlechner et al., 2020).
Overall, the encoder has 23 convolutional layers and 2 fully connected layers. The decoder mirrors
this architecture, with average pooling replaced by bilinear interpolation for upsampling. The total
number of parameters is approximately 16.3M. See Appendix A for further implementation details.

Experimental setup. We perform a large-scale empirical study on the simulated dataset intro-
duced above by training 1,080 β-VAE models.2 For further experimental details we refer the reader
to Appendix A. The hyperparameter sweep is defined as follows:

• We train the models using either unsupervised learning or weakly supervised learning (Lo-
catello et al., 2020). In the weakly supervised case, a model is trained with pairs of images
that differ in k factors of variation. Here we fix k = 1 as it was shown to lead to higher
disentanglement by Locatello et al. (2020). The dataset therefore consists of 500k pairs of
images that differ in only one FoV.

• We vary the parameter β in {1, 2, 4}, and use linear deterministic warm-up (Bowman et al.,
2015; Sønderby et al., 2016) over the first {0, 10000, 50000} training steps.

• The latent space dimensionality is in {10, 25, 50}.
• Half of the models are trained with additive noise in the input image. This choice is mo-

tivated by the fact that adding noise to the input of neural networks has been shown to be
beneficial for out-of-distribution generalization (Sietsma & Dow, 1991; Bishop, 1995).

• Each of the 108 resulting configurations is trained with 10 random seeds.

Can we scale up disentanglement learning? Most of the trained VAEs in our empirical study
fully capture all the elements of a scene, correctly model heavy occlusions, and generate detailed,

2Training these models requires approximately 2.8 GPU years on NVIDIA Tesla V100 PCIe.
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Figure 3: Left: Disentanglement metrics aggregating all hyperparameters except for supervision
type. Right: Rank correlations (Spearman) of ELBO, reconstruction loss, and the test error of a
GBT classifier trained on 10,000 labelled data points with disentanglement metrics. The upper rank
correlations correspond to the unsupervised models and the lower to the weakly supervised models.

high-quality samples and reconstructions (see Appendix B.2). From visual inspections such as the
latent traversals in Fig. 2, we observe that many trained models fully disentangle the ground-truth
factors of variation. This, however, appears to only be possible in the weakly supervised scenario.
The fact that models trained without supervision learn entangled representations is in line with the
impossibility result for the unsupervised learning of disentangled representations from Locatello
et al. (2019b). Latent traversals from a selection of models with different degrees of disentanglement
are presented in Appendix B.3. Interestingly, the high-disentanglement models seem to correct for
correlations and interpolate infeasible states, i.e. the fingertip traverses through the cube or the floor.

Summary: The proposed architecture can scale disentanglement learning to more realistic settings,
but a form of weak supervision is necessary to achieve high disentanglement.

How useful are common disentanglement metrics in realistic scenarios? The violin plot in
Fig. 3 (left) shows that DCI and MIG measure high disentanglement under weak supervision and
lower disentanglement in the unsupervised setting. This is consistent with our qualitative conclu-
sion from visual inspection of the models (Appendix B.3) and with the aforementioned impossibility
result. Many of the models trained with weak supervision exhibit a very high DCI score (29% of
them have >99% DCI, some of them up to 99.89%). SAP and Modularity appear to be ineffective
at capturing disentanglement in this setting, as also observed by Locatello et al. (2019b). Finally,
note that the BetaVAE and FactorVAE metrics are not straightforward to be evaluated on datasets
that do not contain all possible combinations of factor values. According to Fig. 3 (right), DCI and
MIG strongly correlate with test accuracy of GBT classifiers predicting the FoVs. In the weakly
supervised setting, these metrics are strongly correlated with the ELBO (positively) and with the re-
construction loss (negatively). We illustrate these relationships in more detail in Appendix B.4. Such
correlations were also observed by Locatello et al. (2020) on significantly less complex datasets, and
can be exploited for unsupervised model selection: these unsupervised metrics can be used as prox-
ies for disentanglement metrics, which would require fully labeled data.

Summary: DCI and MIG appear to be useful disentanglement metrics in realistic scenarios,
whereas other metrics seem to fall short of capturing disentanglement or can be difficult to com-
pute. When using weak supervision, we can select disentangled models with unsupervised metrics.

4 FRAMEWORK FOR THE EVALUATION OF OOD GENERALIZATION

Previous work has focused on evaluating the usefulness of disentangled representations for various
downstream tasks, such as predicting ground truth factors of variation, fair classification, and ab-
stract reasoning. Here we propose a new framework for evaluating the out-of-distribution (OOD)
generalization properties of representations. More specifically, we consider a downstream task – in
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our case, regression of ground truth factors – trained on a learned representation of the data, and
evaluate the performance on a held-out test set. While the test set typically follows the same dis-
tribution as the training set (in-distribution generalization), we also consider test sets that follow a
different distribution (out-of-distribution generalization). Our goal is to investigate to what extent,
if at all, downstream tasks trained on disentangled representations exhibit a higher degree of OOD
generalization than those trained on entangled representations.

Let D denote the training set for disentangled representation learning. To investigate OOD gen-
eralization, we train downstream regression models on a subset D1 ⊂ D to predict ground truth
factor values from the learned representation computed by the encoder. We independently train one
predictor per factor. We then test the regression models on a set D2 that differs distributionally from
the training set D1, as it either contains images corresponding to held-out values of a chosen FoV
(e.g. unseen object colors), or it consists of real-world images. We now differentiate between two
scenarios: (1) D2 ⊂ D, i.e. the OOD test set is a subset of the dataset for representation learning;
(2) D and D2 are disjoint and distributionally different. These two scenarios will be denoted by
OOD1 and OOD2, respectively. For example, consider the case in which distributional shifts are
based on one FoV: the color of the object. Then, we could define these datasets such that images
in D always contain a red or blue object, and those in D1 ⊂ D always contain a red object. In the
OOD1 scenario, images in D2 would always contain a blue object, whereas in the OOD2 case they
would always contain an object that is neither red nor blue.

The regression models considered here are Gradient Boosted Trees (GBT), random forests, and
MLPs with {1, 2, 3} hidden layers. Since random forests exhibit a similar behavior to GBTs, and
all MLPs yield similar results to each other, we choose GBTs and the 2-layer MLP as representative
models and only report results for those. To quantify prediction quality, we normalize the ground
truth factor values to the range [0, 1], and compute the mean absolute error (MAE). Since the values
are normalized, we can define our transfer metric as the average of the MAE over all factors (except
for the FoV that is OOD).

5 BENEFITS AND TRANSFER OF STRUCTURED REPRESENTATIONS

Experimental setup. We evaluate the transfer metric introduced in Section 4 across all 1,080
trained models. To compute this metric, we train regression models to predict the ground truth
factors of variation, and test them under distributional shift. We consider distributional shifts in
terms of cube color or sim2real, and we do not evaluate downstream prediction of cube color. We
report scores for two different regression models: a Gradient Boosted Tree (GBT) and an MLP with
2 hidden layers of size 256. In Appendix A we provide details on the datasets used in this section.

In the OOD1 setting, we have D2 ⊂ D, hence the encoder is in-distribution: we are testing the
predictor on representations of images that were in the training set of the representation learning
algorithm. Therefore, we expect the representations to be meaningful. We consider three scenarios:

• OOD1-A: The regression models are trained on 1 cube color (red) and evaluated on the
remaining 7 colors.

• OOD1-B: The regression models are trained on 4 cube colors with high hue in the HSV
space, and evaluated on 4 cube colors with low hue (extrapolation).

• OOD1-C: The regression models are again trained and evaluated on 4 cube colors, but the
training and evaluation colors are alternating along the hue dimension (interpolation).

In the more challenging setting where even the encoder goes out-of-distribution (OOD2, with D2 ∩
D = ∅), we train the regression models on a subset of the training set D that includes all 8 cube
colors, and we consider the two following scenarios:

• OOD2-A: The regression models are evaluated on simulated data, on 4 cube colors that are
out of the encoder’s training distribution.

• OOD2-B: The regression models are evaluated on real-world images of the robotic setup,
without any adaptation or fine-tuning.
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Figure 4: Higher disentanglement corresponds to better generalization across all OOD1 scenarios, as
seen from the transfer scores (left). The transfer score is computed as the mean absolute prediction
error of ground truth factor values (lower is better). This correlation is particularly evident in the
GBT case, whereas MLPs appear to exhibit better OOD1 transfer with very high disentanglement
only. These results are mirrored in the Spearman rank correlations between transfer scores and
disentanglement metrics (right).

Is disentanglement correlated with OOD1 generalization? In Fig. 4 we consistently observe
a negative correlation between disentanglement and transfer error across all OOD1 settings. The
correlation is mild when using MLPs, strong when using GBTs. This difference is expected, as
GBTs have an axis-alignment bias whereas MLPs can – given enough data and capacity – disentan-
gle an entangled representation more easily. Our results therefore suggest that highly disentangled
representations are useful for generalizing out-of-distribution as long as the encoder remains
in-distribution. This is in line with the correlation found by Locatello et al. (2019b) between disen-
tanglement and the GBT10000 metric. There, however, GBTs are tested on the same distribution as
the training distribution, while here we test them under distributional shift. Given that the compu-
tation of disentanglement scores requires labels, this is of little benefit in the unsupervised setting.
However, it can be exploited in the weakly supervised setting, where disentanglement was shown
to correlate with ELBO and reconstruction loss (Section 3). Therefore, model selection for repre-
sentations that transfer well in these scenarios is feasible based on the ELBO or reconstruction loss,
when weak supervision is available. Note that, in absolute terms, the OOD generalization error with
encoder in-distribution (OOD1) is very low in the high-disentanglement case (the only exception
being the MLP in the OOD1-C case, with the 1-7 color split, which seems to overfit). This suggests
that disentangled representations can be useful in downstream tasks even when transferring out of
the training distribution.

Summary: Disentanglement seems to be positively correlated with OOD generalization of down-
stream tasks, provided that the encoder remains in-distribution (OOD1). Since in the weakly super-
vised case disentanglement correlates with the ELBO and the reconstruction loss, model selection
can be performed using these metrics as proxies for disentanglement. These metrics have the advan-
tage that they can be computed without labels, unlike disentanglement metrics.

Is disentanglement correlated with OOD2 generalization? As seen in Fig. 5, the negative cor-
relation between disentanglement and GBT transfer error is weaker when the encoder is out of
distribution (OOD2). Nonetheless, we observe a non-negligible correlation for GBTs in the OOD2-
A case, where we investigate out-of-distribution generalization along one FoV, with observations in
D2 still generated from the same simulator. In the OOD2-B setting, where the observations are taken
from cameras in the corresponding real-world setting, the correlation between disentanglement and
transfer performance appears to be minor at best. This scenario can be considered a variant of
zero-shot sim2real generalization.

Summary: Disentanglement has a minor effect on out-of-distribution generalization outside of the
training distribution of the encoder (OOD2).
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Figure 5: Disentanglement affects generalization across the OOD2 scenarios only minimally as seen
from transfer scores (left) and corresponding rank correlations with disentanglement metrics (right).

Figure 6: Noise improves generalization across the OOD2 scenarios and less so for the OOD1
scenarios as seen from the transfer scores. Top row: Spearman rank correlation coefficients between
transfer metrics and presence of noise in the input.

What else matters for OOD2 generalization? Results in Fig. 6 suggest that adding Gaussian
noise to the input during training as described in Section 3 leads to significantly better OOD2 gener-
alization, and has no effect on OOD1 generalization. Adding noise to the input of neural networks is
known to lead to better generalization (Sietsma & Dow, 1991; Bishop, 1995). This is in agreement
with our results, since OOD1 generalization does not require generalization of the encoder, while
OOD2 does. Interestingly, closer inspection reveals that the contribution of different factors of vari-
ation to the generalization error can vary widely. See Appendix B.5 for further details. In particular,
with noisy input, the position of the cube is predicted accurately even in real-world images (<5%
mean absolute error on each axis). This is promising for robotics applications, where the true state
of the joints is observable but inference of the cube position relies on object tracking methods. Fig. 7
shows an example of real-world inputs and reconstructions of their simulated equivalents.

Summary: Adding input noise during training appears to be significantly beneficial for OOD2
generalization, while having no effect when the encoder is kept in its training distribution (OOD1).
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6 CONCLUSION

Despite the growing importance of the field and the potential societal impact in the medical domain
(Chartsias et al., 2018) and fair decision making (Locatello et al., 2019a), state-of-the-art approaches
for learning disentangled representations have so far only been systematically evaluated on synthetic
toy datasets. Here we introduced a new high-resolution dataset with 1M simulated images and

Figure 7: Zero-shot trans-
fer to real-world observa-
tions of our models trained
in simulation. Left: input;
right: reconstruction.

over 1,800 annotated real-world images of the same setup. This dataset
exhibits a number of challenges and features which are not present in
previous datasets: it contains correlations between factors, occlusions,
a complex underlying structure, and it allows for evaluation of transfer
to unseen simulated and real-world settings. We proposed a new VAE
architecture to scale disentangled representation learning to this realis-
tic setting and conducted a large-scale empirical study of disentangled
representations on this dataset. We discovered that disentanglement
is a good predictor of OOD generalization of downstream tasks and
showed that, in the context of weak supervision, model selection for
good OOD performance can be based on the ELBO or the reconstruc-
tion loss, which are accessible without explicit labels. Our setting al-
lows for studying a wide variety of interesting downstream tasks in the
future, such as reinforcement learning or learning a dynamics model of
the environment. Finally, we believe that in the future it will be impor-
tant to take further steps in the direction of this paper by considering
settings with even more complex structures and stronger correlations
between factors.
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REFERENCES

Tameem Adel, Zoubin Ghahramani, and Adrian Weller. Discovering interpretable representations
for both deep generative and discriminative models. In International Conference on Machine
Learning, pp. 50–59, 2018.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.
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A IMPLEMENTATION DETAILS

Training. We train the β-VAEs by maximizing the following objective function:

LβV AE = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)‖p(z)) ≤ log p(x)

with β > 0 using the Adam optimizer (Kingma & Ba, 2014) with default parameters. We use a batch
size of 64 and train for 400k steps. The learning rate is initialized to 1e-4 and halved at 150k and
300k training steps. We clip the global gradient norm to 1.0 before each weight update. Following
Locatello et al. (2019b), we use a Gaussian encoder with an isotropic Gaussian prior for the latent
variable, and a Bernoulli decoder. Our implementation of weakly supervised learning is based on
Ada-GVAE (Locatello et al., 2020), but uses a symmetrized KL divergence:

D̃KL(p, q) =
1

2
DKL(p‖q) +

1

2
DKL(q‖p)

to infer which latent dimensions should be aggregated.

The noise added to the encoder’s input consists of two independent components, both iid Gaussian
with zero mean: one is independent for each subpixel (RGB) and has standard deviation 0.03, the
other is a 8× 8 pixel-wise (greyscale) noise with standard deviation 0.15, bilinearly upsampled by a
factor of 16. The latter has been designed (by visual inspection) to roughly mimic observation noise
in the real images due to complex lighting conditions.

Neural architecture. Architectural details are provided in Tables 2 and 3, and Fig. 8 provides a
high-level overview. In preliminary experiments, we observed that batch normalization, layer nor-
malization, and dropout did not significantly affect performance in terms of ELBO, model samples,
and disentanglement scores, both in the unsupervised and weakly supervised settings. On the other
hand, layer normalization before the posterior parameterization (last layer of the encoder) appeared
to be beneficial for stability in early training. While using an architecture based on residual blocks
leads to fast convergence, in practice we observed that it may be challenging to keep the gradients
in check at the beginning of training.3 In order to solve this issue, we resorted to a simple scalar
gating mechanism in the residual blocks (Bachlechner et al., 2020) such that each residual block is
initialized to the identity.

Datasets and OOD evaluation. Because we evaluate OOD generalization in terms of cube color
hue (except in the sim2real case), we first sampled 8 color hues at random from the 12 specified in
Table 1. The chosen hues are: [0◦, 120◦, 150◦, 180◦, 210◦, 270◦, 300◦, 330◦]. Then, the dataset D
used for training VAEs is generated by randomly sampling values for the factors of variation from
Table 1, with the color hue restricted to the above-mentioned values. This makes OOD2 evaluation
possible, specifically OOD2-A where the learned predictors are tested on representations extracted
from images with held-out values of the cube hue.

For evaluation of out-of-distribution generalization, we train the downstream predictors on a subset
D1 ⊂ D of the representation training set. The downstream training set D1 is sampled at random
fromD but only contains a (not necessarily proper) subset of the 8 cube colors. This subset contains
1 color in the OOD1-A case, 4 colors in OOD1-B and OOD1-C, all 8 colors in OOD2 (in this
case D1 is simply a random subset of D). Then we test the downstream predictors on a set D2

distributionally different from D1 in terms of cube color (all OOD1 scenarios as well as OOD2-A)
or sim2real (OOD2-B). In the OOD1 case, D2 is also a subset of D and is generated the same way.
In each OOD1 case, the test set D2 is paired with its corresponding D1 that was used to train the
downstream predictors. D2 contains all colors inD minus those inD1. In the OOD2-A case,D2 is a
separate dataset containing 5k simulated images like those in D, except that these only contain the 4
colors that were left out from the VAE training set D (hue in [30◦, 60◦, 90◦, 240◦]). In the OOD2-B
case, the set D2 is the dataset of real images. Following previous work (e.g. the GBT10000 metric
in Locatello et al. (2019b)), the training set D1 and test set D2 for downstream tasks contain 10k
and 5k images, respectively, except in the OOD2-B case, where the size is limited by the size of the
real dataset.

3This instability may also be exacerbated in probabilistic models by the sampling step in latent space, where
a large log variance causes the decoder input to take very large values. Intuitively, this might be a reason why
layer normalization before latent space appears to be beneficial for training stability.
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Encoder
Operation Output Shape
Input 128×128×K
Conv 5x5, stride 2, 64 ch. 64×64×64
LeakyReLU(0.02) —
2x ResidualBlock(64) —
Conv 1x1, 128 channels 64×64×128
AveragePool(2) 32×32×128
2x ResidualBlock(128) —
AveragePool(2) 16×16×128
2x ResidualBlock(128) —
Conv 1x1, 256 channels 16×16×256
AveragePool(2) 8×8×256
2x ResidualBlock(256) —
AveragePool(2) 4×4×256
2x ResidualBlock(256) —
Flatten 4096
LeakyReLU(0.02) —
FC(512) 512
LeakyReLU(0.02) —
LayerNorm —
2x FC(d) 2d

Decoder
Operation Output Shape
Input d
FC(512) 512
LeakyReLU(0.02) —
FC(4096) 4096
Reshape 4×4×256
2x ResidualBlock(256) —
BilinearInterpolation(2) 8×8×256
2x ResidualBlock(256) —
Conv 1x1, 128 channels 8×8×128
BilinearInterpolation(2) 16×16×128
2x ResidualBlock(128) —
BilinearInterpolation(2) 32×32×128
2x ResidualBlock(128) —
Conv 1x1, 64 channels 32×32×64
BilinearInterpolation(2) 64×64×64
2x ResidualBlock(64) —
BilinearInterpolation(2) 128×128×64
LeakyReLU(0.02) —
Conv 5x5, K channels 128×128×K

Table 2: Encoder (left) and decoder (right) architectures. The latent space dimensionality is denoted
by d, and K = 3 indicates the number of image channels. Last line in the encoder architecture:
the fully connected layer parameterizing the log variance of the approximate posterior distributions
of the latent variables has custom initialization. The weights are initialized with 1/10 standard
deviation than the default value, and the biases are initialized to −1 instead of 0. Empirically, this
together with (learnable) LayerNorm was beneficial for training stability at the beginning of training.

Residual Block
Input: shape H×W×C
LeakyReLU(0.02)
Conv 3x3, C channels
LeakyReLU(0.02)
Conv 3x3, C channels
Scalar gate
Sum with input

Table 3: Architecture of one residual block. The scalar gate is implemented by multiplying the
tensor by a learnable scalar parameter before adding it to the block input. Initializing the residual
block to the identity by setting this parameter to zero has been originally proposed by Bachlechner
et al. (2020). The tensor shape is constant throughout the residual block.

14



Published as a conference paper at ICLR 2021

64

conv

64

res

128

64
x6
4

1x1

128

pool

128

32
x3
2

res

128

pool

128

res

256
16
x1
6

1x1

256

pool

256
8x
8

res

256

pool

256 4x
4

res

4096

flatten

512

fc

512

norm

d

mean

d

std

d

input

512

fc

4096

fc

256

reshape

256 4x
4

res 256

up

256

res

128
8x
8

1x1 128

up

128
16
x1
6

res

128

up

128

res

64

32
x3
2

1x1
64

up

64

64
x6
4

res

64

up

3

12
8x
12
8

conv

Figure 8: Schemes of the encoder (top) and decoder (bottom) architectures. In both schemes, in-
formation flows left to right. Blue blocks represent convolutional layers: those labeled “conv” have
5x5 kernels and stride 2, while those labeled “1x1” have 1x1 kernels. Each orange block represents
a pair of residual blocks (implementation details of a residual block are provided in Table 3). Green
blocks in the encoder represent average pooling with stride 2, and those in the decoder denote bi-
linear upsampling by a factor of 2. Red blocks represent fully-connected layers. The block labeled
“norm” indicates layer normalization. Dashed lines denote tensor reshaping.
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B ADDITIONAL RESULTS

B.1 DATASET CORRELATIONS

Figure 9: Feasible states of the 2nd and 3rd DoF when the angle of the 1st DoF is 0. Angles are in
radians.

Figure 10: Density of feasible states of 2nd and 3rd DoF over the whole training dataset. Darker
shades of blue indicate regions of higher density. Angles are in radians.
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B.2 SAMPLES AND RECONSTRUCTIONS

Figure 11: Samples generated by a trained model. This model was selected based on the ELBO.

Figure 12: Input reconstructions by a trained model. This model was selected based on the ELBO.
Image inputs are on odd columns, reconstructions on even columns.
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B.3 LATENT TRAVERSALS

(a) Low disentanglement

(b) Medium disentanglement

(c) High disentanglement

Figure 13: Latent traversals for a model with low DCI score (0.15) in (a), medium DCI score (0.5)
in (b), and high DCI score (1.0) in (c).
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B.4 UNSUPERVISED METRICS AND DISENTANGLEMENT

Figure 14: Scatter plots of unsupervised metrics (left: ELBO; right: reconstruction loss) vs disentan-
glement (top: MIG; bottom: DCI) for 1,080 trained models, color-coded according to supervision.
Each point represents a trained model.
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B.5 OUT-OF-DISTRIBUTION TRANSFER

Figure 15: Transfer metric in OOD2-A (top) and OOD2-B (bottom) settings, decomposed according
to the factor of variation and presence of input noise. When noise is added to the input during
training, the inferred cube position error is relatively low (the scores are the mean absolute error,
and they are normalized to [0, 1]). This is particularly useful in the OOD2-B setting (real world)
where the joint state is anyway considered known, while object position has to be inferred with
tracking methods.
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B.6 OUT-OF-DISTRIBUTION RECONSTRUCTIONS

(a) Low disentanglement

(b) Medium disentanglement

(c) High disentanglement

Figure 16: Reconstructions of real-world images (OOD2-B) for a model with low DCI score (0.15)
in (a), medium DCI score (0.5) in (b), and high DCI score (1.0) in (c).
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(a) Low disentanglement

(b) Medium disentanglement

(c) High disentanglement

Figure 17: Reconstructions of simulated images with encoder out-of-distribution colors (OOD2-A)
for a model with low DCI score (0.15) in (a), medium DCI score (0.5) in (b), and high DCI score
(1.0) in (c).
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