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a b s t r a c t

Collaborative filtering (CF) methods based on graph convolutional network (GCN) and autoencoder
(AE) achieve outstanding performance. But the GCN-based CF methods suffer from information
loss problems, which are caused by information lossy initialization and using low-order Chebyshev
Polynomial to fit the graph convolution kernel. And the AE-based CF methods obtain the prediction
results by reconstructing the user-item interaction matrix, which does not conduct deep excavation
of the behavior patterns, resulting in the limited-expression ability.

To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional
Network (VE-GCN) for CF. Specifically, we use a variational autoencoder (VAE) to compress the
interactive behavior patterns as the prior information of GCN to achieve sufficient learning, thus
alleviating the information lossy initialization problem. And then the generalized graph Laplacian
convolution kernel is proposed in GCN to handle the high-frequency information loss problem caused
by Chebyshev Polynomial fitting in the GCN-based CF. To the best of our knowledge, VE-GCN is a
feasible method to handle the information loss problems mentioned above in GCN-based CF for the first
time. Meanwhile, the structure of GCN is optimized by removing redundant feature transformation and
nonlinear activation function, and using DenseGCN to complete multi-level information interaction.
Experiments on four real-world datasets show that the VE-GCN achieves state-of-the-art performance.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Recommender system, as the key technology of personalized
ervice in the age of the Internet, has attracted wide attention
ecause it can manage the information explosion phenomenon
ffectively and generate commercial value. Collaborative filtering
CF) is a classic recommendation method that filters tons of
nformation according to the historical interaction data and uses
he collaborative information to screen out the items that the
sers may be interested in. The original collaborative filtering
ethods calculate the similarity between users and items ac-
ording to the user-item historical interaction matrix by cosine
imilarity [1] and Pearson correlation coefficient [2] and so forth.
fter obtaining the scores ranked by the similarity of users and
tems, the final recommendation results are generated. But there
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is a problem called the ‘‘head effect’’, which means popular items
will be recommended more frequently than unpopular items
because they have participated in more interactions. That is to
say, popular items will be more popular, while unpopular items
will be more unpopular. To solve the problems of obvious head
effect and weak generalization ability of the original collaborative
filtering, some matrix factorization (MF) [3] methods for CF are
proposed. They obtain embeddings of users and items by MF
of the historical interaction matrix, and make the inner product
of the embeddings to generate recommendation results, such as
FunkSVD [4], LFM [5], and NMF [6], etc. However, MF at this time
is not expressive enough in the way of obtaining user and item
representations, therefore limiting the performance.

With the rapid development of computing resources, graph
neural network (GNN)-based CF has been widely studied and
has achieved outstanding performance. CF is essentially the link
prediction problem of the bipartite graph of users and items, and
this kind of graph-based task can be solved well by GNN. The
core idea of GNN-based CF is to use GNN to learn user behavior
patterns and item co-occurrence relationships into embeddings,
and obtain the final prediction results through feature interaction
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unctions. Graph Convolutional Network (GCN) [7–9] is a kind of
NN, which has a strong ability to learn non-Euclidean structure
ata while maintaining computational efficiency. Based on graph
opology, GCN uses spectrum theory to complete feature prop-
gation and information aggregation through graph convolution.
ome GCN-based CF methods have achieved state-of-the-art per-
ormance, and the learning ability of GCN-based CF: NGCF [10],
ightGCN [11], LR-GCCF [12] and so forth, on the node embed-
ings exceeds that of the DNN- or CNN- based CF: NCF [13],
NCF [14], etc. The widely used GCN [7] uses the first-order
hebyshev Polynomial to fit the graph convolution kernel in order
o maintain the simplicity of the calculation, which leads to the
oss of high-order eigenvalues. Inspired by the related work of
raph node clustering AGC [15], in the eigendecomposition of
he graph Laplacian matrix, the eigenvectors corresponding to
maller eigenvalues have lower frequencies and are smoother.
herefore, the Chebyshev Polynomial fitting process makes the
raph convolution operation essentially a process of applying
ow-pass filters to the signals on the graph, and correspondingly
eads to the loss of high-frequency information in the node signal.

GCN was first proposed for node classification tasks [16,17]
nd was applied to CF later, but there is an essential difference
etween node classification and CF, so the existing GCN cannot
e directly migrated to CF in parallel. FAGCN [18] emphasizes
hat the low-frequency information and the high-frequency in-
ormation describe the similarities and the differences of the
odes in the network respectively. Therefore, the low-frequency
nformation obtained through GCN is an advantage for node clas-
ification tasks, because the essence of node classification tasks is
o aggregate similar nodes. However, for CF, the bipartite graph
f users and items is a heterogeneous graph. The user’s latent
epresentations and the item’s latent representations are ob-
ained by aggregating the item collections and the user collections
espectively. The similarity and difference measures of nodes are
nknown on different types of nodes. It is difficult for us to
now whether the CF requires low-frequency or high-frequency
nformation specifically. Then, without knowing whether low-
requency or high-frequency information is needed, the previous
CN-based CF uniformly discarded high-frequency information. If
e can retain this kind of high-frequency information effectively,
e will be able to learn more suitable embeddings, thereby

mproving the prediction results of CF.
There are various studies on the information loss problems of

CN-based recommender systems at present. In [19], the problem
f temporal information loss in recommender systems is studied,
ocusing on incremental GCN how to save temporal information
rom the last period and the current period. [20] focuses on the
nformation loss problems in the session-based recommendation,
amely the lossy session encoding problem and the ineffective
ong-range dependency capturing problem, and these two prob-
ems are both about the ineffective conversion of sessions and
re closely related to sequence information. In [21], it is men-
ioned that compressing the neighbor information of all orders
nto a fixed-size vector in GCN will cause the loss of important
nformation in the transmission process. However, we focus on
he problems of information loss in GCN-based CF, which pays
ttention to the problem of migration of GCN into CF in parallel,
nd is different from the above literature.
To summarize, the existing GCN-based CF has achieved the

OTA performance, but there are problems of information loss
niformly. If we can solve these problems, the recommendation
ffect will be greatly improved. To be specific, there are two
nformation loss problems in GCN-based CF: 1. Using ID embed-
ings with weak semantic information to initialize GCN input
eads to information loss initialization; 2. Using the first-order
pproximation of Chebyshev Polynomial to fit graph convolution
ernel leads to information loss learning.
2

To solve the above problems, we propose VE-GCN for CF. On
the one hand, VE-GCN uses variational autoencoder (VAE) [22]
to learn robust users’ and items’ embeddings from the initial
interaction matrix as the prior information to enrich the learn-
ing process of the GCN. The general GCN-based CF is initialized
with ID embeddings obeying the standard normal distribution.
This initialization method based on the central limit theorem
is universal. Firstly, non-universal normal distributions can be
learned by VAE to personalize the initialization of nodes in the
network. Also, the node distributions learned by VAE have bet-
ter generalization attributes. Secondly, the user-item interaction
information extracted by VAE should contain high-frequency and
low-frequency information at the same time, because of the not
frequency-specific learning method, so it can be more conducive
to the subsequent GCN learning process. On the other hand,
a generalized graph Laplacian convolution kernel is used for
processing the graph signals while keeping the computational
simplicity of the model. The generalized graph Laplacian con-
volution kernel can process low-frequency and high-frequency
information at the same time. Therefore, the information loss
problem in GCN caused by Chebyshev Polynomial fitting is han-
dled. Meanwhile, we optimize the structure of the existing GCN
to simplify the calculation and improve the performance. Specifi-
cally, we remove redundant feature transformation and nonlinear
activation function, and then introduce DenseGCN to connect
each layer. Experiments prove that VE-GCN has achieved state of
the art performance.

In summary, the main contributions of this paper are as fol-
lows:

• We summarize the problems of information loss in GCN-
based CF for the first time. To solve the problems, we pro-
pose a decoupling model VE-GCN.

• We use VAE to compress historical interactive data as the
prior information to learn the interactive information suf-
ficiently and use generalized graph Laplacian convolution
kernel to process the low- and high-frequency informa-
tion. We use the above methods to solve the problems of
information loss in GCN. Also, GCN is optimized by remov-
ing feature transformation and nonlinear activation function
to simplify the calculation, and introducing DenseGCN to
achieve multi-level information interaction.

• Experiments on four real-world datasets show that the VE-
GCN achieves state-of-the-art performance. What is more,
VE-GCN alleviates the problems of information loss in GCN-
based CF to some extent.

2. Related work

In this section, we will briefly summarize the relevant work of
GCN-based CF and the relevant work of VAE.

2.1. GCN-based collaborative filtering

GCN is based on the graph topology structure and uses spec-
trum theory to apply convolution operation on the graph struc-
ture data to complete data mining. Data mining refers to the
process of searching key information hidden in a large amount of
data through algorithms, what we want to emphasize here is that
GCN can find in the topology graph the important information we
need. The input of CF is bipartite graph data, so GCN can be widely
used in CF and can be roughly divided into Graph-Autoencoder-
based and Graph-Deep-Learning-based methods.

GC-MC [23] regards the recommendation prediction problem
as a link prediction problem on bipartite graphs, which uses
graph autoencoders to learn the embeddings of users and items
based on the interaction matrix, then uses bilinear decoder to get
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he reconstructed interaction matrix as the result of the model.
TAR-GCN [24] is based on the framework of GC-MC, which
roposes to stack multiple GC-MC graph autoencoder blocks, then
ses task loss and reconstruction loss to complete the recom-
ended tasks novelly. And the dropout method proposed by
TAR-GCN provides a new idea to solve the cold start problem
f the recommender system.
Graph-Deep-Learning-based CF has developed rapidly in re-

ent years. NGCF [10] uses multi-layer GCNs to get the informa-
ion embeddings of users and items and uses the inner product
f embeddings to complete the prediction task. However, the
omplex information propagation method in GCN limits the ex-
ression ability of the model. The appearance of SGC [25] sim-
lifies the structure of GCN, eliminates the nonlinear activation
unction between GCN layers, and multiple feature transforms
re folded into a linear transformation function. There is no
emantic information in the node features of GCN-based CF, while
he collaborative information hidden in the topology structure
s the focus of learning, turning SGC into a kind of information
ransmission framework that is very suitable for CF. LR-GCCF [12]
tilizes a linear embedding propagation framework similar to
GC and combines residual connections to strengthen the feature
nteraction between layers to improve the recommendation effect
f the model and alleviate the over-smoothing problem in GCN.
ightGCN [11] finds that the nonlinear activation function and
eature transformation process in GCN is meaningless, so only the
nformation aggregation in GCN is retained in LightGCN, which
ot only reduced the complexity of the model but also improved
he recommendation effect. LCF [26] discusses the impact of
implified graph convolution on CF and designs to eliminate the
oise caused by exposure and quantization in the observation
ata, therefore improving the performance of the model.

.2. Variational autoencoder

The latent representation of the autoencoder can compress
he input information well, which can obtain the dense feature
epresentations from the sparse inputs, and it is very suitable for
etting embeddings. But the original autoencoder-based models
re essentially point-to-point reconstruction methods, then the
andom sampling results of the latent representation are unrea-
onable. Therefore VAE [22] comes in. VAE aims to obtain a latent
istribution rather than a latent representation through point-
o-point reconstruction. The latent distribution of VAE has better
eneralization performance and can describe the characteristics
f the input better. β-VAE [27] introduces hyperparameter β to
he KL divergence term of VAE and makes β > 1, then the
nhancement of the KL term can increase the model’s disentan-
lement. Disentanglement means that the attributes of different
lements are separated from each other. The increase in dis-
ntanglement makes the various attributes of the input more
eparated so that the model has a better generation effect. In
-TCVAE [28], the increase in the disentanglement of β-VAE is
xplained in principle, and the KL divergence is divided into
hree sub-divergences. β-TCVAE decreases the total correlation to
ncrease the disentanglement without introducing redundant hy-
erparameters. The fusion of autoregressive distribution, multi-
cale architecture, separable convolution, swish activation func-
ion, and flow model in NVAE [29] makes an unprecedented
mprovement of the generation effect of VAE.

These variants of VAE pay more attention to the improvement
f VAE’s generation ability. The increase of disentanglement in
idden layer distribution can improve the generation ability of
AE [28]. However, we expect the distribution sampled from
AE to meet a variety of user behavior patterns, the increase of
isentanglement is of no use to us, and we will discuss this in the
xperiment part.
3

3. Model

VE-GCN is mainly an improvement for the problem of in-
formation loss in GCN-based CF. The formal definition of the
information loss problem in GCN-based CF is as follows. First,
GCN-based CF is often initialized with ID embeddings with weak
semantic information, ignoring the rich interactive information
between users and items, namely the information lossy initial-
ization. Second, since the proposal of GCN is essentially to solve
the task of node classification and so forth that requires low-
frequency information, problems arise when using GCN directly
in CF. The lost high-frequency information, which is caused by
the fitting of Chebyshev Polynomial, may be useful for CF and
the lost information lead to a decrease in performance, namely
the high-frequency information loss problem in GCN-based CF.

The target of VE-GCN is to predict whether a user will interact
with an item based on the existing user-item interaction matrix.
VE-GCN is a decoupling model, which consists of the VAE part
and the GCN part. Firstly, VE-GCN proposes to use the bottleneck
vectors, which mean the vectors obtained under the middle layer
of the encoder–decoder framework, of the VAE part as the prior
information of the GCN part to solve the problem of information
lossy initialization. The VAE part can extract the node distribu-
tions of users and items from the user-item interaction matrix
containing complex behavior patterns. It should be noted that the
information extracted by VAE includes both high-frequency and
low-frequency information. Secondly, in the GCN part, the gen-
eralized graph Laplacian convolution kernel and the optimized
graph information propagation framework are used to complete
the signal processing process. The generalized graph Laplacian
convolution kernel can preserve high-frequency information to
some extent. In this way, the information loss calculation of GCN
in CF caused by Chebyshev Polynomial fitting is handled. We
get the predicted ratings through the feature interaction function
based on the users’ and items’ embeddings got by the GCN part.
The final recommendation results are obtained by sorting the
predicted ratings. Fig. 1 shows the overall framework of VE-GCN.

3.1. Preliminary

To describe VE-GCN, we make some definitions as follows.
The interaction matrix between users and items is defined as
R ∈ R|M|×|N|, where |M| and |N| represent the number of users
and items respectively. For each element rij ∈ R, if rij = 1, it
means that there is a positive interaction between user i and
item j, such as click, purchase, browse, otherwise rij = 0. The
input of User-VAE and Item-VAE is the item sequences that the
users have interacted with and the user sequences that the items
have interacted with, respectively. That is to say the user-item
interaction matrix R and the item-user interaction matrix RT are
used as the input of the User-VAE and the Item-VAE, respectively.
The input of the GCN part are the bottleneck vectors zu of User-
VAE and the bottleneck vectors z i of Item-VAE, which are used to
initialize the users’ and items’ embeddings of the GCN part’s first
layer: e(0)

u , e(0)
i .

An undirected simple graph can be represented as G = (V , E),
where V and E represent the set of vertices and edges in the
graph, respectively. Based on this, the adjacency matrix of graph
G can be defined as A ∈ RT×T , where T represents the num-
ber of nodes in the graph. D is the degree matrix of A. As
a discrete Laplacian operator on a graph, the graph Laplacian
matrix reflects the gradient differences between the center point
and the surrounding points. The graph Laplacian matrix is the
core of performing the graph convolution operation, which ag-
gregates the neighbor information of the central node so that
each node can obtain a representation of the local topology.
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Fig. 1. The overall framework of VE-GCN. µu, µi and σ 2
u , σ 2

i represents the mean and the variance of the bottleneck vectors of the User-VAE and Item-VAE respectively.
represents the standard normal distribution N (0, 1), φ and θ represent the inference and the generate parameters in the VAE part respectively, and the φ and θ

n User-VAE and Item-VAE are not shared. e(l)
u and e(l)

i represent the embeddings of users and items at the lth layer in the GCN part respectively.
t is often used in signal processing on graph, and the most
requently used symmetric normalized graph Laplacian matrix is
efined as Lsym = I − D−

1
2 AD−

1
2 . Because of the semi-positive

efinite property of the symmetric graph Laplacian matrix, the
raph Laplacian matrix can be decomposed as Lsym = UΛUT .
represents a set of completely orthogonal bases and can be

sed as a set of bases in the frequency domain to complete
ourier Transform of spatial domain signals on the graph. Λ is

a diagonal matrix composed of the eigenvalues of the graph
nodes, each element is not negative and its values from small
to large reflect the low-frequency information to high-frequency
information in the graph. The above concepts are the theoretical
bases for completing the matrix multiplication operation in the
frequency domain and then completing the convolution operation
in the corresponding spatial domain.

3.1.1. Widely used graph convolution form
In order to avoid the huge complexity of calculation for eigen

decomposition of the Laplacian matrix, the commonly used layer-
wise graph convolution process is defined as follows:

Q (l+1)
= σ (D̃

−
1
2 ÃD̃

−
1
2 Q (l)W (l)), (1)

here Ã = A + I , A represents the adjacency matrix of the
raph, I represents the identity matrix, D̃ is the degree matrix of

˜ . Q (l) represents the feature embedding matrix of the lth layer,
(0) represents the initial node feature matrix. W (l) represents

he lth layer feature transformation matrix, and σ (·) represents

he activation function, such as ReLU [30], etc. D̃
−

1
2 ÃD̃

−
1
2 is used

or neighbor information aggregation, and W (l) is used to perform
eature space transformation.

.2. The VAE part

In VE-GCN, there are two independent VAEs based on users
nd items: User-VAE and Item-VAE, which use historical interac-
ion to generate prior information. The prior information is used
o achieve sufficient learning. The process of VAE can be divided
nto two steps: the inference process and the generate process. To
how details in the VAE part, we take User-VAE as an example,
nd the process of Item-VAE is similar.

.2.1. The inference process
The inference process refers to the process of generating ran-

om variables, from the random process, which will be further
sed by the generate process.

φ (xu) = MLP (xu) ≡
[
µφ (xu) , σ 2

φ (xu)
]

∈ R2K . (2)

Multi-Layer Perceptron (MLP) can approximate any complex poly-
nomial theoretically. For user input xu (the sequence of items
that user u interacts with), we use MLP · to fit µ x ∈ RK
( ) φ ( u)

4

and σ 2
φ (xu) ∈ RK respectively, which are used to form the user’s

hidden layer feature distribution. φ represents the set of inference
parameters, gφ (xu) represents the variational parameter equation
learned by MLP (·). [·, ·] represents µφ (xu) and σ 2

φ (xu) are stored
in gφ (xu) in sequence, the first K terms of gφ (xu) are µφ (xu), and
the last K terms are σ 2

φ (xu).
Suppose that zu is a random variable sampled from the stan-

dard normal distribution, i.e., zu ∼ N (0, 1), which is used to
ensure that the noise of the VAE part always exists and prevents
the VAE part from degenerating into an ordinary autoencoder, so
as to ensure the generation ability of the VAE part. The formation
process of the posterior distribution qφ (zu|xu) is as follows:

qφ(zu|xu) = N
(
µφ(xu), diag

(
exp(σ 2

φ (xu))
))

∈ RK , (3)

where diag
(
exp(σ 2

φ (xu))
)

represents the diagonal matrix with
exp(σ 2

φ (xu)) as the element. qφ(zu|xu) depicts the distribution of
user’s hidden layer features and reflects the attributes of user u
in K dimensions. The distribution of item’s hidden layer features
is as follows:

qφ(zi|xi) = N
(
µφ(xi), diag

(
exp(σ 2

φ (xi))
))

∈ RK . (4)

3.2.2. The generate process
The generate process refers to the process of generating data

through the mapping equation based on the variable parameters
obtained from the above-mentioned inference process.

π (xu|zu) = softmax
(
exp(fθ (qφ(zu | xu)))

)
, (5)

where fθ (·) represents a non-linear MLP, θ represents the set of
generate parameters. The probability vector π (xu|zu) represents
the probability of obtain xu after given the potential distribution
zu, which is generated by sending exp(fθ

(
qφ(zu | xu)

)
) through

softmax(·).

3.2.3. The optimize process
First of all, the optimization goal of VAE is to get the maximum

likelihood estimation (MLE) [31] of xu, and the formula is as
follows:

L = max
θ

∑
xu

log p (xu; θ). (6)

After formula reasoning in [22], the optimization goal has be-
come to maximize the evidence lower-bound ELBO ≡ L(xu; θ, φ) :

log p (xu; θ) ≥ Eqφ (zu|xu) [ log pθ (xu | zu)]

− KL
(
qφ (zu | xu) ∥ p (zu)

)
≡ L (xu; θ, φ) .

(7)

log pθ (xu | zu) =

∑
xui logπi(xu | zu). (8)
i
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We use the multinomial distribution to estimate xu as in Multi-
AE [32], and regard the KL (·) as a regularization term, then the
ormula can be improved into the following form:

(xu; θ, φ) ≡ Eqφ (zu|xu) [ log pθ (xu | zu)]

− β · KL
(
qφ (zu | xu) ∥ p (zu)

)
,

(9)

where β represents the hyperparameter, indicating the degree of
regularization. We use the same annealing trick as in [32] for β .

For a detailed description of the algorithms, you can refer to
lgorithm 1.

Algorithm 1 User-VAE Training Algorithm

Input: R ∈ R|M|×|N|: the user-item rating matrix; Ep: the epochs;
β: the regularization hyperparameters;

1: Randomly initialize θu, φu;
2: for iter ∈ 0,1,..., Ep do
3: Sample a batch of users U;
4: for all u ∈ U do
5: Sample ϵ ∈ N (0, IK );
6: Compute zu via Eq.(3-3);
7: Compute loss L and gradient ∆θuL and ∆φuL with zu;
8: end for;
9: Average gradients from batch;

10: Update θu, φu by optimizer;
11: end for
Output: the hidden distribution of users zu computed by

Eq.(3-10).

The prior information zu, z i provided to the GCN part are
defined as follows:

zu =
µu + exp(σ 2

u ) ×
ϵ
τ

∥µu + exp(σ 2
u ) ×

ϵ
τ
∥∞

, z i =
µi + exp(σ 2

i ) ×
ϵ
τ

∥µi + exp(σ 2
i ) ×

ϵ
τ
∥∞

, (10)

here µu, µi and σu
2, σi

2 represent the mean and variance fitted
y the User-VAE and the Item-VAE inference process respectively,
represents the standard normal distribution N(0, 1), τ repre-

ents the ϵ’s scaling hyperparameter, ∥·∥∞ represents the infinite
orm.

.3. The GCN part

GCN-based CF usually uses the IDs of users and items with
eak semantic information as initial nodes features. We use
AE enhancement to solve this kind of initialization problem
ith information loss. More importantly, the GCN as a low-
ass filter is beneficial for tasks such as node classification, but
he lost high-frequency information may be useful for CF. GCN-
ased CF methods do not consider that the GCN process has the
igh-frequency information lossy problem, so in addition to VAE-
nhanced, we further introduce a generalized graph Laplacian
onvolution kernel. We will discuss this in detail in Section 3.5.
In order to give the matrix form of the GCN calculation pro-

ess, the adjacency matrix form of the user-item interaction graph
s defined as follows:

=

(
0 R
RT 0

)
. (11)

The Laplacian matrix is defined as: L = D − A, where D
epresents the degree matrix of A: Dii =

∑
j Aij. The Lapla-

cian matrix can be eigen-decomposed as: L = UΛUT , where
U = [u1, . . . , un], Λ = diag([λ1, ..., λn]). {ul}

n
l=1 represents all

orthogonal eigenvectors, and {λl}
n
l=1 represents all non-negative

eigenvalues.
5

The Normalized Laplacian matrix is defined as follows, we
directly use L to represent it for simplicity:

L = D−
1
2 (D − A)D−

1
2

= I − D−
1
2 AD−

1
2 .

(12)

The purpose of normalizing the Laplacian matrix is to prevent
the features of nodes with large degrees from becoming larger
and larger, while the features of nodes with small degrees become
smaller and smaller, thereby preventing the problem of vanishing
gradient or exploding gradient.

In order to introduce the generalized graph Laplacian convolu-
tion kernel, we define the generalized Laplacian smoothing filter
H as follows:

H = I − κL. (13)

H can be seen as a special smoothing filter. Assuming the input
signal is x, the filtered signal x̃ is defined as:

x = Hx = U(I − κΛ)UTx =

n∑
i=1

(1 − κλi)x, (14)

where 1 − κλ is the frequency response function, κ ∈ R.
The selection of the frequency response function will affect the
filtering effect of H on different frequencies. When using the t-
order generalized Laplacian smoothing filter, which is actually
a multiple smoothing process, we get the filtered signal X̃ as
follows:

X = HtX . (15)

The formula reasoning of H in matrix form:

H = I − κ

(
I − D−

1
2 AD−

1
2

)
= (1 − κ)I + κ

(
D−

1
2 AD−

1
2

)
. (16)

Then we get the complete generalized graph Laplacian convo-
lution kernel form as follows:

ξ = Ht
= [(1 − κ)I + κ

(
D−

1
2 AD−

1
2

)
]
t . (17)

H is essentially a low-pass filter, so the high-order Laplacian
convolution kernel will increase the loss of high-frequency infor-
mation, and we will verify this in the experimental part, then the
generalized graph Laplacian convolution kernel with t = 1 is used
as the filter in our GCN process. For the selection of the parameter
κ , the distribution of the eigenvalue Λ should be considered,
assuming the maximum value of the eigenvalue to be λmax. Ac-
cording to AGC [15], when κ < 1

λmax
, H is still a low-pass filter,

but some high-frequency components are retained. So we can
design a low-pass filter that retains some of the high-frequency
information. Since obtaining λmax through matrix factorization
will add huge computational complexity to our model, we set κ

s a hyperparameter.
The GCN part aims to mine the topological relationship of

he graph, so as to obtain the interactive behavior patterns of
sers and items. Inspired by LightGCN [25], the feature transfor-
ation and nonlinear activation function in GCN are redundant
perations for CF, which will increase the computational com-
lexity and affect the expressive ability of the model. In order to
educe model complexity and improve model performance, we
emove the redundant feature transformation and nonlinear ac-
ivation function in the GCN. Meanwhile, DenseGCN [33] is used
o achieve dense connections between layers, which strengthens
he feature interaction and improves the robustness (see Fig. 2).
he aggregation operation of the user and item nodes at the
l + 1)-layer in VE-GCN is defined as follows:

(l+1) (
(0) (1) (l))
eu = ξγ eu , eu , . . . , eu ,
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Fig. 2. DenseGCN method. The dashed line represents that the output of each layer of GCN will pass through another GCN layer, where the Average Sum represents
the mean cascade function.
1

1
1

e(l+1)
i = ξγ

(
e(0)
i , e(1)

i , . . . , e(l)
i

)
, (18)

here e(l+1)
u and e(l+1)

i represent the embeddings of users and
tems in the (l + 1)th layer respectively, ξ represents the gen-
ralized graph Laplacian convolution kernel, zu and z i are the

hidden layer vectors obtained through User-VAE and Item-GCN.
e(0)
u and e(0)

i are initialized with zu and z i, and γ (·) represents the
cascade function to connect different layers. The mean function is
used as the cascade function in VE-GCN. The final feature embed-
dings of users and items are defined as the mean values of each
layer’s embeddings after passing through another generalized
graph Laplacian convolution kernel:

Eu =
1
L

L−1∑
l=0

ξ(e(l)u ), E i =
1
L

L−1∑
l=0

ξ(e(l)i ), (19)

where L is the total number of graph convolution layers. The inner
product is used as the feature interaction function, and then the
final rating prediction R̂ui is got through the users’ and items’
feature embeddings:

R̂ui = ET
uE i. (20)

3.4. Model training

It should be noted that VE-GCN is not an end-to-end model.
The VAE part and GCN part are trained separately so that user-
item interaction information can be learned in different manners
through VAE and GCN, then the combination of the interaction
information can boost the performance of VE-GCN.

The training of the GCN part uses the BPR loss [34], which is
defined as follows:

LBPR = −

M∑
u=1

∑
i∈Nu

∑
j/∈Nu

lnσ (ŷui − ŷuj) + λ∥∆(0)
∥
2, (21)

here λ represents the regularization parameter, ŷ represents
he predicted rating between users and items, Nu represents
he neighbor nodes of user u. It should be noted that only the
arameters of the first embedding layer ∆(0) need to be learned
uring the information propagation process of GCN. For more
etails refer to Algorithm 2.

.5. Information loss problem

Regarding the information lossy initialization, we will give
mpirical proof in the experimental part, and here we will pro-
ide theoretical proof for the high-frequency information loss
roblem. The experimental part also proves that the loss of
igh-frequency information will cause a sharp decrease in the
F.
The Graph Laplacian matrix can be eigen-decomposed as L =

ΛU T . The conversion between the spatial domain signal x ∈ Rn

and the frequency domain signal x̂ ∈ Rn can be completed by
Fourier Transform and inverse Fourier Transform. The implemen-
tation process is as follows:

ˆ
T

ˆ
x = U x, x = Ux. (22)

6

Algorithm 2 GCN Part Training Algorithm

Input: κ: the Laplacian convolution kernel coefficient; t: the
Laplacian convolution kernel order; R: the user-item rating
matrix; Ep: the epochs; L: the number of GCN layers;

1: Compute the hidden vector zu, z i by Eq.(3-10);
2: Initialize the first embedding parameters of users and items:

e(0)
u , e(0)

i by zu, z i;
3: Compute the generalized graph Laplacian convolution kernel

by Eq.(3-17);
4: for iter ∈ 0,1,..., Ep do
5: while k < L do
6: Compute the embeddings e(k)

u , e(k)
i by Eq.(3-18);

7: end while
8: Compute the final embeddings Eu, E i by Eq.(3-19);
9: Compute the rating: R̂ by Eq.(3-20);
0: Compute loss L and gradient ∆L with R,R̂ by Eq.(3-21);
1: Update e(0)

u , e(0)
i by optimizer;

2: end for
Output: the final rating R̂ computed by Eq.(3-20);

Given the signal x in the spatial domain and the convolution
kernel y, the graph convolution ∗G is defined as:

x ∗G y = U ((U T x) ⊙ (U Ty)). (23)

U Ty is the convolution kernel in the frequency domain. Let
U Ty = [θ0, . . . , θn−1], gθ = diag([θ0, . . . , θn−1]) :

x ∗G y = UgθU T x. (24)

The above formula is approximated by Chebyshev Polynomial
to reduce the number of parameters of gθ , and then we obtain
ChebyNet [35], the number of parameters drops from n to K :

gβ (Λ) =

K−1∑
k=0

βkΛ
k. (25)

x ∗G y = Ugβ (Λ)U T x =

K−1∑
k=0

βkLkx. (26)

In GCN [7], it has K = 2, then they reduce the number of
parameters through the first-order Chebyshev Polynomial. How-
ever, only the low-order eigenvalues are fitted at this time, mak-
ing the essence of GCN a kind of low-pass filter and causing GCN
to be a calculation process with a high-frequency information loss
problem.

The propagation rules of GCN [7] are as follows:

x ∗G y = β0x + β1Lx. (27)

Assume β = β0 = −β1:

x ∗G y = β(I − L)x. (28)

Continue to give the definition of t-order graph convolution,
which is used to verify the low-pass filtering effect of the GCN
convolution kernel in the experimental part:

x ∗ y = [β(I − L)]tx = [β(D−
1
2 AD−

1
2 )]tx. (29)
G
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In summary, the information lossy initialization of GCN-based
F due to ignoring user-item interaction information can be
olved by VAE enhancement, VAE is used to model a variety
f interaction patterns as the prior information to strengthen
he learning process of GCN. And the problem of high-frequency
nformation loss caused by Chebyshev Polynomial fitting can be
olved by using the generalized Laplacian convolution kernel
hat can preserve high-frequency information. It should be men-
ioned that due to the non-frequency-specific learning method
f VAE, VAE can acquire both low- and high-frequency informa-
ion. Then the generalized graph Laplacian convolution kernel,
hich introduces frequency response function, is used to perform
onvolution to process the low- and high-frequency information
imultaneously. The current information is obtained from both
AE and graph topology through graph convolution.

. Experiment

To verify the effectiveness of VE-GCN, we conduct a series of
xperiments to verify the following research questions. It should
e noted that the experimental figures on different datasets that
re not shown in this paper show consistent results.

• RQ1: Is there an information loss problem in GCN-based CF?
• RQ2: Is the addition of the VAE part helping the sufficient

learning of the interactive information?
• RQ3: How does the generalized graph Laplacian convolution

kernel affect VE-GCN?
• RQ4: Which information propagation mode is suitable for

VE-GCN?
• RQ5: How does the disentanglement in VAE affect VE-GCN?

.1. Baselines and datasets

The datasets used in the experiments include AMusic, LastFM,1
l-1M,2 and Yelp2018, of which the AMusic and Yelp2018 are

rom DeepCF [36] and LightGCN [11]. For Ml-1M, we discard the
ast item in the list of items that interacted by users, and the
iscarded items do not participate in training and testing. For
astFM, we use ‘‘User-Listened Artist Relations’’ of ‘‘Hetrec2011-
astfM-2K’’ as the user-item interaction matrix, where ‘‘artist’’
s used as the item here. The ratio between the training set
nd testing set of AMusic, LastFM, and ML-1M is 9:1. For larger
ataset: Yelp2018, is 8:1. We randomly divide the dataset twice,
onduct three experiments on each randomly divided dataset,
nd take the mean and variance of the final experimental results.
he specific details of the dataset are shown in Table 1. All
atasets are with explicit ratings, and we regard all user ratings
f items as positive interactions, even low ratings are considered
ositive interactions. The reason for this is that rating information
s difficult to obtain under realistic conditions, interaction logs are
he source of information in most cases. To verify the models un-
er realistic conditions, we only regard the dataset as interaction
ogs and do not care about the specific ratings. However, we will
erform a translation experiment between ratings and positive
nteractions in a later section.

• NGCF [10]: NGCF learns users’ and items’ embeddings by us-
ing complex GCN on the user-item interaction graph, finally
uses the inner product of the learned embeddings to pre-
dict the ratings. However, the process of redundant feature
transformation and nonlinear activation function in NGCF
increases the complexity and degrades the performance of
the model.

1 https://grouplens.org/datasets/hetrec-2011/.
2 https://grouplens.org/datasets/movielens/.
7

Table 1
Details of the datasets used in the experiments.
Dataset User Item Interactions Density

AMusic 1776 12,929 46,087 0.00201
LastFM 1892 17,632 92,834 0.00278
Ml-1M 6040 3706 994,169 0.04441
Yelp2018 31,668 38,048 1,561,406 0.00130

• LightGCN [11]: LightGCN migrates GCN to the collabora-
tive filtering, in which GCN only retains the most impor-
tant part for CF: neighbor aggregation. Nevertheless, Light-
GCN has the problem of information loss caused by fit-
ting the convolution kernel with the first-order Chebyshev
Polynomial.

• MultiVAE [32]: MultiVAE uses VAE for collaborative filtering,
which can surpass the modeling capabilities of linear mod-
els. MultiVAE is a polynomial likelihood generation model
that uses variational Bayesian inference to infer parameters.
However, MultiVAE’s VAE-based infrastructure is too simple
to capture the potential user-item relationship well.

• LR-GCCF [12]: LR-GCCF combines simple graph convolution
and residual connection. The residual connection can alle-
viate the over-smoothing problem in the process of graph
convolution. Nevertheless, LR-GCCF has the problem of us-
ing ID embeddings to initialize and the information loss
caused by the improper selection of the convolution kernel.

4.2. Experimental metrics

• RECALL@Y [37]:

RECALLu @Y =
|Relu ∩ Recu|

Relu
, (30)

where Relu represents the item set related to user u, and
Recu represents the top Y items recommended to user u. The
intersection of Relu and Recu is divided by the number of
Relu (Relu = Y ) to get RECALLu @Y . Average the RECALLu @Y
of each user to get the final result RECALL@Y .

• NDCG@Y [38]:

DCGY =

Y∑
i=1

2reli − 1
log2(i + 1)

,

IDCGY =

Y∑
i=1

1
log2(i + 1)

,

NDCGu@Y =
DCGY

IDCGY
,

(31)

where reli represents the relevance of the recommended
item to user u at the top i position. Average the NDCGu @Y
of each user to get the final result NDCG@Y .

For the metrics of our experiments, we set topY to top20,
which is a balanced choice. Such a choice can take into account
the recommendation effect of a sufficient number of items, and
will not make the items at the end of the recommendation list
unnecessary because of the excessive number of Y .

4.3. Parameters setting

In MultiVAE, the learning rate is 1e − 3, the decoder dims are
(200, 600), the optimizer is Adam. In LR-GCCF, the learning rate
is 1e − 4, the embedding size is 64, the optimizer is Adam. In
LightGCN, the learning rate is 1e − 3, the embedding size is 64,
the GCN layer is 3, the optimizer is Adam. In NGCF, the learning

https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/movielens/
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Table 2
Comparison of the models on LastFM, AMusic, Ml-1M, and Yelp2018. VE-GCN-nD represents VE-GCN without using DenseGCN. The best results are indicated in bold,
and the second-best results are underlined. The calculation of Improv. is based on Light-GCN.

NGCF LightGCN MultiVAE LR-GCCF

LastFM RECALL@20 0.2700 ± 1.02e−05 0.2971 ± 6.63e−06 0.2573 ± 8.06e−07 0.2736 ± 1.19e−04
NDCG@20 0.2203 ± 3.60e−06 0.2468 ± 2.76e−06 0.2000 ± 1.23e−06 0.2245 ± 7.82e−05

AMusic RECALL@20 0.0716 ± 2.37e−05 0.0944 ± 6.62e−06 0.0836 ± 1.90e−06 0.0924 ± 9.16e−06
NDCG@20 0.0442 ± 1.43e−05 0.0624 ± 3.18e−06 0.0522 ± 2.81e−06 0.0587 ± 4.49e−06

Ml-1M RECALL@20 0.2728 ± 2.85e−06 0.2855 ± 4.88e−06 0.2714 ± 4.39e−06 0.2688 ± 1.51e−06
NDCG@20 0.2839 ± 9.20e−06 0.2975 ± 1.10e−05 0.2662 ± 1.33e−05 0.2844 ± 1.24e−05

Yelp2018 RECALL@20 0.0834 ± 9.34e−08 0.0945 ± 4.12e−07 0.0807 ± 1.08e−07 0.0849 ± 2.89e−08
NDCG@20 0.0718 ± 4.61e−08 0.0821 ± 6.82e−08 0.0690 ± 5.16e−07 0.0719 ± 1.56e−08

VE-GCN-nD VE-GCN Improv.

LastFM RECALL@20 0.3054 ± 7.95e−08 0.3067 ± 4.42e−07 3.23%
NDCG@20 0.2528 ± 4.42e−06 0.2540 ± 2.11e−07 2.92%

AMusic RECALL@20 0.1055 ± 3.81e−06 0.1043 ± 1.88e−06 11.76%
NDCG@20 0.0665 ± 8.39e−07 0.0659 ± 6.10e−07 6.57%

Ml-1M RECALL@20 0.2911 ± 9.39e−06 0.2929 ± 1.57e−10 2.59%
NDCG@20 0.3010 ± 1.04e−05 0.3051 ± 6.19e−08 2.55%

Yelp2018 RECALL@20 0.0974 ± 3.67e−07 0.0998 ± 1.27e−07 5.61%
NDCG@20 0.0844 ± 2.33e−08 0.0863 ± 1.47e−08 5.12%
Fig. 3. Comparative experiments between VE-GCN on AMusic and Yelp2018.
ate is 1e − 4, the embedding size is 64, the optimizer is Adam.
ll baseline parameters are consistent with the official ones. In
E-GCN, we set KL regularization weight β = 0.2 of VAE part;
2 regularization weight λ = 1e − 4 of GCN part; scaling value
= 10; generalized graph Laplacian convolution kernel order

= 1; generalized graph Laplacian convolution kernel coefficient
are [0.5, 0.9, 0.9, 0.8] on AMusic, LastFM, Ml-1M and Yelp2018

espectively. User-VAE encoder dimension: [N-800-64*2]; Item-
AE encoder dimension: [M-800-64*2], which means that K is
et to be 64; User-VAE training epoch is 200; Item-VAE training
pochs are [1000,500,500,500] for AMusic, LastFM, Ml-1M and
8

Yelp2018 respectively; the number of GCN layers are [4,5,5,5] on
AMusic, LastFM, Ml-1M and Yelp2018 respectively. The dimen-
sion of the VAE decoder is symmetrical: if the dimension of the
encoder is [N-800-64*2], then the dimension of the decoder is
[64-800-N]. The weight initialization method of the VAE part is
the Xavier initialization [39], and the bias initialization method is
the normal distribution initialization. The cascade function γ (·) of
the GCN part is the mean function. The optimizer of the VAE part
and the GCN part is Adam [40], and the learning rate is set to 1e–
3. The selection of hyperparameters is the result of a small-scale
grid search. Better experimental results can be obtained if a more
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Fig. 4. VE-GCN’s high-order convolution kernel experiment on AMusic, where t represents the order of the convolution kernel, and κ is set to 1 uniformly.
1
s

omprehensive grid search is conducted. Experiments are run for
000 epochs or stopped after 50 epochs with no performance
mprovement.

.4. Performance analysis

.4.1. Model comparison experiment
The comparative experimental results of the model are shown

n Table 2. We compare the performances of VE-GCN with other
aseline models. The experimental results of Table 2 show that
he performance of VE-GCN on each dataset surpasses other base-
ine models. It also proves that the addition of DenseGCN can im-
rove the performance of VE-GCN generally, because DenseGCN
ntegrates the embeddings of multiple layers to achieve multi-
ayer information interaction. LightGCN is currently the most
dvanced collaborative filtering model based on graph convolu-
ional network. Experiments (see Fig. 3) show that the perfor-
ance of VE-GCN on each dataset is better than LightGCN.

.4.2. GCN-based CF information loss problem (RQ1)
There are two information loss problems in GCN-based CF.

irstly, the use of ID embeddings with weak semantic information
o initialize network nodes causes information lossy initializa-
ion. The ID embeddings used for GCN-based CF initialization
re generally set to obey the standard normal distribution. The
niversality assumption of this standard normal distribution ini-
ialization may not be consistent with every dataset. We will
ontinue to discuss this problem in Section 4.4.3. Secondly, the
se of first-order Chebyshev Polynomial to fit the convolution
ernel causes the loss of high-frequency information. About the
oss of high-frequency information, Fig. 4 shows that high-pass
ignals are suppressed in the graph convolution process, when
he order t increases, the filtering ability of the low-pass filter
increases, and more signals are suppressed, resulting in further
degradation of model performance.

If we can propose solutions to the two information loss prob-
lems verified above, we will be able to obtain more appropriate
node representations, thereby obtaining better recommendation
prediction results.

4.4.3. VAE information mining experiment (RQ2)
The existing GCN-based CF is generally initialized with the

standard normal distribution N(0, 1), which is on account of the
entral limit theorem. But in specific situations, we can further
ine the interaction matrix to provide prior information for the

nformation aggregation process of GCN. So we think of using VAE
o enhance the network.
 o

9

The bottleneck vectors of the VAE part are actually normal
distributions fitted by the network, which also conform to the
central limit theorem. VAE captures the interactive behavior pat-
terns between users and items as the initial prior information,
and the prior information represents the node characteristics of
users and items in the graph to some extent.

It can be seen from the experimental results in Fig. 5 that the
spatial distributions of the information formed by the VAE part of
VE-GCN are more stable and more convergent than the standard
normal distribution. The experimental results of Fig. 6 prove
that the bottleneck vectors of the VAE part provide different
hypothetical distributions for each user and item. It shows that
the VAE part can provide non-universal prior hypotheses for VE-
GCN. The characteristic information of users and items learned
from the hidden layer distributions is provided to the GCN part
for the nodes’ embeddings learning.

The experimental results in Fig. 7 verify our above conclusions.
Normal-GCN has no VAE part and uses the standard normal
distribution for initialization. Fig. 7 proves the initialization in-
formation loss problem of GCN-based CF can be solved well
by VAE enhancement. The addition of the VAE part improves
the performance of the model significantly, indicating that the
VAE part can extract the interactive mode of users and items
effectively.

4.4.4. Generalized graph Laplacian convolution kernel (RQ3)
Using a generalized graph Laplacian convolution kernel

adapted to the data distribution of different datasets can im-
prove the performance of VE-GCN (see Table 3), and can retain
the topology information to a greater extent, then alleviate the
information loss of GCN-based CF.

After experimental verification, the maximum eigenvalues
λmax obtained by the Laplacian matrix decomposition are [1,
, 1] on the Amusic, LastFM, and Ml-1M separately, and the
elected optimal Laplacian convolution kernel coefficients κ are
[0.5,0.9,0.9] respectively. When κ < 1

λmax
, making the generalized

graph Laplacian convolution kernel a low-pass filter essentially
but still retains part of the high-frequency information, which
further reduces the information loss problem caused by the
first-order Chebyshev Polynomial approximation.

According to Fig. 8, it can be seen that the performance of
the cooperative work of using VAE and generalized Laplacian
graph convolution kernel on VE-GCN is the best. And Fig. 8 also
reflects that the performance of nV+K is not necessarily better
than nV+nK. On AMusic, Ml-1M, and Yelp2018, the performance
of nV+K is better than nV+nK, while the result is slightly worse
n LastFM. It shows that the effectiveness of the high-frequency
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Fig. 5. Comparison of the distributions obtained through the VAE part of VE-GCN and the standard normal distribution on AMusic.
Fig. 6. Hidden distributions learned by the VAE part of VE-GCN on AMusic.
nformation and the low-frequency information for CF in different
atasets is inconsistent. However, high-frequency information is
till beneficial in general. According to Fig. 9, it can be seen that
o matter what the value of k is, the effect of VE-GCN is better.
he user and item representations learned by VAE can be better
perated by the generalized graph Laplacian convolution.
10
4.4.5. Ablation experiment of GCN propagation mode in VE-GCN
(RQ4)

The results of ablation experiments (see Fig. 10) prove that
GCN without feature transformation and nonlinear activation
function is more suitable for VE-GCN. This is also observed in
LightGCN, which is initialized with ID embedding with weak
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Fig. 7. Comparison experiment of VE-GCN and Normal-GCN on AMusic and LastFM, κ is set to 1 uniformly.
Fig. 8. Comparison of ablation experiments of VE-GCN on LastFM, AMusic, Ml-1M, Yelp2018. V+K represents VE-GCN, nV+K represents VE-GCN without enhancing
y VAE, V+nK represents VE-GCN without using generalized graph convolution kernel, nV+nK represents VE-GCN without enhancing by VAE and using generalized
raph convolution kernel. Experiments related to k have taken the best results.
emantics. In this way, the feature transformation and nonlinear
ctivation function in GCN are only suitable for data with rich
emantic information. If used in CF where the input data has no
ctual semantics, it will bring higher model complexity and lead
o performance degradation. In addition, the experimental results
lso prove that our research direction for graph convolution filters
s correct. For CF, we should focus on processing the signals on
11
the graph instead of feature space conversion and nonlinear acti-
vation function, and it also provides new thinkings and directions
for future work.

4.4.6. Explanation of disentanglement in VE-GCN (RQ5)
According to Fig. 11, we can see that when β increases, the

latent distribution of the VAE part of VE-GCN becomes more
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t

Fig. 9. Comparison experiment of VE-GCN and Normal-GCN with different k on AMusic.
Table 3
Influence of different generalized graph Laplacian convolution kernel coefficient k on VE-GCN. The best results are indicated in bold.
Dataset Metrics k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5 k = 0.6 k = 0.7 k = 0.8 k = 0.9 k = 1.0

AMusic RECALL@20 0.1066 0.1094 0.1091 0.1101 0.1148 0.1125 0.1138 0.1128 0.1131 0.1136
NDCG@20 0.0619 0.0648 0.0651 0.0660 0.0665 0.0669 0.0670 0.0665 0.0668 0.0646

LastFM RECALL@20 0.2652 0.2687 0.2713 0.2753 0.2766 0.2807 0.2815 0.2816 0.2815 0.2801
NDCG@20 0.2047 0.2092 0.2117 0.2140 0.2156 0.2179 0.2189 0.2195 0.2200 0.2187

Ml-1M RECALL@20 0.2605 0.2661 0.2707 0.2757 0.2762 0.2836 0.2858 0.2922 0.2918 0.2920
NDCG@20 0.2613 0.2662 0.2696 0.2731 0.2760 0.2826 0.2854 0.3098 0.2883 0.2893
Fig. 10. VE-GCN ablation experiment on AMusic and LastFM. Where VE-GCN-w means VE-GCN with feature transformation; VE-GCN-w,a means VE-GCN with feature
ransformation and nonlinear activation function. κ is set to 1 uniformly.
separated, indicating that the disentanglement of the distribution
increases. Experiments (see Fig. 12) show that we can achieve
12
different effects by controlling hyperparameter β . When β < 1
and the KL term is weakened, the disentanglement decreases,
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Fig. 11. The heat map of the latent distributions of the VE-GCN’s VAE part with different KL term coefficient β on LastFM. Users-LastFM refers to Users’ hidden
istribution of LastFM, and Items-LastFM refers to Items’ hidden distribution of LastFM.
Fig. 12. Influence of different KL term coefficient β on VE-GCN on LastFM.
Table 4
Comparison of training and testing time of the models on LastFM, AMusic,
Ml-1M, and Yelp2018.

Train(s)/epoch Test(s)/epoch

NGCF LastFM 1.1954 0.0701
AMusic 0.4981 0.0507
Ml-1M 40.0697 0.0929
Yelp2018 89.5185 2.6725

LightGCN LastFM 0.2111 0.0014
AMusic 0.1096 0.0012
Ml-1M 11.3632 0.0047
Yelp2018 24.1212 0.0168

MultiVAE LastFM 0.0398 0.0016
AMusic 0.0216 0.02681
Ml-1M 0.0297 0.0044
Yelp2018 0.8973 0.2191

LR-GCCF LastFM 0.0679 0.1300
AMusic 0.0374 0.0668
Ml-1M 0.7918 0.0997
Yelp2018 1.1646 3.2501

VE-GCN LastFM 0.4244 0.0095
AMusic 0.1897 0.0148
Ml-1M 27.3771 0.1878
Yelp2018 57.5635 1.4153

which means that the degree of separation of the attributes in
the latent distribution is low, and the degree of fusion is high.
When β > 1, the increase of the disentanglement means the
degree of separation of the attributes in the latent distribution
is high, and the attributes are independent mainly. This increase
of disentanglement is indeed beneficial to improve the generation
ability of models, but we pay more attention to the learning of the
latent distribution in VE-GCN. We hope to extract the distribution
that better describes the multiple interaction patterns of users
13
and items. Therefore, the increase of disentanglement is of no use
to us and will affect the effect of VE-GCN.

4.4.7. Numerical ratings and positive interactions conversion
experiment

In previous experiments, we regard all user ratings of items
as positive interactions, even low ratings are considered positive
interactions. We now conduct experiments with different ratings
as positive interactions.

Datasets used contains ratings from one to five, so we con-
duct experiments with rating ≥1, . . . , rating ≥5 are regarded
as positive interactions (see Fig. 13). It can be seen that the
rating conversion experiments on the two datasets show different
results, indicating the results depend on the specific dataset.
NDCG and RECALL of Ml-1M show two opposite performances:
for RECALL, we have 5 > 4 > 3 > 2 > 1, while for NDCG, we
have 1 > 2 > 3 > 4 > 5. NDCG and RECALL of AMusic are
not exactly the opposite: for RECALL, we have 3 > 5 > 1 >

2 > 4, while for NDCG, we have 1 > 3 > 2 > 4 > 5. As a
general result, low-rating conversion is more favorable for NDCG,
which focuses on the sorting order, while high-rating conversion
is more favorable for RECALL. High-rating means users have great
willingness to choose the corresponding items, which has great
advantages for RECALL focusing on the overall results.

4.4.8. Time analysis of methods
The equipment for our experiments is NVIDIA GeForce RTX

2080 Ti. Referring to Table 4, we can see the results of training
time and testing time: NGCF > VE-GCN > LightGCN.

We mention that VE-GCN is a decoupling model, where the
training of User-VAE and Item-VAE will bring additional time
consumption. In Fig. 14, we show the percent of the additional
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Fig. 13. Numerical ratings and positive interactions conversion experiments on AMusic and Ml-1M.
Fig. 14. The percent of User-VAE+Item-VAE training time to the training time
f GCN part of VE-GCN on LastFM, AMusic, Ml-1M, Yelp2018.

ime consuming on average to each epoch. Especially on Ml-
M and Yelp2018, which take a long time to train, almost no
dditional time consuming is brought. For AMusic and LastFM, the
raining time of both is relatively short, so the increased training
ime would not cause a computational burden.

. Conclusion and future work

We propose the information loss problems of GCN-based CF
or the first time. Then we propose a novel framework named VE-
CN, which combines GCN and VAE to optimize the information
14
propagation framework of CF. Specifically, we use the embed-
dings of VAE as the prior information to learn the interactive in-
formation sufficiently. Then we use the generalized graph Lapla-
cian convolution kernel for the graph convolution to process the
low- and high-frequency information simultaneously. Therefore,
the information loss problems in GCN-based CF are alleviated,
which is caused by insufficient learning of the interactive infor-
mation and fitting graph convolution kernel with the low-order
Chebyshev Polynomial. At the same time, we optimize the infor-
mation propagation method of GCN. Specifically, we remove re-
dundant feature transformation and nonlinear activation function
to simplify the calculation and to improve the performance of VE-
GCN, and DenseGCN is introduced to achieve multi-level infor-
mation interaction. Experiments show that our method achieves
state-of-the-art performance, and a feasible method to handle the
information loss problems in GCN-based CF is proposed for the
first time.

Time complexity is always an issue, we will continue to figure
out the optimization method of the algorithm in future work.
And there may be other undiscovered information loss prob-
lems of GCN-based CF, if they can be found and solved, better
recommendation results will be obtained. And we will consider
other collaborative methods based on AE and GCN. In the tightly
coupled working mode, there are two directions of information
flow interaction, so a better information modeling effect can be
obtained. We will consider the tightly coupled working mode
of AE and GCN for collaborative filtering. In addition, the pre-
training of GCN is one of the potential methods to solve the
sparse data problem in graph learning tasks, and we will further
consider pre-training methods based on the generative model or
based on comparative learning to improve the performance of the
GCN-based collaborative filtering methods.
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Table 5
Notations.
Notation Meaning

R Interaction matrix between users and items
|M| Number of users
|N| Number of items
zu Bottleneck vector of User-VAE
zi Bottleneck vector of Item-VAE
e(l)u Users’ embedding of the GCN part’s lth layer
e(l)i Items’ embedding of the GCN part’s lth layer
V Set of vertices
E Set of edges
G = (V , E) Undirected simple graph
T Number of nodes in the graph
A Adjacency matrix of the graph
D Degree matrix of A
Lsym Symmetric normalized graph laplacian matrix
I Identity matrix
U Eigenvector matrix
Λ Eigenvalue matrix
Ã Ã = A + I
D̃ Degree matrix of Ã
Q(l) Feature embedding matrix of lth layer of GCN
W(l) Feature transformation matrix of lth layer of GCN
σ Activation function
xu User input
xi Item input
φ Set of inference parameters
θ Set of generate parameters
β Regularization hyperparameter
µu Mean fitted by User-VAE
σ 2
u Variance fitted by User-VAE

µi Mean fitted by Item-VAE
σ 2
i Variance fitted by Item-VAE

ϵ Standard normal distribution N(0, 1)
τ Scaling hyperparameter of ϵ

H Generalized Laplacian smoothing filter
ξ Complete generalized graph Laplacian convolution kernel
Eu Final feature embedding of users
Ei Final feature embedding of items
R̂ui Final rating prediction
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