BSSR: BINARIZATION AND SPARSITY FOR IMAGE SUPER-RESOLUTION

Anonymous authors

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

029

031

032

035

037

040

041

042

043

044

046

047

048

050 051

052

Paper under double-blind review

ABSTRACT

Lighter models and faster inference remain the focus in the field of image superresolution. Quantization and pruning are both effective methods for compressing deep models. Unfortunately, existing approaches often optimize quantization and pruning independently: standalone binarization reduces storage but underutilizes sparsity, while N:M sparsity on weights accelerates inference but leaves high-bit storage overhead. Notably, no prior work has explored N:M sparse binary SR networks. In this paper, we combine quantization and sparsity to propose an extreme compression method for super-resolution tasks, namely BSSR. Within this framework, we introduce two key components: Binarized N:M Sparse Quantizer (BSQ) and Binarized Sparse Gradient Adjuster (BSGA). Firstly, BSQ is a sparse binarization operation across dimensions, simultaneously performing activation and weight binarization while imposing N:M sparsity on weights, significantly reducing storage and computational resource requirements. Secondly, BSGA employs a learnable hyperbolic tangent function combined with distinct gradient scaling factors for preserved and masked elements to address the non-differentiability of binarization and N:M sparse masking, enabling smooth and stable gradient propagation and improving convergence in sparse binary networks. Extensive experiments on SR benchmarks demonstrate that BSSR achieves state-of-the-art performance, outperforming the second-best algorithm by 0.22 dB in PSNR at 4x scaling in MambaIRv2-light compression, and improving PSNR by 0.32 dB at 4x scaling in SwinIR-light compression on the Urban100 dataset.

1 Introduction

Single-image super-resolution (SISR), as a classical low-level computer vision task, has been extensively studied and continuously achieves new state-of-the-art performance with the rapid development of deep neural networks. Early SISR methods primarily relied on convolutional neural networks (CNNs) Lim et al. (2017), which excel at capturing local spatial correlations. With the emergence of Visual Transformers (ViTs), attention-based architectures have become mainstream due to their powerful ability to model long-range dependencies Liang et al. (2021). More recently, selective state space models (SSMs), which efficiently capture long-range dependencies with linear complexity relative to sequence length, have shown remarkable potential as a new backbone for image restoration Guo et al. (2024a; 2025). Despite these advances, the high computational cost and large weight storage of full-precision models remain major obstacles for deploying SISR networks in resource-constrained environments. Consequently, model compression has become an essential step for practical deployment. Existing compression techniques, including quantization Jacob et al. (2018), knowledge distillation Hinton et al. (2015), and pruning Han et al. (2015), aim to reduce storage and computation while preserving model performance. Traditional compression methods such as pruning, low-rank decomposition, or quantization have achieved notable success in classification and detection tasks; however, directly applying these approaches to SISR models often leads to convergence difficulties and performance degradation, primarily due to the pixel-level precision sensitivity and the complex nonlinear feature representation requirements of super-resolution tasks.

Binary quantization, as an extreme compression strategy, can significantly reduce model storage and computational overhead. In classification tasks, methods such as XNOR-Net and Bi-Real Net have successfully binarized both weights and activations. When both weights and activations are quantized to 1 bit (full binary quantization), efficient bitwise operations, such as XNOR and bit

counting, can replace matrix multiplication, enabling maximal acceleration Rastegari et al. (2016). However, directly applying binary quantization to super-resolution models presents significant challenges. SISR activations typically exhibit wider and more continuous distributions and are highly sensitive to minor numerical variations, causing traditional binary methods to suffer from severe information loss and performance degradation. To address these issues, recent studies have proposed SR-specific binarization strategies, including dynamic-threshold quantization and feature-adaptive binarization. Additionally, researchers have explored binary quantization for CNNs Xin et al. (2020; 2023); Xia et al. (2023) and Transformer models Li et al. (2024). Nonetheless, full binary quantization for the Mamba model remains largely unexplored, highlighting the need for further investigation that combines binarization with sparsity to achieve more efficient SR compression.

Pruning represents another effective model compression strategy. Existing works have explored the sparsity in Convolutional Neural Networks (CNNs), as well as the prediction of a pixel-level redundancy mask to improve the inference efficiency of SR networks Wang et al. (2021). Furthermore, pruning methods such as DRC Guo et al. (2024b) involve search-and-prune procedures followed by finetuning, which adds substantial overhead. While the performance of these methods is promising, they fail to fully leverage GPU acceleration and have not been fully adapted to other architectures. N:M structured sparsity offers significant hardware acceleration advantages. For instance, NVIDIA Ampere GPUs can multiply a 2:4 sparse matrix by a dense matrix nearly twice as fast as multiplying two dense matrices. SR-STE Zhou et al. (2021) represents a classical full-precision 2:4 sparse pretraining scheme based on the Straight-Through Estimator (STE), stabilized with additional regularization. S-STE Hu et al. (2024) investigates a 2:4 sparse pretraining scheme under FP8 quantization, but FP8 still incurs substantial GPU memory costs. Existing work primarily focuses on optimizing high-bit sparse weights or exploring structured pruning on medium-sized SR models. However, how to simultaneously achieve efficient sparsity and extreme quantization remains an unexplored challenge. Notably, 1-bit quantized 2:4 sparse pretraining for SR models has yet to be fully explored, highlighting the potential of combining extreme quantization with hardware-efficient sparsity.

Recent studies show that sparsity and 8-bit quantization are non-orthogonal Harma et al. (2024). Applying sparsity before quantization $(S \rightarrow Q)$ preserves the relative importance of weights and reduces quantization error, which is especially important in super-resolution tasks requiring fine-grained weight adjustments. Since N:M sparsity retains N non-zero weights out of M, while standard binarization uses a global scaling factor, a mismatch arises that may harm reconstruction quality. To address this, group-wise quantization computes scaling factors per group, better capturing local weight distributions, preserving N:M sparsity, and maintaining high-fidelity image reconstruction.

In this paper, to address the aforementioned challenges, we propose BSSR: Binarization and Sparsity For Image Super-Resolution. BSSR introduces two key components: Binarized N:M Sparse Quantizer (BSQ) and Binarized Sparse Gradient Adjuster (BSGA). Firstly, BSQ is a sparse binarization operation across dimensions with group-wise scaling factors, simultaneously performing activation and weight binarization while imposing N:M sparsity on weights, significantly reducing storage and computational resource requirements. Secondly, BSGA employs a learnable hyperbolic tangent function combined with distinct gradient scaling factors for preserved and masked elements to address the non-differentiability of binarization and N:M sparse masking, thereby enabling stable gradient propagation and improving training convergence in sparse binary networks. Extensive experiments on SR benchmarks demonstrate that BSSR achieves state-of-the-art performance. Our contributions are summarized as follows:

- 1. **Binarized N:M Sparse Quantizer (BSQ):** We propose a sparse binarization operation that simultaneously binarizes activations and weights with N:M sparsity, introducing a groupwise adaptive scaling factors, ensuring accurate sparse binary weight approximation, significantly reducing storage and computational resource requirements on edge devices.
- 2. **Binarized Sparse Gradient Adjuster (BSGA):** We design an adaptive gradient estimator to handle the non-differentiability of binarization and N:M sparse masks. BSGA employs a trainable clipping interval and separate gradient scaling factors for preserved and masked elements, enabling stable and precise gradient propagation and stabilizing training.
- 3. **State-of-the-art Performance:** Extensive experiments on SR benchmarks demonstrate that BSSR achieves state-of-the-art performance, outperforming the second-best algorithm by 0.22 dB in PSNR at 4x scaling in MambaIRv2-light compression, and improving PSNR by 0.41 dB at 4x scaling in SwinIR-light compression on the Urban100 dataset.

2 RELATED WORKS

108

109 110

111 112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139 140

141 142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

2.1 IMAGE SUPER-RESOLUTION

Image Super-Resolution (SR) aims to reconstruct high-resolution images from low-resolution inputs and has witnessed significant progress with the development of deep learning. Early attempts usually adopt Convolutional Neural Networks (CNNs), such as SRCNN Dong et al. (2014) for image super-resolution, DnCNN Zhang et al. (2017) for image denoising, and ARCNN Dong et al. (2015) for JPEG compression artifact reduction. To further enhance the performance of CNN-based methods, various techniques have been introduced. For instance, EDSR Lim et al. (2017) improves upon residual networks by removing unnecessary modules and expanding network capacity, RDN Zhang et al. (2018b) employs dense connections to enhance representation ability, RCAN Zhang et al. (2018a) introduces channel attention for selecting salient channels, and SAN Dai et al. (2019) leverages second-order attention for performance improvement. Despite the remarkable progress of CNN-based methods, the convolution operator inherently restricts the receptive field to the local kernel, thereby limiting interactions between distant pixels. Recently, Transformer-based architectures have been introduced to SR, leveraging self-attention mechanisms for modeling long-range dependencies. IPT Hu et al. (2021) divides an image into several small patches and processes each patch independently with self-attention. SwinIR Liang et al. (2021) adopts the Swin Transformer backbone and introduces the shifted window self-attention Liu et al. (2021), effectively capturing both local and global contexts and achieving superior performance over CNNs. Uformer Wang et al. (2022) designs a U-shaped Transformer with locally enhanced window attention to better handle image restoration tasks. HAT Chen et al. (2023) incorporates hierarchical attention modules to further improve feature representation. In addition, Restormer Zamir et al. (2022) employs channel-wise self-attention to achieve efficient long-range dependency modeling with reduced complexity. More recently, ATD Guo et al. (2023) employs an adaptive token dictionary to store input-agnostic knowledge, enabling attention to access information beyond the local window. More recently, lightweight and efficient architectures tailored for practical deployment have emerged. Distinct from conventional convolution- or attention-dominated designs, Mamba introduces selective state-space models that enable long-range dependency modeling with linear complexity. The MambaIRv2 Guo et al. (2025) represents hybrid Mamba-Transformer architectures, combining the local feature extraction strengths of Mamba modules with the global modeling capabilities of Transformers. Deploying full-precision hybrid Mamba-Transformer architectures on edge devices incurs high memory, computational, and energy overhead, requiring extreme compression methods for efficiency.

2.2 Network Binarization

In recent years, neural-network quantization has emerged as a key approach for efficient deployment on resource-constrained devices, with Binary Neural Networks (BNNs) Hubara et al. (2016) pioneering the quantization of both weights and activations to ±1 using the sign function and the Straight-Through Estimator (STE), achieving substantial reductions in memory footprint and computational cost. Building upon this foundation, XNOR-Net Rastegari et al. (2016) enhanced the representational capacity of 1-bit convolutions by introducing a learnable per-tensor scaling factor, mitigating the information loss inherent in binarization. DoReFa-Net Zhou et al. (2016) further generalized this concept into a unified low-bitwidth quantization framework supporting arbitrary bit-widths for weights, activations, and gradients, systematically analyzing the impact of bit-width on training stability and accuracy. Bi-Real Net Liu et al. (2018) leveraged residual connections and shortcuts to enhance representational power and training stability in binary networks. RTN Li et al. (2020) applied a tunable truncation function to balance accuracy and stability during weight binarization. ReActNet Liu et al. (2020) incorporated RPReLU activations and the RSign operator to mitigate distribution shifts and sign-function information loss, narrowing the accuracy gap with fullprecision models. Re-STE Wu et al. (2023) introduced a power-function correction term within STE, enabling flexible trade-offs between error and stability. More recently, BiPer Vargas et al. (2024) employed binary periodic functions for forward propagation while using corresponding sine functions as differentiable proxies in backward propagation, further improving gradient approximation. Collectively, these works illustrate the evolution of network binarization techniques, progressively improving both efficiency and accuracy for practical deployment. Despite the advancements in network binarization, it still has limitations in representational power, necessitating the integration of other compression methods, such as pruning, to further optimize efficiency and performance.

2.3 Network Pruning.

162

163 164

165

166

167

168

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187 188

189 190 191

192

193

194

195

196

197

199

200201

202203

204

205

206

207

208

209210

211 212

213214

215

Network pruning aims to remove redundant weights from dense models to reduce computational and storage costs. Auto-Train-Once (ATO) Wu et al. (2024) introduces a controller network that dynamically generates binary masks to guide pruning automatically, eliminating the need for extra fine-tuning. Dual Regression Compression (DRC) Guo et al. (2024b) reduces model redundancy at both layer and channel levels through structured channel pruning. Among pre-training pruning techniques, N:M sparsity, also known as fine-grained structured sparsity, shows great potential, with Nvidia demonstrating a 2× theoretical speedup on Ampere GPUs using 2:4 sparsity for post-training and inference. To accelerate pre-training, Nvidia Mishra et al. (2021) proposed the ASP paradigm, achieving 2:4 sparsity in three steps while conserving training resources. SR-STE Zhou et al. (2021) was the first to train N:M fine-grained sparse networks from scratch by extending the Straight-Through Estimator with a regularization term to mitigate ineffective sparse updates. T-mask Hubara et al. (2021) introduces a transposable sparse mask that accelerates both forward and backward propagation in N:M structured sparse networks, improving training efficiency and model performance. Bi-directional Masks (Bi-Mask) Zhang et al. (2023) separate sparse masks for forward and backward propagation and introduce an efficient weight row permutation to maintain performance while accelerating training. S-STE Hu et al. (2024) continuously projects dense weights to 2:4 sparsity and rescales sparse weights per tensor using a fixed factor for FP8 pre-training. WANDA Sun et al. (2023) leverages weight and activation distribution awareness to guide structured pruning, improving sparsity efficiency while preserving model accuracy. SparseGPT Frantar & Alistarh (2023) performs one-shot structured pruning for large language models by analyzing the Hessian of weights, enabling high sparsity with minimal accuracy loss. Despite significant progress in reducing computational and storage overhead through network pruning, several limitations remain. In particular, weights remain in high-bitwidth representation after pruning alone, failing to effectively reduce storage costs. This motivates the focus of our work: combining pruning with binarization to simultaneously optimize computational efficiency and storage overhead.

3 Метнор

This section first presents the definition and training objectives of Binarized N:M Fine-Grained Structured Sparse Networks. We then analyze the limitations of existing binarization and N:M sparsity training methods under extreme compression. Subsequently, we propose a Binarized N:M Sparse method for super-resolution network training, referred to as BSSR. The overview framework of BSSR is shown in the Figure 1. BSSR primarily comprises two core techniques: *Binarized N:M Sparse Quantizer (BSQ)* and *Binarized Sparse Gradient Adjuster (BSGA)*. BSQ simultaneously binarizes activations and imposes N:M sparsity on weights, enabling effective compression while preserving important structural and textural information. BSGA provides adaptive gradient adjustment for the non-differentiable binarization and sparse masks, ensuring stable optimization under extreme compression.

3.1 BINARIZED N:M FINE-GRAINED STRUCTURED SPARSE NETWORKS

A binarized N:M sparse network satisfies three simultaneous constraints: N:M sparsity, where in every sliding block of M consecutive weights at most N are non-zero; binary weights, where every non-zero weight is restricted to $\{-1,+1\}$; and binary activations, where activations are binarized to achieve end-to-end binarization. Training a binarized N:M sparse network involves minimizing a loss function over the trainable parameter vector $\mathbf{w} \in \mathbb{R}^d$. The feasible set is defined as:

$$\mathcal{C} = \left\{ \mathbf{w} \in \mathbb{R}^d \mid \forall \text{ non-overlapping } M \text{-blocks } \mathcal{B}, \|\mathbf{w}_{\mathcal{B}}\|_0 = N, \ w_i \in \{-1, +1\} \text{ if } w_i \neq 0 \right\}. \tag{1}$$

The training objective is to minimize the expected loss:

$$\min_{\mathbf{w} \in \mathcal{C}} L(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} \left[\ell(f(\mathbf{x}; \mathbf{w}), y) \right], \tag{2}$$

where \mathcal{D} denotes the training data, $\ell(\cdot, \cdot)$ is the task-specific loss function, and $f(\cdot; \mathbf{w})$ represents the forward function.

BSSR FOR BINARIZED N:M SPARSE IMAGE SUPER-RESOLUTION NETWORK TRAINING

In the SwinIR Liang et al. (2021) and MambaIRv2 Guo et al. (2025) architectures, linear layer parameters are highly dense, constituting the primary computational overhead of the network. For instance, linear layers in SwinIR are distributed across MSA and MLP modules, while MambaIRv2 additionally incorporates ASSM modules. To achieve extreme compression of linear layers, we propose the Binarized N:M Sparse Quantizer (BSQ): it binarizes activation values and applies N:M sparsity while quantizing weights to binary values, significantly reducing storage and computation while preserving model performance. Furthermore, to ensure training stability, we design Binarized Sparse Gradient Adjuster (BSGA) to balance the impact of N:M masking and binarization operations on weight updates. The overall structure of our proposed BSSR method are illustrated in Figure 1.

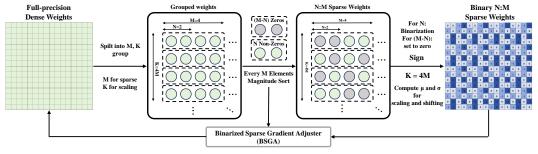


Figure 1: Overview of the proposed **BSSR** framework.

Binarized N:M Sparse Quantizer (BSQ). BSQ consists of two parts: activation binarization and weight binarization with N:M sparsity. Given an activation tensor $X \in \mathbb{R}^{B \times d}$, we first apply a learnable bias module Move(\cdot) and a trainable scaling parameter γ , then quantize the result into binary values: $X_b = \text{Sign}(\text{Move}(\gamma \cdot X))$, where γ is initialized as 1 and updated during training, enabling dynamic adjustment of the quantization boundary. For a weight matrix $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$, we first enforce an N:M sparsity mask, where in every group of M elements only the top-N elements (by magnitude) are preserved: $\mathcal{M}_i = \text{TopNMask}(W_i, N, M)$. To address the granularity mismatch between N:M sparsity and conventional quantization, we introduce the Group-wise Sparse Binarizer (GSB). Instead of using a single global scaling factor for the entire weight tensor, the Group-wise Sparse Binarizer (GSB) divides the weights into K groups, where K is an integer multiple of M, and computes a separate scaling factor for each group:

$$s_k = \frac{1}{N} \sum_{j=1}^{M} |W_{k,j} \cdot \mathcal{M}_{k,j}|, \quad k = 1, \dots, K,$$
 (3)

where $\mathcal{M}_{k,j} \in \{0,1\}$ represents the N:M sparsity mask.

Within each group, the surviving (non-zero) weights are first mean-centered based on the group mean and then binarized using the group-specific scaling factor:

$$\hat{W}_{k,j} = s_k \cdot \operatorname{Sign}\left((W_{k,j} - \mu_k) \cdot \mathcal{M}_{k,j} \right), \tag{4}$$

where the group mean μ_k is computed only over the preserved weights in group k:

$$\mu_k = \frac{1}{N} \sum_{i=1}^{M} W_{k,j} \cdot \mathcal{M}_{k,j}. \tag{5}$$

This group-wise normalization and scaling ensures that each group is independently adapted to its local distribution, reducing quantization error and improving sparse binary weights approximation.

Binarized Sparse Gradient Adjuster (BSGA). Due to the inherent discontinuity of the binarization operation and the zero-filling of N:M sparse masks, standard derivatives cannot be directly applied during backpropagation. Specifically, the derivative of the sign function is an impulse function,

making it non-differentiable. In practice, gradients are typically approximated using either a clipped function or a tanh-based approximation. BSGA employs a learnable hyperbolic tangent function to approximate the gradient:

$$E(X) = \tanh(\kappa X), \qquad E'(X) = \kappa (1 - \tanh^2(\kappa X)), \tag{6}$$

where κ is a learnable parameter controlling the slope of the approximation. During backpropagation, the surrogate gradient with respect to the latent weight \tilde{W}_t is given by

$$\frac{\partial \mathcal{L}}{\partial \tilde{W}_t} \approx \frac{\partial \mathcal{L}}{\partial \hat{W}_t} \odot E'(\tilde{W}_t) = G_t \odot \left(\kappa \left(1 - \tanh^2(\kappa \tilde{W}_t) \right) \right), \tag{7}$$

with $G_t = \frac{\partial \mathcal{L}}{\partial \hat{W}_t}$. Moreover, to explicitly distinguish the preserved (non-zero) elements from the masked (zeroed) ones within each N:M group, we introduce separate gradient scaling strategies. Preserved weights are updated using the tanh-based surrogate gradient, while masked weights are softly regularized toward zero. This leads to the following update rule:

$$\tilde{W}_{t+1} = \tilde{W}_t - \gamma_t \Big(\mathcal{M} \odot \big(G_t \odot E'(\tilde{W}_t) \big) + \rho \big((1 - \mathcal{M}) \odot \tilde{W}_t \big) \Big), \tag{8}$$

where \mathcal{M} is the N:M sparse mask, γ_t is the learning rate, and ρ is the regularization coefficient. This formulation provides smooth and stable gradients for both binary and masked elements while preserving the N:M sparsity structure. This allows the network to maintain meaningful updates for the non-zero weights while preventing gradient updates on the pruned weights, ensuring stable training. BSGA jointly considers the characteristics of binarization and N:M sparsity by integrating adaptive clipping and element-wise gradient scaling. By dynamically adjusting the gradient range for each element type and preserving the structure of sparse groups, BSGA achieves more accurate and stable gradient propagation. This leads to improved convergence behavior when training sparse binary networks and reduces the risk of gradient explosion or vanishing.

Overall Method. By jointly applying the BSQ and BSGA, our BSSR framework establishes a new paradigm for training binarized N:M sparse networks. BSSR simultaneously achieves storage and computation compression, stabilizes training, and preserves state-of-the-art super-resolution performance of binarized N:M sparse networks, making it a practical and efficient solution for deploying SR models on resource-constrained edge devices.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed BSSR training scheme on the SISR task. Swin-IR-light Liang et al. (2021) is selected as the representative transformer model, while MambaIRv2-light Guo et al. (2025) serves as the representative mamba model.

4.1 EXPERIMENTAL SETTINGS

For quantitative comparison, we evaluated various super-resolution (SR) methods on five benchmark datasets: Set5 Bevilacqua et al. (2012), Set14 Zeyde et al. (2010), B100 Martin et al. (2001), Urban100 Huang et al. (2015), and Manga109 Matsui et al. (2017). We employ two commonly used metrics: PSNR and SSIM Wang et al. (2004), as standards for measuring the quality of super-resolved images, calculated on the luminance (Y) component in the YCbCr color space. The data augmentation technique employed horizontal flipping along with random rotations of 90°, 180°, and 270°. Training data was obtained from 64×64 RGB input blocks of LR images and their corresponding HR blocks. The model was trained for 100k iterations using the Adam optimizer Kingma (2014), with parameters $\beta_1 = 0.9$ and $\beta_2 = 0.99$, and the batch-size set to 16. The learning rate was initially set to 2×10^{-4} and halved at specified iteration milestones using a cosine annealing strategy. All experiments were conducted with identical parameter settings to ensure fair comparison. This work is implemented based on the PaddlePaddle framework, and experiments are conducted on an NVIDIA RTX 4090 GPU.

4.2 Comparison Results

We first deployed the proposed BSSR method in the Swin-IR-light and MambaIRv2-light models, where the weights of the linear layers underwent 2:4 sparse 1-bit quantization, and all activations

327

330 331

337

341

345

346

347

348 349 350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372 373

374

375

376

377

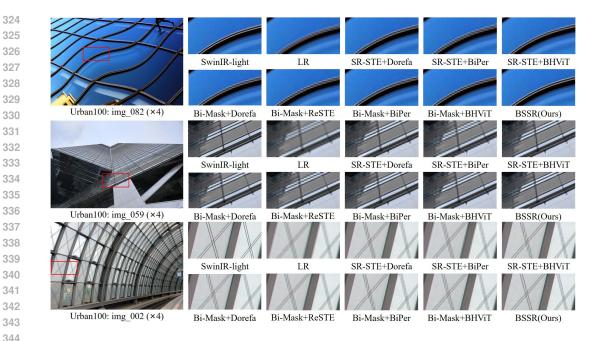


Figure 2: Visual comparison (x4). We compare our BSSR with recent combined quantization and pruning methods. The results show that BSSR performs clearly better than other methods in all cases.

were quantized to 1 bit. For comparison, we considered several representative binary quantization methods, including DoReFa Zhou et al. (2016), Re-STE Wu et al. (2023), BiPer Vargas et al. (2024), and BHViT Gao et al. (2025). In addition, the 2:4 sparsification methods selected were SR-STE Zhou et al. (2021) and Bi-Mask Zhang et al. (2023), while for channel pruning in linear layers, we adopted the DRC method Guo et al. (2024b). These methods cover a wide range of existing model compression strategies, allowing for a comprehensive assessment of our approach. Table 1 presents a comprehensive comparison of various combination of binary quantization and pruning methods together with our approach, covering super-resolution scales of ×2 and ×4. The ×4 visual comparison results are shown in Figure 2.

Qualitative results. Figure 2 presents the visual comparison results for ×4 super-resolution. Overall, the results demonstrate that BSSR can effectively model complex activation distributions, preserve structural details and object boundaries, and significantly reduce blurring and distortion. The exceptional performance of BSSR stems from its two core modules: the Binarized N:M Sparse Quantizer (BSQ) and the Binarized Sparse Gradient Adjuster (BSGA). BSQ ensures efficient compression of activation values and weights while preserving critical texture and structural information. Meanwhile, BSGA effectively mitigates optimization challenges posed by non-differentiable binarization and sparse masks through adaptive gradient adjustment. These modules synergistically enhance not only standard quantization metrics like PSNR and SSIM but also significantly improve the quality of reconstructed images. For example, on img_082, img_059, and img_002 from the Urban100 dataset, our method generates visual results most similar to the full-precision model, whereas competing approaches suffer from varying degrees of edge diffusion and texture loss, leading to noticeably lower image fidelity. These observations confirm that BSSR effectively balances aggressive compression with high-quality visual reconstruction, making it a robust solution for extreme-compression super-resolution models.

Quantitative results. Our BSSR achieved the optimal PSNR/SSIM scores compared to the comparison methods in the mambairv2-light model compression experiments at scales ×2 and ×4 across all five benchmark datasets, demonstrating superior reconstruction accuracy and visual fidelity compared to the other methods. Compared to other methods combining binary quantization with DRC, BSSR eliminates the cumbersome process of channel search \rightarrow channel pruning \rightarrow fine-tuning while achieving superior results. Compared to existing N:M sparse fusion methods with binary

				0.11		D100		T 1 100		Mans-100	
Method	Scale	PSNR	e t5 SSIM	Se PSNR	t14 SSIM	PSNR	SSIM	Urba PSNR	n100 SSIM	Man PSNR	ga109 SSIM
ManchalDay Light	2	38.24	0.9615	34.05	0.9222		0.9017		0.9452	39.34	0.9785
MambaIRv2-light DoReFa + SR-STE	x2 x2	37.23	0.9613	32.87	0.9222	32.33	0.9017	34.11 31.29	0.9432	36.90	0.9783
Re-STE + SR-STE	x2	37.23	0.9573	33.02	0.9107	31.73	0.8916	31.60	0.9194	37.00	0.9724
	l .			1				l .		1	
BiPer + SR-STE	x2	36.60	0.9545	32.34	0.9059	31.20	0.8861	30.02	0.9035	35.16	0.9656
BHViT + SR-STE	x2	37.30	0.9579	32.99	0.9125	31.71	0.8936	31.57	0.9231	36.82	0.9726
DoReFa + Bi-Mask	x2	37.16	0.9572	32.87	0.9109	31.63	0.8923	31.33	0.9198	36.83	0.9724
Re-STE + Bi-Mask	x2	37.18	0.9571	32.79	0.9102	31.55	0.8912	31.00	0.9163	36.65	0.9713
BiPer + Bi-Mask BHViT + Bi-Mask	x2 x2	37.15 37.34	0.9570 0.9581	32.83	0.9105 0.9127	31.61 31.72	0.8919 0.8937	31.13 31.67	0.9178 0.9235	36.49 37.16	0.9711 0.9734
DoReFa + DRC	x2	37.34	0.9552	32.84	0.9127	31.72	0.8892	31.07	0.9233	36.82	0.9734
Re-STE + DRC	x2 x2	37.13	0.9552	32.84	0.9092	31.59	0.8892	31.24	0.9176	1	0.9699
BiPer + DRC	x2 x2	37.10		32.94	0.9110	31.62			0.9223	36.85 36.66	
BHViT + DRC	x2 x2	37.23	0.9562 0.9566	32.90	0.9100	31.62	0.8899 0.8916	31.19 31.53	0.9174	36.71	0.9702 0.9716
BSSR(Ours)	x2	37.56	0.9500	33.16	0.9116	31.86	0.8955	32.03	0.9221	37.65	0.9710
	1	!						1		1	
MambaIRv2-light	x4	32.51	0.8992	28.84	0.7878	27.75	0.7426	26.82	0.8079	31.24	0.9182
DoReFa + SR-STE	x4	30.96	0.8757	27.82	0.7626	27.06	0.7178	25.42	0.7567	28.46	0.8760
Re-STE + SR-STE	x4	31.34	0.8834	28.05	0.7688	27.22	0.7243	25.75	0.7709	28.97	0.8872
BiPer + SR-STE	x4	30.26	0.8611	27.31	0.7511	26.79	0.7101	24.75	0.7317	26.99	0.8466
BHViT + SR-STE	x4	31.22	0.8813	27.96	0.7674	27.19	0.7234	25.69	0.7685	28.84	0.8849
DoReFa + Bi-Mask	x4	31.05	0.8778	27.91	0.7648	27.11	0.7196	25.49	0.7595	28.61	0.8794
Re-STE + Bi-Mask	x4	30.93	0.8759	27.77	0.7629	27.06	0.7192	25.34	0.7552	28.24	0.8743
BiPer + Bi-Mask	x4	31.07	0.8781	27.87	0.7646	27.14	0.7207	25.51	0.7614	28.53	0.8778
BHViT + Bi-Mask	x4	31.27	0.8824	28.04	0.7689	27.21	0.7239	25.71	0.7686	28.90	0.8859
DoReFa + DRC	x4	30.58	0.8640	27.56	0.7525	26.87	0.7069	25.08	0.7414	27.56	0.8529
Re-STE + DRC	x4	31.41	0.8814	28.06	0.7661	27.20	0.7188	25.77	0.7681	28.96	0.8833
BiPer + DRC	x4	31.10	0.8769	27.92	0.7628	27.09	0.7158	25.50	0.7589	28.46	0.8748
BHViT + DRC	x4	31.32	0.8816	28.07	0.7671	27 21	0.7196	25.77	0.7681	28.93	0.8837
						27.21					
BSSR(Ours)	x4	31.51	0.8858	28.18	0.7716	27.21	0.7269	25.99	0.7773	29.27	0.8913
BSSR(Ours)	x4	31.51	0.8858 et5	28.18 Se	0.7716 t14	27.31	0.7269	25.99 Urba	0.7773 an100	29.27 Man	0.8913 ga109
		31.51	0.8858	28.18	0.7716	27.31	0.7269	25.99	0.7773	29.27	0.8913
BSSR(Ours)	x4	31.51 So PSNR 38.15	0.8858 et5	28.18 See PSNR 33.86	0.7716 t14	27.31 B1 PSNR 32.31	0.7269	25.99 Urba	0.7773 an100 SSIM 0.934	29.27 Man PSNR 39.11	0.8913 ga109
Method SwinIR-light DoReFa + SR-STE	x4 Scale x2 x2	31.51 Se PSNR 38.15 37.10	0.8858 et5 SSIM 0.9611 0.9569	28.18 PSNR 33.86 32.76	0.7716 t14 SSIM 0.9206 0.9101	27.31 PSNR 32.31 31.52	0.7269 100 SSIM 0.9012 0.8910	25.99 Urba PSNR 32.76 30.92	0.7773 an100 SSIM 0.934 0.9151	29.27 Man PSNR 39.11 36.34	0.8913 ga109 SSIM 0.9781 0.9708
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE	x4 Scale x2 x2 x2 x2 x2	31.51 SepSNR 38.15 37.10 37.14	0.8858 et5 SSIM 0.9611 0.9569 0.9573	28.18 See PSNR 33.86 32.76 32.77	0.7716 t14 SSIM 0.9206 0.9101 0.9109	27.31 PSNR 32.31 31.52 31.56	0.7269 100 SSIM 0.9012 0.8910 0.8922	25.99 Urba PSNR 32.76 30.92 30.96	0.7773 nn100 SSIM 0.934 0.9151 0.9165	29.27 Man PSNR 39.11 36.34 36.50	0.8913 ga109 SSIM 0.9781 0.9708 0.9716
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE	x4 Scale x2 x2 x2 x2 x2 x2 x2 x	31.51 S6 PSNR 38.15 37.10 37.14 35.35	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462	28.18 See PSNR 33.86 32.76 32.77 31.61	0.7716 t14 SSIM 0.9206 0.9101 0.9109 0.8982	PSNR 32.31 31.52 31.56 30.59	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774	25.99 Urba PSNR 32.76 30.92 30.96 28.89	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860	29.27 Man PSNR 39.11 36.34 36.50 33.15	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHVIT + SR-STE	x4 Scale x2 x2 x2 x2 x2 x2 x2 x	31.51 PSNR 38.15 37.10 37.14 35.35 37.13	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80	0.7716 t14 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106	PSNR 32.31 31.52 31.56 30.59 31.58	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06	0.7773 an100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask	x4 Scale x2 x2 x2 x2 x2 x2 x2 x	31.51 PSNR 38.15 37.10 37.14 35.35 37.13 37.19	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.77	0.7716 t14 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102	PSNR 32.31 31.52 31.56 30.59 31.58 31.53	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910	25.99 PSNR 32.76 30.92 30.96 28.89 31.06 30.94	0.7773 an100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask Re-STE + Bi-Mask	x4 Scale x2 x2 x2 x2 x2 x2 x2 x	31.51 PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55	0.7716 \$\$14 \$\$SIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874	25.99 PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHVIT + SR-STE DoReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask	x4 Scale x2 x2 x2 x2 x2 x2 x2 x	31.51 See PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9554	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60	0.7716 \$SIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8897	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71	0.7773 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask BHViT + Bi-Mask	x4 Scale x2 x2 x2 x2 x2 x2 x2	31.51 S6 PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9554 0.9567	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72	0.7716 \$\frac{114}{SSIM}\$ 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9097	27.31 PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8897 0.8903	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9683 0.9690 0.9701
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask BHViT + Bi-Mask DoReFa + DRC	x4 Scale x2 x2 x2 x2 x2 x2 x2	St. PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.05	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.9555 0.9554 0.9567	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73	0.7716 \$114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8890 0.8893 0.8890	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93	0.7773 n100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.67 35.90 35.98 36.31 36.34	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9711 0.9683 0.9690 0.9701 0.9695
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHVIT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC	x4 Scale x2 x2 x2 x2 x2 x2 x2	September 1	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.9555 0.95567	See PSNR	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088 0.9084	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8897 0.8903 0.8890	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9122 0.9132 0.9150 0.8997	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31 36.34 34.87	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHVIT + SR-STE DOREFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHVIT + DRC	x4 Scale x2 x2 x2 x2 x2 x2 x2	31.51 S6 PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.05 36.36 36.96	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9554 0.9567 0.9555 0.95557	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 32.67	0.7716 t14 SSIM 0.9206 0.9101 0.9109 0.8982 0.9102 0.9075 0.9087 0.9097 0.9087 0.9097 0.9084 0.9097	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8874 0.8897 0.8903 0.8890 0.8842 0.8842	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31 36.34 34.87 36.33	0.8913 ga109 SSIM 0.9781 0.9786 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9695
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHVIT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC	x4 Scale x2 x2 x2 x2 x2 x2 x2	September 1	0.8858 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.9555 0.95567	See PSNR	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088 0.9084	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8897 0.8903 0.8890	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9122 0.9132 0.9150 0.8997	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31 36.34 34.87	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHVIT + SR-STE DOREFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHVIT + DRC	x4 Scale x2 x2 x2 x2 x2 x2 x2	31.51 S6 PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.05 36.36 36.96	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9554 0.9567 0.9555 0.95557	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 32.67	0.7716 t14 SSIM 0.9206 0.9101 0.9109 0.8982 0.9102 0.9075 0.9087 0.9097 0.9087 0.9097 0.9084 0.9097	PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8874 0.8897 0.8903 0.8890 0.8842 0.8842	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112	99.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31 36.34 34.87 36.33	0.8913 ga109 SSIM 0.9781 0.9786 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9695
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DOReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE	x4 x2 x2 x2 x2 x2 x2 x2	31.51 SI PSNR 38.15 37.10 37.14 35.35 37.13 36.84 36.81 37.03 37.05 36.36 36.96 37.48 32.45 30.88	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.95554 0.95554 0.95567 0.95551 0.9551 0.9585	See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 33.06 28.77 27.74	0.7716 t14 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9075 0.9087 0.9097 0.9088 0.9098 0.9058 0.9104 0.9058 0.9104 0.9088	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.51 31.43 31.79 27.69 27.04	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8874 0.8897 0.8903 0.8890 0.8844 0.8894 0.8874 0.8946	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.9237	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9692 0.9632 0.9687 0.9738 0.915 0.8714
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask BViT + Bi-Mask DoReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE	x4 x4 x2 x2 x2 x2 x2	31.51 SG PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.05 36.36 37.48 32.45 30.88 31.01	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9554 0.9555 0.9554 0.9585 0.9585 0.9587 0.8976	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.67 33.06	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088 0.9054 0.9083 0.9134 0.7638	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 27.08	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8890 0.8890 0.8842 0.8874 0.7406 0.7177 0.7192	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.7912 0.7521 0.7555	Man PSNR 39.11 36.34 36.50 33.15 36.60 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632 0.9632 0.9632 0.9738 0.915 0.8714 0.8745
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE	x4 x4 x2 x2 x2 x2 x2	31.51 SG PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 37.03 37.05 36.36 37.48 32.45 30.88 31.01 29.34	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9554 0.9555 0.9527 0.9555 0.9527 0.9555 0.8976 0.8752 0.8770 0.8332	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 32.67 33.06 28.77 27.74 27.79 26.67	0.7716 \$SIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088 0.9054 0.9083 0.9134 0.7619 0.7634 0.7634 0.7312	27.31 Bit PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 27.08 26.41	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8897 0.8993 0.88874 0.8874 0.7177 0.7177 0.7192 0.6948	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.65 26.48 25.28 25.34 24.12	0.7773 n100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.9237 0.798 0.7525 0.7013	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632 0.9632 0.9632 0.9738 0.9738
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE BiPer + SR-STE BiPer + SR-STE BiPer + SR-STE BHViT + SR-STE	x4 x4 x2 x2 x2 x2 x2	31.51 SG PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.05 36.36 36.96 37.48 30.88 31.01 29.34 31.03	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9555 0.9555 0.9527 0.9551 0.9585 0.8772 0.8332 0.8777	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.67 33.06 28.77 27.74 27.79 26.67 27.81	0.7716 \$SIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088 0.9054 0.9083 0.9134 0.7619 0.7634 0.7639	27.31 B1 PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.08 26.41 27.08	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.88874 0.8897 0.8993 0.88874 0.8946 0.7107 0.7192 0.6948 0.7199	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65 26.48 25.28 25.34 24.12 25.38	0.7773 n100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.9237 0.7555 0.7555 0.7013 0.7568	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632 0.9687 0.9738 0.915 0.8714 0.8745 0.8085 0.8763
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask	x4 x2 x2 x2 x2 x2 x2 x2	St. 51 PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.03 37.05 36.36 36.36 36.96 37.48 32.45 30.88 31.01 29.34 31.03 30.87	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9554 0.9567 0.9555 0.9527 0.9551 0.9585 0.8976 0.8752 0.8770 0.8332 0.8777 0.8746	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.67 33.06 28.77 27.74 27.79 26.67 27.81 27.75	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9098 0.9054 0.9083 0.9134 0.7858 0.7619 0.7634 0.7312 0.7639 0.7639	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 27.08 26.41 27.09 27.09 27.02	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8774 0.8920 0.8874 0.8897 0.8903 0.8894 0.8842 0.8874 0.7177 0.7192 0.6948 0.7199 0.7173	25.99 Urbis PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65 26.48 25.28 25.34 24.12 25.38 25.28	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.7521 0.7552 0.7013 0.7568 0.7524	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.67 35.90 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632 0.9687 0.9738 0.915 0.8714 0.8785 0.8763 0.8723
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DOReFa + DRC BiPer + DRC BHViT + DRC BHViT + DRC BSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BiPer + SR-STE BiPer + SR-STE BHVIT + SR-STE DOREFa + Bi-Mask Re-STE + Bi-Mask	x4 x2 x2 x2 x2 x2 x2 x2	31.51 SI PSNR 38.15 37.10 37.14 35.35 37.13 36.84 36.81 37.03 37.05 36.36 36.96 37.48 32.45 30.88 31.01 29.34 31.03 30.87 30.45	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.9554 0.9555 0.9554 0.9567 0.9555 0.9551 0.9585 0.8770 0.8332 0.8777 0.8746 0.8652	See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.67 33.06 28.77 27.74 27.79 26.67 27.81 27.75 27.46	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9075 0.9087 0.9087 0.9088 0.9054 0.7634 0.7634 0.7634 0.7636 0.76619 0.7636	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 27.08 26.41 27.09 27.02 26.86	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8814 0.8897 0.8903 0.8894 0.8844 0.7109 0.7177 0.7192 0.6948 0.7193 0.7113	25.99 Urbix PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65 26.48 25.28 25.34 24.12 25.38 25.28 24.91	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.7912 0.7555 0.7013 0.7555 0.7013 0.7554 0.7524 0.7350	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17 27.42	0.8913 ga109 SSIM 0.9781 0.9781 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9692 0.9632 0.9687 0.9738 0.915 0.8714 0.8745 0.8863 0.8723 0.8546
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DoReFa + Bi-Mask BiPer + Bi-Mask BiPer + Bi-Mask BWiT + Bi-Mask DoReFa + DRC BiPer + DRC BiPer + DRC BHViT + DRC BSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BiPer + SR-STE BHViT + SR-STE	x4 x2 x2 x2 x2 x2 x2 x2	31.51 SI PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.05 36.36 36.96 37.48 31.01 29.34 31.03 30.87 30.45 30.63	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.9554 0.9555 0.9554 0.9555 0.95527 0.9555 0.95527 0.8976 0.8752 0.8770 0.8332 0.8777 0.83652 0.8652 0.8690	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.72 32.55 32.60 32.72 32.67 33.06 28.77 27.74 27.79 26.67 27.81 27.75 27.46 27.56	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9088 0.9054 0.9083 0.9134 0.7858 0.7619 0.7634 0.7312 0.7639 0.7619 0.7536 0.7573	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 27.08 26.41 27.09 27.02 26.86 26.95	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8974 0.8993 0.88944 0.8990 0.8844 0.8990 0.8844 0.7177 0.7192 0.6948 0.7173 0.7111 0.7145	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65 26.48 25.28 25.34 24.12 25.38 24.91 25.11	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8967 0.9112 0.9237 0.798 0.7551 0.7013 0.7568 0.7524 0.7350 0.7350 0.7360	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17 27.42 27.65	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9683 0.9690 0.9701 0.9695 0.9687 0.9738 0.915 0.8714 0.8745 0.8085 0.8763 0.8763 0.8546 0.8609
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DOReFa + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHVIT + DRC BHVIT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BiPer + SR-STE BHVIT + SR-STE BOREFa + Bi-Mask BIPER + BI-Mask	x4 x4 x2 x2 x2 x2 x2	31.51 SG PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.05 36.36 37.48 32.45 30.88 31.01 29.34 31.03 30.87 30.45 30.63 30.70	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9554 0.9555 0.9555 0.9585 0.8770 0.8732 0.8777 0.8736 0.8650 0.86690 0.8716	28.18 PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 33.06 28.77 27.74 27.79 26.67 27.81 27.75 27.46 27.56 27.67	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9097 0.9088 0.9054 0.9083 0.9134 0.7619 0.7634 0.7639 0.7619 0.7533 0.7619	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.49 31.50 31.11 31.43 31.79 27.09 27.04 27.08 26.41 27.09 27.02 26.86 26.95 27.99	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.8874 0.8897 0.8903 0.88842 0.8874 0.7177 0.7192 0.6948 0.7199 0.7173 0.7111 0.7145 0.7167	25.99 Urba PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.69 31.65 26.48 25.28 25.34 24.12 25.38 25.28 24.91 25.11 25.18	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9152 0.9152 0.9152 0.9153 0.7555 0.7013 0.7568 0.7524 0.7350 0.7462 0.7484	29.27 Man 39.11 36.34 36.50 33.15 36.60 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17 27.42 27.65 28.02	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9690 0.9701 0.9695 0.9632 0.9632 0.9632 0.9632 0.9738 0.915 0.8714 0.8745 0.8745 0.8763 0.8763 0.8763 0.8763 0.8763 0.8763 0.8763 0.8609 0.8609 0.8693
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE BHViT + SR-STE BHViT + Bi-Mask BiPer + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE BHViT + SR-STE BOREFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask BOREFa + DRC	x4 x4 x2 x2 x2 x2 x2	31.51 SG PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.05 36.36 37.48 32.45 30.88 31.01 29.34 31.03 30.87 30.45 30.83 30.87 30.83 30.63 30.70 30.84	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9555 0.9527 0.9555 0.8776 0.8732 0.8777 0.8332 0.8777 0.8746 0.8652 0.8692 0.8711	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 32.67 33.06 28.77 27.74 27.79 26.67 27.75 27.46 27.56 27.56 27.56 27.56	0.7716 \$SIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9087 0.9088 0.9054 0.9083 0.9134 0.7868 0.7619 0.7639 0.7639 0.7639 0.7573 0.7601 0.7592	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 26.41 27.09 27.02 26.86 26.95 27.99 27.00	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.88874 0.8897 0.8993 0.88874 0.7107 0.7117 0.7192 0.6948 0.7199 0.7173 0.7111 0.7142	25.99 Urbis PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.65 26.48 25.28 25.34 24.12 25.38 25.28 24.91 25.11 25.18 25.26	0.7773 n100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.7555 0.7013 0.7568 0.7524 0.7350 0.7462 0.7484 0.7493	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17 27.42 27.65 28.02 28.02	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9683 0.9690 0.9701 0.9695 0.9632 0.9687 0.9738 0.915 0.8714 0.8745 0.8085 0.8763 0.8723 0.8563 0.8763 0.8763 0.8763 0.8763 0.8763 0.8763 0.8763 0.8763 0.8763
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask DOReFa + DRC BHViT + DRC BHViT + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE DOReFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask BiPer + Bi-Mask BiPer + Bi-Mask DOReFa + DRC BiPer + DRC	x4 x2 x2 x2 x2 x2 x2 x2	St. 51 St. 7:10 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.03 37.03 37.05 36.36 36.96 37.48 32.45 30.88 31.01 29.34 30.87 30.45 30.63 30.70 30.84 30.00	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9555 0.9554 0.9567 0.9555 0.9527 0.9551 0.9585 0.8770 0.8332 0.8777 0.8746 0.8652 0.8690 0.8711 0.8499	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.67 33.06 28.77 27.74 27.79 26.67 27.75 27.46 27.56 27.56 27.13	0.7716 114 SSIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9007 0.9087 0.9087 0.9087 0.9083 0.9134 0.7858 0.7619 0.7634 0.7363 0.7601 0.7536 0.7573 0.7601 0.7592 0.7422	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 27.08 26.46 26.95 27.99 27.00 26.65	0.7269 100 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8774 0.8921 0.8874 0.8940 0.7177 0.7192 0.6948 0.7199 0.7173 0.7111 0.7145 0.7164 0.6995	25.99 Urbis PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 31.65 26.48 25.28 25.34 24.12 25.38 25.28 24.91 25.11 25.18 25.26 24.54	0.7773 nn100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.798 0.7521 0.7555 0.7013 0.7568 0.7524 0.7350 0.7462 0.7484 0.7493 0.7200	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.67 35.90 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17 27.42 27.65 28.02 28.02 26.51	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9632 0.9690 0.9701 0.9695 0.9632 0.9687 0.9738 0.915 0.8714 0.8745 0.8086 0.8763 0.8723 0.8546 0.8609 0.8699 0.8699 0.8699
Method SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE BHViT + SR-STE BHViT + Bi-Mask BiPer + Bi-Mask BiPer + Bi-Mask DoReFa + DRC BiPer + DRC BHViT + DRC BSSR(Ours) SwinIR-light DoReFa + SR-STE Re-STE + SR-STE BiPer + SR-STE BHViT + SR-STE BHViT + SR-STE BOREFa + Bi-Mask Re-STE + Bi-Mask BiPer + Bi-Mask BOREFa + DRC	x4 x4 x2 x2 x2 x2 x2	31.51 SG PSNR 38.15 37.10 37.14 35.35 37.13 37.19 36.84 36.81 37.05 36.36 37.48 32.45 30.88 31.01 29.34 31.03 30.87 30.45 30.83 30.87 30.83 30.63 30.70 30.84	0.8858 et5 SSIM 0.9611 0.9569 0.9573 0.9462 0.9571 0.9572 0.9555 0.9555 0.9527 0.9555 0.8776 0.8732 0.8777 0.8332 0.8777 0.8746 0.8652 0.8692 0.8711	28.18 See PSNR 33.86 32.76 32.77 31.61 32.80 32.77 32.55 32.60 32.72 32.73 32.27 32.67 33.06 28.77 27.74 27.79 26.67 27.75 27.46 27.56 27.56 27.56 27.56	0.7716 \$SIM 0.9206 0.9101 0.9109 0.8982 0.9106 0.9102 0.9075 0.9087 0.9087 0.9088 0.9054 0.9083 0.9134 0.7868 0.7619 0.7639 0.7639 0.7639 0.7573 0.7601 0.7592	27.31 Bi PSNR 32.31 31.52 31.56 30.59 31.58 31.53 31.29 31.45 31.49 31.50 31.11 31.43 31.79 27.69 27.04 26.41 27.09 27.02 26.86 26.95 27.99 27.00	0.7269 SSIM 0.9012 0.8910 0.8922 0.8774 0.8920 0.8910 0.88874 0.8897 0.8993 0.88874 0.7107 0.7117 0.7192 0.6948 0.7199 0.7173 0.7111 0.7142	25.99 Urbis PSNR 32.76 30.92 30.96 28.89 31.06 30.94 30.32 30.71 30.71 30.93 29.77 30.65 26.48 25.28 25.34 24.12 25.38 25.28 24.91 25.11 25.18 25.26	0.7773 n100 SSIM 0.934 0.9151 0.9165 0.8860 0.9172 0.9151 0.9060 0.9128 0.9132 0.9150 0.8997 0.9112 0.7555 0.7013 0.7568 0.7524 0.7350 0.7462 0.7484 0.7493	29.27 Man PSNR 39.11 36.34 36.50 33.15 36.60 36.47 35.90 35.98 36.31 36.34 34.87 36.33 37.31 30.92 28.12 28.27 25.76 28.33 28.17 27.42 27.65 28.02 28.02	0.8913 ga109 SSIM 0.9781 0.9708 0.9716 0.9539 0.9716 0.9711 0.9680 0.9701 0.9695 0.9632 0.9687 0.9738 0.911 0.8745 0.8085 0.8763 0.8723 0.8563 0.8723 0.8569 0.86699 0.86699 0.86693 0.8659

Table 1: Quantitative comparison with other methods.

quantization, the BSQ and BSGA modules in BSSR effectively handle adaptive compression in super-resolution models. BSSR exhibits notable improvements on Urban100 and Manga109, indicating its effectiveness in handling scenes with complex textures and rich details. Specifically, in the MambaIRv2-light model compression experiments, our BSSR achieves: an improvement of 0.36 dB / 0.0042 over the second-best algorithm on the Urban100 test set (2x scale), and an improvement of 0.22 dB / 0.0064 over the second-best algorithm on the Urban100 test set (4x scale). In the SwinIR-light model compression experiments on Urban100, our BSSR algorithm achieved optimal PSNR/SSIM scores, improving PSNR/SSIM by 0.59 dB and 0.0065 at 2× scaling, and by 0.32 dB and 0.0122 at 4× scaling, respectively.

Group size K	Cools	Set5		Set14		B100		Urban100		Manga109	
Group size A	Scale	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
4M	×4	31.52	0.8859	28.18	0.7715	27.30	0.7270	26.00	0.7773	29.28	0.8919
8M	×4	31.51	0.8858	28.18	0.7716	27.31	0.7269	25.99	0.7773	29.27	0.8913
16M	×4	31.48	0.8830	28.15	0.7690	27.29	0.7245	25.96	0.7755	29.24	0.8890

Table 2: Ablation study on BSQ group size K, with results in PSNR (dB) and SSIM.

κ Scal	Scale	S	et5	Se	t14	B100		Urban100		Manga109	
n	Scale	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
0.25	×4	31.46	0.8857	28.14	0.7710	27.29	0.7267	25.95	0.7769	29.22	0.8908
0.50	×4	31.51	0.8858	28.18	0.7716	27.31	0.7269	25.99	0.7773	29.27	0.8913
2	×4	31.49	0.8840	28.16	0.7690	27.30	0.7245	25.97	0.7765	29.25	0.8895
4	×4	31.44	0.8830	28.12	0.7687	27.27	0.7242	25.92	0.7761	29.21	0.8890
	Caple	S	et5	Se	t14	B1	100	Urba	an100	Man	ga109
ρ	Scale	So PSNR	e t5 SSIM	Se PSNR	st14 SSIM	PSNR	100 SSIM	Urba PSNR	an100 SSIM	Man PSNR	ga109 SSIM
${\rho}$	Scale ×4					I					
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
0	×4	PSNR 31.47	SSIM 0.8857	PSNR 28.13	SSIM 0.7714	PSNR 27.28	SSIM 0.7265	PSNR 25.94	SSIM 0.7771	PSNR 29.24	SSIM 0.8912

Table 3: Ablation study on BSGA hyperparameters κ and ρ , with results in PSNR (dB) and SSIM.

5 ABLATION STUDY

To validate the effectiveness of each component in the proposed BSSR framework, we further conduct ablation studies on the proposed Binarized N:M Sparse Quantizer (BSQ) and Binarized Sparse Gradient Adjuster (BSGA). All experiments are conducted on the $\times 4$ super-resolution benchmark, trained for 100K iterations with the same training settings to ensure fair comparison.

Ablation on BSQ Group Size. We investigate the impact of group size K in the group-wise sparse binarization scheme on the approximation accuracy of sparse binary weights. In addition to $K=4M,\,8M,\,$ and $16M,\,$ allowing us to analyze the effect of granularity from fine to coarse. Based on the ablation results in Table 2, we select a group size of 8M for BSSR. While 4M achieves similar performance, 8M slightly improves PSNR on key datasets, and 16M shows minor degradation in overall performance. Therefore, 8M provides a good trade-off between sparsity and accuracy.

Ablation Study on BSGA. We conduct an ablation study to analyze the impact of two key hyperparameters in BSGA: the slope parameter κ of the surrogate gradient and the regularization coefficient ρ . Based on the ablation study results in Table 3, we select $\kappa=0.50$ and $\rho=0.002$ for BSGA, as a moderate κ ensures a stable tanh-based approximation of the non-differentiable sign function, preserving binary behavior while maintaining smooth gradient propagation, and a moderate ρ provides effective regularization of masked weights, allowing preserved weights to update properly.

6 Discussion and Conclusion

In this work, we proposed BSSR, a unified binarized N:M sparse training framework for image super-resolution. Within BSSR, we introduced two key components: BSQ and BSGA. BSQ performs group-wise sparse binarization of both activations and weights, effectively reducing memory footprint and computational cost while preserving accurate weight approximation. BSGA, on the other hand, tackles the non-differentiability of binarization and N:M sparse masking by employing a learnable hyperbolic tangent function along with separate gradient scaling factors for preserved and masked elements, ensuring stable and smooth gradient propagation during training. Extensive experiments on super-resolution benchmarks demonstrate that BSSR achieves state-of-the-art performance while significantly reducing computational and storage costs, making it highly suitable for deployment of high-performance super-resolution models on resource-constrained devices. In summary, BSSR offers an effective framework for combining sparsity and binarization, paving the way for future research on extreme model compression without sacrificing performance.

REFERENCES

- Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. 2012.
- Liangyu Chen, Xin Wang, Jiantao Zhou, and Jinjin Gu. Activating more pixels in image super-resolution transformer. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22367–22377. IEEE, 2023.
- Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for single image super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11065–11074. IEEE, 2019.
- Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super-resolution. *European Conference on Computer Vision (ECCV)*, pp. 184–199, 2014.
- Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression artifacts reduction by a deep convolutional network. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 576–584. IEEE, 2015.
- Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-shot. *arXiv preprint arXiv:2301.00774*, 2023.
- Tian Gao, Yu Zhang, Zhiyuan Zhang, Huajun Liu, Kaijie Yin, Chengzhong Xu, and Hui Kong. Bhvit: Binarized hybrid vision transformer. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3563–3572, 2025.
- Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple baseline for image restoration with state-space model. In *European conference on computer vision*, pp. 222–241. Springer, 2024a.
- Xiangyu Guo, Kai Zhang, Jingyun Liang, Yulun Wang, and Radu Timofte. Mambairv2: Hybrid mamba-transformer architecture for efficient image restoration. *arXiv preprint arXiv:2501.01234*, 2025.
- Yong Guo, Yulun Wang, Tianyu Qiao, Kai Zhang, Kai Han, Chang Xu, and Dacheng Tao. Attend to dictionary: Transformer learns sparse codes for image restoration. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- Yong Guo, Mingkui Tan, Zeshuai Deng, Jingdong Wang, Qi Chen, Jiezhang Cao, Yanwu Xu, and Jian Chen. Towards lightweight super-resolution with dual regression learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(12):8365–8379, 2024b.
- Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. *Advances in neural information processing systems*, 28, 2015.
- Simla Burcu Harma, Ayan Chakraborty, Elizaveta Kostenok, Danila Mishin, Dongho Ha, Babak Falsafi, Martin Jaggi, Ming Liu, Yunho Oh, Suvinay Subramanian, and Amir Yazdanbakhsh. Effective Interplay between Sparsity and Quantization: From Theory to Practice. *arXiv preprint*, 2024.
- Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531, 2015.
- Hanting Hu, Yunpeng Dong, Qibin Yuan, Yujun Wei, Yunde Zhang, and Zhiqiang Guo. Image processing transformer. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4085–4094. IEEE, 2021.
- Yuezhou Hu, Jun Zhu, and Jianfei Chen. S-ste: Continuous pruning function for efficient 2: 4 sparse pre-training. *Advances in Neural Information Processing Systems*, 37:33756–33778, 2024.
 - Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed self-exemplars. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5197–5206, 2015.

- Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks. *Advances in neural information processing systems*, 29, 2016.
 - Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated sparse neural training: A provable and efficient method to find n: m transposable masks. *Advances in neural information processing systems*, 34:21099–21111, 2021.
 - Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2704–2713, 2018.
 - Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
 - Yanjing Li, Sheng Xu, Mingbao Lin, Xianbin Cao, Chuanjian Liu, Xiao Sun, and Baochang Zhang. Bi-vit: Pushing the limit of vision transformer quantization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 3243–3251, 2024.
 - Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng Chen, and Wei Wang. Rtn: Reparameterized ternary network. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 4780–4787, 2020.
 - Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In *IEEE International Conference on Computer Vision Workshops (ICCVW)*, pp. 1833–1844. IEEE, 2021.
 - Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 136–144. IEEE, 2017.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 10012–10022. IEEE, 2021.
 - Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 722–737, 2018.
 - Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise binary neural network with generalized activation functions. In *European conference on computer vision*, pp. 143–159. Springer, 2020.
 - David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In *Proceedings eighth IEEE international conference on computer vision. ICCV 2001*, volume 2, pp. 416–423. IEEE, 2001.
 - Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. *Multimedia tools and applications*, 76(20):21811–21838, 2017.
 - Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. *arXiv preprint arXiv:2104.08378*, 2021.
 - Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. In *European conference on computer vision*, pp. 525–542. Springer, 2016.
 - Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large language models. *arXiv preprint arXiv:2306.11695*, 2023.

- Edwin Vargas, Claudia V Correa, Carlos Hinojosa, and Henry Arguello. Biper: Binary neural networks using a periodic function. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5684–5693, 2024.
 - Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan Guo. Exploring sparsity in image super-resolution for efficient inference. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4917–4926, 2021.
 - Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general u-shaped transformer for image restoration. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 17683–17693. IEEE, 2022.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
 - Xiao-Ming Wu, Dian Zheng, Zuhao Liu, and Wei-Shi Zheng. Estimator meets equilibrium perspective: A rectified straight through estimator for binary neural networks training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 17055–17064, 2023.
 - Xidong Wu, Shangqian Gao, Zeyu Zhang, Zhenzhen Li, Runxue Bao, Yanfu Zhang, Xiaoqian Wang, and Heng Huang. Auto-train-once: Controller network guided automatic network pruning from scratch. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16163–16173, 2024.
 - Bin Xia, Yulun Zhang, Yitong Wang, Yapeng Tian, Wenming Yang, Radu Timofte, and Luc Van Gool. Basic binary convolution unit for binarized image restoration network. *ICLR*, 2023.
 - Jingwei Xin, Nannan Wang, Xinrui Jiang, Jie Li, Heng Huang, and Xinbo Gao. Binarized neural network for single image super resolution. In *European conference on computer vision*, pp. 91–107. Springer, 2020.
 - Jingwei Xin, Nannan Wang, Xinrui Jiang, Jie Li, and Xinbo Gao. Advanced binary neural network for single image super resolution. *International Journal of Computer Vision*, 131(7):1808–1824, 2023.
 - Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. Restormer: Efficient transformer for high-resolution image restoration. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5728–5739. IEEE, 2022.
 - Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations. In *International conference on curves and surfaces*, pp. 711–730. Springer, 2010.
 - Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. *IEEE transactions on image processing*, 26 (7):3142–3155, 2017.
 - Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image superresolution using very deep residual channel attention networks. In *European Conference on Computer Vision (ECCV)*, pp. 286–301. Springer, 2018a.
 - Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image super-resolution. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2472–2481. IEEE, 2018b.
 - Yuxin Zhang, Yiting Luo, Mingbao Lin, Yunshan Zhong, Jingjing Xie, Fei Chao, and Rongrong Ji. Bi-directional masks for efficient n: M sparse training. In *International conference on machine learning*, pp. 41488–41497. PMLR, 2023.
 - Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. *arXiv* preprint arXiv:2102.04010, 2021.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. *arXiv preprint arXiv:1606.06160*, 2016.