DSMR-SQL: Enhancing Text-to-SQL with Dual-Strategy SQL Generation
and Multi-Role SQL Selection

Anonymous ACL submission

Abstract

Recent advancements in Large Language Mod-
els (LLMs) have markedly improved SQL gen-
eration. Nevertheless, existing approaches typ-
ically rely on single-model designs, limiting
their capacity to effectively handle complex
user queries. In addition, current methods often
face difficulties in selecting the optimal SQL
from multiple candidates. To mitigate these
limitations, this study presents DSMR-SQL, a
two-stage framework consisting of: (1) Dual-
Strategy SQL Generation: DSMR-SQL aims
to produce a broader spectrum of SQL queries
by using multiple models with two strategies:
Supervised Fine-Tuning and In-Context Learn-
ing; (2) Multi-Role SQL Selection: DSMR-
SQL seeks to identify the SQL most aligning
with user intent by introducing a collaborative
framework involving three roles (i.e., Proposer,
Critic, Summarizer). Extensive experiments
on various datasets substantiate the efficacy of
DSMR-SQL in enhancing SQL generation.

1 Introduction
Two heads are better than one.

- Proverb

SQL queries are essential for optimizing data
retrieval efficiency across multiple databases. Such
data has been implemented in critical domains, in-
cluding healthcare analytics (Mendhe et al., 2024)
and financial systems (Zhang et al., 2024a). While
technical professionals possess specialized exper-
tise in crafting SQL, the emergence of natural lan-
guage interfaces to databases (NLIDBs) has en-
abled non-technical users to effortlessly access
structured data (Deng et al., 2022). This enhanced
accessibility has catalyzed significant advance-
ments in text-to-SQL systems that automatically
translate natural language (NL) queries into valid
SQL statements.

Recent breakthroughs in large language models
(LLMs) (Achiam et al., 2023) have revolutionized

@_.{ LLM Limited SQL
74 Diversity
User Query
(
Single LLM
(a)
Improved SQL
Diversity

User

(b)

Figure 1: Iustrations of two different system designs.
(a) Limited SQL diversity for Single-Model design. (b)
Improved SQL diversity for Multi-Model design.

text-to-SQL methodologies, particularly through
the implementation of In-Context Learning (ICL)
and Fine-Tuning (FT). In particular, ICL allows
models to utilize prompt engineering to cope with
unseen scenarios effectively (Pourreza and Rafiei,
2024a; Gao et al., 2024; Lee et al., 2024). In con-
trast, FT customizes models for domain-specific
tasks using curated datasets, with an emphasis on
Supervised Fine-Tuning (SFT) (Li et al., 2024a;
Pourreza and Rafiei, 2024b; Zhang et al., 2024a).
Despite their promise, current approaches com-
monly encounter the following limitations that im-
pede their broader adoption:

Limitation 1: Limited SQL Diversity caused
by Single-Model Designs. As depicted in Figure
1, existing methods often rely on a single model
for SQL generation, which can be categorized
into Single-Model Single-Prompt and Single-Model
Multi-Prompt designs (Pourreza and Rafiei, 2024a;
Lee et al., 2024).

(a) Single-Model Single-Prompt Designs: No-
tably, LLMs are highly sensitive to the structure

and content of semantically identical prompts, lead-
ing to inconsistent SQL outputs (Lu et al., 2022;
Jang and Lukasiewicz, 2023). Moreover, using a
single prompt inherently narrows the search space
for potential SQL solutions, thereby overlooking
alternative SQL formulations that may better re-
flect actual user intent. To mitigate these issues,
self-consistency (Cheng et al., 2024) introduces
variability through high-temperature sampling and
selects the SQL with the most consistent execution
results (Gao et al., 2024; Mao et al., 2024; Talaei
et al., 2024). However, increased temperature can
introduce model hallucinations, thereby undermin-
ing overall model performance (Renze and Guven,
2024). Meanwhile, the SQL diversity achieved by
self-consistency remains insufficient for handling
highly complex user queries (Lee et al., 2024).

(b) Single-Model Multi-Prompt Designs: No-
tably, approaches like MCS-SQL (Lee et al., 2024)
have attempted to expand the solution space by gen-
erating multiple SQL queries from diverse prompts.
Nonetheless, the SQL diversity of a single model
still remains limited, which stems from the ten-
dency of LLMs to follow specific syntactic and
semantic patterns when producing SQL (Ji et al.,
2023; Yin et al., 2023). This behavior is influ-
enced by specific training data distributions and
inherent model architectures (Jiang et al., 2024a,b).
For instance, GPT-series models tend to prefer
“LEFT JOIN” over “JOIN” when constructing SQL
queries (Liu et al., 2023). As a result, the gener-
ated SQL candidates may exhibit structural similar-
ities and struggle to capture actual user intent, even
when diverse prompts are utilized in a single model.
In particular, MCS-SQL (Lee et al., 2024) used
five different prompts and high-temperature sam-
pling to generate 100 SQL candidates for each user
query to achieve competitive performance. This
showcases an over-reliance on exhaustive explo-
ration as a means to compensate for the limited
SQL diversity in single-model designs.

Limitation 2: Insufficient SQL Selection
Mechanisms. Notably, identifying the optimal
SQL from diverse candidates remains a significant
challenge. In particular, existing approaches pre-
dominantly rely on two strategies: Consistency
Voting and Simple SQL Selection. To be specific,
Consistency Voting determines the optimal SQL by
choosing the one with the most frequent execution
results (Gao et al., 2024; Talaei et al., 2024). In con-
trast, Simple SQL Selection employs a single LLM
as a judge to rank and select the most appropriate

SQL (Lee et al., 2024; Li and Xie, 2024). However,
Consistency Voting fails when none of the SQL can-
didates yield consistent execution results, and even
the most consistent result may be erroneous due
to shared underlying errors (Pourreza et al., 2024).
Besides, Simple SQL Selection is susceptible to in-
herent model biases and positional answer biases
(Wang et al., 2023; Shi et al., 2024; Zhang et al.,
2024b), which may result in errors when ranking
complex SQL queries. Meanwhile, it overlooks the
iterative nature of human reasoning, which typi-
cally involves multiple rounds of revision and re-
finement (Zheng et al., 2024; Madaan et al., 2024).
Accordingly, despite their user-friendly nature, the
above methods often lead to incorrect SQL selec-
tion results, which hinder the reliability of text-to-
SQL systems in real-world applications.

In light of the above limitations, we raise the fol-
lowing research question: How to leverage LLMs to
generate diverse SQL candidates while improving
the reliable selection of the optimal one?

This study introduces DSMR-SQL, a frame-
work developed to improve SQL generation us-
ing Dual-Strategy reasoning and Multi-Role SQL
selection. (1) Dual-Strategy SQL Generation
(DSG): DSMR-SQL combines SFT and ICL using
multiple models to produce diverse SQL, which
alleviates the limitations of single-model settings.
By harnessing the strengths of these two strategies,
DSG increases the possibility that the correct SQL
is available in the candidate set; (2) Multi-Role
SQL Selection (MRS): DSMR-SQL employs a
multi-role framework (i.e., Proposer, Critic, and
Summarizer) to identify the optimal SQL. This
collaborative mechanism simulates human-like rea-
soning to improve SQL selection, where the final
SQL is determined through iterative refinement.
Extensive experiments were conducted on several
datasets, showcasing the effectiveness of DSMR-
SQL in improving SQL generation.

In summary, this work offers the following con-
tributions: (1) This study highlights critical limi-
tations in current SQL generation approaches, par-
ticularly in producing diverse SQL candidates and
reliably selecting the optimal one. This motivated
us to develop more effective methods to handle
these issues; (2) We present DSMR-SQL, a frame-
work integrating dual-strategy reasoning and multi-
role SQL selection to improve SQL generation; (3)
Extensive experiments across various datasets con-
firm the effectiveness of DSMR-SQL in enhancing
model reasoning and generating high-quality SQL.

2 Related Work

2.1 SQL Generation Approaches

Recent LLM-based SQL generation techniques
widely adopt In-Context Learning (ICL) and Fine-
Tuning (FT). In particular, prompt engineering has
emerged as an effective approach to enhance SQL
generation due to its flexibility to deal with unfa-
miliar scenarios (Pourreza and Rafiei, 2024a; Gao
et al., 2024; Wang et al., 2024). However, closed-
source LLLMs are often associated with high mone-
tary costs and are characterized by inherent model
biases and output instability, thereby diminishing
their practical reliability (Liu et al., 2023; Turpin
et al., 2024). In contrast, the growing adoption of
open-source LLLMs has catalyzed research on fine-
tuning these models for SQL generation owing to
the stability of SFT (Zhang et al., 2024a; Pourreza
and Rafiei, 2024b; Li et al., 2024a). Despite their
potential, open-source models still struggle with
maintaining robustness in complex scenarios and
generalizing effectively due to their reliance on the
curated training data. Inspired by these advance-
ments, this study combines the strengths of ICL and
SFT to promote diverse SQL generation, thereby
increasing the likelihood that the correct SQL is
included in the candidate set.

2.2 SQL Selection Techniques

In the literature, Consistency Voting and Simple
SQL Selection have been introduced for select-
ing SQL from multiple candidates. In particular,
Consistency Voting enables the selection of the
SQL with the most frequently appearing execu-
tion results. For instance, approaches such as C3
(Dong et al., 2023), DAIL-SQL (Gao et al., 2024),
MetaSQL (Fan et al., 2024), and PURPLE (Ren
et al., 2024) reduced output noise by selecting the
SQL with the most consistent execution results.
Additionally, Simple SQL Selection utilizes a sin-
gle LLM to assess and identify the optimal SQL
from multiple candidates. For instance, LEVER
(Ni et al., 2023) and Li et al. (Li and Xie, 2024)
used ranking techniques to select the most suitable
SQL. MCS-SQL (Lee et al., 2024) generated di-
verse SQL candidates using varied prompts and ap-
plied multiple-choice selection to determine the fi-
nal SQL. Different from the above techniques, this
study introduces multiple roles to mimic human-
like problem-solving processes and iteratively im-
prove SQL selection.

3 Methodology

This section introduces DSMR-SQL, a two-stage
framework designed to enhance SQL generation.
As depicted in Figure 2, the framework comprises
two primary stages: (1) Dual-Strategy SQL Gen-
eration (DSG): Multiple SQL candidates are gener-
ated by combining SFT and ICL. This dual-strategy
approach leverages the complementary strengths
of both techniques to improve SQL diversity; (2)
Multi-Role SQL Selection (MRS): A collabora-
tive framework with three roles is applied to itera-
tively identify the most suitable SQL. The details
of these stages are elaborated as follows.

3.1 Dual-Strategy SQL Generation (DSG)

As illustrated in the left part of Figure 2, DSG
combines the stability of SFT with the flexibility
of ICL to mitigate the limitations of single-model
reliance (Liu et al., 2023; Turpin et al., 2024).

Specifically, the process begins with using open-
source LLMs to perform SFT on task-specific
datasets, enabling models to produce SQL candi-
dates that adhere to the syntactic and semantic pat-
terns in the training data. This alignment provides
a stable foundation for SQL generation, reducing
output instability and inherent model biases in ICL-
based methods. To achieve this, DSG adopts the
CodeS framework (Li et al., 2024a) and utilizes
several open-source models for SQL generation.
Despite its advantages, the fixed reasoning of SFT
inherently limits its capacity to further explore al-
ternative SQL solutions.

To overcome this limitation, ICL-based methods
are further integrated to enhance reasoning flexibil-
ity. Typically, humans solve problems using vari-
ous methods: some rely on quick intuitive think-
ing, others follow methodical rules, while some
adopt flexible reasoning without rigid guidelines
(Qi et al., 2024). Inspired by these strategies, DSG
implements diverse reasoning processes to mimic
these human-like approaches, thereby enhancing
the reasoning capacity of closed-source LLMs. An
illustrative example of the ICL-based strategy im-
plemented in DSG is presented in Figure 5 from
Appendix L, which includes:

(1) Direct SQL Generation: LLMs generate
SQL directly without providing explanations, prior-
itizing simplicity and speed. This approach is akin
to “fast thinking” (Lin et al., 2024) and is particu-
larly effective for straightforward user queries with
minimal logical reasoning. The key prompt for this

[User Query @ Database]

SFT-Result;
SFT-Result,

(
| SFT

ﬂ Open-Source LLM;, H SFT-SQL,
} . :

| : :
—HOpen-Source LLM,[SET sFT-saL,

-~

ICL-Result,
ICL-Resulty,

SFT-SQL,
SFT-Result;
SFT-saL,
SFT-Result,

ICL-SQL,
ICL-Result;

—_

ICL-SQL,
ICL-Result;

Closed-Source } |
[
|

N —
J 11 _ _ stage 2: MultiRole SQL Selection (MRS) _ |

Figure 2: Illustration of our proposed DSMR-SQL. Specifically, the framework consists of two stages, including
Dual-Strategy SQL Generation (DSG) and Multi-Role SQL Selection (MRS).

method is: “Please directly generate SQL queries
with no explanations.”

(2) Strict Step-by-Step Reasoning: LLMs
adopt a structured and methodical approach to
improve SQL accuracy. Each step involves a de-
tailed analysis of specific aspects (e.g., user query,
database schema, etc.), ensuring that the generated
SQL satisfies all requirements and undergoes rigor-
ous validation. The key prompt for this method is:
“Please strictly obey the following steps to generate
high-quality SQL queries.”

(3) Flexible Reasoning: LLMs engage in flex-
ible reasoning processes without rigid guidelines,
relying on contextual understanding of the given
problem. This approach is also effective in address-
ing highly complex user queries. The key prompt
for this method is: “Please generate high-quality
SQL queries with your detailed reasoning.”

By integrating the stability of SFT with the di-
verse reasoning of ICL, a wide range of SQL can-
didates are generated by DSG. These SQL queries
broaden the solution space, thereby increasing the
probability of incorporating the correct SQL. Sub-
sequently, the SQL candidates are executed in the
databases to retrieve execution results, which serve
as input for the next SQL selection process. The
detailed prompts for each ICL-based method are
provided in Appendix E, F, and G.

3.2 Multi-Role SQL Selection (MRS)

While DSG generates diverse SQL candidates, se-
lecting the most suitable one remains a significant
challenge. Therefore, inspired by the multi-agent
debate (Liang et al., 2023), this study introduces
a Multi-Role SQL Selection (MRS) framework,
which assigns distinct roles in a single LLM to

facilitate accurate SQL selection. As depicted in
the right part of Figure 2, MRS employs the fol-
lowing roles to determine the optimal SQL based
on the given SQL candidates and their respective
execution results:

(1) Proposer: The Proposer formulates a clear
proposal involving the chosen SQL and its detailed
reasoning, serving as the foundation for subsequent
critique and refinement.

(2) Critic: The Critic assesses the Proposer’s
reasoning process. It delivers detailed feedback to
the Proposer to pinpoint errors or suggest improve-
ments, fostering a rigorous evaluation process.

(3) Summarizer: The Summarizer consolidates
the Proposer’s reasoning and the Critic’s feedback
to finalize the optimal SQL, ensuring that the SQL
selection process is accurate and logically coherent.

Importantly, MRS operates as an iterative pro-
cess, wherein the Proposer refines its reasoning
through several rounds of feedback from the Critic.
This iterative mechanism ensures that each SQL is
selected with a high degree of precision. The com-
plete procedure is outlined in Algorithm 1, which
is detailed as follows:

The process commences with the Proposer pre-
senting a chosen SQL and its associated reasoning.
The reasoning is then analyzed by the Critic, who
identifies potential flaws and offers constructive
feedback to improve SQL selection. Based on this
feedback, the reasoning process is refined by the
Proposer before being returned to the Critic. This it-
erative cycle continues until a consensus is reached
between the Proposer and Critic on the reasoning
process and the selected SQL. Once a consensus
18 achieved, the Summarizer reviews the finalized
reasoning and feedback, consolidating them into

the final selected SQL.

This iterative collaboration between the Proposer
and Critic imitates human-like problem-solving
processes, where the Critic’s feedback refines the
solutions from the Proposer. Consequently, MRS
facilitates a more reliable and robust SQL selection.
An illustrative example of this iterative process is
given in Appendix N, and the detailed prompt for
MRS is shown in Appendix H.

Algorithm 1 Multi-Role SQL Selection (MRS)

Input: User query @, provided hints H, SQL can-
didates {.Sj }, and their execution results { F, }
Output: Final selected SQL S*
1: Ry, Sy =Proposer(Q, H, {Sk}, {Ex})
> Ry, S are the initial reasoning process and
selected SQL
2: fori =1to N do
F; =Critic(Q, H, R;, S;)
> NN is the number of iterations, which is not
limited to a certain value
> F; is the i-th negative feedback, requiring
the Proposer to refine its reasoning
4. Rit1, Siy1 = Proposer(R;, F;)
> R;11,5;+1 are the refined reasoning pro-
cess and selected SQL

5. Fipq =Critic(Q, H, Ri11, Sit1)
6: if F;1 is positive then

7: Return Fiy1, Rit1, Sit1

8 endif

9: end for

10: S* = Summarizer(Fj i1, Rit1, Si+1)

11: return S* © Final selected SQL

4 Experiments

This section evaluates the performance of DSMR-
SQL on multiple datasets. Extensive experiments
were conducted to answer the following questions:
RQ1. How does DSMR-SQL perform compared
with previous LLM-based approaches in SQL gen-
eration? RQ2. What is the contribution of each
module in DSMR-SQL to its overall effectiveness?

4.1 Experimental Setup

Datasets. In this study, the efficacy of DSMR-SQL
was assessed on Spider (Yu et al., 2018), BIRD
(Li et al., 2024b), Spider-DK (Gan et al., 2021b),
Spider-Realistic (Deng et al., 2021), and Spider-
Syn (Gan et al., 2021a). Further details about the
datasets are given in Appendix A.

Implementation Details. In this study, Llama-3.2-
3B-Instruct (Touvron et al., 2023) and StableCode-
3B (Pinnaparaju et al., 2024) were utilized to gener-
ate SQL through SFT. Additionally, GPT-40 (Hurst
etal., 2024) and Gemini-1.5-Pro (Team et al., 2024)
were employed to generate diverse SQL via ICL,
which were then used in MRS. Notably, the modu-
lar design of DSMR-SQL ensures its adaptability
with various LLMs, thereby extending its applica-
bility beyond the models used in this study. Further
details can be found in Appendix B.

Evaluation Metrics. In this study, the official eval-
uation scripts from Spider! were used to assess Spi-
der and its variant datasets, which include Execu-
tion Accuracy (EX) (Yu et al., 2018) and Test-suite
Accuracy (TS)? (Zhong et al., 2020). For BIRD,
its official evaluation scripts were employed?, in-
volving EX and Valid Efficiency Score (VES) (Li
et al., 2024b). The definitions of these metrics are
provided in Appendix C.

4.2 Opverall Performance (RQ1)

To validate the efficacy of the proposed DSMR-
SQL framework in SQL generation, a detailed eval-
uation was conducted across multiple datasets. De-
scriptions of the compared approaches are provided
in Appendix D, with performance results detailed
in Tables 1 and 2. Notably, DSMR-SQL consis-
tently outperformed other LLM-based approaches
across diverse datasets. For instance, DSMR-SQL
achieved an EX of 89.7% and a TS of 84.5% on
Spider-Dev using GPT-40, surpassing methods like
MCS-SQL (Lee et al., 2024), which generated 100
SQL candidates for each user query.

Additionally, the efficacy of each stage within
DSMR-SQL was analyzed in Tables 3 and 4, high-
lighting the impact of its modular design on overall
performance. For instance, during the first stage on
Spider-Dev, using GPT-40 for systematic step-by-
step reasoning (i.e., ICLgpr402) yielded the high-
est individual performance among SQL candidates,
with an EX of 87.4% and a TS of 81.2%. Build-
ing on this foundation, the incorporation of MRS
further improved performance, elevating the EX
to 89.7% and the TS to 84.5%. This resulted in
an increase of 2.3% in EX and 3.3% in TS com-
pared to the standalone ICLgpT.402. These results
underscored the synergistic effectiveness of DSG

Thttps://yale-lily.github.io/spider

TS is not reported for Spider-Test and Spider-DK due to
the absence of test suites for these datasets.

3https://bird-bench.github.io/

Spider-Dev | Spider-Test | BIRD-Dey
Method EX 1S EX EX VES
In-Context Learning
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2024a) | 82.8 74.2 85.3 50.7 58.8
DAIL-SQL + GPT-4 (Gao et al., 2024) 83.5 76.2 86.6 54.8 56.1
DEA-SQL + GPT-4 (Xie et al., 2024b) 85.4 - 87.1 52.4 -
TA-SQL + GPT-4 (Qu et al., 2024) 85.0 - - 56.2 -
MAG-SQL + GPT-4 (Xie et al., 2024a) 85.3 - 85.6 61.1 -
PTD-SQL + GPT-4 (Luo et al., 2024) 85.7 - - 57.0 57.7
MAC-SQL + GPT-4 (Wang et al., 2024) 86.8 - 82.8 59.4 66.4
MCS-SQL + GPT-4 (Lee et al., 2024) 89.5 - 89.6 63.4 64.8
PURPLE + GPT-40 (Ren et al., 2024) 87.8 83.3 - 63.0 -
Fine-Tuning
DTS-SQL (Pourreza and Rafiei, 2024b) 85.5 - 84.4 55.8 60.3
CodeS-15B (Li et al., 2024a) 849 794 - 58.5 59.9
SENSE-13B (Yang et al., 2024) 84.1 835 86.6 55.5 -
Ours (In-Context Learning + Fine-Tuning)
DSMR-SQL + Gemini-1.5-Pro 89.4 83.7 89.3 66.4 70.9
DSMR-SQL + GPT-40 89.7 84.5 89.7 67.2 71.8

Table 1: Performance of different methods on the Spider-Dev, Spider-Test, and BIRD-Dev datasets. Note that “-”
indicates that the result was not reported in the original paper.

Spider-DK | Spider-Realistic | Spider-Syn

Method EX EX 1S | EX TS

SENSE-13B (Yang et al., 2024) 80.2 84.1 76.6 77.6 70.2

CodeS-15B (Li et al., 2024a) 70.7 83.1 75.6 77.0 69.4
PURPLE + GPT-40 (Ren et al., 2024) 75.3 79.9 - 74.0 -

DSMR-SQL + Gemini-1.5-Pro 80.0 86.4 77.8 81.3 727

DSMR-SQL + GPT-4o 80.4 87.0 78.3 82.2 738

Table 2: Performance of different methods on the Spider-variant datasets, including Spider-DK, Spider-Realistic,
and Spider-Syn. Note that ““-” indicates that the result was not reported in the original paper.

and MRS, demonstrating the framework’s capacity
to enhance SQL generation.

4.3 Analysis of DSMR-SQL (RQ2)

We further analyzed the performance of DSMR-
SQL on Spider-Dev, focusing on the contribu-
tions of Dual-Strategy SQL Generation (DSG) and
Multi-Role SQL Selection (MRS).

4.3.1 Dual-Strategy SQL Generation (DSG)

The performance of DSG was evaluated under vary-
ing numbers of SQL candidates and different LLM
configurations. The results in Figure 3 and Ap-
pendix M revealed the following key insights:

(1) Impact of the Number of SQL Candidates:
We compared the performance of DSMR-SQL us-
ing different numbers of SQL candidates. Note that
MRS was not applied when only one SQL was con-

sidered. As shown in Figure 3(a), both EX and TS
showed steady growth with the increasing number
of SQL candidates, showcasing the benefits of inte-
grating multiple SQL within a collaborative frame-
work. Accordingly, DSG effectively mitigated the
limitations of single-model settings. Notably, EX
improved from 86.5% to 89.7%, and TS increased
from 80.2% to 84.5% with the rise in the number of
SQL queries. However, the trend of improvement
began to plateau as the candidate pool expanded.
Based on this observation, five SQL queries for
each user question were selected in this study.

(2) Effect of Dual-Strategy Configuration:
The performance of DSMR-SQL was compared
using SFT only, ICL only, and a combination of
SFT and ICL. As shown in Figure 3(b), the integra-
tion of SFT and ICL achieved the highest perfor-
mance, with an EX of 88.6% and a TS of 82.9%),

Spider-Dev | Spider-Test | BIRD-Dev

Method EX TS EX EX VES

gpp Llama-32-3B-Instruct | 848 79.5 85.8 570 57.8
StableCode-3B 86.0 80.7 85.1 587 60.5

ICL Gormini-1.5-Prol 87.0 804 86.6 625 674

ICLGemini.1s.pre2 | 867 81.1 87.1 63.1 67.9

Stage 1 - DSG oL TCLoenini-1spros 86.7 80.7 86.8 634 702
ICLGPTA01 872 797 87.2 63.0 68.0

ICLGPT-400 874 812 875 634 704

ICLGPT-403 87.1 80.0 87.1 63.8 706

Gemini-1.5-Pro 894 837 893 664 709

Stage 2 - MRS GPT-4o 89.7 84.5 897 | 671 718

Table 3: Experimental results of different modules in DSMR-SQL on the Spider-Dev, Spider-Test, and BIRD-
Dev datasets. Note that DSG and MRS indicate Dual-Strategy SQL Generation and Multi-Role SQL Selection,
respectively. Moreover, the subscripts in ICL represent three reasoning processes mentioned in DSG for each model.

Spider-DK | Spider-Realistic | Spider-Syn

Method EX EX TS EX TS

SFT Llama-3.2-3B-Instruct 72.5 81.3 76.6 753 68.6
StableCode-3B 75.7 799 750 | 745 688

ICLGomini-15-Prol 785 854 752 | 786 701

ICL Gemini. 1. S-Pro2 77.4 848 768 | 802 712

Stage 1 -DSG oL Clemini1srros 78.7 843 766 | 805 716
ICLGPTA0L 77.6 848 748 | 794 706

ICLGPT-400 79.6 835 758 | 809 738

ICLGPTA03 78.7 852 748 | 814 730

Gemini-1.5-Pro 80.0 864 778 | 813 727

Stage 2 - MRS GPT-do 803 |87.0 783 |822 738

Table 4: Experimental results of different modules in DSMR-SQL on the Spider-DK, Spider-Realistic, and Spider-
Syn datasets. Note that DSG and MRS indicate Dual-Strategy SQL Generation and Multi-Role SQL Selection,
respectively. Moreover, the subscripts in ICL represent three reasoning processes mentioned in DSG for each model.

surpassing ICL alone by 0.9% in EX and 1.3% in
TS. This improvement underscored the synergistic
effect of combining both strategies to optimize the
generation of diverse SQL candidates by capitaliz-
ing on their respective strengths. This dual-strategy
setting is also crucial for the subsequent MRS in
effectively identifying the optimal SQL.

4.3.2 Multi-Role SQL Selection (MRS)

As illustrated in Figure 4, the proposed MRS was
compared with Consistency-Voting (CV), Direct
SQL Selection (DS), and SQL Selection with Ex-
planation (SE). Specifically, CV selected the SQL
candidate via majority voting on execution results
across all options. DS employed LLMs to directly
identify the most accurate SQL candidate without
providing explanations. SE used LLMs to select
the optimal SQL, incorporating explanatory reason-

ing into the selection process. The results in Table 5
indicated that MRS outperformed CV, DS, and SE.
For instance, when using GPT-40, MRS achieved
the highest performance, surpassing SE by 0.7% in
EX and 1.1% in TS on Spider-Dev. These findings
highlighted MRS’s capacity to leverage multi-role
decision-making processes, facilitating more accu-
rate and reliable identification of the optimal SQL.
The detailed prompts regarding CV, DS, and SE
are provided in Appendix I, J, and K.

4.3.3 Case Study

To offer a clear illustration of how DSMR-SQL
enhances the generation of higher-quality SQL, a
case study was conducted on the 463rd question
from Spider-Deyv, as described in Appendix N.
Specifically, the question required the name and
rank points of the winner who won the most times.

84 |-

82 -

80
90

88 -

8§.5
One Two Three Four

1 1 1

86

1
Five # Candidates

100 T T T
87.7 88.6 s

81.6 |82.9
0 L 80.3 1816 i

85.9

60 4

40 - -

SFT Only ICL Only SFT +ICL Strategy

(a) Performance comparisons among different numbers of SQL (b) Performance comparisons among using SFT only, using

candidates.

ICL only, and using both SFT and ICL.

Figure 3: The performance of DSG with varying numbers of SQL candidates and different strategy settings on the
Spider-Dev dataset. Note that the experimental results are based on open-source models and GPT-4o.

Spider-Dev

Method EX TS
CV | 878 8l.6
.. DS 88.3 82.5
Gemini-1.5-Pro SE 887 878
MRS | 89.4 83.7
CV | 882 82.1
DS 88.5 82.6
GPT-40 SE | 89.0 834
MRS | 89.7 84.5

Table 5: Results of using Multi-Role SQL Selection
(MRS), Consistency-Voting (CV), Direct SQL Selection
(DS), and SQL Selection with Explanation (SE) on the
Spider-Dev dataset.

To address this, five SQL queries were produced.
The first two SQL were generated via SFT, while

the remaining three SQL were produced using ICL.

(1) The first two SQL queries correctly retrieved
the winner name and rank points by grouping
records based on the winner ID or winner name,
which aligned with the query intent.

(2) The third and fourth SQL candidates deviated
from the user intent by unnecessarily separating
the winner’s first and last names, which introduced
irrelevant complexity.

(3) The fifth SQL grouped records by both the
winner name and rank points. However, grouping
by rank points risked producing incorrect results if
a player’s rank points varied across matches. This
fragmentation would split the total win counts into
separate groups based on different rank points.

SQL4 /Resulh
b\
+ Final SQL . ‘
o, | Sl R gl (|

e/

SQL,/ Result,

Figure 4: Illustration of Consistency-Voting (CV), Di-
rect SQL Selection (DS), and SQL Selection with Ex-
planation (SE).

Notably, simple SQL selection strategies (i.e.,
CV, DS, and SE) favored the overly complex third
and fourth SQL candidates. In contrast, MRS em-
ployed the collaboration of various roles to com-
prehensively analyze the provided SQL queries.
Through its iterative reasoning process, MRS ul-
timately identified the SQL query that most accu-
rately aligned with the user intent.

5 Conclusion

This study introduces DSMR-SQL, a SQL gener-
ation framework leveraging dual-strategy reason-
ing and multi-role SQL selection. Experiments on
several datasets demonstrate the framework’s supe-
rior performance, and extensive analyses were con-
ducted to further validate its effectiveness. Overall,
this study presents a pragmatic solution for im-
proving model reasoning and accurately selecting
the optimal SQL. It creates opportunities for re-
searchers in this field to further explore and refine
SQL generation techniques.

Limitations

Despite the promising results achieved by DSMR-
SQL, there are several limitations that deserve fur-
ther attention. (1) Human Reasoning Processes:
While our framework partially mimics human rea-
soning behaviors, significant gaps remain in fully
understanding and incorporating advanced human
reasoning processes into SQL generation. In-depth
research into these processes could be crucial for
enhancing the model’s performance; (2) Candi-
date Coverage: In this study, only five SQL can-
didates are used for selection. However, this re-
stricted number might fail to sufficiently encom-
pass the full SQL query space, particularly in com-
plex datasets like BIRD. Therefore, dynamically
adjusting the number of SQL candidates to opti-
mize SQL generation performance offers a com-
pelling avenue for future research.

Ethical Considerations

In this study, the efficacy of the proposed DSMR-
SQL is assessed using both open-source and closed-
source LLMs. It is important to highlight that
these models demand substantial computational
resources, which leads to a rise in carbon dioxide
emissions and high energy consumption. Besides,
the datasets we utilized in this study are openly
available, and there are no data privacy concerns.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Furui Cheng, Vilém Zouhar, Simran Arora, Mrin-
maya Sachan, Hendrik Strobelt, and Mennatallah
El-Assady. 2024. Relic: Investigating large language
model responses using self-consistency. In Proceed-
ings of the CHI Conference on Human Factors in
Computing Systems, pages 1-18.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re-
cent advances in text-to-sql: A survey of what we
have and what we expect. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 2166-2187.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-sql. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-

guage Technologies, NAACL-HLT 2021, pages 1337—
1350.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Yuankai Fan, Zhenying He, Tonghui Ren, Can Huang,
Yinan Jing, Kai Zhang, and X. Sean Wang. 2024.
Metasql: A generate-then-rank framework for natural
language to SQL translation. In 40th IEEE Interna-
tional Conference on Data Engineering, ICDE 2024,
pages 1765-1778.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-to-
sql models against synonym substitution. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, pages 2505-2515.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8926-8931.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models: A
benchmark evaluation. In International Conference
on Very Large Data Bases (VLDB).

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o0 system card. arXiv preprint
arXiv:2410.21276.

Myeongjun Jang and Thomas Lukasiewicz. 2023. Con-
sistency analysis of chatgpt. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 15970-15985.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1-38.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024a. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Wenzhao Jiang, Jindong Han, Hao Liu, Tao Tao,
Naiqgiang Tan, and Hui Xiong. 2024b. Interpretable
cascading mixture-of-experts for urban traffic con-
gestion prediction. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5206-5217.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Zhenwen Li and Tao Xie. 2024. Using llm to select
the right sql query from candidates. arXiv preprint
arXiv:2401.02115.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. 2024.
Swiftsage: A generative agent with fast and slow
thinking for complex interactive tasks. Advances in
Neural Information Processing Systems, 36.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li,
and Nan Tang. 2024. A survey of nl2sql with large
language models: Where are we, and where are we
going? arXiv preprint arXiv:2408.05109.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098.

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin,
and Yujiu Yang. 2024. Ptd-sql: Partitioning and tar-
geted drilling with 1lms in text-to-sql. arXiv preprint
2409.14082.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

10

Wenxin Mao, Ruiqi Wang, Jiyu Guo, Jichuan Zeng,
Cuiyun Gao, Peiyi Han, and Chuanyi Liu. 2024. En-
hancing text-to-sql parsing through question rewrit-
ing and execution-guided refinement. In Findings of
the Association for Computational Linguistics ACL
2024, pages 2009-2024.

Dinesh Mendhe, Akriti Dogra, Prabha Shreeraj Nair,
S Punitha, KS Preetha, and S BG Tilak Babu. 2024.
Ai-enabled data-driven approaches for personalized
medicine and healthcare analytics. In 2024 Ninth
International Conference on Science Technology En-
gineering and Mathematics (ICONSTEM), pages 1-5.
IEEE.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106-26128.
PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Nikhil Pinnaparaju, Reshinth Adithyan, Duy Phung,
Jonathan Tow, James Baicoianu, Ashish Datta,
Maksym Zhuravinskyi, Dakota Mahan, Marco Bel-
lagente, Carlos Riquelme, et al. 2024. Stable code
technical report. arXiv preprint arXiv:2404.01226.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint 2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller 1lms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! A novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
In Findings of the Association for Computational
Linguistics, ACL 2024, pages 5456-5471.

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang,
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yi-
fan Yang, and Xiaoyang Sean Wang. 2024. Purple:

https://api.semanticscholar.org/CorpusID:268793895
https://api.semanticscholar.org/CorpusID:268793895

Making a large language model a better sql writer.
2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 15-28.

Matthew Renze and Erhan Guven. 2024. The effect of
sampling temperature on problem solving in large
language models. arXiv preprint arXiv:2402.05201.

Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and
Soroush Vosoughi. 2024. Judging the judges: A
systematic investigation of position bias in pairwise
comparative assessments by llms. arXiv preprint
arXiv:2406.07791.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel
Bowman. 2024. Language models don’t always say
what they think: unfaithful explanations in chain-of-
thought prompting. Advances in Neural Information
Processing Systems, 36.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, et al. 2024. Mac-sql: A multi-
agent collaborative framework for text-to-sql. arXiv
preprint arXiv:2312.11242.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023. Large language models are not
fair evaluators. arXiv preprint arXiv:2305.17926.

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024a.
Mag-sql: Multi-agent generative approach with soft
schema linking and iterative sub-sql refinement for
text-to-sql. arXiv preprint arXiv:2408.07930.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, Matrixmxlin Ma-
trixmxlin, Liang Chen, Chenyun Yu, Cheng Lei,
Chengxiang Zhuo, Bo Hu, and Zang Li. 2024b. De-
composition for enhancing attention: Improving 1lm-
based text-to-sql through workflow paradigm. In
Findings of the Association for Computational Lin-

guistics, ACL 2024, pages 10796-10816.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings

11

of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864-7875.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuan-Jing Huang. 2023. Do large
language models know what they don’t know? In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 8653-8665.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun
Gao, Lu Chen, Dongfang Lou, and Jinshu Lin. 2024a.
Finsql: Model-agnostic 1lms-based text-to-sql frame-
work for financial analysis. In Companion of the
2024 International Conference on Management of
Data, pages 93-105.

Hengran Zhang, Ruqing Zhang, Jiafeng Guo, Maarten
de Rijke, Yixing Fan, and Xueqi Cheng. 2024b. Are
large language models good at utility judgments? In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1941-1951.

Li Zheng, Hao Fei, Fei Li, Bobo Li, Lizi Liao,
Donghong Ji, and Chong Teng. 2024. Reverse multi-
choice dialogue commonsense inference with graph-
of-thought. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 19688—
19696.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-sql with distilled test suites. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, pages 396-411.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2022.
Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Pan Zhou, Xingyu Xie, Zhouchen Lin, and Shuicheng
Yan. 2024. Towards understanding convergence and
generalization of adamw. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

https://api.semanticscholar.org/CorpusID:268793895

A Appendix A: Description of the
Experimental Datasets

This section provides detailed information on the
datasets used in this study. Additional details on
database and query complexity are presented in Ta-
ble 6 (Liu et al., 2024). These datasets are publicly
available under the CC BY-SA 4.0 license, per-
mitting modifications and inclusion of additional
annotations on the original datasets.

Spider: Spider (Yu et al., 2018) serves as a com-
prehensive dataset, comprising 11840 NL questions
in English and 6448 unique SQL queries across 138
distinct domains. It contains 8659 samples in the
training set, 1034 in the development set, and 2147
in the test set®.

Spider-Variant Datasets: Spider-DK (Gan
et al., 2021b) highlights the role of domain-specific
knowledge in SQL generation with 535 samples
in English>. Spider-Realistic (Deng et al., 2021)
focuses on challenging queries that omit explicit
column references, which includes 508 samples in
English®. Spider-Syn (Gan et al., 2021a) is a vari-
ant of Spider, in which schema-specific terms in NL
queries are replaced with synonyms. It provides
1034 samples for model evaluation in English’.

BIRD: BIRD (Li et al., 2024b) has gained
widespread attention for incorporating additional
complexities, such as complex SQL functions and
operations not found in Spider. It contains 9428
training samples and 1534 samples in the develop-
ment set. The NL queries in BIRD are in English®.

B Appendix B: Description of the
Implementation Details

In this study, DSMR-SQL was implemented using
PyTorch (Paszke et al., 2019). Besides, SFT and
ICL were combined to improve SQL generation.
(1) SFT: Specifically, Llama-3.2-3B-Instruct’
(Touvron et al., 2023) and StableCode-3B!° (Pin-
naparaju et al., 2024) were utilized for SQL gener-
ation via SFT. The former excels in query compre-
hension, while the latter specializes in code gener-
ation. Moreover, the CodeS framework (Li et al.,
2024a) was employed to perform SFT, with the
learning rate, batch size, and number of epochs set
* *hups://yale-lily.github.io/spider
Shitps://github.com/ygan/Spider-DK
Shttps://zenodo.org/records/5205322#.Y Tts_o5Kgab
"https://github.com/ygan/Spider-Syn
8https://bird-bench.github.io/

*https://hf-mirror.com/meta-llama/Llama-3.2-3B-Instruct
https://hf-mirror.com/stabilityai/stable-code-3b

12

to5 x 1079, 2, and 4, respectively. In addition,
the AdamW optimizer (Zhou et al., 2024) with mo-
mentum parameters 51 = 0.9, S2 = 0.95, and
€ = 1 x 1078 was adopted. Other parameter set-
tings remained the same as in the original CodeS'!.
All experiments in SFT were conducted on four
NVIDIA GeForce A100 40GB GPUs.

(2) ICL: Specifically, GPT-40 (Hurst et al.,
2024) and Gemini-1.5-Pro (Team et al., 2024) were
employed to generate diverse SQL queries via
ICL!2. Notably, two SQL candidates generated
by the open-source LLMs and three SQL candi-
dates generated by GPT-40 (or Gemini-1.5-Pro)
were adopted for MRS within GPT-40 (or Gemini-
1.5-Pro). Besides, the number of chat completion
choices (n) and the temperature (7") were set to 1
and 0, respectively. The number of SQL candidates
was determined based on the experiments in Sec-
tion 4.3.1(1). It is worth noting that the modular
design of DSMR-SQL enables the utilization of dif-
ferent numbers of open-source and closed-source
LLMs for multiple SQL generation.

C Appendix C: Description of the
Evaluation Metrics

Evaluation metrics are crucial for gauging the ef-
ficacy of text-to-SQL systems from a quantitative
perspective. In this study, we used the following
metrics to assess the model’s performance.

(1) Execution Accuracy (EX) (Yu et al., 2018)
assesses the execution outcomes of predicted SQL
queries against the ground truth. This metric is
valuable for verifying the functional correctness of
SQL queries.

(2) Test-suite Accuracy (TS) (Zhong et al.,
2020) is proposed to gauge the semantic correct-
ness of text-to-SQL systems by constructing a
compact test suite from a substantial collection
of databases. This approach enables the differ-
entiation between fully correct and nearly correct
SQL queries. During the evaluation phase, T'S mea-
sures the model’s ability to correctly execute SQL
queries across these databases, thereby establishing
a stringent upper bound for semantic accuracy.

(3) Valid Efficiency Score (VES) (Li et al.,
2024b) quantifies the execution efficiency of SQL
queries by simultaneously considering the accuracy
and execution efficiency of SQL outputs.

"https://github.com/RUCKBReasoning/codes
2We utilized this website to employ closed-source LLMs:
https://gpt.zhizengzeng.com/

Dataset Database Complexity Query Complexity
Databases # Tables | # Tables # Selects #Agg # Math Comp
Spider 206 1056 1.83 1.17 0.54 0
Spider-DK 169 887 1.71 1.16 0.54 0
Spider-Realistic 166 876 1.79 1.21 0.50 0
Spider-Syn 166 876 1.68 1.17 0.59 0
BIRD 80 611 2.07 1.09 0.61 0.27

Table 6: Additional information of the experimental datasets. Note that # Agg and # Math Comp indicate the number
of aggregation functions and mathematical computations, respectively.

D Appendix D: Description of the
Compared Methods

We compared various LLM-based SQL generation
methods in the literature, which are divided into
two categories.

(1) In-Context Learning-based Approaches:

* DIN-SQL (Pourreza and Rafiei, 2024a) seg-
mented the SQL generation process into four
distinct modules, namely schema linking, clas-
sification and decomposition, SQL generation,
and self-correction.

* DAIL-SQL (Gao et al., 2024) incorpo-
rated structural knowledge through skeleton
similarity-based few-shot prompt selection
and improved reasoning efficiency by restrict-
ing cross-domain specific terms in the repre-
sentation.

* DEA-SQL (Xie et al., 2024b) implemented a
structured workflow for SQL generation, in-
volving gathering database information, iden-
tifying query types, devising solution strate-
gies, generating SQL syntax, conducting ini-
tial self-checks, and reviewing past errors to
mitigate repetitive mistakes.

* TA-SQL (Qu et al., 2024) introduced Task
Alignment (TA) to reduce model hallucina-
tions.

* MAG-SQL (Xie et al., 2024a) adopted the
Least-to-Most Prompting approach (Zhou
et al., 2022), incrementally generating each
sub-question by adding conditions to the pre-
vious one.

* PTD-SQL (Luo et al., 2024) utilized query
group partitioning to strengthen LLM’s rea-
soning abilities.

13

* MAC-SQL (Wang et al., 2024) introduced a
novel LL.M-based multi-agent collaborative
framework to enhance tool utilization and
agent collaboration, involving the Selector,
Decomposer, and Refiner.

* MCS-SQL (Lee et al., 2024) generated var-
ious candidate SQL using diverse prompts,
followed by filtering and multiple-choice se-
lection to finalize the output.

* PURPLE (Ren et al., 2024) adopted trained
classifiers to link questions with database
schemas and reduced irrelevant informa-
tion via pattern pruning, thereby improving
schema linking efficiency in SQL generation.

(2) Fine-Tuning-based Approaches:

* DTS-SQL (Pourreza and Rafiei, 2024b) was
composed of two sub-tasks, namely schema
linking and SQL generation. A two-stage
fine-tuning approach was implemented to ef-
fectively align the performance of the open-
source LLM with that of the closed-source
LLM.

e CodeS (Li et al., 2024a) built a BM25 index
from database content, retrieving top-k values
from relevant columns to enhance semantic
representation for SQL generation. Moreover,
it introduced a bi-directional data augmenta-
tion approach to automatically generate a di-
verse set of (NL, SQL) pairs.

* SENSE (Yang et al., 2024) proposed a syn-
thetic data approach that combines strong data
from larger and high-performing models with
weak data produced by smaller and less well-
aligned models.

E Appendix E: Prompt for Direct SQL Generation

Prompt for Direct SQL Generation

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
Please directly generate the SQL queries according to the provided evidence and the following
[Hints] with no explanations.

[Hints]

- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.

- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!

- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!

- Fuzzy matching (LIKE): Used to match similar strings.

- Exact matching (=): Used for precise matching.

- INTERSECT: Used to obtain the intersection of two query results.

- UNION: Used to merge two query results.

- Never use ‘I’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.

- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.

- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.

- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.

- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the “WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X.

- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.

- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.

- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY .

- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.

- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

Some example questions and corresponding SQL queries are provided based on similar problems:
{Examples}

Sqlite SQL tables, with their properties:
{Database Schema }

Here are some data information about database references:

14

{Example Database Values}

Foreign key information of Sqlite SQL tables, used for table joins:
{Foreign Key Information }

Some evidence can help you generate high-quality SQL:
{Evidence (Only in the BIRD dataset) }

The input question is:
{Question}

Please read the given examples, the input question, the [Hints], and the database schema again.
Let’s take a deep breath and think step by step, you must think more steps. Please remember to
stay in strict accordance with the nature of the provided identity. If you can generate high-quality
SQL queries satisfying the question demands, I will give you one million dollars.

Appendix F: Prompt for Strict Step-by-Step Reasoning

Prompt for Strict Step-by-Step Reasoning

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
Please strictly obey the following steps to generate high-quality SQL queries:

[Steps]

- Step 1: Read the Question: You need to understand the primary focus and specific details of the
question. Ensure each part of the SQL statement aligns with the user’s query intent.

- Step 2: Analyze the Database Schema: Understand the relation between the database and the
question accurately.

- Step 3: Analyze the Given Examples: Understand the similar examples provided to you for better
SQL generation.

- Step 4: Analyze the Given Evidence: Understand the given evidence provided to you below for
better SQL generation.

- Step 5: Analyze the Given Hints: Understand all the given hints provided to you below for better
SQL generation.

- Step 6: Finalize the SQL query: Construct correct SQLite SQL corresponding to the given
question.

- Step 7: Validation and Syntax Check: Before finalizing, verify that generated SQL query is
coherent with the database schema, all referenced columns exist in the referenced table, all joins
are correctly formulated, aggregation logic is accurate, and the SQL syntax is correct.

You need to explain your detailed reasoning step by step. Note that you MUST obey the following
[Hints] to generate SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.

15

- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!

- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!

- Fuzzy matching (LIKE): Used to match similar strings.

- Exact matching (=): Used for precise matching.

- INTERSECT: Used to obtain the intersection of two query results.

- UNION: Used to merge two query results.

- Never use ‘II’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.

- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.

- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.

- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.

- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the “WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.

- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.

- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.

- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY .

- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.

- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

Some example questions and corresponding SQL queries are provided based on similar problems:
{Examples}

Sqlite SQL tables, with their properties:
{Database Schema }

Here are some data information about database references:
{Example Database Values}

Foreign key information of Sqlite SQL tables, used for table joins:
{Foreign Key Information }

Some evidence can help you generate high-quality SQL:
{Evidence (Only in the BIRD dataset) }

The input question is:
{Question }

Please read the given examples, the input question, the [Hints], and the database schema again.
Let’s take a deep breath and think step by step, you must think more steps. Please remember to
stay in strict accordance with the nature of the provided identity. If you can generate high-quality

16

SQL queries satisfying the question demands, I will give you one million dollars.

Appendix G: Prompt for Flexible Reasoning

Prompt for Flexible Reasoning

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
Please generate high-quality SQL queries with your detailed reasoning. Note that you MUST refer
to the provided evidence and obey the following [Hints] to generate SQL queries.

[Hints]

- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.

- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL.!

- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!

- Fuzzy matching (LIKE): Used to match similar strings.

- Exact matching (=): Used for precise matching.

- INTERSECT: Used to obtain the intersection of two query results.

- UNION: Used to merge two query results.

- Never use ‘II’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.

- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.

- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.

- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.

- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the “‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X.

- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.

- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.

- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY.

- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.

- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

Some example questions and corresponding SQL queries are provided based on similar problems:
{Examples}

Sqlite SQL tables, with their properties:

17

{Database Schema }

Here are some data information about database references:
{Example Database Values}

Foreign key information of Sqlite SQL tables, used for table joins:
{Foreign Key Information }

Some evidence can help you generate high-quality SQL:
{Evidence (Only in the BIRD dataset)}

The input question is:
{Question }

Please read the given examples, the input question, the [Hints], and the database schema again.
Let’s take a deep breath and think step by step, you must think more steps. Please remember to
stay in strict accordance with the nature of the provided identity. If you can generate high-quality
SQL queries satisfying the question demands, I will give you one million dollars.

Appendix H: Prompt for Multi-Role SQL Selection

Prompt for Multi-Role SQL Selection

You are an Al language model employing iterative reasoning through three distinct roles, each
encapsulated within specific XML tags:

<proposer>...</proposer>

<critic>...</critic>

<summarizer>...</summarizer>

[Roles and Responsibilities]

<proposer>

1. Objective: Select the best SQL query to answer the question based on the given SQL and their
corresponding execution results. Propose one or more reasoning steps towards solving the given
problem.

2. Instructions:

(1) Generate clear and concise propositions that advance the reasoning process.

(2) Build upon previous valid propositions and consider any critiques provided.

<critic>

1. Objective: Critically evaluate the proposer’s reasoning steps and the selection of the best SQL
based on the execution results.

2. Instructions:

(1) Analyze the propositions for logical consistency and accuracy.

(2) Provide detailed natural language critiques highlighting any errors or areas for improvement.
<summarizer>

1. Objective: Synthesize the agreed propositions and the corresponding feedback, outputting the
final SQL solution.

2. Instructions:

(1) Review the agreed propositions and critiques.

(2) Extract and organize the valid reasoning steps.

(3) Present the final answer.

18

[Process Flow]

1. Iteration Begins: The <proposer> presents one or more reasoning steps to select the best SQL.
2. Critical Evaluation: The <critic> analyzes these steps, providing natural language critiques and
suggesting refinements.

3. Assessment and Synthesis: The <summarizer> consolidates the agreed propositions and critiques
to output the final selected SQL.

4. Repeat: This cycle continues, with the <proposer> refining or adding propositions based on the
<critic>’s feedback, until the <proposer> and the <critic> agree on the propositions.

[Formatting Guidelines]

1. Clarity: Ensure each reasoning step and critique is easy to understand.

2. Logical Progression: Each proposition should logically follow from previous ones, considering
any critiques.

3. Tags: Always encapsulate your output within the correct XML tags.

4. Natural Language: Use detailed explanations in critiques to provide meaningful feedback.

5. Note that the content in the <summarizer> is the final SQL only with no explanations.

You MUST adhere to the following format to output results!!!

[Example Interaction]

<proposer>

[Proposer’s reasoning step 1]

</proposer>

<critic>

[Critic’s detailed natural language critique 1]
</critic>

<proposer>

[Proposer’s reasoning step 2]

</proposer>

<critic>

[Critic’s detailed natural language critique 2]
</critic>

... (continue)

<summarizer>

[Final selected SQL only]

</summarizer>

Note that you MUST obey the following [Hints] to select SQL queries.

[Hints]

- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.

- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!

- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!

- Fuzzy matching (LIKE): Used to match similar strings.

- Exact matching (=): Used for precise matching.

- INTERSECT: Used to obtain the intersection of two query results.

- UNION: Used to merge two query results.

- Never use ‘II’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output

19

the columns as they are.

- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.

- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.

- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.

- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the “WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.

- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.

- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.

- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY.

- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.

- WHERE: Double-check that all “‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

The input question is:
{Question }

The candidate SQL are:

Candidate SQL 1: {Candidate SQL1}. Execution result 1: {Execution Resultl from Candidate
SQL1}.

Candidate SQL 2: {Candidate SQL2}. Execution result 2: {Execution Result2 from Candidate
SQL2}.

Candidate SQL 3: {Candidate SQL3}. Execution result 3: {Execution Result3 from Candidate
SQL3}.

Candidate SQL 4: {Candidate SQL4}. Execution result 4: { Execution Result4 from Candidate
SQL4}.

Candidate SQL 5: {Candidate SQL5}. Execution result 5: { Execution Result5 from Candidate
SQLS5}.

Please read the input question, the given [Hints], the candidate SQL and corresponding execution
results again. Let’s take a deep breath and think step by step, you must think more steps. Please
remember to stay in strict accordance with the nature of the provided identity. If you can select the
best SQL satisfying the question demands, I will give you one million dollars.

Appendix I: Prompt for Consistency Voting

Prompt for Consistency Voting

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
You have been provided with several responses to the latest user query and their execution results.

20

Your task is to select the SQL query with the highest execution result consistency, which means the
SQL execution result appears the most frequently.

You need to explain your detailed reasoning step by step. You MUST adhere to the following
format to output results.

[Example Interaction]
<Reasoning>

[Detailed reasoning process]
</Reasoning>

<SQL>

[Final selected SQL]
</SQL>

Input question is:
{Question}.

The candidate SQL are:

Candidate SQL 1: {Candidate SQL1}. Execution result 1: {Execution Resultl from Candidate
SQL1}.

Candidate SQL 2: {Candidate SQL2}. Execution result 2: { Execution Result2 from Candidate
SQL2}.

Candidate SQL 3: {Candidate SQL3}. Execution result 3: { Execution Result3 from Candidate
SQL3}.

Candidate SQL 4: {Candidate SQL4}. Execution result 4. { Execution Result4 from Candidate
SQL4}.

Candidate SQL 5: {Candidate SQL5}. Execution result 5: { Execution Result5 from Candidate
SQLS5}.

Please read the given candidate SQL and corresponding execution results again. Let’s take a
deep breath and think step by step, you must think more steps. Please remember to stay in strict
accordance with the nature of the provided identity. If you can complete this task well, I will give
you one million dollars.

Appendix J: Prompt for Direct SQL Selection

Prompt for Direct SQL Selection

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]

You have been provided with several responses to the latest user query and their execution results.
Your task is to select the most suitable SQL query satisfying user needs. You only need to output
SQL only with no explanations.

Note that you MUST obey the following [Hints] to select SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary

21

columns or values.

- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!

- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!

- Fuzzy matching (LIKE): Used to match similar strings.

- Exact matching (=): Used for precise matching.

- INTERSECT: Used to obtain the intersection of two query results.

- UNION: Used to merge two query results.

- Never use ‘II’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.

- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.

- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.

- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.

- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the “‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X.

- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.

- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.

- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY .

- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.

- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

The input question is:
{Question}.

The candidate SQL are:

Candidate SQL 1: {Candidate SQL1}. Execution result 1: { Execution Resultl from Candidate
SQL1}.

Candidate SQL 2: {Candidate SQL2}. Execution result 2: { Execution Result2 from Candidate
SQL2}.

Candidate SQL 3: {Candidate SQL3}. Execution result 3: {Execution Result3 from Candidate
SQL3}.

Candidate SQL 4: {Candidate SQL4}. Execution result 4: {Execution Result4 from Candidate
SQL4}.

Candidate SQL 5: {Candidate SQL5}. Execution result 5: {Execution Result5 from Candidate
SQLS5}.

Please read the input question, the [Hints], the candidate SQL and corresponding execution results
again. Please remember to stay in strict accordance with the nature of the provided identity. If you
can select the best SQL satisfying the question demands, I will give you one million dollars.

22

K Appendix K: Prompt for SQL Selection with Explanation

Prompt for SQL Selection with Explanation

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]

You have been provided with several responses to the latest user query and their execution results.
Your task is to select the most suitable SQL query satisfying user needs.

You need to explain your detailed reasoning step by step. You MUST adhere to the following
format to output results.

[Example Interaction|
<Reasoning>

[Detailed reasoning process]
</Reasoning>

<SQL>

[Final selected SQL]
</SQL>

Note that you MUST obey the following [Hints] to select SQL queries.

[Hints]

- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.

- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!

- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!

- Fuzzy matching (LIKE): Used to match similar strings.

- Exact matching (=): Used for precise matching.

- INTERSECT: Used to obtain the intersection of two query results.

- UNION: Used to merge two query results.

- Never use ‘II’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.

- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.

- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.

- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.

- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.

- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.

- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.

23

- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY.

- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.

- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

The input question is:
{Question}.

The candidate SQL are:

Candidate SQL 1: {Candidate SQL1}. Execution result 1: { Execution Resultl from Candidate
SQL1}.

Candidate SQL 2: {Candidate SQL2}. Execution result 2: { Execution Result2 from Candidate
SQL2}.

Candidate SQL 3: {Candidate SQL3}. Execution result 3: { Execution Result3 from Candidate
SQL3}.

Candidate SQL 4: {Candidate SQL4}. Execution result 4: {Execution Result4 from Candidate
SQL4}.

Candidate SQL 5: {Candidate SQL5}. Execution result 5: {Execution Result5 from Candidate
SQLS5}.

Please read the input question, the [Hints], the candidate SQL and corresponding execution results
again. Let’s take a deep breath and think step by step, you must think more steps. Please remember
to stay in strict accordance with the nature of the provided identity. If you can select the best SQL
satisfying the question demands, I will give you one million dollars.

24

L. Appendix L: An Example of ICL-based Methods

Question: Find the name and rank points of the winner who won the most times.

Direct SQL Generation:

SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY
m.winner_id ORDER BY COUNT(*) DESC LIMIT 1;

Strict Step-by-Step Reasoning:

<Reasoning>

Step 1: Read the Question: The question asks for the name and rank points of the winner who has won the most matches.

Step 2: Analyze the Schema: The ‘matches’ table contains information about match winners, including their "winner_name" and “winner_rank_points".
The “winner_id" in the "'matches’ table references the “player_id" in the “players’ table, which can be used to join these tables if needed.

Step 3: Analyze the Given Examples: The examples demonstrate the use of ‘GROUP BY" to count occurrences and "ORDER BY" with "LIMIT 1" to find
the maximum.

Step 4: Analyze the Given Hints: The hints emphasize using ‘GROUP BY" for counting, "ORDER BY" for sorting, and "LIMIT 1" to retrieve the top result.
Step 5: Finalize the SQL Query: The query will group by ‘winner_name’ and ‘winner_rank_points’, count the number of wins, and order the results in
descending order of the count. The top result will be retrieved using "LIMIT 1°.

Step 6: Validation and Syntax Check: The query is validated to ensure it adheres to the schema, uses correct syntax, and satisfies the question's
requirements.

</Reasoning>

<8QL>

SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_name, winner_rank_points ORDER BY COUNT(*) DESC LIMIT 1;

</SQL>

Flexible Reasoning:

<Reasoning>

To solve this problem, | need to determine the winner who has won the most matches. The relevant data can be obtained from the “matches” table using
the “winner_id", which references the “player_id" in the "players” table to get the name of the player. Additionally, | need the rank points of this winner, which
can be retrieved from the “matches’ table where “winner_rank_points" are stored. The approach is to join the ‘matches’ table with the “players" table to get
the winner's name and count the number of wins for each winner. | will order by the count of wins to find the top winner and limit the result to one.

</Reasoning>

<sQL>

SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY
m.winner_id ORDER BY COUNT(*) DESC LIMIT 1;

</sQL>

Figure 5: An illustrative example of using three different reasoning processes in ICL-based methods.

M Appendix M: Additional Experimental Results
N Appendix N: Case Study of DSMR-SQL

25

I I
84 -
82 I
80 |
90 I
EX
89.3
89.2 89.1 89.2 89.2
88.7
88.6 88.6 88.6 88.6 88.6 88.6
88.4 88.5 88.5
88 - gg 881 e 88.1 7]
87.8 87.9 878 87.9 87.9
86.9
86 |
N < NN M <4 N M NN MO0 M < &N 0O & O 0 N M 0 0 N M 0 M M ca g
y T € € € € € € €< I <L << < < < £ < Settings
4 0+ +
4 a4 4 0 0 0 d S N 0 0NN N o G N oG oS N N < < N N
<< < { 4 4y T LCCCCCCCLC LKL
g g o+ o+ o+ o+ o+ o+ o+ 4+ o+ o+
4 J4 a0 »n n un 9 n n n A
< 4+ o+ 4 UL
0 9 g t o
- n

Figure 6: Additional experimental results via using SFT and ICL on the Spider-Dev dataset. For simplicity, L and S
indicate Llama-3.2-3B-Instruct and StableCode-3B, respectively. Al, A2, and A3 represent the three reasoning

processes in the ICL-based strategy, respectively.

26

Question: Find the name and rank points of the winner who won the most times.

SQL Candidates:

(1) SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_id ORDER BY COUNT (*) DESC LIMIT 1

(2) SELECT winner_name , winner_rank_points FROM matches GROUP BY winner_name ORDER BY count(*) DESC LIMIT 1

(3) SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY m.winner_id ORDER BY COUNT(*) DESC LIMIT 1
(4) SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY m.winner_id ORDER BY COUNT(*) DESC LIMIT 1
(5) SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_name, winner_rank_points ORDER BY COUNT(*) DESC LIMIT 1

Execution Result:

('Angelique Kerber', 3715) @

(‘Angelique Kerber', 3715) @

(‘Angelique’, 'Kerber', 3715) €

(‘Angelique’, 'Kerber', 3715) €

('Elena Vesnina', 2340) [x]

Consistency-Voting (CV) / Direct SQL Selection (DS) / SQL Selection with Explanation (SE):

SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY m.winner_id ORDER BY COUNT(*) DESC LIMIT 1
Execution Result:

(‘Angelique’, 'Kerber', 3715) €

Multi-Role SQL Selection (MRS):

SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_id ORDER BY COUNT(*) DESC LIMIT 1
Execution Result:

(‘Angelique Kerber', 3715) @

<proposer>

'The question asks for the name and rank points of the winner who won the most times.

Analysis of the provided SQL queries:

1. **sql1**: This query groups by "winner_id" and orders by the count of matches won. It returns the "winner_name™ and “winner_rank_points™ of the winner with the most wins. The result is

" (‘Angelique Kerber', 3715)".

2. **sql2**: This query groups by ‘winner_name" and orders by the count of matches won. It returns the “winner_name’ and ‘winner_rank_points" of the winner with the most wins. The result is

" ('Angelique Kerber', 3715)".

3. **sqI3**: This query joins the "'matches™ and “players™ tables to retrieve the “first_name™ and “last_name’ of the winner, along with their “winner_rank_points". It groups by “winner_id" and orders by
the count of matches won. The result is “('Angelique’, 'Kerber', 3715)".

4. **sql4**: This query joins the “matches’ and “players’ tables to retrieve the “first_name’ and ‘last_name’ of the winner, along with their "winner_rank_points™. It groups by ‘winner_id" and orders by
the count of matches won. The result is *(‘Angelique’, 'Kerber', 3715)".

5. **sql5**: This query groups by both "winner_name’ and "winner_rank_points’. However, grouping by ‘winner_rank_points' is unnecessary and could lead to incorrect results if a player has multiple
rank points across matches. The result is *('Elena Vesnina', 2340)".

Conclusion:

'The best SQL query is **sql3** or ** sql4**, since they provide additional details (first and last name), thereby making the information more comprehensive.

</proposer>

<critic>

For **sqI3** and **sql4**, While they provide additional details (first and last name), the question only asks for the name and rank points, making this query overly detailed.

Given the above, **sql1** is actually the most robust and accurate query, as it groups by ‘winner_id" to uniquely identify winners and avoids potential issues with duplicate names. While **sql2**
returns the same result as **sql1**, it is less robust in scenarios with duplicate names.

Recommendation: The best SQL query is **sql1**, not **sqI3** or **sql4**.

<lcritic>

<proposer>

Based on the critic's feedback, | acknowledge that **sql1** is better. Therefore, | revise my conclusion and propose that **sql1** is the best SQL query for this question.

</proposer>

<critic>

'The revised proposition is correct. **sql1** is indeed the best SQL query, as it groups by ‘winner_id" to uniquely identify winners and avoids potential issues with duplicate names. The reasoning is
now complete and accurate.

<lcritic>

<summarizer>

SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_id ORDER BY COUNT(*) DESC LIMIT 1;

</summarizer>

Figure 7: Case study of DSMR-SQL. Notably, consistency-voting (CV) and simple SQL selection techniques (i.e.,
DS and SE) select the wrong SQL, while the proposed MRS chooses the correct SQL satisfying user intent.

27

	Introduction
	Related Work
	SQL Generation Approaches
	SQL Selection Techniques

	Methodology
	Dual-Strategy SQL Generation (DSG)
	Multi-Role SQL Selection (MRS)

	Experiments
	Experimental Setup
	Overall Performance (RQ1)
	Analysis of DSMR-SQL (RQ2)
	Dual-Strategy SQL Generation (DSG)
	Multi-Role SQL Selection (MRS)
	Case Study

	Conclusion
	Appendix A: Description of the Experimental Datasets
	Appendix B: Description of the Implementation Details
	Appendix C: Description of the Evaluation Metrics
	Appendix D: Description of the Compared Methods
	Appendix E: Prompt for Direct SQL Generation
	Appendix F: Prompt for Strict Step-by-Step Reasoning
	Appendix G: Prompt for Flexible Reasoning
	Appendix H: Prompt for Multi-Role SQL Selection
	Appendix I: Prompt for Consistency Voting
	Appendix J: Prompt for Direct SQL Selection
	Appendix K: Prompt for SQL Selection with Explanation
	Appendix L: An Example of ICL-based Methods
	Appendix M: Additional Experimental Results
	Appendix N: Case Study of DSMR-SQL

