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Abstract

Humans work together to solve common prob-001
lems by having discussions, explaining, and002
agreeing or disagreeing with each other. Sim-003
ilarly, if a system can have discussions with004
human partners when solving tasks, it has the005
potential to improve the system’s performance006
and reliability. In previous research on explain-007
ability, it has only been possible for systems to008
make predictions and for humans to ask ques-009
tions about them, rather than having a mutual010
exchange of opinions. This research aims to011
create a dataset and computational framework012
for systems that discuss and refine their predic-013
tions through dialogue. Through experiments,014
we show that the proposed system can have015
beneficial discussions with humans, improving016
the accuracy by up to 25 points on a natural017
language inference task.018

1 Introduction019

Today’s deep learning systems are performant but020

opaque, leading to a wide variety of explainability021

techniques that attempt to take in a system predic-022

tion and output an explanation justifying the predic-023

tion (Ribeiro et al., 2016; Shwartz-Ziv and Tishby,024

2017; Fong and Vedaldi, 2017; Kim et al., 2018;025

Lipton, 2018; Wiegreffe et al., 2022). Many such026

explainability techniques require significant exper-027

tise in deep learning to use effectively, requiring028

consumers of the explanations to analyze the data,029

internal states, and output trends of the system of030

interest (Ribeiro et al., 2016; Kaneko et al., 2022).031

However, many potential system users lack this032

expertise, such as medical or legal professionals033

who want to use machine learning models and need034

to confirm the veracity of the generated results or035

rectify any mistaken predictions.036

To address this issue, researchers are working037

to find ways to both explain system predictions in038

natural language (Ling et al., 2017; Raffel et al.,039

2020; Brown et al., 2020; Wiegreffe et al., 2022;040

Figure 1: Human-system discussions in NLI.

Du et al., 2023) and give instructions and feedback 041

to systems through natural language (Abramson 042

et al., 2022; Sharma et al., 2022; Murty et al., 2022; 043

Campos and Shern, 2022; Bowman et al., 2022). 044

Chain-of-Thought (CoT) prompting has shown that 045

natural language contributes to performance im- 046

provements in complex multistep inference (Wei 047

et al., 2022; Wang et al., 2022b; Zhang et al., 2022). 048

Step-by-step reasoning in CoT relies solely on the 049

system to make predictions without human involve- 050

ment. There is also work that allows users to 051

ask questions about the system’s predictions and 052

tasks (Slack et al., 2022) in a conversational format. 053

Compared to the more standard learning and expla- 054

nation paradigms, this approach allows humans to 055

understand and teach the system intuitively. How- 056

ever, in these works, the communication tends to 057

be one-sided, from human-to-system or system-to- 058

human, which still falls short of the full interactive 059

problem solving process experienced by human 060

interlocutors (Lakkaraju et al., 2022). 061

In this study, we take the first steps towards es- 062

tablishing a framework for human-system collabo- 063

ration on prediction problems through discussion 064

(illustration in Figure 1). If such a system is re- 065
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alized, it will allow both humans and the system066

to engage in explanations of predictions, ask ques-067

tions about unclear points, refine their thoughts,068

and solve problems.069

First, we create a dataset of human-human dis-070

cussions regarding a prediction task (Section 2). In071

particular, we use the task of natural language infer-072

ence (NLI): prediction of the relationship between073

a “premise” sentence and a “hypothesis” sentence074

is entailment, contradiction, or neutral (Bowman075

et al., 2015). We specifically choose relatively diffi-076

cult or ambiguous cases to spur discussion between077

the participants.078

Second, we train and evaluate a system that is079

capable of discussing an NLI problem with a hu-080

man (Sections 3, 4). It is achieved by constructing081

prompts with manually created discussion exam-082

ples so the system can learn from humans how to083

discuss, accept, or object to the provided opinions084

about the topic.085

The results of both quantitative and human eval-086

uation demonstrate that a system could perform087

more informative discussions by training to have088

a discussion with few-shot learning (Section 5).089

We also found that providing the system with in-090

formation about the discussion topic improved its091

performance in many cases compared to the system092

that did not have access to such information. On093

the other hand, the discussion revealed that the sys-094

tem tends to be too compliant with human opinions.095

Therefore, addressing the risk of transmitting incor-096

rect knowledge or maliciously altering the system’s097

knowledge of humans is necessary. We also show098

that few-shot usage of discussion data can enable099

the system to counter human arguments correctly100

(Section 6). Finally, we demonstrate that using dis-101

cussion data generated by the system (Wang et al.,102

2022b; Huang et al., 2022) can achieve equivalent103

results to those of the system that used manually104

created discussion data in few-shot learning or fine-105

tuning cases.106

2 Discussion Dataset Creation107

The NLI task aims to determine the logical re-108

lationship between a hypothesis sentence and a109

premise sentence (Bowman et al., 2015). The task110

involves classifying whether the hypothesis sen-111

tence is entailment, contradiction, or neutral. For112

example, given the premise “The cat is sitting on113

the mat” and the hypothesis "The mat is empty",114

the task would involve classifying the relationship115

as a contradiction. NLI tasks require deep assimila- 116

tion of fine nuances of common sense knowledge, 117

and much work has been done to explain this with 118

natural language as a prediction reason (Camburu 119

et al., 2018; Kumar and Talukdar, 2020). There- 120

fore, we also target the NLI task and build a system 121

that predicts entailment, contradiction, or neutrality 122

through discussion. 123

To train a system that can engage in a discussion, 124

we create a dataset of human annotators discussing 125

NLI problems. We use the Stanford NLI (SNLI) 126

dataset (Bowman et al., 2015), a common bench- 127

mark dataset in NLP, to create the discussion data. 128

Collecting high-quality discussion data among hu- 129

mans is costly, as it requires knowledgeable annota- 130

tors about the task and multiple dialogue turns for 131

each problem. Fourteen annotators with knowledge 132

of NLP were asked to annotate the data.1 133

First, the annotators were presented with premise 134

and hypothesis sentences and asked to predict la- 135

bels such as entailment, contradiction, or neutral. 136

We randomly paired two annotators to have them 137

assign labels for the same premise and hypothe- 138

sis. Then, they discussed the labels that they had 139

assigned differently and decided on the final la- 140

bels based on those discussions. The premise and 141

hypothesis sentences were sampled from 300 prob- 142

lems from the development data and 750 problems 143

from the evaluation data of SNLI. These were used 144

as development and evaluation data in the discus- 145

sion data, respectively. Each annotator pair is asked 146

to predict the labels of 150 problems. SNLI devel- 147

opment data originally consists of problems with 148

labels from five crowd workers, and the majority 149

vote of these labels determines the golden label. 150

To find relatively hard cases that might spur more 151

discussion, we sampled problems for annotation 152

from those in which three of the five had the same 153

label. 154

Our annotators were then paired with each other 155

and discussed the questions for which they had 156

given different labels. They discussed in a free- 157

form manner until they agreed on a final decision.2 158

Preliminary experimental results showed that the 159

number of discussion turns tended to be higher for 160

oral rather than text-based discussions. Therefore, 161

we created discussion data by transcribing oral 162

1Annotation work was requested at $25 per hour. The data
collection from human participants was conducted under an
institutional review board protocol.

2They were also instructed not to include personal infor-
mation and inappropriate utterances.
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Figure 2: Prompt with a single example for few-shot learning.

discussions among the annotators, using Whisper163

(medium.en) (Radford et al., 2022)3 for transcrip-164

tion. The text transcribed by Whisper was manu-165

ally corrected for transcription errors and manually166

separated into speech segments.167

Then, for each utterance, we assigned the evi-168

dential utterances for the final label and the labels169

of “supportive”, “unsupportive”, or “irrelevant” to170

each utterance. For example, for Figure 1, “Both171

have a person sitting in the chair, but they are neu-172

tral because no gender is specified.” is labeled as173

supportive, “It is entailment because the person sits174

in a chair.” is unsupportive, and “Yes.” is labeled175

as irrelevant. These labels are not used in the few-176

shot learning process but are used to evaluate the177

discussion ability of the system automatically.178

In this annotation work, discussion data were179

collected for 102 problems. Of these, 10 problems180

were used as prompts for few-shot learning, 27 for181

validation data, and 65 for evaluation data. The182

average number of utterances for each problem in183

the prompt, validation, and evaluation data is 4.4,184

6.3, and 5.1 respectively. For validation and evalu-185

ation data, the number of supportive/unsupportive186

utterances are 85/23 and 133/72 respectively.187

3 Discussion System188

We use three types of systems in the experiments:189

zero-shot, few-shot, and few-shot-discussion. In190

the zero-shot system, only the task description is191

given as a prompt. In the few-shot system, the192

examples’ task description and premise, hypothe-193

sis, and gold labels are given as prompts. In the194

few-shot-discussion system, in addition to the task195

3https://github.com/openai/whisper

description and examples, human discussion ex- 196

amples about the labels of the examples are given 197

as prompts. These prompts are concatenated with 198

the problem to be solved and given as input to the 199

system to perform inference. Examples of each 200

prompt are shown in Figure 2. The discussion 201

example distinguishes human utterances between 202

“Human1:” and “Human2:”. 203

The examples used in the prompts are the same 204

for both the few-shot and the few-shot-discussion 205

systems. We use the same examples for all prob- 206

lems. All methods do not update the parameters of 207

the systems. We use GPT-3.54 (Brown et al., 2020) 208

and ChatGPT5 (OpenAI, 2023) for the zero-shot, 209

few-shot, and few-shot-discussion systems. 210

4 Evaluation Method 211

We evaluate a system’s discussion ability from the 212

following three perspectives: (1) Can the system 213

generate utterance content that contributes to the fi- 214

nal label? (2) Can the system agree with statements 215

that support the correct label and refute statements 216

that support the incorrect label? (3) Does discus- 217

sion with humans improve task performance? To 218

examine these discussion abilities, we compare 219

each system by performing automatic and manual 220

evaluations. 221

We investigate utterances generated from the 222

systems to determine if they contribute to the auto- 223

matic evaluation’s final label. For that, we use the 224

utterances generated by the system for the given 225

4text-davinci-003: https://beta.openai.com/
docs/models/gpt-3

5gpt-3.5-turbo: https://platform.openai.com/
docs/guides/gpt/chat-completions-api

3
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problems and evaluate how well they match the ref-226

erence utterances between humans from discussion227

evaluation data. Each utterance in our discussion228

evaluation data is annotated as either supportive or229

unsupportive of the gold label. If a system is more230

likely to generate a supportive utterance than an231

unsupportive utterance for the gold label, the sys-232

tem can be considered capable of making correct233

discussions that lead to the correct answers. For234

example, “I think it is also better to consider the235

general cases.” is the supportive utterance, and236

“Is the phone in the hypothesis necessarily a cell-237

phone? It could be a landline phone.” is the unsup-238

portive utterance in Figure 2. Therefore, we also239

investigate whether the system is better at generat-240

ing supportive utterances over unsupportive ones.241

Specifically, we evaluate the similarity between the242

system-generated utterances and the actual human243

utterances for supportive and unsupportive utter-244

ances, respectively.245

We concatenate the input problem and the dis-246

cussion utterance up to the target utterance and247

generate the next target utterance. For example, if248

the second human’s utterance in the discussion is249

the target utterance, then the prompt is “Premise:250

A nun is taking a picture outside. Hypothesis: A251

nun is taking a selfie. Label: entailment or neu-252

tral Discussion: Human1: I think it is entailment,253

because the nun is taking a picture, so it might be254

a selfie. Human2:”, and the system should gener-255

ate an utterance that would be evaluated against256

the following utterance made by a human “Since it257

is outside, it is conceivable that the nun is taking258

some scenery.”. At this point, the problem has two259

opposing labels in the prompt because we want it260

to discuss two different labels.261

We use actual human utterances as references262

and compute the BERTScore (Zhang et al., 2020)263

of the system’s outputs for evaluation. BERTScore264

leverages the pre-trained language model such as265

BERT (Vaswani et al., 2017) and RoBERTa (Liu266

et al., 2019) and matches words in candidate267

and reference sentences by cosine similarity.268

BERTScore computes precision, recall, and F1269

measures. Therefore, BERTScore can be used270

to compare the system’s content and human utter-271

ances with each other. We use roberta-large6 for the272

pre-trained language model for BERTScore. We273

conduct a significance test using t-test (p < 0.01).274

We set the temperature parameter of GPT-3.5 and275

6https://huggingface.co/roberta-large

ChatGPT to 0.7 and generate ten outputs for each 276

input. We calculate BERTScore for each of the ten 277

outputs and test for significance among the calcu- 278

lated ten scores. 279

Next, we use human evaluation to examine 280

whether the system can agree with supportive hu- 281

man utterances and refute unsupportive human ut- 282

terances. The human participants and the system 283

predict different labels for the same problem. Then, 284

they engage in a discussion, and the final label re- 285

sult is demonstrated to be in agreement with the 286

labels assigned in the SNLI data through the con- 287

sistency of the agreement rate. In this process, we 288

evaluate the ability of the system to accept a hu- 289

man’s opinion when the system’s label is incorrect, 290

and when the human’s label is correct, and the abil- 291

ity of the system to object to a human’s opinion 292

when the human’s label is incorrect, and the sys- 293

tem’s label is correct. 294

Similarly to above, we selected those data with 295

the same label 3 times (e.g., entailment, entailment, 296

neutral, entailment, neutral). As a result, we sam- 297

pled 140 problems that differ from the problems 298

collected in section 2. During this process, if the 299

system’s label was correct, humans engaged in ad- 300

versarial discussions to change the system’s label. 301

If the system’s label was incorrect, humans en- 302

gaged in discussions to guide the system toward the 303

correct label. Here, the discussion was text-based 304

rather than verbal, as the system takes textual input. 305

To conduct a discussion with the system, we 306

input the prompt and problem shown in Figure 2 307

to the system and then inputted additional human 308

utterance examples related to the discussion after 309

each system predicted the label. In the additional 310

input, the beginning of human utterance is prefixed 311

with "Human:" and the end is prefixed with "Sys- 312

tem:" to indicate that the next is a system’s utter- 313

ance. Specifically, the first prompt for discussion 314

is "Human: Let’s discuss it more. I think neutral, 315

because there may be a kitchen in the barn. Sys- 316

tem:". The system predicts the final label when the 317

discussion is finished. 318

We investigate how discussion with humans im- 319

proves NLI task performance. The system predicts 320

the label, then the human and the system discuss 321

and decide on the final label. We compare the 322

performance of each label before and after the dis- 323

cussion. Here, the data for the acceptance and 324

objection settings are half and half. Therefore, if 325

the discussion is not properly conducted, such as 326
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supportive ↑ unsupportive ↓ diff.

zero-shot 82.0/83.1 81.8/82.5 0.2/0.6
few-shot 82.7/83.6 82.3/82.9 0.4/0.7
few-shot-dis. 84.8†/86.3† 79.1†/78.6† 5.7/7.7

Table 1: BERTScore of supportive and unsupportive
utterances. The left scores are by GPT-3.5, and the right
scores are by ChatGPT. † indicates statistically signifi-
cant scores for supportive and unsupportive according
to the t-test (p < 0.01).

Acceptance rate Objection rate

zero-shot 75.0/80.0 58.9/55.0
few-shot 80.0/80.0 55.0/55.0
few-shot-dis. 90.0†/95.0† 80.0†/80.0†

Table 2: Human evaluation of the system’s ability to
accept and object to human opinion. The left scores
are by GPT-3.5, and the right scores are by ChatGPT.
† indicates statistically significant scores according to
McNemar’s test (p < 0.01).

by accepting all human labels or refuting all human327

labels, the performance will not improve.328

We also investigate the performance of the NLI329

when using argumentation prompts. We compared330

the performance of NLI in zero-shot, few-shot, and331

few-shot-discussion systems. The predicted label332

after “Label:” in the prompt of Figure 2 is con-333

sidered as the prediction, and discussion between334

humans and systems is not performed. In the eval-335

uation of NLI performance, in addition to SNLI336

data, we also use Adversarial NLI (ANLI) data337

(Nie et al., 2020). ANLI creates data by repeatedly338

performing adversarial annotation against NLI sys-339

tems; thus, the resulting NLI examples are partic-340

ularly difficult for the system to solve. There are341

three data sets R1, R2, and R3 with differences342

in the number of iterations, and the evaluation is343

performed using each evaluation data point.344

5 Experiments345

5.1 Discussion Ability Evaluation Results346

Table 1 represents BERTScore for supportive and347

unsupportive utterances and the difference be-348

tween them in zero-shot, few-shot, and few-shot-349

discussion systems. The BERTScore of few-shot-350

discussion is generally higher than that of the zero-351

shot and the few-shot systems. It can be seen352

that few-shot-discussion can generate discussion353

utterances with higher accuracy than zero-shot and354

few-shot, which do not use discussion examples355

Before After

zero-shot 54.2/60.0 65.6/60.0
few-shot 60.0/65.6 60.0/70.0
few-shot-dis. 60.0/65.6 85.0†/90.0†

Table 3: The accuracy for the predicted label before
and after the discussion. The left scores are by GPT-
3.5, and the right scores are by ChatGPT. † indicates
statistically significant scores according to McNemar’s
test (p < 0.01).

SNLI R1 R2 R3

zero-shot 49.74 47.40 39.10 41.33
few-shot 69.45 53.50 48.00 48.50
few-shot-dis. 66.14 53.90† 50.40† 50.42†

zero-shot 51.83 48.63 41.70 40.52
few-shot 70.31 55.08 52.31 52.18
few-shot-dis. 70.15 57.24† 55.63† 55.19†

Table 4: The accuracy on SNLI and ANLI (R1, R2,
R3) evaluation data. Upper scores are by GPT-3.5, and
lower scores are by ChatGPT. † indicates statistically
significant scores according to McNemar’s test (p <
0.01).

data. The performance of zero-shot and few-shot 356

is almost the same, suggesting that just showing 357

examples does not improve the discussion ability. 358

Also, the difference between supportive and unsup- 359

portive utterance accuracies is greater in few-shot- 360

discussion than in zero-shot and few-shot systems. 361

Therefore, because the few-shot-discussion can 362

generate more supportive utterances, it is thought 363

that such discussions can result in more appropriate 364

labels. 365

Table 2 shows the accuracy of the label deter- 366

mined by discussion in the settings for evaluating 367

the acceptance ability and objection ability, respec- 368

tively. In terms of the objection, it can be seen 369

that the few-shot-discussion system handled objec- 370

tions well in comparison to the zero-shot system. 371

In addition, Table 3 shows the accuracy7 of the 372

predicted label without discussion, and the accu- 373

racy of the final label reached as a result of the 374

discussion between humans and systems. Further- 375

more, the few-shot system has a similar objection 376

ability as the zero-shot system, and there is a pos- 377

sibility that the performance of label prediction by 378

these systems is not necessarily directly related to 379

the ability to discuss. In comparison with accep- 380

7To facilitate discussion, this evaluation is limited to in-
stances where three of the five cloudworkers have the same
label in SNLI data. This makes it more challenging than using
the entire SNLI data.
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SNLI R1 R2 R3

GPT-3.5 dis. 66.14 53.90 50.40 50.42
GPT-3.5 pseudo 65.67 54.00 49.60 50.50

ChatGPT dis. 68.51 53.90 52.82 52.33
ChatGPT pseudo 68.66 54.00 52.51 52.10

Table 5: The accuracy on SNLI and ANLI (R1, R2, R3)
test data for few-shot systems using manually created
discussion examples and pseudo-discussion examples.
Upper scores are by GPT-3.5, and lower scores are by
ChatGPT.

tance, it is necessary to be careful of people who381

manipulate predictions with malice arguments, as382

the system tends to be weak at objecting to hu-383

mans. Furthermore, from the fact that the accuracy384

of the few-shot-discussion system has improved385

the most, it is clear that the proposed data can be386

used to have discussions with humans that lead to387

improved performance.388

Table 4 shows the accuracy of each system for389

the evaluation data of SNLI and ANLI. In SNLI, the390

few-shot-discussion system performs worse than391

the few-shot system, but in the three datasets of392

ANLI, we find that the performance is the best.393

This is because ANLI is more difficult data com-394

pared to SNLI, and we hypothesize that through395

discussion, systems get a more detailed understand-396

ing of problems, which in turn contributes to per-397

formance improvement.398

From the results of previous experiments, we399

found that discussion between humans and systems400

is beneficial for improving performance.8 There-401

fore, the few-shot-discussion system, in which a402

discussion example is also given as a prompt, is403

expected to achieve a deeper understanding of NLI404

problems and improve performance through the405

discussion example in the prompt.406

6 Analysis407

6.1 Pseudo-Discussion Data408

One drawback of using discussion data is that it can409

be costly to create compared to datasets that only410

have gold labels. Using pre-trained models to an-411

notate unlabeled data and use this data for training412

has been shown to improve performance (Wang413

et al., 2021; Honovich et al., 2022; Wang et al.,414

2022b). Therefore, we propose to use GPT-3.5 and415

ChatGPT to generate discussion data in a zero-shot416

8We show examples of human-system discussion in Ap-
pendix A.

SNLI R1 R2 R3

w/ dis.

MPT 85.2 67.4† 55.2† 55.0†

MPT-inst. 87.7† 68.2† 56.1† 55.3†

Falcon 86.2† 67.6 55.5† 54.9
Falcon-inst. 90.3† 71.7† 58.4† 57.6†

w/o dis.

MPT 85.4 65.2 53.9 52.4
MPT-inst. 85.1 64.0 51.1 50.7
Falcon 84.6 67.9 54.7 54.2
Falcon-inst. 85.3 66.2 53.1 53.0

w/ dis.

MPT 86.7† 68.3† 55.2† 55.0†

MPT-inst. 86.9 68.8† 56.1† 55.3†

Falcon 88.1 68.1 55.5 54.9
Falcon-inst. 90.7† 71.9† 58.4† 57.6†

w/o dis.

MPT 85.4 65.2 53.9 52.4
MPT-inst. 86.0 64.0 51.1 50.7
Falcon 88.5 67.9 54.7 54.2
Falcon-inst. 89.7 67.8 55.5 56.4

Table 6: Accuracy on SNLI and ANLI (R1, R2, R3) test
data for fine-tuned systems with and without pseudo-
discussion data. Additional fine-tuning with pseudo
discussion data for instruction tuned and non-instruction
tuned models for MPT and Falcon. The upper and
lower scores are the results using pseudo discussion
data generated by GPT-3.5 and ChatGPT, respectively.
† indicates statistically significant scores for w/ dis. and
w/o dis. according to McNemar’s test (p < 0.01).

and use them as discussion examples for a few-shot 417

to investigate if it is possible to achieve the same 418

level of improvement as from using manually cre- 419

ated data. If a system can automatically produce 420

high-quality data, it can produce enough data for 421

fine-tuning at a low cost. Therefore, we also inves- 422

tigate the effectiveness of pseudo-discussion data 423

in fine-tuning. 424

In generating human discussions, the system is 425

given prompts in the form of the premise, hypoth- 426

esis, gold label, and the labels from each human. 427

The human labels are randomly chosen to be the 428

gold label or the other incorrect label. For exam- 429

ple, given the premise “A nun is taking a picture 430

outside.” and hypothesis “A nun is taking a selfie.” 431

with the gold label of neutral, the prompt would 432

be “Reproduce a multi-turn interactive discussion 433

in which the following premise and hypothesis are 434

entailment, contradiction, or neutral, with the hu- 435

mans agreeing with each other on the final label. 436

Human1’s label is neutral, and Human2’s label is a 437

contradiction. In the end, they agree on the label of 438

neutral. Premise: A nun is taking a picture outside. 439

Hypothesis: A nun is taking a selfie.”. 440

The GPT-3.5 and ChatGPT generate human dis- 441

cussions for 10 problems used in the few-shot and 442

2,000 problems used in the fine-tuning, respec- 443
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tively. The average number of utterances in human-444

created discussions was 4.4, and the average num-445

ber of utterances in system-generated discussions446

was 4.7. Regarding the number of utterances, hu-447

man and system arguments are almost the same.448

We used instruction tuned and non-instruction449

tuned models for MPT9 (Team, 2023) and Fal-450

con10 (Penedo et al., 2023) as pre-trained models451

for fine-tuning. We used hyperparameters from ex-452

isting studies (Taori et al., 2023) as a reference and453

fine-tuned the batch size to 128, the learning rate454

to 2e-5, and the epoch to 3. We used five nodes,455

each containing eight NVIDIA A100 GPUs. The456

system is given both the labels and discussions as457

golds during training, and we evaluate using only458

labels during inference. We train models without459

pseudo-discussion data as a baseline. The baseline460

models are trained with only the labels.461

Table 5 shows the results of the automatic evalu-462

ation of performance in SNLI and ANLI for each463

of the manually generated discussion example data464

and system-generated pseudo-discussion example465

data for few-shot learning, respectively. In two of466

the four datasets, the system’s performance with467

pseudo-discussion data outperforms that of the sys-468

tem with manually created data. Moreover, there is469

no significant difference between the scores of the470

LLMs using the human-created and pseudo- discus-471

sion by McNemar’s test (p < 0.01). It is possible472

to achieve performance comparable to manually473

created data, even with pseudo-discussion data.474

Table 6 shows the results of the automatic evalu-475

ation of performance in SNLI and ANLI for fine-476

tuned MPT and Falcon with pseudo-discussion477

data. The model with pseudo-discussion data478

performs better than the model without pseudo-479

discussion data in most cases for both MPT and480

Falcon. We find that fine-tuning with pseudo-481

discussion data is more effective for instruction482

tuned models. It implies that instruction tuning im-483

proves the linguistic understanding of the system484

and enhances the understanding of the discussion.485

These results indicate that the system is capable486

of producing high-quality discussion data that can487

be used for training systems to be able to discuss488

given problems.11 Therefore, one can significantly489

9https://huggingface.co/mosaicml/
mpt-7b and https://huggingface.co/
mosaicml/mpt-7b-instruct

10https://huggingface.co/tiiuae/
falcon-7b and https://huggingface.co/
tiiuae/falcon-7b-instruct

11We show comparisons of examples created by humans

SNLI R1 R2 R3

Random dis. -2.91 -2.10 -3.30 -3.42
Cutting dis. -2.40 -1.60 -2.60 -2.25
Random label -3.43 -2.50 -3.50 -3.17

Random dis. -3.32 -3.59 -3.77 -3.62
Cutting dis. -2.88 -2.79 -2.32 -2.15
Random label -3.22 -3.76 -3.89 -3.58

Table 7: Difference for the few-shot-discussion accu-
racy from when the noisy examples are provided in the
prompt on SNLI and ANLI. The higher the difference,
the stronger the noise. Upper differences are by GPT-
3.5, and lower differences are by ChatGPT.

lower the cost of creating discussion data manually 490

by using systems. 491

6.2 Do Discussion Examples in the Prompts 492

Matter? 493

It is known that pre-trained models can ob- 494

tain good results even with irrelevant or noisy 495

prompts (Khashabi et al., 2022; Webson and 496

Pavlick, 2022; Min et al., 2022). Therefore, we 497

investigate the sensitivity and robustness of the sys- 498

tem with respect to the discussion examples con- 499

tained in the prompts. We provide three types of 500

noise in the prompts: (1) assigning a random dis- 501

cussion that is irrelevant to the example problem, 502

(2) cutting the original discussion examples short at 503

random times, and (3) assigning a label at random 504

for the example problems. 505

Table 7 shows the difference in accuracy com- 506

pared to the few-shot-discussion accuracy from 507

Table 4 for each of the three noises. It can be seen 508

that performance deteriorates for all types of noises. 509

Noise that randomly replaces discussions and noise 510

that randomly replaces labels both have the same 511

degree of reduced accuracy. Oppositely, the discus- 512

sions that were cut short, show to be a weaker noise 513

than discussion substitution and have performed 514

better. These indicate that the system properly con- 515

siders discussion examples in the prompts. 516

7 Related Work 517

In this study, systems and humans discuss a prob- 518

lem through dialogue. Dialogue systems can be 519

broadly classified into two types: task-oriented 520

systems that perform specific tasks, and non-task- 521

oriented systems that do not have the goal of task 522

completion, such as casual conversation. This study 523

aims to conduct appropriate predictions in NLP 524

and systems respectively in Appendix B.
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tasks through discussions between humans and the525

system and is classified as a task-oriented system.526

Many existing dialogue systems target daily life527

tasks such as hotel reservations and transportation528

inquiries (Budzianowski et al., 2018). Pre-trained529

models such as BERT (Devlin et al., 2019) and530

GPT-2 (Budzianowski and Vulić, 2019; Ham et al.,531

2020) are also utilized in dialogue systems for daily532

life tasks. Recently, ChatGPT (OpenAI, 2023) has533

been proposed for more generic interaction based534

on a pre-trained model. We similarly use a pre-535

trained model for our system.536

As far as we know, few studies use discussion for537

NLP tasks similar to ours. Chang et al. (2017) pro-538

posed the TalkToModel, which explains through539

dialogue three tasks of loan, diabetes, and recidi-540

vism prediction. The user can talk to the TalkTo-541

Model in five categories: prediction explanation,542

data modification, error analysis, dialogue history543

reference, and experimental setting explanation.544

Data for learning and evaluating the TalkToModel545

are generated by instructing the annotator to con-546

verse about these categories. However, the cate-547

gories were not determined based on interviews548

or data but were defined subjectively by the au-549

thors. Therefore, it is possible that the categories do550

not reflect actual conversations that humans need.551

On the other hand, our study was conducted in an552

open-ended dialogue to generate data. Additionally,553

our study aims for mutual understanding through a554

bidirectional dialogue where both humans and the555

system express opinions and questions, unlike the556

systems that only respond to human questions in a557

unidirectional dialogue.558

There is research on generating explanatory text559

for predictions as a way to transfer information560

from systems to humans through natural language.561

For example, research regarding natural science562

tests (Ling et al., 2017), image recognition and563

image question answering (Park et al., 2018), math-564

ematics tests (Jansen et al., 2018), and NLI (Cam-565

buru et al., 2018) have been studied. Addition-566

ally, systems for generating explanations using pre-567

trained models such as T5 (Raffel et al., 2020) and568

GPT-3.5 (Brown et al., 2020) have also been pro-569

posed (Narang et al., 2020; Wiegreffe et al., 2022).570

However, as these generated explanations cannot571

be used to seek additional explanations or specific572

explanations, the interpretability is not sufficient in573

practice as pointed out by Lakkaraju et al. (2022).574

Instead of directly predicting answers, CoT575

uses natural language to derive answers step-by- 576

step (Wei et al., 2022). This leads to complex multi- 577

step inferences. By adding the phrase “Let’s think 578

step by step” before each answer, Kojima et al. 579

(2022) demonstrate that language models are com- 580

petent zero-shot CoT. On the other hand, Wang 581

et al. (2022a) shows that CoT can achieve com- 582

petitive performance even with invalid reasoning 583

steps in the prompt. CoT’s step-by-step approach 584

is based on the system only, whereas our proposed 585

method incorporates human involvement in the sys- 586

tem to facilitate collaboration between humans and 587

the system. Additionally, our approach utilizes 588

discussions for a step-by-step thinking process. 589

Research is also being conducted on the use 590

of natural language by humans to provide instruc- 591

tions and feedback to the system. Abramson et al. 592

(2022) has developed multi-modal grounded lan- 593

guage agents that perform reinforcement learning 594

on human dialogue-based instructions. Sharma 595

et al. (2022) proposed a method to integrate human- 596

provided feedback in natural language to update 597

a robot’s planning cost applied to situations when 598

the planner fails. Murty et al. (2022) proposed 599

a method to modify a model by natural language 600

patches and achieved performance improvement in 601

sentiment analysis and relationship extraction tasks. 602

Campos and Shern (2022) proposed a method for 603

training a model to behave in line with human pref- 604

erences, by learning from natural language feed- 605

back, in text summarization. On the other hand, 606

these studies cannot be explained or questioned by 607

the system to humans. 608

8 Conclusion 609

While deep learning systems have been highly ef- 610

fective in various tasks, their lack of interpretability 611

poses a challenge to their use in real-world applica- 612

tions. To address this, we proposed a system that 613

engages in a dialogue with humans in the form of 614

discussing predictions, which allows both humans 615

and the system to engage in explanations, ask ques- 616

tions, refine their thoughts, and solve problems. 617

Our experimental results showed that the system 618

trained with few-shot learning for discussion could 619

perform more useful discussions than the system 620

that was not trained for discussion and provided 621

insights on the challenges and opportunities of this 622

approach. This research provides a new avenue for 623

developing more interactive deep-learning systems. 624
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Limitations625

Compared to the original system that uses only626

inputs and labels, our method uses additional dis-627

cussion data, resulting in longer sequences. This628

leads to an increase in training or inference costs.629

We have conducted experiments on pre-trained630

models with large model sizes to verify their effec-631

tiveness. On the other hand, it is necessary to verify632

the effectiveness of learning by argumentation on633

smaller pre-trained models (Wu et al., 2023; Team,634

2023; Touvron et al., 2023). Our manually created635

discussion data is relatively small in scale. There-636

fore, it is necessary to expand the dataset to a larger637

scale to more robustly test the effectiveness of the638

proposed method.639

Ethics Statement640

Annotation work was requested at $25 per hour.641

Workers are employed at appropriate pay. Annota-642

tors were warned in advance not to give personal643

information or inappropriate utterances during the644

dialogue. We have verified that the data produced645

does not contain any personal information or in-646

appropriate utterances. The data collection from647

human participants was conducted under an institu-648

tional review board protocol.649
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A Examples of Human-System Discussion918

Here we examine whether humans and systems919

can engage in effective discussions by looking at920

actual discussions. Table 8 shows two examples of921

discussions with humans in each of the few-shot922

and few-shot-discussion. The first is that both few-923

shot and few-shot-discussion can accept human924

opinions and change their labels. However, the925

discussions differ from each other. In few-shot, the926

system is not concerned with the content of the927

premise and hypothesis, but with the definition of928

neutral and contradiction labels. In the few-shot-929

discussion, the system can discuss the relationship930

between a wide plain of snow and a blizzard in the931

contents of the premise and hypothesis.932

In the second case, both few-shot and few-933

shot-discussion predict the same contradiction la-934

bel. Still, the discussion results differ in the935

wrong acceptance and the correct refutation, re-936

spectively. The few-shot has accepted a human’s937

erroneous opinion without discussing it. The few-938

shot-discussion refutes a human’s opinion by ap-939

propriately referring to the man’s behavior in the940

premise and the hypothesis. These results indicate941

that the model trained with the discussion data can942

argue more appropriately.943

B Discussion Examples Created by944

Humans and Systems945

Table 9 shows discussion examples made by hu-946

mans and systems, respectively. In both discussion947

examples, the system can assign labels to Human1948

and Human2 as indicated by the prompts. The first949

system example can derive a label that matches950

the gold label and can discuss the differences be-951

tween the premise and hypothesis in the same way952

as humans. In the second system example, the final953

predicted label differs from the gold label. On the954

other hand, both the system and human discussions955

refer to the meaning of a picture and a photograph.956

While humans determine the final label from the957

general case, the system determines the final label958

in terms of lexical ambiguity. Therefore, the sys-959

tem’s discussion, although different from the gold960

label, is not necessarily incorrect.961
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Premise A snowboarder on a wide plain of snow
Hypothesis A snowmobile in a blizzard
Gold label Neutral

Few-shot

Label: Contradiction
Human: Let’s discuss it more. Why is it a contradiction? It may be neutral because the premise and the
hypothesis are talking about different situations.
System: The premise and hypothesis are talking about different situations that are not related, so it is a
contradiction.
Human: If these situations are not at the same time, does not it mean it is neutral?
System: It is still considered a contradiction because the premise and hypothesis are unrelated and
cannot be true at the same time.
Human: Is not that a definition of neutral?
System: A neutral statement is one in which the premise and hypothesis are not related and do not imply
each other.
A contradiction is when the premise and hypothesis are related and cannot be true at the same time.
Human: It is not happening at the same time because the snowboarder can not be in a blizzard. But the
snowboarder can be on a wide plain of snow. So these are totally different situations happening at
different times. So it is neutral.
System: Yes, you are correct. The premise and hypothesis are unrelated and do not imply each other, so
it is considered to be a neutral statement.

Few-shot-dis.

Label: Contradiction
Human: Let’s discuss it more. Why is it a contradiction? It may be neutral because the premise and the
hypothesis
are talking about different situations.
System: The premise and the hypothesis are semantically contradicting each other. The snowboarder is
on a wide plain of snow, while the snowmobile is in a blizzard.
Therefore, it is a contradiction.
Human: But how the snowboarder be there if there is a blizzard? It is very unlikely.
System: That is true. It is highly unlikely that there is a wide plain of snow and a blizzard at the same time.
Therefore, it is a contradiction.
Human: If these situations are not at the same time, does not it mean it is neutral?
System: It can be neutral if it is not specified when each situation happens. However, in this case, it is not
specified whether the situations are happening at the same time or not, so it is better to consider them as a
contradiction.
Human: It is not happening at the same time because the snowboarder
can not be in a blizzard. But the snowboarder can be on a wide plain of snow. So these are totally
different situations happening at different times. So it is neutral.
System: That is true. Since it is not specified whether they are happening at the same time or not, it is
better to consider them as neutral.

Premise A man looking over a bicycle’s rear wheel in the maintenance garage with various tools visible in the
background.

Hypothesis A man waits outside a garage.
Gold label Contradiction

Few-shot

Label: Contradiction
Human: Let’s discuss it more. Is not it neutral? Because looking over a bicycle’s rear wheel does not
necessarily
mean he is waiting.
System: That’s true. The premise and hypothesis are neutral.

Few-shot-dis.

Label: Contradiction
Human: Let’s discuss it more. Is not it neutral? Because looking over a bicycle’s rear wheel does not
necessarily
mean he is waiting.
System: Yes, you are right. The premise is describing that the man is actively working while the
hypothesis is describing a passive state. Therefore, the label should be contradiction.
Human: He is just looking over a bicycle’s rear wheel, why is he considered to be actively working?
System: Looking over a bicycle’s rear wheel suggests that he is inspecting the wheel, possibly to repair
or replace it. That is an active process, and thus is considered as actively working.

Table 8: Examples of human discussion in few-shot and few-shot-discussion (dis.) respectively.
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Premise Two dogs play together on the bed.
Hypothesis Dogs laying down on the floor, motionless.
Gold label Contradiction

System

Human1: The premise and hypothesis seem to be a contradiction. Two dogs playing together on the bed is
an active situation, while dogs laying down on the floor, motionless is a passive situation.
Human2: I agree that the premise and hypothesis are different, but I don’t think they are necessarily
contradictory. It’s possible that the two dogs could be playing together on the bed and then move to the floor
and lay down, motionless.
Human1: That’s true, but I still think the premise and hypothesis are contradictory. The premise implies
activity, while the hypothesis implies passivity.
Human2: I see your point. I think the premise and hypothesis are a contradiction.

Human

Human1: I think the premise and the hypothesis are telling about different things. That’s why I think it is
neutral.
Human2: It is contradiction because the words are semantically contradict each other. For example, black
and white, sit and running.
Human1: You are right in that terms. However, generally, they are totally different situations.
Human2: I see, you are right.

Premise A man wearing a horned hat poses for a picture.
Hypothesis A man wearing a horned hat poses for a photograph
Gold label neutral

System

Human1: I think the premise and hypothesis are entailment.
Human2: I think the premise and hypothesis are contradiction.
Human1: Why do you think that?
Human2: Because the premise states that the man is posing for a picture, while the hypothesis states that
he is posing for a photograph.
Human1: Ah, I see. So, you’re saying that a picture and a photograph are different things?
Human2: Yes, that’s right. A picture is a general term for any image, while a photograph is a specific type of
image.
Human1: Okay, so I agree with you that the premise and hypothesis are a contradiction.

Human

Human2: I think it is entailment. Because the only difference is picture or photograph, but both mean
photography.
Human1: I think it is contradiction, because a picture could mean a painting. So the man can either pose for
a photograph or for a painting.
Human2: But isn’t picture generally mean a photograph? And it is more common to take a picture of
a person than to draw a person as a picture, isn’t it?
Human1: You are right.

Table 9: Discussion examples created by humans and the system, respectively. In the first problem, the system
assigns contradiction for Human1 and entailment for Human2. In the second problem, the system assigns entailment
for Human1 and contradiction for Human2.
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