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Abstract

Detecting edges in images suffers from the problems of
(P1) heavy imbalance between positive and negative classes
as well as (P2) label uncertainty owing to disagreement be-
tween different annotators. Existing solutions address Pl
using class-balanced cross-entropy loss and dice loss and
P2 by only predicting edges agreed upon by most annota-
tors. In this paper, we propose RankED, a unified ranking-
based approach that addresses both the imbalance problem
(P1) and the uncertainty problem (P2). RankED tackles
these two problems with two components: One component
which ranks positive pixels over negative pixels, and the
second which promotes high confidence edge pixels to have
more label certainty. We show that RankED outperforms
previous studies and sets a new state-of-the-art on NYUD-
v2, BSDS500 and Multi-cue datasets. Code is available at
https://ranked-cvpr24.github. io.

1. Introduction

Detecting contours of objects in a given image is a fun-
damental problem in Computer Vision. It has been ap-
proached as a machine learning problem since the intro-
duction of the influential BSDS dataset [1]. As with any
learning-based approach, characteristics of the training data
affects performance. One striking issue regarding ground-
truth contour data is that contours are rare events. For ex-
ample, in the BSDS dataset, only 7% of all pixels within an
image are marked as edge pixels'. This creates a significant
imbalance between the positive (edge) and negative (non-
edge) classes, which hinders the training of machine learn-
ing models. Another important issue observed in edge data
is the uncertainty regarding the ground-truth annotations.

TEqual contribution.

I Although some studies call such high-level, semantic edges as “con-
tour” and low-level edges as “edge”, we follow the recent literature
[12, 15, 39, 44, 55] and use the term “edge” for contours in the rest of
the paper.
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(b) RankED with its Ranking and Sorting Components
Figure 1. (a) Current approaches threshold label certainties and
class-balanced cross-entropy loss for training edge detectors. (b)
With RankED, we propose a unified approach which ranks pos-
itives over negatives to handle the imbalance problem and sorts
positives with respect to their certainties.

There exist a non-trivial amount of variation between the
annotations produced by different human annotators, which
essentially creates noise in the supervisory signal.

These two issues of edge ground-truth data, namely the
imbalance and uncertainty, have long been known, how-
ever, efforts to address them have remained limited. For
the imbalance problem, although there is a vast literature on
long-tailed and imbalance learning (see, e.g., [46, 53]), re-
searchers have only explored using Dice Loss [10-12] and
weighted cross-entropy loss [20, 29, 39, 44, 49], which mit-
igate the problem to a certain extent. However, as we show
in this paper, they are far from finding the optimal solu-
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tion. The label uncertainty has been tackled using edge pix-

els agreed by most annotators [12, 20, 29, 39, 49] (Figure

1(a)). A recent exception is the study by Zhou et al. [55]

who proposed jointly learning the mean and variances of la-

bels using multi-variate Gaussian distributions. To the best
of our knowledge, this is the only work in literature to at-
tempt the uncertainty problem.

In this paper, we address both the imbalance and the
uncertainty problems encountered in edge detection using
ranking-based losses. We draw inspiration from the re-
cent success of ranking-based losses in object detection
[6, 36, 40, 41] and instance segmentation [36]. Similar
to edge detection, the data in these problems also manifest
high imbalance between classes [35]. In particular, AP Loss
[6] and RS Loss [36] have shown to outperform focal loss
and weighted cross-entropy in these problems. Their suc-
cess stems from the ability to naturally balance the gradients
for different classes [34]. Inspired by these works, we pro-
pose RANKED, which basically uses a ranking-based loss
function to learn from data (Figure 1(b)). When a training
image has only one annotation, then RANKED tries to rank
edge pixels above non-edge pixels. When there are multiple
annotations per training image, RANKED not only tries to
rank edge pixels above non-edge pixels but also to sort edge
pixels with respect to their annotation certainty.
Contributions. Our main contributions are as follows:

e We propose RANKED, a new ranking-based loss func-
tion for edge detection.

e RANKED simultaneously addresses the imbalance and
uncertainty issues commonly encountered in edge detec-
tion datasets.

e Our experiments on three edge detection datasets (BSDS,
NYUDv2, MultiCue) show that when integrated with
Swin-Transformer, RANKED consistently outperforms
all SOTA models in average precision (AP).

2. Related Work

Edge Detection. Before the rise of deep learning, the
conventional edge detection methods were based on hand-
crafted filters such as Sobel [25], Canny [4], and Lapla-
cian of Gaussian [32]. Deep learning has enabled detect-
ing edges directly from data and has provided high quality
results [3, 10, 20, 23, 26, 31, 38, 39, 42, 44, 49, 50, 55].

Earlier deep learning based methods [2, 3, 42] used fea-
tures extracted from fixed patches. In this approach, CNNs
detect edges using extracted patches around candidate con-
tour points. Following studies extended this patch-based
approach with end-to-end learning. These studies focused
on detecting edges at multiple scales [49] by combining
features at different layers [29] and in cascades [15, 20]
and making these networks faster [44]. Recently, attention-
based modules and transformers have been shown to pro-
vide significant improvements [12, 39].

Loss Functions for Edge Detection. Edge detection
is generally tackled using score-based classification losses,
e.g., Cross Entropy (CE) Loss [20, 39, 44, 49]. However,
owing to the severe imbalance problem between positives
(P) and negatives (N'), CE Loss is often weighted with a
class balancing (CB) factor, e.g. as follows [49]:

Lop = Z —Byilog(pi)—(1-B)(1—y;) log(1—p;), (1)

where p; is the edge prediction probability for pixel ¢ and
y; 1s its target. The terms are multiplied with weights to
mitigate the imbalance issue: 8 = |[N|/|N U P|, (1 — B)
= |P|/|IN U P|. With these weights, class-balanced loss
function applies a higher penalty for edge pixels as they are
rare.

A more common approach is to use an adaptation of the
Dice Loss [45] for edge detection [10—12]:

Zipzz + Zz %2

2
221‘ DPilYi @

Lpice =

where ¢ runs over all pixels. Dice Loss is often combined
with CE Loss [10-12]:

Ltina = aLprce + BLCE, 3)

where a and ( balance the two loss functions.

Although there are studies that propose regularization
terms to improve edge detection quality (e.g., sharpness
[12]); Cross Entropy, Class Balanced Cross Entropy and
Dice are the de facto losses used for training deep edge de-
tectors. To the best of our knowledge, there are no ranking-
based losses proposed as an alternative.

Using Uncertainty in Edge Detection. Although uncer-
tainty has been shown to be a useful measure for various
Computer Vision problems such as classification [24], ob-
ject detection [19, 27], depth estimation [21, 37], and se-
mantic segmentation [22, 54], there is only one study [55]
employing uncertainty in edge detection. Zhou et al. [55]
propose an uncertainty-aware edge detector (UAED) that
exploits the multi-label nature of the edge detection prob-
lem. Their method jointly learns the mean and variance of
given inputs and constructs multi-variate Gaussian distribu-
tion using predicted mean and variance. Moreover, their
method gives more importance to the loss of pixels with
higher uncertainty.

Comparative Summary We note from the literature re-
viewed above and their summary in Table | that there are
no studies that adopt a ranking approach to edge detection.
There is only one study [55] utilizing label uncertainty in
edge detection, which, however, does not use a ranking-
based approach.
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Figure 2. An overview of RANKED. RANKED introduces two novel loss functions for edge detection: Lrank (§ 3.1) for ranking positive
pixels over background pixels, and Lsor (§ 3.2) for sorting positive pixels with respect to their (un)certainties (§ 3.3).

Ranking-based .
Method Loss Fugnction? Uncertainty?
BDCN [20] (CVPR ’19) X X
PiDiNet [44] (ICCV 21) X X
EDTER [39] (CVPR 22) X X
FCL-Net [51] (NN 22) X X
ACTD [12] (NeuroCom. "23) X X
CHRNet [15] (Pat.Rec. "23) X X
UAED [55] (CVPR ’23) X v
RANKED (This paper) v v

Table 1. A comparative summary with recent studies.

3. Methodology: RANKED

RANKED is a ranking-based solution with two novel com-
ponents for edge detection (Figure 2):

e Ranking Positives over Negatives (Lrank): RANKED is
supervised with a loss function that ranks the classifica-
tion scores of positives (edge pixels) over negatives (non-
edge pixels). For this, we use a differentiable approxima-
tion of Average Precision as a loss function, following its
successful applications in object detection [5].

e Sorting Positives with Respect to their Uncertainties
(Lsor): Positive pixels tend to have different uncer-
tainties, which can be used to adjust their supervision.
RANKED gives more priority for positive pixels with
higher certainty. For this, we adapt the loss function pro-
posed by Oksuz et al. [36] for sorting positives with re-
spect to their localization qualities in object detection.

3.1. Ranking Positive Edge Pixels over Negatives

To rank the scores of positive edge pixels higher than those
of the negative pixels, we adapt the ranking-based loss func-

tion proposed by Chen et al. [5] for object detection. Chen
et al. approximated Average Precision as a differentiable
ranking based loss function, which was later shown by Ok-
suz et al. [34] to be very robust to extreme positive-negative
imbalance. As edge detection exhibits a severe imbalance
between positive and negative classes (positive pixels are
1%, 3%, 7% of all pixels for Multicue-boundary, Multi-cue
edge, and BSDS datasets, respectively), a ranking-based
loss maximizing Average Precision (AP) can be beneficial
for edge detection.

We define Lrank, the loss for ranking positive edge pixels
above negatives in terms of Average Precision by counting
positives and negatives as follows (following the notation
introduced in Section 2 and Chen et al. [6]):

1 rank ™ (7)
i =1—AP=1— S B2 Wy
Lrank ; rank () @)

where rank™ (i) is the rank of pixel 4 among positives (P)
defined as rank™ (1) = > jep H(wyj) with zi; = pj — p;.
Similarly, rank(4) is the rank of pixel ¢ among all predic-
tions: rank(i) = > . p n H(wi;). These rank defini-
tions rely on a step function, H (), with a §-approximation
around the step, as suggested by Chen et al.:

0, T < —
H(z)={ 55 +05, —5<<s )
1, o< x
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Plugging these definitions into Eq. 4 yields:

1 2jep H (24)

ERank =1- = ;
Pl = ZjePuNH(xij)
(6)
Ly Y
zeP JEN
where L, coined as the primary term, is defined as
LRdnk H (1‘1]) (7)
ZkEPUNH (wir)

3.2. Sorting Positives with their Uncertainties

Edge detection datasets contain annotations from multiple
annotators, leading to (aleatoric) uncertainty in ground truth
labels. In RANKED, we favor accurate prediction of posi-
tive edge pixels with high certainty over those with low cer-
tainty. To this end, we use the sorting objective introduced
by RS Loss [36], where object detection hypotheses were
sorted by their localization qualities.
Following RS Loss [36], we define our sorting loss as:

EOI‘ ZOI‘
s = g 25 ol

ESort ( )) (8)

where {gor(7) and €5, (7) are a summation of current sort-
ing error and target sorting error, respectively. We define
the sorting error ¢s,,+(¢) as the average uncertainty of pix-
els with higher confidence than pixel ¢ (i.e., H(z;;) = 1):

ZH zi5) (1 —¢j), 9)

where ¢; € [0, 1] is the label certainty of pixel j (explained
in Section 3.3), and rank " (i) and H (z;;) are as defined in
Section 3.1.

The target error (5, (i) is defined as the average uncer-
tainty (1 — ¢;) over each positive pixel j € P with higher
confidence (H(z;;) = 1) and higher certainty (¢; > ¢;),
calculated as:

bron (i) = rank+

> jep H(wij) [ej 2 ] (1= ¢)
YjepH(wij)lej > ai] 7

where [P], the Iverson Bracket, is 1 if P is True and 0 oth-
erwise.

We plug the definitions of gy (2) and £, (¢) into Lgort
to obtain the primary terms as in AP Loss as follows:

Sort (1) = (10)

H(wi5)[ej > ci
Yow H(@ir)cr > ¢

L™ = (Lgore (1) — Cior (7)) , (1)

which is zero if 4, j ¢ P.

3.3. Computing Pixel Uncertainties

Previous studies create labels for the multi-label datasets as
follows: (i) Merge n annotations {y®}7_, for one RGB im-
age provided by n annotators: y* < &7_;y®. (ii) Binarize
y* using a chosen threshold 7 to obtain the training target

y:
0, fory: <7
= ¢ ’ 12
Y {1, otherwise , (12)

where i € PUN.

This approach neglects both pixel-wise and label-wise
uncertainties. Precise labeling of edges by hand is diffi-
cult. Most edge pixels annotated by humans do not overlap
with low-level edges in RGB images. Hence, the evalua-
tion procedure of edge detection tolerates localization er-
ror to match edges in predicted and ground-truth results
[14]. Therefore, a simple merging operation ignores this
pixel-wise uncertainty in training. Moreover, binarizing y*
not only leads to a loss of information about how many
times edge pixels are labeled by multiple annotators but also
causes a loss of edges that are rarely labeled among these
annotations.

To this end, we propose calculating a certainty map c
which preserves the level of agreement among annotators
(Algorithm 1). For this, first we take the pixel-wise logical-
OR of the annotations: y = OR]_; y® (g; for pixel 7).
Then, we define the certainty c; for pixel ¢ as an average of
how many annotations match an edge pixel in its d-vicinity

in{y“}o_q:

1 n
= — P~< a 1
¢ nEC(%yJ% (13)

a=1

where CP(g;,y%, d) is a commonly used function in the
edge detection benchmarks [ 1, 14] to find match predictions
(y; € y) with the ground truth (y®) within a d-Manhattan
distance (CP: Correspond Pixels).

Algorithm 1 Computing the certainty map c¢ of anno-
tations.
Input: - Set of n annotations {y“®}”_,
- Maximum distance tolerance for overlap: d.
Output: Certainty map, c (c;: for pixel 7).

I: y + y' ORy?OR... ORy"™. > Combine annotations.
2: for each edge pixel ¢ in y do

3 g L3 CP(§i, v, d) > Eq. 13.
4: end for

3.4. Overall Loss Function

‘We combine the ranking and sorting components as follows:

Loverail = Lrank + aLsort (14)
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where « is a coefficient to control influence of sorting loss
Lsort- In the case of a single-annotation dataset (i.e., n = 1),
we are unable to calculate an uncertainty map / the sorting
loss Lsor; therefore, we set « to 0 for such datasets.

3.5. Optimization

The counting-based definitions of Lganx and Lgoy pro-
hibit an autograd-based calculation of 9L, /dp; where o €
{Rank, Sort}. To address this issue, we follow the error-
driven update mechanism of Chen et al. [6] that approxi-
mates such a gradient as follows:

aEU 0 40 0 40
Op; = ZLji ji Z Lijtij7 (15)
J J

where ¢}, = 1if y, = 1 and y; = 0 for 0 = Rank; ¢}, = 1
if y = 1 and y; = 1 for o = Sort. See Chen et al. [6] for
the derivation details.

4. Experiments

Datasets. To evaluate our method, we carried out compre-
hensive experiments on three commonly used datasets:

BSDS500 [1] is one of the most popular datasets for
evaluating edge detection. It officially contains 200 images
for training, 100 images for validation, and 200 images for
testing. Each image has 321 x 481 resolution and is manu-
ally labeled by at least five different annotators, which cre-
ates aleatoric uncertainty in the ground-truth labels.

NYUDv?2 [43] contains 1449 paired RGB and Depth im-
ages with 576 x 448 resolution. Edge detection labels are
extracted using the boundaries of segmented objects. It has
a single ground-truth edge map for each RGB image. It of-
ficially contains 381 images for training, 414 for validation,
and 654 images for testing.

Multi-cue [33] contains 100 natural images with 1280 x
720 resolution. Each image has six edge and five boundary
labels. The dataset does not provide training and testing
splits. We randomly allocated 80 images for training, and
20 images for testing following previous work [39, 55].
Implementation and Training Details. We use the
MMSegmentation toolbox [7] to implement our method
RANKED. The official implementations of AP Loss [5]
and RS Loss [36] are based on for-iterations, which lead
to long training times. Therefore, we developed fully-
vectorized implementations, boosting training ~4.5x com-
pared to iteration-based ones. While the fully-vectorized
implementation requires huge GPU memory — at least 45
GB for 320x320 input resolution with the base model of
Swin-Transformer [30], we also provide a semi-vectorized
implementation which speeds up about 2.5x and requires
20 GB of memory for the same input and model settings.

For the NYUD-v2 dataset, we use the official training
and validation sets for training. We apply the following data

SS MS
Method ODS OIS AP | ODS OIS AP
Canny [4] (PAMT'S6) | 611 676 520 | - B -
gPb-UCM [1] (PAMI'10) | 729 755 745 | - - -
SCG [48] (NeurIPS*12) | .739 758 773 - - -
SE [14] (PAMI"14) | .743 764 .800 - - -
OEF [18] (CVPR’15) | .746 770 815 - - -
DeepEdge [2] (CVPR’15) | 753 772 807 - - -
DeepContour [42] (CVPR'15) | .757 776 .790 - - -
HED [49] (ICCv'l5) | 788  .808 .840 - - -
DeepBoundary [26] (ICLR"15) | .789 811 .789 | .803 .820 .848
CEDN [52] (CVPR’16) | 788 .804 - - - -
RDS [28] (CVPR’16) | .792 810 .818 - - -
COB [31] (ECCV'16) | 793 820 859 | - - -
AMH-Net [50] (NeurIPS'17) | .798 .829 .869 - - -
RCF [29] (CVPR*17) | 798 .815 - - - -
CED [47] (CVPR’17) | .803 .820 .871 - - -
LPCB [10] (ECCV’'18) | .800 .816 - - - -
BDCN [20] (CVPR’19) | .806 .826 .847 - - -
DSCD [9] (ACMMM’20) | .802 .817 - - - -
FCL-Net [51] (NN'22) | .807 .822 - 816 .833 -
EDTER [39] (CVPR'22) | 824 841 .880 | .840 .858 .896
UAED [55] (CVPR'23) | 829 .847 .892 | .837 .855 .897
ACTD [12] (Neurocomp.’23) | .817 .836 .839 - - -
RANKED (Ranking Only) 822 838 .886 | .829 .850 .900
RANKED (Ranking & Sorting) | .824 .840 .895 | .837 .855 911

Table 2. Quantitative results on BSDS dataset [1]. SS and MS
represent single-scale and multi-scale, respectively. Bold: Best
result. Underline: Second-best results.

Method SS+VOC MS+VOC
ODS OIS AP | ODS OIS AP
LDC[11]( ACMMM’21)| 812 .826 .857 | .819 .834 .860
PiDiNet [44] (rccvezn) | .807 - .823 - - - -
FCL-Net [51] (NN"22) | 815 .834 - 826 .845 -
EDTER [39] (CVPR’22) | 832 .847 886 | .848 .865 .903

UAED [55] (CVPR’23) | 838 .855 .902 | .844 .864 .905
CHRNet [15] (Pat. Rec.’23) | .787 788 .801 | .830 .853 .870
ACTD [12] (Neurocomp.’23) | .821 .837 .850 | .826 .842 .854

RANKED (Ranking Only) | .833 .848 .901 | .844 860 .916
Table 3. Quantitative results on BSDS dataset [1] using extra Pas-
cal Context Data [16] in training. SS and MS represent single-
scale and multi-scale, respectively. The best and second-best re-
sults are shown with bold and underlined texts, respectively.

augmentations like in previous studies [39, 49]: (i) Scaling
with 0.5 and 1.5, (ii) horizontal flip, and (iii) rotation with
degrees 90, 180, and 270.

For the BSDS500 dataset, we use the official training
and validation sets for training. By following the literature
[20, 39], we apply horizontal flip, rotation with 16 different
angles between [0,360], and scaling with 0.5 and 1.5. For
experiments on using additional training data, we use the
Pascal Context Dataset [16].

For the Multi-cue dataset, we randomly choose 80 im-
ages for training, and the remaining images for testing. We
repeat this procedure 3 times and report their average with
standard deviation. We apply horizontal flip and rotation
with 90, 180, and 360 degrees as the data augmentation.

For all datasets, we randomly crop RGB images to 320
x 320 resolution. We do not use any threshold to select
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positive pixels (i.e., 7 = 0). We take the § parameter in
H(-) (Eq. 5) as 0.4 for NYUD-v2 and 0.1 for BSDS and
Multi-cue datasets in Lrank. In Lgor, 0 is used as 0.1 for
BSDS and Multi-cue datasets. The learning rate is 1e-6 for
BSDS and le-5 for NYUD-v2 & Multicue datasets.

The number of iterations is 200k for NYUD-v2 and
BSDS datasets and 140k for Multicue dataset because of
the risk of overfitting. Batch size is 1. The remaining set-
tings of the optimizer are the same as the base model of
Swin-Transformer [30] for the segmentation task. Also, we
use pre-trained weights of ImageNet-22k [8] on 384x384
images. The sorting loss coefficient o (Eq. 14) is used as 1
and 2 for Multicue and BSDS datasets, respectively.

For testing, we followed the standard edge detection
evaluation protocol [ 13] which includes non-maximum sup-
pression (NMS) and skeleton-based edge thinning, respec-
tively. Also, we set the maximum allowed distance (d in
Eq. 13) as 0.011 for NYUD-v2, 0.0075 for BSDS500 &
Multicue datasets similar to previous studies [20, 39, 49].
Performance Measures. We use the following three com-
monly used measures: Optimal Dataset Scale (ODS), Op-
timal Image Scale (OIS), and Average Prevision (AP). To
calculate ODS, one threshold is used for binarizing the pre-
dicted edge maps in the dataset, whereas different thresh-
olds are used for each image in OIS. Also, ODS and OIS
are essentially F scores, showing the best result at only one
point on the precision-recall curve. On the other hand, AP
gives an insight into the general performance of the model.

Unlike previous studies, we present uncertainty-aware
results (UaR) using these measures for multi-label datasets.
In this type of result, we separately report these three mea-
sures for different values of certainty (e.g., AP @ ¢; > 0.2,
which means AP if ¢; is thresholded at 0.2).

4.1. Experiment 1: Comparison with SOTA

This section compares RANKED with the state-of-the-art
(SOTA) methods including hand-crafted and deep-learning-
based methods. We report the results of SOTA methods
from their publications.

On BSDS500. We compare the performance of our model
with SOTA methods, as shown in Tables 2 and 3, for
different input and training data settings: Single Scale (SS),
Multi-scale (MS), with additional Pascal-VOC dataset in
Single Scale (SS+VOC), and with additional Pascal-VOC
dataset in Multi-Scale (MS+VOC). The results suggest that
our method provides the best AP for all input and training
data settings — with only one exception at SS+VOC, where
RANKED is 0.1 AP points behind UAED [55]. RANKED’s
ODS and OIS performances are on par with others. Since
the Pascal VOC dataset is not a multi-label dataset (i.e. no
uncertainty), we cannot apply the sorting loss on it.

On NYUD-v2. We provide results for RGB images in
Table 4. Our RANKED achieves the best results in all
three measures: 78.0% ODS, 79.3% OIS, 82.6% AP. HHA
and RGB-HHA results are reported in the supplementary
material.

\ Method ODS OIS AP |

gPb-ucm [1] (PAMI'11) | .632 .661 .562
Silberman et al. [43] (ECCV’12) | .658 .661 -
gPb+NG [17] (CVPR’13) | .687 .716 .629
OEF [18] (CVPR’15) | .651 .667 -
HED [49] (ICCV’'15) | 720 734 734

RCF [29] (CVPR*17) | 729 742 -
AMH-Net [50] (NeurIPS*17) | .744 758 .765
LPCB [10] (ECCV'18) | 739 754 -
BDCN [20] (CVPR’19) | 748 763 .770
PiDiNet [44] (ccve2ny | 733 747 715
EDTER [39] (CVPR’22) | 774 789 .197
ACTD [12] (Neurocomp.’23) | 762 .774 -

RANKED (R) 780 793 .826

Table 4. Quantitative comparisons on NYUD-v2 [43] for RGB
images. The best and second-best results are shown with bold and
underlined texts, respectively. R: Ranking only.

On Multicue. We compare our method with SOTA
deep learning-based methods using both edge and bound-
ary labels of Multi-cue dataset, as shown in Table 5.
RANKED clearly outperforms all SOTA methods for edge
and boundary detection in all metrics. On edge detection, it
yields 4+5.5, +4.3, and +2.3 percentage point improvements
over the second-best results for ODS, OIS, and AP metrics,
respectively. Similarly, on boundary, it gives +9.9, +9.5,
and +6.8 percentage point improvements over the second-
best results in ODS, OIS, and AP metrics, respectively.

4.2. Experiment 2: Uncertainty-aware Evaluation

This section provides uncertainty-aware evaluation (UaR)
of RANKED and SOTA methods which published their
weights on the BSDS dataset as shown in Table 6. As most
studies published their models for only the BSDS dataset,
we could not do a similar analysis on the Multi-cue dataset.

For the BSDS dataset, we define six uncertainty levels.
For example, level ¢ > 0.0 contains all ground-truth edges
(high + low uncertainties) in all labels. Therefore, this case
is equivalent to the standard evaluation of edge detectors.
On the other hand, level ¢ = 1.0 (lowest uncertainty) con-
tains only ground-truth edges which are labeled by all an-
notators.

The results in Table 6 suggest a similar behavior for all
models: They are more successful on low-uncertainty edges
than high-uncertainty ones. While the uncertainty level is
increased (i.e., ¢ goes from 1.0 to 0.0), the scores of ODS,
OIS, and AP measures decrease.

Our method RANKED gives better results when the un-
certainty level is decreased. For example, our method gives
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\ Method | obs | o [ AP ]

Human [33] (VR’16) .7504.024 - -
Multicue [33] (VR’16) .830+.002 - -
HED [49] (ICCV’15) .851+.014 .864+.011 -
RCF [29] (CVPR’17) .857+.004 .862+.004 -
BDCN [20] (CVPR’19) .891+.001 .898+.002 | .935+.002
DSCD [9] (ACMMM 20) .871+£.007 .876+£.002 -
LDC[11] (ACMMM’21) .881+.012 .893+.011 -
PiDiNet [44] (ICCV’21) .855+.007 .860+.005 -
FCL-Net [51] (NN22) .875+.005 .880+.005 -
EDTER [39] (CVPR’22) .894+.005 .900+.003 | .9444.002
UAED [55] (CVPR’23) .895+.002 902+.001 | .9494.002
CHRNet [15] (Pat. Rec.’23) 907 922 -
ACTD [12] (Neurocomp.’23) .890+.011 .9054.009 -
RANKED (R) .951+£.002 .953+.001 | .962+.004
RANKED (R + 5) 962+.003 965+.003 | .973+.006
(a) Edge
\ Method | obs | oS [ AP ]
Human [33] (VR’16) .760+.017 - -
Multicue [33] (VR’16) .720+.014 - -
HED [49] (ICCV’15) .814+.011 .822+.008 | .869+.015
RCF [29] (CVPR’17) .817+.004 .825+.005 -
BDCN [20] (CVPR’19) .836+.001 .846+.003 | .893+£.001
DSCD [9] (ACMMM 20) .828+.003 .835+.004 -
LDC[11] (ACMMM21) .839+.012 .853+.006 -
PiDiNet [44] (ICCV’21) .818+.003 .830+.005 -
FCL-Net [51] (NN22) .834+.016 .840+.016 -
EDTER [39] (CVPR’22) .861+£.003 .870+.004 | .9194.003
UAED [55] (CVPR’23) .864+.004 .872+.006 | .927+.006
CHRNet [15] (Pat. Rec.’23) .859 .863 -
ACTD [12] (Neurocomp.’23) | .852 +.004 .863+.008 -
RANKED (R) .954 +.004 | .9584+ .005 | .992 £.002
RANKED (R + 5) 963 +£.002 967+.002 | .995+.001
(b) Boundary

Table 5. Quantitative results on Multicue Dataset [33]. The best
and second-best results are shown with bold and underlined texts,
respectively. R: Ranking only. R + S: Ranking & Sorting.

nearly the same performance with EDTER [39] for the ODS
and OIS measures in level ¢ > 0.0, and the performance
of our model increases, as the uncertainty level decreases.
This can be explained by our sorting task because it assigns
higher importance to lower uncertainty pixels.

This set of experiments and our uncertainty-aware re-
sults (UaR) reveal that edge detection models give a bet-
ter performance when the uncertainty levels are decreased
and most of the performance loss is caused by higher un-
certainty pixels, especially labeled by only one annotator.
Therefore, focusing on those pixels can provide more per-
formance gain for the future study. UaR results of Multi-cue
dataset are reported in the supplementary material.

4.3. Experiment 3: Ablation Analysis

Different loss functions. To show the effectiveness of our
method, we perform step-by-step comparisons by including
class-balanced cross-entropy and the combination of cross-
entropy and dice losses [10] with the same model and input
settings on NYUD-v2, BSDS, and Multi-cue datasets. The
results in Table 7 suggest that ranking systematically im-

proves the results over the commonly used loss functions in
the literature. Moreover, we see that, whenever feasible, us-
ing the sorting component provides gains compared to only
using ranking.

Our certainty map computation vs. label averaging.
We also conduct an experiment to show the efficiency of
our certainty map c on BSDS dataset. In this experiment, as
shown in Table 8, we use pixel-wise averaging and use it as
the certainty map (c <— > y®). In this experiment, all set-
tings are the same except for the labels used. Our proposed
certainty map c gives better performance than the standard
labels obtained by pixel-wise averaging in all metrics be-
cause we consider pixel-wise uncertainty using a dataset-
specific distance toleration like an evaluation protocol of
edge detection. In this way, we overlap edges in multi-label
that do not overlap in case of pixel-wise averaging and these
overlaps provide labels that are more informative to the sort-
ing task in terms of uncertainty.

Prioritize Uncertain Pixels. Our sorting loss priori-
tizes low-uncertainty pixels while Zhou et al. [55] give
higher priority to high-uncertainty edges. To validate our
approach, we integrate their uncertainty weighting scheme
into our loss function as follows: (1 — ¢;) - L(¢) for pixel
1. The results in Table 8 suggest that this significantly drops
the performance of our model. Therefore, giving more im-
portance to low-uncertainty edges provides a better perfor-
mance in RANKED.

4.4. Experiment 4: Qualitative Comparison

We also provide a qualitative comparison between SOTA
models and ours on BSDS dataset, as shown in Figure 3.
These results are presented after the post-processing step
using thresholds of OIS measure. While our model detects
prominent edges better, it may miss low-level details. See
the Supp. Mat. for more results.

4.5. Experiment 5: Running Time Comparisions

Although ranking-based loss functions give superior per-
formance [6, 36], they suffer from long training time due
to for-loops in their official implementations. Our vector-
ized implementations solve this problem as shown in Table
9. For a fair comparison, we test their execution time us-
ing loss functions with random tensors. Our vectorized and
semi-vectorized implementations of Lgn and Lgor are al-
most 100 and 90 times, respectively, faster than their official
implementations. However, when they are integrated into
models, we observe less performance increase due to other
bottlenecks such as forward/backward in models.

5. Conclusion

We presented a ranking-based solution for object contour
detection, or as widely referred to as edge detection, to ad-
dress both the imbalance problem between positive (edge)
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Low Certainty (High Uncertainty)

High Certainty (Low Uncertainty)

c > 0.0 ” c>0.2 ” c>04 ” c>0.6 ” c>0.8 ” c=1.0
Method ODS OIS AP ” ODS OIS AP “ ODS OIS AP ” ODS OIS AP ” ODS OIS AP ” ODS OIS AP
HED [49] (ICCV’15) || .788 .804 .840 [| .794 810 .846 (| .812 .829 .864 || .833 .850 .887 || .852 .868 .902 || .880 .893 .926

BDCN [20] (CVPR'19) || .815 .830 .872 || .821 .837 .880 || .842

.859  .899 || .864 881 919 || .884 .900 .933 || 914 926 .956

PiDiNet [44] (ICCV'21) [} .807 .823 .856 || .810 .826 .864 [| .829 846 .883 || .851 .867 .904 || .871 887 923 || .899 911 947
EDTER [39] (CVPR™22) || .824 .841 .880 || .826 .842 881 [| .848 864 899 || .870 885 918 || .890 905 .936 || .920 .932 .962
RANKED (R) 822 838 .886 || .828 .844 890 [| .849 .866 .909 || .870 .886 .924 || .889 .904 939 || 916 923 .962
RANKED (R + 5) 824 840 .895|| 831 .847 900 || 854 .870 918 || .877 892 936 || .897 911 .951 || 926 929 970

Table 6. Uncertainty-aware results on BSDS dataset. All SOTA results are computed using official weights. Also, c represents the certainty
map mentioned in Algorithm 1. While case ¢ > 0.0 contains all ground-truth edges in all labels, case ¢ = 1.0 contains only ground-truth
edges that are labeled in all labels. R: Only ranking, R + S: Ranking & Sorting.

[ Dataset | Loss [ ops ] OIS ‘ AP |
CEop 775 7789 302
NYUD-v2 " CE+DICE 19 | 91 -~ 807 Input
"RANKED (R) 80 | 793 826
CEcp .820 831 871
Bsps | . CE+DICE | .81 | 836 | 872
RANKED (R) .822 .838 .886 Ground-truth
RANKED (R+S) | 824 | 840 895
CEcp .9264.006 .926+.007 | .880+.001
Multicue | CE+DICE | .930+.005 | .931£.004 | .883+.006
Edge "RANKED (R) | .951+.002 | .9534.001 | .962+.004" HED [49]
RANKED (R+ 5) | .962+.003 | .965+.003 | .973+.006
~ CBop | 9004 | SBE003 | RIE005
Multcoe | CE+DICE | S4TE004 | SSLL004 | 9842004
Boundary | RANKED (R) | 954 £004 | 958+ 005 | 992 +.002
RANKED (R + S) | .963 £.002 | .967+.002 | .995+.001 BDCN [20]

Table 7. Quantitative comparison between our method and com-
monly used loss functions in edge detection. Bold numbers show
the best results for corresponding columns and datasets. While
Oursg represents using only ranking loss, R: Ranking. R + S:
Ranking & Sorting. CEcg: Class-balanced cross-entropy.

\ Label Type | ODS | OIS [ AP |
Label Averaging as Certainty (c < > y®) | 0.818 | 0.831 | 0.880
Loss Weighting with Uncertainty (1 —¢;) | 0.789 | 0.813 | 0.849
RANKED 0.824 | 0.840 | 0.895

Table 8. Comparison with pixel-wise averaging of labels as cer-
tainty, and uncertainty-weighted loss.

‘ Implementations ‘ Loss ‘ Exec. Time (msec/img)

- CE 0.32
- "CEsDICE | 039
For-iterations | RANKED (&) | 14279
RANKED (R + 5) 1530.22

Semi-vectorized RANKED (R) 2.90
emuevectonzed | R ANKED (R+8) | T 1693
. RANKED (R) 1.00
Vectorized RANKED (R+S) |77 1409

Table 9. Execution time comparisons (avg. of 100 runs).

and negative (non-edge) classes and uncertainty arising
from disagreement between different annotators. Our so-
lution contained two novel loss functions: One for ranking
positive edge pixels over negatives, and another for sorting
positive pixels with respect to their edge certainties. Our ex-
tensive experiments show the efficiency of our proposal on

PiDiNet [44]

EDTER [39]

RANKED
(Ours)

Figure 3. Qualitative results on BSDS dataset. All outputs are
obtained after the post-processing step. Red: OIS scores.

NYUD-v2, BSDS, and Multicue datasets. RANKED can
train an edge detector maximize AP (via its the ranking
loss). Our paper paves the way for optimizing other ob-
jectives and making all post processing steps as part of the
training process.
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