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Abstract

Video-language pre-training is crucial for learning pow-
erful multi-modal representation. However, it typically re-
quires a massive amount of computation. In this paper,
we develop SMAUG, an efficient pre-training framework
for video-language models. The foundation component
in SMAUG is masked autoencoders. Different from prior
works which only mask textual inputs, our masking strat-
egy considers both visual and textual modalities, provid-
ing a better cross-modal alignment and saving more pre-
training costs. On top of that, we introduce a space-time
token sparsification module, which leverages context infor-
mation to further select only “important” spatial regions
and temporal frames for pre-training. Coupling all these
designs allows our method to enjoy both competitive per-
formances on text-to-video retrieval and video question an-
swering tasks, and much less pre-training costs by 1.9× or
more. For example, our SMAUG only needs ∼50 NVIDIA
A6000 GPU hours for pre-training to attain competitive
performances on these two video-language tasks across six
popular benchmarks.

1. Introduction
Recently, video-language pre-training [27, 29, 2, 67, 12,

38, 54] stands as the common practice to learn cross-modal
representations on large-scale video-text datasets [47, 6, 2].
Such pre-trained models show strong transfer performances
on a range of vision and language tasks, including visual
question answering [62, 34], text-to-video retrieval [62, 1],
visual reasoning [48] and video understanding [33, 4, 58].
Nonetheless, the corresponding training cost of these ad-
vanced video-language models is enormous. For exam-
ple, the training of CLIP4Clip [38] needs ∼2 weeks with 8
GPUs, which therefore largely limits their explorations in a
wider aspect. This invites us to ponder a thought-provoking
but rarely explored question in this paper: How can we
still pre-train powerful video-language models while signif-
icantly reducing their pre-training cost?

Interestingly, we note that the recent work Masked Au-

Figure 1: An overview of SMAUG (Sparse Masked
Autoencoder for video-langUaGe pre-training). (a) During
pre-training, we randomly mask out a large subset of indi-
vidual frames’ patches, and then utilize the visible patches
and language sentences for video-text pre-training, which
includes masked visual/language modeling (MVM/MLM)
and etc. (b) The pre-trained models can then be fine-tuned
on several down-stream video-language tasks, e.g., text-to-
video retrieval and video question answering (video QA).

toencoders (MAE) [17], which establishes an efficient self-
supervised paradigm for training models at scale, poten-
tially offering a solution to the aforementioned question.
In MAE, a large amount of image patches (e.g., 75%) are
masked. The heavy encoder only executes on a small por-
tion of the visible patches, and the lightweight decoder
reconstructs the other large portion of masked patches.
This mask reconstruction process is a computationally effi-
cient instantiation of masked visual modeling (i.e., MVM),
which has already been shown effective for helping video-
language pre-training [13, 24]. Therefore, we conjecture
that resorting to such MAE fashion can substantially miti-
gate the computational burden and still achieve satisfactory
performances for video-language pre-training models.

Another interesting observation is that, even by masking
out a significant portion of image patches as in MAE, the
information could still be redundant [58, 11]. As argued
in [44, 31], not all patches are equally important: an im-
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age could contain a significant amount of less informative
visual patches (e.g., background patches), which scarcely
or even negatively contribute to vision-language represen-
tation learning. What is worse, this issue could be sev-
erer in the video-language setting, as additionally, not all
frames are equally important [26, 27]. For example, a video
clip may contain a non-negligible portion of frames with
just trivial noises (e.g., camera shake). Further eliminating
these redundancies is expected to provide an extra speedup
to video-language pre-training.

Based on the observations above, we present SMAUG,
an efficient pre-training framework for video-language
models. Our work is built upon MAE. We mask out a signif-
icant amount of space-time patches and let the autoencoder
learn to reconstruct them. Next, we introduce a space-time
token sparsification module to remove spatial and temporal
redundancies: 1) we leverage the attention weights in the
visual encoder to predict attentive or inattentive tokens to
reduce spatial patches among individual frames. Attentive
tokens are preserved while inattentive tokens are fused; 2)
we propose a learnable Transformer-based network to pick
up important video frames among the given video clip.

We evaluate SMAUG on two video-language tasks, in-
cluding text-to-video retrieval and video question answer-
ing across six datasets. For text-to-video retrieval, the ex-
periments are performed on MSRVTT [62], DiDeMo [1]
and ActivityNet Captions [22]. For video question
answering, MSRVTT-MC [64], MSRVTT-QA [60] and
ActivityNet-QA [65] are used. SMAUG can achieve state-
of-the-art or comparable performances over all six datasets.
Meanwhile, the proposed method can achieve ∼1.9× video-
language pre-training speedup. For example, SMAUG can
finish video-language pre-training only with ∼50 NVIDIA
A6000 GPU hours.

2. Related Work
Video-and-language pre-training. The standard pipeline
of video-language pre-training (i.e., first pre-train and then
fine-tune) [54, 69, 12, 38, 37, 26] aims at learning a gen-
eralizable multi-modal feature representation for a range of
downstream tasks, such as text-to-video retrieval [62, 1, 22,
10], video question answering [64, 60, 65, 25, 30], video
captioning [57, 62, 68, 55], etc.

UniVL [37] proposes a unified video-language pre-
training model for multi-modal generation and understand-
ing. Clip4clip [38] transfers the image-text pre-trained
model (i.e., CLIP [43]) for video-retrieval task in an end-
to-end manner. Singularity [26] reveals that the video-
language models pre-trained with a single video frame can
still attain significant performances for video-and-language
downstream tasks. Our work is directly motivated by Sin-
gularity [26], which also pre-trains models by leveraging
single-frame and multiple-frame setups.

Masked visual modeling. The main goal of masked vi-
sual modeling (MVM) is to acquire effective visual rep-
resentations by the first masking and then reconstructing
process. The pioneering work, denoising autoencoders
(DAE) [52, 53], learns representations by reconstructing the
corrupted signals. Recently, iGPT [7] regards the pixels as
tokens and predicts unknown pixels. MAE [17] masks out
a subset of patches and learns to predict their original pix-
els. Other considerations of prediction targets include fea-
tures [59] and discrete visual tokens [3].

In addition to image recognition, a set of works [11, 50,
56] further extend MAE into video recognition. In this pa-
per, we focus on exploring the potential of MAE in enabling
efficient vision-language pre-training.

Efficient vision transformer. Recent works have started
investigating eliminating redundant computations in (cum-
bersome) Vision Transformer (ViT). DynamicViT [44] de-
signs a lightweight prediction module first to estimate the
importance scores of tokens, and then utilize the scores to
prune redundant tokens hierarchically. EVIT [31] proposes
to reorganize tokens by the attention from the class token,
i.e., they preserve informative tokens while fusing uninfor-
mative ones. Motivated by EVIT [31], we also leverage at-
tention from the class token to reduce spatial redundancies.

Temporal redundancy. Giving not all video frames
equally contribute to video recognition, many works have
been proposed to reduce the temporal redundancies among
videos [58, 15, 16, 20, 21, 39, 49]. AR-Net [39] selects the
optimal frame resolution conditioned on inputs for efficient
video recognition by a decision policy. FrameExit [16] can
automatically choose the number of frames to process, ac-
cording to the complexities of the given videos. This pa-
per proposes a Transformer-based network conditioned on
the given video and language features to select informative
video frames for reducing temporal redundancies.

3. Method

We first introduce the pre-training model architecture in
Section 3.1. Second, we elaborate on the modules to reduce
spatial and temporal redundancies in Section 3.2. Third, we
describe the pre-training objectives in Section 3.3. Fourth,
we list the pre-training datasets in Section 3.4 and imple-
mentation details in Section 3.5.

Overview. Given a video clip V = [v1, v2, ..., vN ] with N
video frames and a text sentence L, the video-language pre-
training model needs to extract the visual and textual em-
beddings separately and feed the embeddings into the mul-
timodal encoder to learn cross-modal representations. A de-
coder can optionally process the learned cross-modal repre-
sentations to generate final outputs.
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Figure 2: An illustration of SMAUG architecture. We use three video frames as an example. (a) The pre-training frame-
work of our proposed SMAUG, we adopt MAE to extract visual features from visible patches and reconstruct the pixel values
of masked patches. Note that we perform visual token sparsification (i.e., (b)) in the image encoder, and the reconstruction
loss for masked patches, i.e., masked visual modeling (MVM), is performed in masked autoencoders. (b) The visual token
sparsification module reduces spatial redundancies for visible patches of individual video frames, we only utilize single frame
input for an explanation. (c) Text-guided video frame selector network takes visual and textual features as inputs and outputs
the selected frames by the scores. It can further perform sparsification for video frames along the temporal dimension. The
example of selecting two frames among the given video is used for explanation.

3.1. Model Architecture

As illustrated in Figure 2, the proposed SMAUG con-
sists of two major components: a) a video-language pre-
training model and b) space-time redundancy sparsification
modules. The video-language pre-training model mainly
contains a) a masked autoencoder, b) a text encoder, and
c) a multi-modal video-text encoder for cross-modal repre-
sentation fusion. The space-time redundancy sparsification
modules aim to further reduce spatial and temporal redun-
dancies among the visible patches.

3.1.1 Masked Autoencoder

We introduce MAE [17] into video-language pre-training.
MAE contains an encoder Qv and a decoder Dv . We ex-
plain the involved components as follows:
Frame sampling. Following the setup of Singularity [26],
we adopt both single-frame and multi-frame options for pre-
training. Specifically, we randomly sample one video frame
or multiple video frames from the given video clip V to pre-
train the video-language models.
Patch embedding. Following ViT [8], we first patchify
the sampled frames into non-overlapping patches [50, 11],
which are then flattened and projected by a linear layer.
The position embeddings [51] are added into the projected
patches. In particular, the encoder (i.e., ViT) of MAE [17]
operates independently on each frame.

Masking. We randomly mask out a subset of embedded
patches for each frame and use the remaining visible ones.
Note that we perform tube masking [59] for multi-frame
input, i.e., the spatial locations of the masked patches are
the same for all sampled frames. Although videos contain
abundant space-time redundancies, masking out too many
patches could lead to inaccurate alignment between visual
and textual representations. In our experiments, we at most
set the mask ratio to be 65%.
Feature encoding. The encoder Qv operates only on the
visible embedded patches and omits the masked ones fol-
lowing MAE [17]. The output of the encoder Fv is a se-
quence of visual embeddings. When the single-frame in-
put is sampled for pre-training, the output Fv can be repre-
sented as:

Fv = {fcls, f1, ..., fL}, (1)

in which fi ∈ Rd, L is the sequence length of visible
patches, and d denotes the feature dimension. fcls repre-
sents the visual [CLS] token. When sampling multiple
frames for pre-training, we additionally adopt a temporal
encoder Qt to perform self-attention on frame-wise features
across the temporal dimension. The output Fv now is:

Fk
v = {fk

cls, f
k
1 , ..., f

k
L}, k = 1, ...,K, (2)

Fv = Qt(Concat(F1
v , ...,FK

v )), (3)
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where K is the number of sampled frames. Fv is adopted
for cross-modal alignment.

Feature decoding. After that, we feed the embeddings of
visible patches and the masked patches together into the de-
coder Dv for predicting the pixels of these masked ones.
This process can be regarded as masked visual modeling
(MVM), which has been adopted as one of the pre-training
objectives. There exists other reconstruction targets [13] ex-
cept for pixels, e.g., features, depth maps, etc. We leave
them in the future.

3.1.2 Text Encoder and Multi-modal Fusion

We then describe the details of the other encoders for textual
embedding extraction and cross-modal fusion.

Text encoder. Given the text sentence L, the text encoder
Ql firstly segments it into a sequence of subwords [46], and
inserts the special token (e.g., [CLS] token) at the begin-
ning of the subword sequence. This token sequence is then
mapped into the text embeddings Fl, which can be repre-
sented as:

Fl = {hcls, h1, ..., hP }, (4)

in which hi ∈ Rd, hcls is the text embedding of text [CLS]
token and P means the number of text tokens.

Multi-modal video-text encoder. After obtaining the vi-
sual embedding Fv and text embeddings Fl, we feed them
into the multi-modal encoder Qm to perform multi-modal
fusion by cross-attention layers [27, 26, 19]. The learned
cross-modal representations are used for video-text match-
ing and masked language modeling objectives (i.e., VTM
and MLM) to pre-train the models.

3.2. Space-Time Token Sparsification

Although MAE has already randomly removed a large
subset of frame patches, there still exist spatial and tem-
poral redundancies among the remaining visible patches
[44, 31, 58, 16], because MAE masks patches randomly
without considering how informative they are. In order to
make an informative decision, we introduce two context-
dependent selection modules, for keeping informative to-
kens and removing uninformative ones. These modules can
further save a large amount of pre-training costs (Table 10).

Visual token sparsification. A considerable amount of un-
informative visual tokens (e.g., background patches) will
have little impact on the final performance when they are re-
moved [31]. Since the MAE encoder Qv inherits the struc-
ture of ViT, we can insert a token sparsification module,
inspired by EVIT [31], in the 4th, 7th and 10th layers of the
ViT-B encoder Qv . The mechanism of token sparsification
within a transformer layer is shown in Figure 2(b).

Specifically, the token sparsification module computes
the average attention values among all heads from [CLS]

with respect to the other tokens. The tokens whose cor-
responding attention values are top-k largest are regarded
as attentive tokens, otherwise inattentive tokens. We retain
the attentive tokens while fusing the inattentive tokens into
a new token by taking the attention values as coefficients.
The keeping rate of the tokens is defined as γ = k/p, where
k and p mean the number of attentive tokens and total input
tokens, and the attentive tokens have top γ ∗ 100% average
attention values. We explain the details in the Appendix.

Text-guided video frame selection. Similar to the image-
level redundancy, videos, as collections of frames, are also
redundant on the temporal axis. A fraction of frames could
contain more informative contexts than others, especially
when corresponding text sentences are given. We hereby
aim to select the most context-relevant frames from a given
clip to perform video-language tasks.

To this end, we propose a Transformer-based frame se-
lector S , which is illustrated in Figure 2(c). Specifically,
it’s exemplified by the case of selecting the features of top-
2 essential frames. It first takes the visual and textual em-
beddings from Equation (3) and (4) respectively, and then
outputs the features of essential frames. The frame selec-
tion process is denoted as:

I = S(Fv;Fl)

= {Fµ1
v , ...,Fµκ

v }, i = 1, ..., κ.
(5)

In Equation (5), I ∈ Rκ×L′×d (1 <= κ < K) denotes
the sparse collection of video frame features selected from
the original visual embeddings Fv , and L′ is the sequence
length of embedded patch embeddings. Since the frame se-
lection process is discrete, we adopt the Gumbel-Softmax
trick [18] to optimize the parameters of selector S in both
the full pre-training stage and the task-specific fine-tuning
stage. At inference time, the operation is discrete by select-
ing the top-k (k = κ) features as the final output. In this
way, we obtain a sparse and efficient model.

3.3. Pre-training Objectives

Our models are pre-trained by using four objectives:
(1) Video-Text Matching (Lvtm): it predicts the matching
scores of the given video-text pairs through the multi-modal
video-text encoder’s outputs. (2) Masked Language Mod-
eling (Lmlm): it fuses both visual and textual features by
the multi-modal video-text encoder to predict the masked
textual tokens. (3) Video-Text Contrastive (Lvtc): it uses
the pooled visual and textual representations to align paral-
lel video-text pairs, so that they can have higher similarity
scores. (4) Masked Visual Modeling (Lmvm): it learns to
predict the original pixels of masked visual patches.

These objectives have been widely used for pre-training
video-language models [26, 12, 54, 13, 28, 9], we describe
the details of them in the Appendix. The full pre-training
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objective L is the simple addition of these four objectives:

L = Lvtm + Lmlm + Lvtc + Lmvm. (6)

3.4. Pre-training Datasets

We adopt video-text and image-text data for pre-training.
WebVid [2] is used as video-text data, which scrapes 2.5M
video-text pairs from the web. The image-text data in-
cludes the combination of CC3M [47], CC12M [6], SBU
Captions [41], Visual Genome (VG) [23] and COCO [32]
datasets. Two subsets are employed for pre-training: 1) 5M
corpus consisting of CC3M and WebVid. 2) 17M corpus
that contains all the mentioned image-text and video-text
datasets. Note that for the single frame setting, we sample
only one frame from the video-text dataset, i.e., WebVid.

3.5. Implementation Details

Network structures. For the masked autoencoder, we
adopt ViT-B [8] as the encoder Qv , whose weights are ini-
tialized from CLIP’s visual encoder (i.e., CLIP-B/16) [43].
The decoder Dv is the stack of one linear layer, three Trans-
former blocks, and one linear layer. We adopt BERTBASE

model as our text encoder Ql and multi-modal video-text
encoder Qm. In particular, the first 9 layers and the last
three layers of BERTBASE are initialized as Ql and Qm,
respectively. The cross-attention layers [27, 26] of the mul-
timodal encoder are learned from scratch. The frame se-
lector S consists of two linear layers and two Transformer
blocks [51]. The Transformer blocks have two heads and a
hidden size of 2048.
Model pre-training. We use 4×NVIDIA A6000 GPUs to
pre-train our models with AdamW optimizer [36] and an
initial learning rate of 1e−4. We randomly sample one
frame for the single-frame setting and four frames for the
multiple-frame setting. The total pre-training epochs are
10, and the learning rate is warmed up in the first epoch, fol-
lowed by cosine decay [35] to 1e−6 finally. The input size
of the video frames is 224×224. The data augmentation
includes random resized crop and flip operations. When us-
ing the single frame for pre-training, our model only takes
about 13 hours to pre-train on the 5M corpus and two days
on the 17M corpus, attaining better performance than AL-
PRO [28], which takes three days to pre-train the same
epochs (i.e., 10 epochs) on the 5M corpus with 16×A100
GPUs. It is worth mentioning that when using multiple
video frames, i.e., four frames, for pre-training, the model
weights are initialized from single-frame pre-trained mod-
els, and the total training epoch for such setup is 5.

4. Experiment
4.1. Down-Stream Tasks and Datasets

Text-to-video retrieval. We first evaluate our approach
on text-to-video retrieval task across three video-language

datasets. The recall performance at K (R@K) is reported.

• MSRVTT [62] consists of 10K videos from YouTube,
and each video has 20 textual captions. We follow the
standard setting as [26, 28, 40, 64], i.e., we fine-tune
the pre-trained models with 7K videos and report the
performances on the 1K test split [64].

• DiDeMo [1] includes 10K videos, which are collected
from Flickr; there are 41K text descriptions total, and
the train/val/test splits are adopted.

• ActivityNet Captions [22] consists of 20K YouTube
videos which are paired with 100K captions. We eval-
uate the results on val1 split.

For MSRVTT, we report the results of the standard text-
to-video retrieval protocol, as for the other two datasets, we
perform paragraph-to-video retrieval evaluation [26, 28],
i.e., we concatenate all the captions in the same video to
one single paragraph for retrieval.
Video question answering. We also select video question
answering for evaluation, the accuracies are reported, and
three benchmarks are chosen:

• MSRVTT-MC [64] is a dataset for multiple-choice
question answering, which consists of 3K videos and
needs to select the best matching caption choice from
5 candidates for each video.

• MSRVTT-QA [60] is built on MSRVTT, consisting of
10K videos paired with 244K open-ended questions.

• ActivityNet-QA [65] collects 5.8K videos from Activ-
ityNet [5] with 58K open-ended questions.

Fine-tuning setups. When fine-tuning the models on text-
to-video retrieval task, we use the same model architecture
except that we remove MLM and MVM objectives. The
models are trained with an initial learning rate of 1e−5,
which is decreased to 1e−6 by cosine decay; the train-
ing epochs are 5, 10 and 10 for MSRVTT, DiDeMo, and
ActivityNet-Captions datasets. During the inference stage,
we sample 12 frames from each video for MSRVTT and
DiDeMo datasets and 32 frames per video for the Activi-
tyNet Captions dataset.

To evaluate the performances on open-ended video
question answering datasets (e.g., MSRVTT-QA and
ActivityNet-QA), an extra decoder is added after the multi-
encoder, which generates the answers by taking the outputs
from the multi-modal encoder. The models are fine-tuned
with 10 epochs and tested with 12 frames. As for MSRVTT-
MC, we follow the protocol of [27]. Specifically, the models
trained on MSRVTT are leveraged to select the best match-
ing choice with the highest retrieval scores as final predic-
tions. Note that for all downstream tasks, we resize the
video frames as 224×224, and the data augmentation is the
same as the pre-training process.
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Method PT Datasets #Frame MSRVTT DiDeMo ActivityNet Cap
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Pre-trained with >100M video-text pairs
HT100M [40] HT100M 16 14.9 40.2 52.8 - - - - - -

HERO [29] HT100M 310 20.5 47.6 60.9 - - - - - -
MMT [14] HT100M 1K/-/3K 26.6 57.1 69.6 - - - 28.7 61.4 94.5

AVLNet [45] HT100M - 27.1 55.6 66.6 - - - - - -
SupportSet [42] HT100M - 30.1 58.5 69.3 - - - - - -
VideoCLIP [61] HT100M 960 30.9 55.4 66.8 - - - - - -
VIOLET [12] YT180M+5M 4 34.5 63.0 73.4 32.6 62.8 74.7 - - -

All-in-one [54] HT100M+WebVid 9 34.4 65.4 75.8 32.7 61.4 73.5 22.4 53.7 67.7

Pre-trained with <100M video-text pairs
ClipBERT [27] COCO + VG 16/16/8 22.0 46.8 59.9 20.4 48.0 60.8 21.3 49.0 63.5

Frozen [2] 5M 4 31.0 59.5 70.5 31.0 59.8 72.4 - - -
ALPRO [28] 5M 8 33.9 60.7 73.2 35.9 67.5 78.8 - - -

Singularity [26] 5M 1 36.8 65.9 75.5 47.4 75.2 84.0 43.0 70.6 81.3
Singularity [26] 17M 1 41.5 68.7 77.0 53.9 79.4 86.9 47.1 75.5 85.5

Ours 5M 1 40.6 67.6 77.5 49.2 76.7 85.6 44.8 72.2 82.7
Ours 17M 1 44.0 70.4 78.8 55.6 80.8 88.4 49.2 76.9 86.8

Table 1: Fine-tuning results compared with existing video-language pre-training methods on text-to-retrieval tasks. The
pre-training (PT) text-video datasets are HowTo100M (HT100M) [40], YT-Temporal-180M (YT180M)[66], MS-COCO
(COCO) [32], Visual Genome (VG) [23], 5M corpus and 17M corpus. Note that 5M and 17M settings are illustrated in
Section 3.4. For MSRVTT dataset, results using 9K training videos are greyed out. The methods using other modalities
(e.g., speech and audio) are highlighted by pink . “#Frame” denotes the number of final video frames for video-language
model pre-training. For methods that adopt different input frames for different datasets, we use “/” to separate them.

Method MSRVTT DiDeMo
R@1 R@5 R@10 R@1 R@5 R@10

MMT [14] - 6.9 - - - -
AVLNet [45] 19.6 40.8 50.7 - - -

VideoCLIP [61] 10.4 22.2 30.0 16.6 46.9 -
Frozen [2] 18.7 39.5 51.6 21.1 46.0 56.2

ALPRO [28] 24.1 44.7 55.4 23.8 47.3 57.9
VIOLET [12] 25.9 49.5 59.7 23.5 49.8 59.8

Singularity [26] 28.4 50.2 59.5 36.9 61.1 69.3

Ours 28.9 52.1 62.9 34.3 60.3 69.4
Table 2: Zero-shot results compared with existing video-
language pre-training methods on text-to-retrieval tasks.
The pre-training text-video datasets and the number of in-
put video frames are the same as Table 1. For a clear com-
parison, we display the results of Singurity [26] and our
SMAUG, whose number of the final video frames is 1, and
the pre-training corpus is 5M.

4.2. Comparison with State-of-the-arts

Here, we show the performances of the proposed ap-
proach, the default masking ratios of MAE and masked lan-
guage modeling (MLM) are 50% and 15%, and the keeping
rate γ is 0.8. The number of input frames keeps unchanged
during the pre-training and fine-tuning stages.

Text-to-video retrieval. In Table 1, we show the compared
results on text-to-video retrieval task. When the final video
frame number is 1 and using a smaller scale of pre-trained
data (e.g., 5M and 17M), our method can still significantly
surpass existing methods, even compared with other ap-
proaches (e.g., HERO [29], MMT [14] and AVLNet [45])
that adopt other modalities, such as audio, speech, etc.

As for MSRVTT dataset, when the pre-training corpus
is 5M and the final input frame number is 1, SMAUG
can achieve 3.8% relative improvement on R@1 compared
with Singularity [26], when pre-trained on the 17M corpus,
SMAUG can also lead to 2.5% performance gain on R@1
compared with Singularity. These results can demonstrate
the effectiveness of our approach. Note that our pre-training
is also much faster compared with Singularity [26]. The
analysis of pre-training costs is shown in Section 4.4.

In Table 2, we show the zero-shot results to compare
our approach with existing methods. Our SMAUG can
achieve comparable performances compared with Singular-
ity [26]. The results can demonstrate that even with 50%
mask ratios for masked autoencoder, the pre-trained model
can still learn meaningful cross-modal representations for
video-language tasks.

Video question answering. We display the results of video
question answering in Table 3. When using 5M and 17M
settings for pre-training, our proposed approach can still
perform better than Singularity [26].

We can also observe that, when pre-training the models
on the 17M corpus, our method can still surpass the perfor-
mances of VIOLET [12] on MSRVTT-QA and MSRVTT-
MC benchmarks, note that we use less video-text data for
pre-training (17M v.s. YT180M+5M).

4.3. Ablation Study

In this section, we ablate the influences of the proposed
components. The pre-training corpus is 5M. We report the
fine-tuning results on the text-video-retrieval task, and the
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Method PT Datasets #Frame MSRVTT-QA ActivityNet-QA MSRVTT-MC

Pre-trained with >100M video-text pairs
JustAsk [63] HT69M 640 41.5 38.9 -

MERLOT [66] YT180M 5 43.1 41.4 90.9
VideoCLIP [61] HT100M 960 - - 92.1
VIOLET [12] YT180M+5M 4 43.9 - 91.9

Pre-trained with <100M video-text pairs
ClipBERT [27] COCO + VG 16 37.4 - 88.2
ALPRO [28] 5M 16 42.1 - -

Singularity [26] 5M 1 42.7 41.8 92.0
Singularity [26] 17M 1 43.5 43.1 92.1

Ours 5M 1 43.4 42.7 92.7
Ours 17M 1 44.5 44.2 92.9

Table 3: Results compared with existing video-language pre-training methods on video question answering task. The pre-
training text-video datasets are HowTo100M (HT100M) [40], YT-Temporal-180M (YT180M)[66], MS-COCO (COCO) [32],
Visual Genome (VG) [23], HowToVQA69M (HT69M) [63], 5M corpus and 17M corpus. Note that 5M and 17M settings are
illustrated in Section 3.4. “#Frame” denotes the number of final video frames for video-language model pre-training.

Masking Ratio PT Time MSRVTT
R@1 R@5 R@10

0% 74.9 hours 40.7 66.6 76.7
10% 70.8 hours 40.5 66.3 76.5
25% 64.6 hours 40.1 65.7 76.0
50% 50.4 hours 39.3 65.4 75.6
65% 44.3 hours 38.1 64.2 75.0

Table 4: Ablation study on using different masking ratios.

Keeping Rate PT Time MSRVTT
R@1 R@5 R@10

0.6 44.8 hours 37.5 64.2 74.6
0.7 47.6 hours 38.2 64.7 75.3
0.8 50.4 hours 39.3 65.4 75.6
0.9 53.8 hours 39.8 65.9 76.0

Table 5: Ablation study on using different keeping rates.

MSRVTT dataset is chosen. Except for the ablation studies
of Table 6, 8 and 10, the number of the final input frames
is 1 for the experiments. “PT Time” denotes the total time
for model pre-training, we report the GPU hours of using
a single A6000 GPU. The results highlighted in blue are
used to specify the default settings.

Impact of masking ratios. To figure out the influence of
masking ratios of MAE for video-language pre-training, we
show the results in Table 4, when the masking ratio is 50%,
the pre-training time can be efficiently reduced from 70.8
hours, whose masking ratio is 10%, to 50.4 hours, while
losing only 1.2% on R@1, which can demonstrate the po-
tential of extending MAE for video-language pre-training.

Effect of keeping rates. The results of adopting differ-
ent keeping rates for visual token sparsification (VTS) are
shown in Table 5. When the keeping rate is 0.8 (i.e., 80%),
the pre-training time can be reduced from 53.8 hours, whose
keeping rate is 0.9, to 50.4 hours, while only losing 0.5%
on R@1. The saving of pre-training time is promising, con-
sidering the masked autoencoder already removes plenty of
visual patches and the number of the input frames is only 1.

Frame Selection PT Time MSRVTT
R@1 R@5 R@10

Single-frame selection
1 50.4 hours 39.3 65.4 75.6

4→1 75.3 hours 40.6 67.6 77.5

Multiple-frame selection
4→2 77.8 hours 41.2 67.8 77.9
4→3 80.2 hours 41.5 68.0 78.0

4 82.5 hours 41.7 68.3 78.3
8→4 100.3 hours 42.8 69.2 79.5

Table 6: Ablation study on selecting different frames by the
proposed selector S.

Method MSRVTT
R@1 R@5 R@10

Singularity∗ [26] 36.8 65.9 75.5
Ours∗ 38.9 67.0 76.8
Ours+ 40.6 67.6 77.5

Table 7: Ablation study on different visual encoders. ∗ and
+ mean adopting BEiT-Base [3] and CLIP-B/16 [43].

Effectiveness of frame selection. We display the results of
frame selection (FS) in Table 6. When selecting one frame
among 4 video frames (i.e., 4→1), the performance can be
improved from 39.3% to 40.6% on R@1. When multiple
frames are selected, for example, selecting 2 frames among
4 video frames (i.e., 4→2), the loss on R@1 is only 0.5%
compared with pre-training using 4 video frames, while re-
ducing the pre-training time from 82.5 hours to 77.8 hours.
Note that pre-training with the four-frame input can lead to
a 2.4% improvement in R@1 but increase 32.1 pre-training
hours compared to the single-frame input setting.

Impact of different visual encoders. In Table 7, we re-
port results of using different visual encoders, Singularity
[26] which adopts BEiT-Base [3] by default is compared,
SMAUG can achieve better performances than Singularity.

Impact of different strategies for the proposed modules.
In Table 8, we report the results of using different strate-
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Strategy MAE VTS FS MSRVTT
R@1 R@5 R@10

Random ✓ 39.8 66.5 76.8
Tube (Ours) ✓ 41.2 67.8 77.9

Random ✓ 39.5 66.4 76.6
Ours ✓ 41.2 67.8 77.9

Random ✓ 38.9 65.3 75.4
CLIP-based ✓ 39.7 66.3 76.5

Ours ✓ 41.2 67.8 77.9
Table 8: Ablation study on using different strategies.

VTS Inference Time (Per Example) MSRVTT
R@1 R@5 R@10

✗ 0.21 seconds 39.3 65.4 75.6
✓ 0.16 seconds 39.1 65.3 75.4

Table 9: Ablation study on adopting VTS for inference.

Figure 3: An example of frame selection. The frame de-
noted by the green box means the final selected frame.

gies for our proposed modules, where we can see that ours
consistently outperforms Random or CLIP-based strategy.
Impact of VTS on inference efficiency. Since VTS can
benefit models’ inference, we fine-tune the models and re-
port their inference time in Table 9. By using VTS, the in-
ference time per example can be reduced from 0.21 seconds
to 0.16 seconds with only 0.2% performance drop in R@1.
Impact of different components. In Table 10, we show
the results of adopting different components to figure out
their influences. The final pre-training time can be con-
sistently reduced from 144.5 hours to 77.8 hours (1.9×
speedup), while only losing 1.4% on R@1, which can show
the efficiencies of the proposed components.

4.4. Analysis of SMAUG

Pre-training Datasets and Costs. The pre-training effi-
ciency of our proposed method can be observed in Table 11.
We report the pre-training time of Singularity [26] by using
their official codes. When adopting 5M and 17M corpus
for pre-training, our approach can consistently use less pre-
training time while achieving better performances. For ex-
ample, when pre-trained on the 17M corpus, our approach
can obtain 2.5% performance gain on R@1 while saving
87.1 pre-training hours compared with Singularity, demon-
strating the strong scalability of our method.
Visualization. Finally, we showcase the example of frame
selection by selector S in Figure 3. It can be observed
that there’re abundant video frames in a video clip which
not correspond to the given caption, removing these chaotic
frames are reasonable. Our approach can accurately select
the most essential frame according to the given caption.

MAE VTS FS PT Time MSRVTT
R@1 R@5 R@10

✗ ✗ ✗ 144.5 hours 42.6 68.8 79.2
✓ ✗ ✗ 93.5 hours 42.0 68.4 78.7
✓ ✓ ✗ 82.5 hours 41.6 67.9 78.3
✓ ✓ ✓ 77.8 hours 41.2 67.8 77.9

Table 10: Ablation study on using different components of
SMAUG on the multiple-frame setting (i.e., “4→2”).

Method PT Time MSRVTT
R@1 R@5 R@10

Singularity∗ [26] 83.4 hours 36.8 65.9 75.5
Ours∗ 75.3 hours 40.6 67.6 77.5

Singularity+ [26] 285.3 hours 41.5 68.7 77.0
Ours+ 198.2 hours 44.0 70.4 78.8

Table 11: Pre-training with different scales of the video-
text corpus. “*” and “+” mean the pre-trained models with
5M and 17M corpus respectively. We report the results pre-
trained with the single-frame setting.

Figure 4: The examples of pixel prediction for masked
patches. The top row represents the original frames, the
middle row means the masked frames, and the bottom row
denotes the pixel reconstruction for masked patches.

In Figure 4, we display the qualitative examples of pixel
reconstruction for masked patches. Even with a masking ra-
tio of 50%, the model can still produce reliable predictions
for masked patches, which can further demonstrate mask
autoencoders can help us achieve satisfactory performances
and efficiently mitigate the computational burden of video-
language model pre-training.

5. Conclusion

In this paper, we propose an efficient video-language
pre-training method, SMAUG, which is built on masked
autoencoders. We additionally develop a space-time spar-
sification module to remove the spatial and temporal redun-
dancies among the remaining visible patches. Our SMAUG
can achieve state-of-the-art or comparable performances on
two video-language tasks across six popular benchmarks,
while obtaining 1.9× pre-training time speedup.

Acknowledgement. CW and AY is supported by ONR
N00014-21-1-2690 and Amazon award to JHU AI2AI.

2466



References
[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef

Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. In Proceedings of
the IEEE international conference on computer vision, pages
5803–5812, 2017. 1, 2, 5

[2] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1728–1738,
2021. 1, 5, 6

[3] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254,
2021. 2, 7
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