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Abstract

Language-conditioned robot behavior plays a vital role in ex-
ecuting complex tasks by associating human commands or
instructions with perception and actions. The ability to com-
pose long-horizon tasks based on unconstrained language
instructions necessitates the acquisition of a diverse set of5

general-purpose skills. However, acquiring inherent primi-
tive skills in a coupled and long-horizon environment with-
out external rewards or human supervision presents signif-
icant challenges. In this paper, we evaluate the relationship
between skills and language instructions from a mathemati-10

cal perspective, employing two forms of mutual information
within the framework of language-conditioned policy learn-
ing. To maximize the mutual information between language
and skills in an unsupervised manner, we propose an end-to-
end imitation learning approach known as Language Condi-15

tioned Skill Discovery (LCSD). Specifically, we utilize vector
quantization to learn discrete latent skills and leverage skill
sequences of trajectories to reconstruct high-level seman-
tic instructions. Through extensive experiments on language-
conditioned robotic navigation and manipulation tasks, en-20

compassing BabyAI, LORel, and Calvin, we demonstrate the
superiority of our method over prior works. Our approach
exhibits enhanced generalization capabilities towards unseen
tasks, improved skill interpretability, and notably higher rates
of task completion success.25

Introduction
General-purpose robots operating alongside humans in their
environment must develop the ability to understand and re-
spond to human language in order to perform a wide range of
complex tasks. Currently, there is significant research inter-30

est in language-conditioned policy learning methods, such
as Vision-Language Navigation (VLN) (Gu et al. 2022) and
Vision-Language Manipulation (VLM) (Guhur et al. 2023;
Shridhar, Manuelli, and Fox 2023), which aim to enable
robots to learn the connection between language instructions35

and their perceptions and actions.
In multi-task scenarios, tasks are typically defined by dif-

ferent task IDs (Gupta et al. 2019; Yu et al. 2020). How-
ever, in complex environments, task IDs do not capture the
relationships between tasks effectively and can be labor-40

intensive to define. On the other hand, human language pro-
vides a more natural and flexible way to define and specify
tasks. Additionally, robots need to acquire a diverse set of

general-purpose skills that enable them to understand un-
constrained language instructions and perform long-horizon 45

tasks.
Most modern skill-learning methods are limited to task ID

settings and sparse reward reinforcement learning (RL) en-
vironments. Hierarchical reinforcement learning (HRL) ap-
proaches to address complex tasks by learning latent skills, 50

which are then used in low-level meta-control (Haarnoja
et al. 2018). Other approaches decouple skill state mutual
information into forward (Sharma et al. 2019; Campos et al.
2020; Laskin et al. 2022) and reverse (Gregor, Rezende,
and Wierstra 2016; Eysenbach et al. 2018; Achiam et al. 55

2018) forms, which are incorporated into the reward func-
tion. These works offer theoretical analysis and outperform
other methods in RL benchmarks(Todorov, Erez, and Tassa
2012). However, these approaches have not been applied to
language-conditioned policies. 60

Figure 1: An example of multi-task language conditioned
situation.

As depicted in Figure 1, given a task specification like
open drawer and turn faucet right, traditional language-
conditioned policy struggles to effectively differentiate the
subtasks contained within language instructions based on
different states(Guhur et al. 2023). Contrastive learning 65

is commonly employed for establishing multimodal rela-
tionships(Eysenbach et al. 2022). However, this approach
typically requires pre-labeling of corresponding image se-
quences and language subtasks, which can hinder general-
ization. By learning discrete skills, we can fully demonstrate 70

the generalization ability of our imitation model in multi-
task scenarios without refining tasks.

Mapping complex languages to discrete skill spaces
presents a challenge. In this paper, we experimentally found
that skills can directly relate to language instructions, al- 75



lowing for direct optimization based on their mutual rela-
tion. Moreover, in multi-task language-conditioned environ-
ments, as illustrated in Figure 1, latent skills specified in lan-
guage instructions need to be constrained by the state.

To address these challenges, we propose the Language80

Conditioned Skill Discovery (LCSD) method to tackle the
imitation learning problem in multi-task environments. Our
approach is based on mutual information theory, which es-
tablishes the relationship between discrete skills, the cur-
rent state, and language instructions. We employ the VQ-85

VAE method for skill learning, where the encoder decom-
poses language and the current state while the decoder aims
to reconstruct unique discrete skills and convert them back
into language. To generate diverse skills, we introduce code
reinitialization to prevent index collapse. We utilize the dif-90

fusion policy with the U-net denoising model as an imitation
policy, which exhibits better adaptability to different envi-
ronments.

We conduct experiments in robotic manipulation and 2D
navigation to evaluate the effectiveness of LCSD. Compared95

with language condition policies and skill-based imitation
models, our method outperforms prior works. LCSD demon-
strates superior generalization, skill interpretability, and task
completion rates. Notably, it achieves a 20% improvement in
complex robot manipulation tasks.100

To summarize, our contributions are as follows:

• We propose a skill-learning method based on mutual in-
formation that establishes the relationship between state,
skill, and language.

• We introduce LCSD, a hierarchical skill learning Imita-105

tion policy based on VQ-VAE and diffusion model for
long-horizon, language-conditioned multi-task environ-
ments.

• We show that our skill discovery method provides bet-
ter interpretable discrete skills in different environmental110

conditions than previous methods.
• We demonstrate that our method outperforms exist-

ing methods in language-conditioned multi-task environ-
ments.

Related Work115

Language Conditioned Policy
Prior research has primarily addressed decision-making in
complex tasks that involve language instructions, particu-
larly in robot environments (Shridhar, Manuelli, and Fox
2022; Nair et al. 2021). Existing work has focused on120

employing pre-trained language models (Radford et al.
2021; Devlin et al. 2018; Chowdhery et al. 2022) as lan-
guage encoders due to the complexity and diversity of hu-
man languages. Some previous studies have used behavior
cloning to align the output of pre-trained language models125

with observation inputs in order to predict actions (Shrid-
har, Manuelli, and Fox 2022; Zheng et al. 2022). Other
approaches have explored LLM (Language Model)-based
prompt engineering to decompose complex language in-
structions into sub-tasks (Brown et al. 2020; Ahn et al.130

2022). A closely related work to ours is Saycan (Ahn et al.

2022), as both our work and Saycan aim to generalize latent
skills using languages and states. However, Saycan requires
a pre-defined set of skills to estimate the Q-function for each
skill, whereas we can extend our skills to unknown tasks by 135

utilizing a codebook of varying sizes.

Skill Discovery via mutual information
Skill discovery has been primarily employed in Hierarchical
Reinforcement Learning (HRL). Agents select latent vari-
ables from a set of skills at the high-level policy, which 140

is then executed by a meta-controller to perform sub-tasks
(Haarnoja et al. 2018; Shi, Lim, and Lee 2022). Recent stud-
ies have emphasized encouraging agents to explore and have
often relied on the mutual information between states and
skills (Gregor, Rezende, and Wierstra 2016; Campos et al. 145

2020). However, few works have addressed skill learning
in a language-conditioned environment. LISA (Garg et al.
2022) utilizes a skill predictor based on states and language
within specific horizons. Nevertheless, a single encoder can-
not establish a direct connection between skills and lan- 150

guage, leading to instability in skill learning.

Preliminary
Mutual Information Skill learning: Mutual Informa-
tion(MI) is a measure of the statistical dependence between
two variables. Given state s and skill z, the mutual infor- 155

mation I(z; s) can be optimized in two ways(Campos et al.
2020). The forward form: I(z; s) = H(s)−H(s|z), where
p(s|z) is estimated by a variational approximation, state en-
tropy is approximated by expectations of p(s|z) estimated
over all skills(Campos et al. 2020; Sharma et al. 2019; 160

Park et al. 2023). In the reverse form I(z; s) = H(z) −
H(z|s), latent code z is sampled from a fixed distribution
and the lower bound of conditioned entropy is estimated by
ρπ(z|s)(Eysenbach et al. 2018; Gregor, Rezende, and Wier-
stra 2016). 165

VQ-VAE: Vector Quantized Variational Autoencoder
(VQ-VAE)(Van Den Oord, Vinyals et al. 2017) is a neural
network architecture for unsupervised learning of latent rep-
resentations of data. In VQ-VAE, the encoder maps the input
data to a continuous latent space, which is then quantized to 170

a discrete codebook. The decoder maps the discrete code to
the output space, generating new samples. VQ-VAE updates
the encoder, decoder, and codebook parameters with the fol-
lowing loss function.

L = log p
(
x | q(zkq )

)
+

∥∥sg [p(x)]− zkq
∥∥2
2
+

β
∥∥p(x)− sg[zkq ]

∥∥2
2

(1)

the first term represents the reconstruction from discrete 175

code to original input for updating the encoder p and de-
coder q. The second term leads the discrete vectors in the
codebook z1...Nq to approach the nearest output of the en-
coder, while the last term is commitment loss, encouraging
the output of the encoder to stay close to the chosen kth 180

codebook vector zkq . The codebook update can also use ex-
ponential moving averages instead of the second in the loss
function.



Figure 2: Overview of LCSD. In the skill learning stage, the encoder decomposes the current state and language to a lower-
dimensional latent space, while the decoder recovers the quantized latent skills to the language embeddings. A single vector
is chosen from the codebook in each step and used to quantize the encoder outputs. The diffusion model is used as an action
predictor conditioning on current state and skill(or language).

Approach
LCSD is a two-stage imitation learning structure that com-185

prises an encoder-decoder model for skill acquisition and a
conditional diffusion policy for action prediction. In the first
stage, the skill encoder and decoder learn a codebook of la-
tent skill vectors corresponding to languages conditioned on
states. The diffusion policy then predicts the subsequent ac-190

tion directly, conditioned on the current state and latent skill
generated by the skill encoder. An overview of our approach
is depicted in Figure 2.

Problem Formulation
We consider learning in general environments modeled as195

the Markov decision processes (MDPs). In each environ-
ment, we are provided with an offline dataset consisting of
N demonstration sequences obtained from a diverse set of
tasks using a behavior policy. Each trajectory consists of
state-action pairs with one language label over T time steps.200

For multi-task environments, each language describes a
set of tasks with varying quantities. The states and actions
performed by the agent were stored as pairs along with a
single language instruction in each trajectory .

τi = {s0, a1, a1, ..., sT , aT , l}Ni=0 .

Mutual Information Skill Learning in LCSD
In language-based imitation learning environments, the
agent executes actions based on tasks specified through lan-
guage. Therefore, the skills we learned must closely re-
late to the language instructions. Firstly, we directly max-205

imize the mutual information between skills and language

I(z, l), where z represents skill sets for the entire trajectory.
In multi-task environments, a single language may involve
multiple skills, as shown in Figure 1. In such cases, skills
need to segment the trajectory into sub-tasks based on dif- 210

ferent states. For example, when executing the instruction
open the drawer and pick up the cup, our skill needs to dis-
tinguish the current task of the agent based on whether the
drawer is already open or not. To this end, we further aim
to maximize the mutual information between skill and lan- 215

guage conditioned on the current state, denoted as I(l; z|s).
In summary, our goal is to maximize:

F = I(z; l) + I(l; z|s)
= H(l)−H(l|z) +H(z|s)−H(z|l, s) (2)
= H(z|s) + Ez∼p,s∼D[log p(z|s, l)]+
Ez∼p,l∼D[log p(l|z)] + Const, (3)

As shown in Equation 2, we use forward form on I(z; l)
and reverse form on I(z|l, s). H(l) represents the entropy
of language instructions, which is constant in our offline 220

dataset. The second term focuses on how our skills are re-
lated to language. The third term expects our skill distri-
bution to have high entropy for better generalization con-
ditioned on states. For the last term, our goal is to map de-
terministic discrete skills with current state and language in- 225

structions as conditions.
In Equation 3, we express the formula in the form of a

probability distribution, where skills are sampled from a uni-
form distribution p(z), and states s and language l are sam-
pled from the stationary offline dataset. We implicitly opti- 230

mize H(z|s) by initializing unused codes for a broader range
of skill selection and explicitly approximate the lower bound
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Figure 3: MI training curve in Calvin and LORel with
difference skill learning methods. We show the mutual in-
formation curves of our method during training in different
environments on different skill learning methods.

of conditional probability distribution by neural networks,
the skill encoder pθ(z|l, s) and the skill decoder qϕ(l|z). The
encoder constrains the predicted skills for each step, while235

the decoder updates macroscopic language instruction re-
construction after skill generation on the entire trajectory.
The ultimate optimization goal can be simplified as maxi-
mizing the lower bound of our objective F(θ, ϕ):
F(θ, ϕ) ≥ H(z|s)+E[log pθ(z|s, l)]+E[log qϕ(l|z)]. (4)

We plot MI curves in four skill acquisition methods in Fig-240

ure 3: skill learning method in LISA(Garg et al. 2022),
which only contains a skill encoder, LISA with code reini-
tialization(to maximize H(z|s)), VQ-VAE(last two terms on
Equation 4), and LCSD. The metric value represents the
mutual information between the skill and language-state,245

I(z; l, s) = H(l, s)−H(l, s|z). Figure 3 demonstrates that
the mutual information increases more significantly when
the skill-language decoder and code reinitialization are uti-
lized. Compared to the Calvin environment, a single trajec-
tory corresponds to multiple sub-tasks in the LORel dataset,250

which requires a stronger correlation between language and
skills. Hence, adding a decoder proves more effective in im-
proving MI in the LORel environment compared to Calvin.
More details of the skill learning structure are shown below.

Skill learning255

VQ-VAE is an unsupervised generative model for represen-
tation learning that uses an encoder to map images into la-
tent space and a decoder to reconstruct the original image.
In previous works on imitation learning, a skill encoder was
used to directly map states to skills without a decoder, re-260

sulting in unstable, non-interpretable skills for task analysis
(Sudhakaran and Risi 2023; Garg et al. 2022). (Mazzaglia
et al. 2022) used the complete VQ-VAE framework for skill
discovery, where a decoder was used to reconstruct states
for computing rewards to update the world model in Actor-265

Critic training. LISA (Garg et al. 2022) introduced language
into VQ training to solve decision-making problems with
IL. However, a single encoder mapping discrete skills from
language-state embeddings is inadequate in learning the di-
rect relation between skills and languages, resulting in poor270

stability in different environment settings(Figure 6). More
LISA skill maps are shown in the Appendix.

To address this, we jointly map the state and language
to latent skill vectors when selecting skills, following VQ-
VAE. The skill encoder pθ(s, l) learns as a language-state275

representation. In vector quantization (VQ), a codebook
comprising M latent codes of skill vectors z1...M is utilized,
and the skill vector closest to the encoder output is selected.

1 1 1 3 3 5 5

1 3 5 𝐶𝐿𝐼𝑃 𝑇𝑒𝑥𝑡 𝐸𝑛𝑐𝑜𝑑𝑒𝑟

open drawer and move 
black mug left and turn 

faucet right

MSE
Loss

Figure 4: Instruction Semantic Recovery Diagram. The
decoder’s objective is to choose a distinct skill from each
consecutive group within a trajectory and calculate the mean
squared error (MSE) loss using the frozen CLIP language
embedding.

Instruction Semantic Recovery: In language-based
multi-task environments, we propose a language 280

reconstruction-based VQ-VAE to better learn the spe-
cific tasks corresponding to skills in different states. We
introduce a decoder corresponding to the last term of our
optimization goal (Equation 4), which solely aims to align
the skill vectors with the language representation. Unlike 285

previous work(Mazzaglia et al. 2022), our decoder does not
participate in subsequent policy updates but rather serves
to optimize the correspondence between the embeddings
generated by the skill encoder and the language.

We present the structure of our skill decoder in Figure 4. 290

As language contains varying amounts and types of skills in
different trajectories, we consider consecutive selections of
the same skill as a sub-task and choose the first code from
every consecutive group of equivalent skill codes. The de-
coder takes a discrete set of skills as input and outputs a 295

vector, which is compared to the language vector obtained
from a frozen CLIP text encoder using MSE loss.

Lskill = − log qϕ(l|z)− log pθ(z|s, l)
= ∥qϕ(U(zq(s, l)))− E(l)∥22 +
β ∥pθ(s, l)− sg(zq)∥22 .

(5)

U represents the unique selection of discrete skills, and E
refers to the CLIP text encoder(Radford et al. 2021) that is
frozen during training. The skill loss is comprised of two 300

components: the reconstruction loss and the commitment
loss, both of which are incorporated in the VQ training pro-
cedure according to Equation 1. By minimizing the skill
loss, we simultaneously maximize the Mutual Information
based on Equation 4. 305

Skill Reinitialization: Selecting a single code may lead
to index collapse during the skill learning period due to pref-
erential selection (Kaiser et al. 2018). We also encountered
similar situations in some environments during evaluation,
as shown in the upper image in Figure 6. To address this 310

issue, we used codebook reinitialization, which aims to in-
volve more codebook vectors in skill learning and code se-
lection. Inspired by (Mazzaglia et al. 2022), We recorded



times of codes selected within a certain training iteration and
reinitialized codes with proper skill encoder vectors. Reini-315

tialized codes can directly participate in skill selection and
updates in subsequent training.

We selected encoder outputs pθ(si, l) to reinitialize inac-

cessible code zkq with a probability of
d2
p(z

k
q ,si,l))∑

s d2
p(z

k
q ,si,l)

, Where
i is the index corresponding to the output of the encoder that320

selected the replacement codepθ(s, l) is the output from the
skill encoder on the last training batch, N represent the to-
tal number of skills in the codebook, and dp is the fraction
of the Euclidean distance between the encoder output and
codebook embedding. Unlike (Mazzaglia et al. 2022), we325

choose an embedding closer to the current code for more
stable skill generalization.

d2p(z
k
q , si, l) =

1∥∥pθ(si, l)− zkq
∥∥2
2

. (6)

Unlike previous works, our approach incorporates a gen-
eralized strategy of not only initializing unused codes but
also resetting the entire code set with a specified probability.330

This decision is motivated by our observation that inactive
skills during the initial training phase can lead to significant
instability in the early stages of training. To determine the
reset probability, we calculate it proportionally to the ratio
of each skill to the average skill selection. By adopting this335

method, we aim to enhance the stability and effectiveness of
the training process.

zkq =

p(
d2
p(pθ(si,l))∑
s d2

p(pθ(s,l))
) ∗ pθ(si, l), y > Mk∗N∑N

j=1 Mj
,

zkq , y < Mk∗N∑N
j=1 Mj

(7)

Where M represents the number of times each skill is
selected during this training session, and y is a randomly
generated float value ranging from 0 to 1. We aim to initial-340

ize the code with fewer prior selections, enabling more effi-
cient updates in subsequent training iterations. We anticipate
improved training efficiency and effectiveness by prioritiz-
ing initializing less frequently selected codes. Notably, our
skill reinitialization method only takes place in the first 200345

epochs of training, as we aim to make the most of each skill
as possible while maintaining the way skills are learned.
Therefore, fewer steps to initialize can avoid excessive hu-
man intervention in training and achieve better results.

Diffusion policy for Imitation Learning350

We adopt the Denoising Diffusion Probabilistic Model
(DDPM) (Ho, Jain, and Abbeel 2020) as our policy base
model. The denoising network aims to predict the random
noise added to the action in each iteration. The noisy input in
each iteration can be formulated as ai =

√
ᾱia+

√
1− ᾱiϵ,355

where ᾱ are process variances, and random noise ϵ is sam-
pled from a Gaussian distribution N(0, I).As an imitation
policy to solve language condition tasks, our diffusion model
can support language or skill information along with the cur-
rent state as input simply by modifying the conditional input360

dimension. We modified the policy training loss as follows:

Lddpm−s(θ) = Eϵ,i,s,a,l,z

[
∥ϵ− ϵθ (ai, s, z)∥2

]
.

s.t. ϵ, i ∼ U , (s, a, l) ∼ D, z ∼ zq(s, l)
(8)

Where i is sampled from U [1, T ], denoise network ϵθ is
trained to predict random noise with state, action noise, and
skill(or language) as input.

To combine skill (or language) and image features, we 365

used different linear layers similar to the Temporal U-Net
as our diffusion denoising network. For each MLP block,
separated linear layers were used to unify the dimensions of
the action noise, state, timestep, and skill embedding (lan-
guage), and then they were added together. The final linear 370

layer of the network outputs noise with the same dimension
as the action. This network was designed to fully utilize con-
ditional information. The detailed structure is shown in the
Appendix.

LCSD is an end-to-end imitation policy, and we provided
an overall structure feature in Figure 2. We developed a high-
level skill generator based on a VQ-VAE model, which dis-
cretizes the latent space. The generated skills were then used
in a diffusion policy as conditional information to predict the
next-step action. The overall loss combines skill and imita-
tion policy as:

LLCSD = αLskill + γLddpm−s,

where α and γ are used to balance the behavior cloning (BC) 375

and skill learning losses.

Algorithm 1: LCSD
Initialized Model: diffusion policy π, skill encoder pθ, skill
decoder qϕ, CLIP encoder E , Codebook quantize on encoder
q
for training iterations i = 1...N do

Sample batch τ = {l, (s0, a0), (s1, a1), ...(sT , aT )}Bi=0
Skill learning Period
if Skill learning then

for each trajectory τ do
z0:T ← pθ(s0:T , E(l))
record unselected codes in list u

end
Compute skill loss Lskill with Equation Lskill =
Lreconstruct + Lcommitment

if i < reinitupdate and i mod reinitstep = 0 then
reinitialize unused code in list u with probability
on Equation 7.

end
end
Behavior Cloning Period

if Skill learning then
a
′

0:T = π(s0:T , q(pθ(s0:T , E(l))))
else

a
′

0:T ← π(s0:T , E(l))
end
Compute Behavior cloning loss Lddpm−s

update with LLCSD = αLskill + γLddpm−s

end



Table 1: Success rate for all tasks. We show our LCSD performance in different environments compared to the Baselines
mentioned below. The best method is shown in bold.

Task Original Lang+DT LISA LISA+init Lang+Diffusion LCSD
BabyAI GoToSeq 40.4 ± 1.2 62.1 ± 1.2 65.4 ± 1.6 - 65.2 ± 8.6 67.8 ± 8.2
BabyAI SynthSeq 32.6 ± 2.5 52.1 ± 0.5 53.3 ± 0.7 - 55.1 ± 2.5 57.6 ± 2.2
BabyAI BossLevel 28.9 ± 1.3 60.1 ± 5.5 58.0 ± 4.1 - 55.0 ± 3.4 60.5 ± 7.4
LORel sawyer state 6 ± 1.2 33.3 ± 5.6 6.7 ± 3.3∗ 43.4 ± 0.2 43.0 ± 1.5 60.2 ± 5.7
LORel sawyer obs 29.5 ± 0.07 15.0 ± 3.4 10.3 ± 1.4∗ 24.5 ± 4.3 36.6 ± 3.8 45.5 ± 5.1
Calvin 32.5 ± 2.5 11.7 ± 0.8 10.1 ± 3.3 10.9 ± 0.4 37.5 ± 2.6 33.6 ± 1.3
* We optimize LISA with official code from (Garg et al. 2022) but cannot get normal performance on LORel

due to index collapse.

Experiments
Tasks
To verify the LCSD’s effectiveness, we selected three bench-
marks: LORel Sawyer dataset (Nair et al. 2021), BabyAI380

navigation (Chevalier-Boisvert et al. 2018), and Calvin robot
tasks (Mees et al. 2022), which are all language-based
and imitation learning environments without reward. Other
benchmarks either lack language conditioning settings (Yu
et al. 2020; Gupta et al. 2019) or focus on single-task en-385

vironments with complex observation representations that
generate hardly interpretable skills (Shridhar, Manuelli, and
Fox 2022).

For the BabyAI benchmark, we used 10k trajectories eval-
uating three challenging tasks, namely GoToSeq, SynthSeq,390

and BossLevel. We collected an offline dataset of 50k trajec-
tories on LORel and evaluated the performance on several
task settings. For the Calvin benchmark, we directly select
1216 trajectories from the Calvin-D dataset relevant to the
six tasks we modified. To eliminate interference on image395

encoders and focus solely on evaluating the underlying pol-
icy, we directly select the 21-dimensional perspective state
of the Calvin environment as observation input. More infor-
mation on datasets is shown in the Appendix.

Baselines400

We compared our proposed LCSD with several baselines in
our experiments:

Original: The BC baselines from original papers on
three benchmarks. In BabyAI we adopt their RNN-based
method(Chevalier-Boisvert et al. 2018). In the LORel envi-405

ronment, we compared with the planner algorithm as lan-
guage conditioned BC baseline. We trained MULC from
(Mees et al. 2022) on our Calvin setting by changing the
vision encoder into a simple MLP for perspective state ob-
servation.410

Language conditioned DT policy: A behavior cloning
Decision Transformer(DT)(Chen et al. 2021) based policy
that takes the language instruction and past observations as
inputs to predict action.

LISA(Garg et al. 2022): A hierarchical imitation learning415

structure based on a skill encoder and DT based policy.
LISA with code reinitialization: LISA with code reini-

tialize to better generalize skill code, denoted as LISA init.

LCSD on DT policy: We apply the skill learning method
of LCSD to the DT policy, referred as LCSD+DT. 420

Language Condition Diffusion Policy: An imitation
learning structure with diffusion policy condition on lan-
guage. Different from LCSD, the input of the diffusion
model is language tokens generated by the CLIP text en-
coder and current observation. We modify the structure by 425

directly minimizing the behavior cloning loss in Equation 9.

Lddpm−l(θ) = Eϵ,i∼U,(s,a,l)∼D

[
∥ϵ− ϵθ (ai, s, l)∥2

]
.

(9)

Results
We evaluated our approach in three environments. BabyAI
serves as the most straightforward task with discrete ac-
tions for 2D navigation, while LORel is a medium-difficulty 430

multi-task language environment based on Metaworld. Ta-
ble 1 presents the overall results for different tasks. All al-
gorithms were trained for 1500 iterations over three seeds.
Notably, LCSD outperformed the other language condition
BC methods in various tasks. Specifically, LCSD showed 435

superior performance in multi-task and complex LORel en-
vironments.

Diffusion model can leverage stability in difficult
tasks: While serving as a long-horizon benchmark, the lan-
guage label in Calvin corresponds to a single skill, which is 440

different from the other two benchmarks (See appendix for
more dataset details). We mainly introduce Calvin to eval-
uate the performance of different imitation learning models
on difficult tasks rather than to measure the effect of skill
learning. The dataset we selected for Calvin only contains 445

only 1216 trajectories, making the tasks even more challeng-
ing.

Our diffusion policy performed well in different tasks
without requiring special modifications to the parameters,
particularly excelling four times in Calvin tasks(Comparing 450

DT and Diffusion column in Table 1). Table 2 lists the suc-
cess rates in six different tasks, clearly showing that the
diffusion-based policy outperforms DT-based models. It is
typical for language-based models to exhibit slightly supe-
rior performance compared to skill-based models as a re- 455

sult of employing limited training data in Calvin, along with
massive redundant data. More detailed information about
Calvin’s task settings can be found in the Appendix.
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Figure 5: The overall task success rate in LORel Sawyer Environment. Performance of different algorithms on different
task settings on LORel Sawyer state and image environments. The three algorithms on the left are all based on the DT model,
while the three on the right are based on the diffusion model.

Table 2: Success rate on Calvin tasks

Calvin Tasks DT model Diffusion model
language skill language skill

Turn on ledbulb 0 0 0.63 0.13
Turn off ledbulb 0.25 0.13 0.25 0.13
Move slider left 0 0.13 0.12 0.38
Move slider right 0 0 0.5 1.0
Open drawer 0 0 0.25 0.13
Close drawer 0.25 0.25 0.5 0.25
Overall 0.083 0.085 0.375 0.336

Skill Visualization: To demonstrate the specific mean-
ing of the discrete skills generated by our algorithm, we460

recorded the correlation between language and the selection
of skill codebook during evaluation, as done in (Garg et al.
2022). We first show the skill map of (Garg et al. 2022) in
the upper image and find that most of the skills in the code-
book are not involved in training. Different tasks can only465

be divided into two types of skills, which cannot be effec-
tively trained, lea-ding to index collapse. The lower image
in Figure 6 shows that all 20 codes were selected during
evaluation, with a strong correspondence observed between
language tokens and skill codes. For instance, Skill code 19470

(the nineteenth column) corresponds to the action ”turn/ro-
tate faucet right/clockwise,” while skill code 0 (the zero col-
umn) represents ”rotate handle rightward and open drawer.”
It is reasonable for a single skill to indicate these two tasks
because in LORel, the faucet is placed before the drawer,475

making it convenient for the agent to move the handle to the
right while opening the drawer. More detailed skill maps are
shown in the Appendix.

Ablation Study
Importance of Code Reinitialization and Instruction Re-480

covery: Figure 3 shows that the mutual information between

Figure 6: Skill-language mapping in LORel state environ-
ment. Up: skill-language graph on LISA(single encoder);
Down: skill-language diagram of our LCSD.

language and skills is significantly increased when using
language decoder and code reinitialization. To clarify the
specific meaning of discrete skills, we plot corresponding
word frequency on LCSD with and without code reinitializa- 485

tion and reconstruction in Figure 6. The comparison between
the two figures clearly indicates that without the support of
these two methods, the selection of code skills is limited to a
small number, which is also observed in the DT(Chen et al.
2021) model, with even greater severity. The usage of code 490

reinitialization provided a significant improvement in this
case. In Appendix we display more skill maps with differ-
ent LCSD settings in different environments.

Generality of skill learning method: Our skill-learning
method can be extended to different models. In DT-based 495

models, we observed index collapse in LORel environments,
leading to poor test results. However, this problem was re-
solved by adding code reinitialization (Table 1). Figure 5



shows more detailed experiment results on LORel. By com-
paring our approach with LCSD combined with DT, it be-500

comes evident that our approach can be used for the DT-
based model for better skill discovery. More skill frequency
figures and results are shown in the Appendix.

Stability in multi task settings and varying parame-
ters We conducted detailed experiments on different types505

of settings in the LORel environment, as shown in Figure 5,
to investigate whether language settings affect the model’s
performance in multi-tasks. By manipulating various words
within sentences, we aimed to enhance skillful semantic
comprehension. ”seen tasks” refers to language descriptions510

that were identical to the training set. At the same time, ”hu-
man” indicates completely different sentences that convey
the same meaning. Our LCSD with code reinitialization and
language recovery outperformed other methods in almost all
the task settings. In VQ-VAE, the number of skill vectors in515

the codebook M and the number of combined skill vectors
in the language decoder are relatively essential parameters.
However, we found our LCSD to be robust enough to these
choices, as shown in the Appendix.

Table 3: Inference time of LCSD and DT based model in
three benchmarks(second per episode).

Policy Timestep N CALVIN LORel BabyAI

DDPM

25 297 623 560
50 619 720 840
75 880 1023 1240

100 1200 1400 2000
DDIM - 256 525 450
DT - 225 801 500

Inference time of Diffusion policy: The diffusion pol-520

icy’s inference phase is time-consuming and depends on the
hyperparameter timestep n. Therefore, we explored the im-
pact of different timestep values in the BabyAI environment
in the appendix. When set to 100 in the experiment, the eval-
uation time is approximately two to three times longer than525

the DT-based model. We list different inference times on dif-
ferent timestep among three benchmarks in Table 3. To en-
sure both efficiency and accuracy, we recommend that the
n timestep should be defined as 50 for the experiment. For
further study, we adopt the DDIM evaluation phase on our530

model and set the time step to 10. In this case, LGSA per-
formed faster than DT during the evaluation phase and per-
formed better than DDPM with low timesteps.

Conclusion
In this paper, we have presented LCSD, a novel skill-535

based imitation learning framework designed for the pur-
pose of multi-task skill discovery and behavior cloning
in a language-conditioned environment. Our approach has
demonstrated excellent performance in generating discrete
skills while aligning with language in different environ-540

ments. By initializing with diverse codes and establishing
a stronger connection between skills and language through
the language decoder, we have achieved more accurate and
stable skill representations.

Limitations and Future Work: Our approach does not 545

analyze the interconnections between different skills, which
can be crucial in multi-tasking problems that are typically
decomposed into a series of related sub-tasks. It is an inter-
esting avenue for future research, with the potential to learn
powerful skills to extend to more unknown tasks. 550
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