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Abstract
Recent advancements in Large Language Mod-001
els (LLMs) have markedly improved SQL gen-002
eration. Nevertheless, existing approaches typ-003
ically rely on single-model designs, limiting004
their capacity to effectively handle complex005
user queries. In addition, current methods often006
face difficulties in selecting the optimal SQL007
from multiple candidates. To mitigate these008
limitations, this study presents DSMR-SQL, a009
two-stage framework consisting of: (1) Dual-010
Strategy SQL Generation: DSMR-SQL aims011
to produce a broader spectrum of SQL queries012
by using multiple models with two strategies:013
Supervised Fine-Tuning and In-Context Learn-014
ing; (2) Multi-Role SQL Selection: DSMR-015
SQL seeks to identify the SQL most aligning016
with user intent by introducing a collaborative017
framework involving three roles (i.e., Proposer,018
Critic, Summarizer). Extensive experiments019
on various datasets substantiate the efficacy of020
DSMR-SQL in enhancing SQL generation.021

1 Introduction022

Two heads are better than one.023

- Proverb024

SQL queries are essential for optimizing data025

retrieval efficiency across multiple databases. Such026

data has been implemented in critical domains, in-027

cluding healthcare analytics (Mendhe et al., 2024)028

and financial systems (Zhang et al., 2024a). While029

technical professionals possess specialized exper-030

tise in crafting SQL, the emergence of natural lan-031

guage interfaces to databases (NLIDBs) has en-032

abled non-technical users to effortlessly access033

structured data (Deng et al., 2022). This enhanced034

accessibility has catalyzed significant advance-035

ments in text-to-SQL systems that automatically036

translate natural language (NL) queries into valid037

SQL statements.038

Recent breakthroughs in large language models039

(LLMs) (Achiam et al., 2023) have revolutionized040
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Figure 1: Illustrations of two different system designs.
(a) Limited SQL diversity for Single-Model design. (b)
Improved SQL diversity for Multi-Model design.

text-to-SQL methodologies, particularly through 041

the implementation of In-Context Learning (ICL) 042

and Fine-Tuning (FT). In particular, ICL allows 043

models to utilize prompt engineering to cope with 044

unseen scenarios effectively (Pourreza and Rafiei, 045

2024a; Gao et al., 2024; Lee et al., 2024). In con- 046

trast, FT customizes models for domain-specific 047

tasks using curated datasets, with an emphasis on 048

Supervised Fine-Tuning (SFT) (Li et al., 2024a; 049

Pourreza and Rafiei, 2024b; Zhang et al., 2024a). 050

Despite their promise, current approaches com- 051

monly encounter the following limitations that im- 052

pede their broader adoption: 053

Limitation 1: Limited SQL Diversity caused 054

by Single-Model Designs. As depicted in Figure 055

1, existing methods often rely on a single model 056

for SQL generation, which can be categorized 057

into Single-Model Single-Prompt and Single-Model 058

Multi-Prompt designs (Pourreza and Rafiei, 2024a; 059

Lee et al., 2024). 060

(a) Single-Model Single-Prompt Designs: No- 061

tably, LLMs are highly sensitive to the structure 062

1



and content of semantically identical prompts, lead-063

ing to inconsistent SQL outputs (Lu et al., 2022;064

Jang and Lukasiewicz, 2023). Moreover, using a065

single prompt inherently narrows the search space066

for potential SQL solutions, thereby overlooking067

alternative SQL formulations that may better re-068

flect actual user intent. To mitigate these issues,069

self-consistency (Cheng et al., 2024) introduces070

variability through high-temperature sampling and071

selects the SQL with the most consistent execution072

results (Gao et al., 2024; Mao et al., 2024; Talaei073

et al., 2024). However, increased temperature can074

introduce model hallucinations, thereby undermin-075

ing overall model performance (Renze and Guven,076

2024). Meanwhile, the SQL diversity achieved by077

self-consistency remains insufficient for handling078

highly complex user queries (Lee et al., 2024).079

(b) Single-Model Multi-Prompt Designs: No-080

tably, approaches like MCS-SQL (Lee et al., 2024)081

have attempted to expand the solution space by gen-082

erating multiple SQL queries from diverse prompts.083

Nonetheless, the SQL diversity of a single model084

still remains limited, which stems from the ten-085

dency of LLMs to follow specific syntactic and086

semantic patterns when producing SQL (Ji et al.,087

2023; Yin et al., 2023). This behavior is influ-088

enced by specific training data distributions and089

inherent model architectures (Jiang et al., 2024a,b).090

For instance, GPT-series models tend to prefer091

“LEFT JOIN” over “JOIN” when constructing SQL092

queries (Liu et al., 2023). As a result, the gener-093

ated SQL candidates may exhibit structural similar-094

ities and struggle to capture actual user intent, even095

when diverse prompts are utilized in a single model.096

In particular, MCS-SQL (Lee et al., 2024) used097

five different prompts and high-temperature sam-098

pling to generate 100 SQL candidates for each user099

query to achieve competitive performance. This100

showcases an over-reliance on exhaustive explo-101

ration as a means to compensate for the limited102

SQL diversity in single-model designs.103

Limitation 2: Insufficient SQL Selection104

Mechanisms. Notably, identifying the optimal105

SQL from diverse candidates remains a significant106

challenge. In particular, existing approaches pre-107

dominantly rely on two strategies: Consistency108

Voting and Simple SQL Selection. To be specific,109

Consistency Voting determines the optimal SQL by110

choosing the one with the most frequent execution111

results (Gao et al., 2024; Talaei et al., 2024). In con-112

trast, Simple SQL Selection employs a single LLM113

as a judge to rank and select the most appropriate114

SQL (Lee et al., 2024; Li and Xie, 2024). However, 115

Consistency Voting fails when none of the SQL can- 116

didates yield consistent execution results, and even 117

the most consistent result may be erroneous due 118

to shared underlying errors (Pourreza et al., 2024). 119

Besides, Simple SQL Selection is susceptible to in- 120

herent model biases and positional answer biases 121

(Wang et al., 2023; Shi et al., 2024; Zhang et al., 122

2024b), which may result in errors when ranking 123

complex SQL queries. Meanwhile, it overlooks the 124

iterative nature of human reasoning, which typi- 125

cally involves multiple rounds of revision and re- 126

finement (Zheng et al., 2024; Madaan et al., 2024). 127

Accordingly, despite their user-friendly nature, the 128

above methods often lead to incorrect SQL selec- 129

tion results, which hinder the reliability of text-to- 130

SQL systems in real-world applications. 131

In light of the above limitations, we raise the fol- 132

lowing research question: How to leverage LLMs to 133

generate diverse SQL candidates while improving 134

the reliable selection of the optimal one? 135

This study introduces DSMR-SQL, a frame- 136

work developed to improve SQL generation us- 137

ing Dual-Strategy reasoning and Multi-Role SQL 138

selection. (1) Dual-Strategy SQL Generation 139

(DSG): DSMR-SQL combines SFT and ICL using 140

multiple models to produce diverse SQL, which 141

alleviates the limitations of single-model settings. 142

By harnessing the strengths of these two strategies, 143

DSG increases the possibility that the correct SQL 144

is available in the candidate set; (2) Multi-Role 145

SQL Selection (MRS): DSMR-SQL employs a 146

multi-role framework (i.e., Proposer, Critic, and 147

Summarizer) to identify the optimal SQL. This 148

collaborative mechanism simulates human-like rea- 149

soning to improve SQL selection, where the final 150

SQL is determined through iterative refinement. 151

Extensive experiments were conducted on several 152

datasets, showcasing the effectiveness of DSMR- 153

SQL in improving SQL generation. 154

In summary, this work offers the following con- 155

tributions: (1) This study highlights critical limi- 156

tations in current SQL generation approaches, par- 157

ticularly in producing diverse SQL candidates and 158

reliably selecting the optimal one. This motivated 159

us to develop more effective methods to handle 160

these issues; (2) We present DSMR-SQL, a frame- 161

work integrating dual-strategy reasoning and multi- 162

role SQL selection to improve SQL generation; (3) 163

Extensive experiments across various datasets con- 164

firm the effectiveness of DSMR-SQL in enhancing 165

model reasoning and generating high-quality SQL. 166
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2 Related Work167

2.1 SQL Generation Approaches168

Recent LLM-based SQL generation techniques169

widely adopt In-Context Learning (ICL) and Fine-170

Tuning (FT). In particular, prompt engineering has171

emerged as an effective approach to enhance SQL172

generation due to its flexibility to deal with unfa-173

miliar scenarios (Pourreza and Rafiei, 2024a; Gao174

et al., 2024; Wang et al., 2024). However, closed-175

source LLMs are often associated with high mone-176

tary costs and are characterized by inherent model177

biases and output instability, thereby diminishing178

their practical reliability (Liu et al., 2023; Turpin179

et al., 2024). In contrast, the growing adoption of180

open-source LLMs has catalyzed research on fine-181

tuning these models for SQL generation owing to182

the stability of SFT (Zhang et al., 2024a; Pourreza183

and Rafiei, 2024b; Li et al., 2024a). Despite their184

potential, open-source models still struggle with185

maintaining robustness in complex scenarios and186

generalizing effectively due to their reliance on the187

curated training data. Inspired by these advance-188

ments, this study combines the strengths of ICL and189

SFT to promote diverse SQL generation, thereby190

increasing the likelihood that the correct SQL is191

included in the candidate set.192

2.2 SQL Selection Techniques193

In the literature, Consistency Voting and Simple194

SQL Selection have been introduced for select-195

ing SQL from multiple candidates. In particular,196

Consistency Voting enables the selection of the197

SQL with the most frequently appearing execu-198

tion results. For instance, approaches such as C3199

(Dong et al., 2023), DAIL-SQL (Gao et al., 2024),200

MetaSQL (Fan et al., 2024), and PURPLE (Ren201

et al., 2024) reduced output noise by selecting the202

SQL with the most consistent execution results.203

Additionally, Simple SQL Selection utilizes a sin-204

gle LLM to assess and identify the optimal SQL205

from multiple candidates. For instance, LEVER206

(Ni et al., 2023) and Li et al. (Li and Xie, 2024)207

used ranking techniques to select the most suitable208

SQL. MCS-SQL (Lee et al., 2024) generated di-209

verse SQL candidates using varied prompts and ap-210

plied multiple-choice selection to determine the fi-211

nal SQL. Different from the above techniques, this212

study introduces multiple roles to mimic human-213

like problem-solving processes and iteratively im-214

prove SQL selection.215

3 Methodology 216

This section introduces DSMR-SQL, a two-stage 217

framework designed to enhance SQL generation. 218

As depicted in Figure 2, the framework comprises 219

two primary stages: (1) Dual-Strategy SQL Gen- 220

eration (DSG): Multiple SQL candidates are gener- 221

ated by combining SFT and ICL. This dual-strategy 222

approach leverages the complementary strengths 223

of both techniques to improve SQL diversity; (2) 224

Multi-Role SQL Selection (MRS): A collabora- 225

tive framework with three roles is applied to itera- 226

tively identify the most suitable SQL. The details 227

of these stages are elaborated as follows. 228

3.1 Dual-Strategy SQL Generation (DSG) 229

As illustrated in the left part of Figure 2, DSG 230

combines the stability of SFT with the flexibility 231

of ICL to mitigate the limitations of single-model 232

reliance (Liu et al., 2023; Turpin et al., 2024). 233

Specifically, the process begins with using open- 234

source LLMs to perform SFT on task-specific 235

datasets, enabling models to produce SQL candi- 236

dates that adhere to the syntactic and semantic pat- 237

terns in the training data. This alignment provides 238

a stable foundation for SQL generation, reducing 239

output instability and inherent model biases in ICL- 240

based methods. To achieve this, DSG adopts the 241

CodeS framework (Li et al., 2024a) and utilizes 242

several open-source models for SQL generation. 243

Despite its advantages, the fixed reasoning of SFT 244

inherently limits its capacity to further explore al- 245

ternative SQL solutions. 246

To overcome this limitation, ICL-based methods 247

are further integrated to enhance reasoning flexibil- 248

ity. Typically, humans solve problems using vari- 249

ous methods: some rely on quick intuitive think- 250

ing, others follow methodical rules, while some 251

adopt flexible reasoning without rigid guidelines 252

(Qi et al., 2024). Inspired by these strategies, DSG 253

implements diverse reasoning processes to mimic 254

these human-like approaches, thereby enhancing 255

the reasoning capacity of closed-source LLMs. An 256

illustrative example of the ICL-based strategy im- 257

plemented in DSG is presented in Figure 5 from 258

Appendix L, which includes: 259

(1) Direct SQL Generation: LLMs generate 260

SQL directly without providing explanations, prior- 261

itizing simplicity and speed. This approach is akin 262

to “fast thinking” (Lin et al., 2024) and is particu- 263

larly effective for straightforward user queries with 264

minimal logical reasoning. The key prompt for this 265
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Figure 2: Illustration of our proposed DSMR-SQL. Specifically, the framework consists of two stages, including
Dual-Strategy SQL Generation (DSG) and Multi-Role SQL Selection (MRS).

method is: “Please directly generate SQL queries266

with no explanations.”267

(2) Strict Step-by-Step Reasoning: LLMs268

adopt a structured and methodical approach to269

improve SQL accuracy. Each step involves a de-270

tailed analysis of specific aspects (e.g., user query,271

database schema, etc.), ensuring that the generated272

SQL satisfies all requirements and undergoes rigor-273

ous validation. The key prompt for this method is:274

“Please strictly obey the following steps to generate275

high-quality SQL queries.”276

(3) Flexible Reasoning: LLMs engage in flex-277

ible reasoning processes without rigid guidelines,278

relying on contextual understanding of the given279

problem. This approach is also effective in address-280

ing highly complex user queries. The key prompt281

for this method is: “Please generate high-quality282

SQL queries with your detailed reasoning.”283

By integrating the stability of SFT with the di-284

verse reasoning of ICL, a wide range of SQL can-285

didates are generated by DSG. These SQL queries286

broaden the solution space, thereby increasing the287

probability of incorporating the correct SQL. Sub-288

sequently, the SQL candidates are executed in the289

databases to retrieve execution results, which serve290

as input for the next SQL selection process. The291

detailed prompts for each ICL-based method are292

provided in Appendix E, F, and G.293

3.2 Multi-Role SQL Selection (MRS)294

While DSG generates diverse SQL candidates, se-295

lecting the most suitable one remains a significant296

challenge. Therefore, inspired by the multi-agent297

debate (Liang et al., 2023), this study introduces298

a Multi-Role SQL Selection (MRS) framework,299

which assigns distinct roles in a single LLM to300

facilitate accurate SQL selection. As depicted in 301

the right part of Figure 2, MRS employs the fol- 302

lowing roles to determine the optimal SQL based 303

on the given SQL candidates and their respective 304

execution results: 305

(1) Proposer: The Proposer formulates a clear 306

proposal involving the chosen SQL and its detailed 307

reasoning, serving as the foundation for subsequent 308

critique and refinement. 309

(2) Critic: The Critic assesses the Proposer’s 310

reasoning process. It delivers detailed feedback to 311

the Proposer to pinpoint errors or suggest improve- 312

ments, fostering a rigorous evaluation process. 313

(3) Summarizer: The Summarizer consolidates 314

the Proposer’s reasoning and the Critic’s feedback 315

to finalize the optimal SQL, ensuring that the SQL 316

selection process is accurate and logically coherent. 317

Importantly, MRS operates as an iterative pro- 318

cess, wherein the Proposer refines its reasoning 319

through several rounds of feedback from the Critic. 320

This iterative mechanism ensures that each SQL is 321

selected with a high degree of precision. The com- 322

plete procedure is outlined in Algorithm 1, which 323

is detailed as follows: 324

The process commences with the Proposer pre- 325

senting a chosen SQL and its associated reasoning. 326

The reasoning is then analyzed by the Critic, who 327

identifies potential flaws and offers constructive 328

feedback to improve SQL selection. Based on this 329

feedback, the reasoning process is refined by the 330

Proposer before being returned to the Critic. This it- 331

erative cycle continues until a consensus is reached 332

between the Proposer and Critic on the reasoning 333

process and the selected SQL. Once a consensus 334

is achieved, the Summarizer reviews the finalized 335

reasoning and feedback, consolidating them into 336
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the final selected SQL.337

This iterative collaboration between the Proposer338

and Critic imitates human-like problem-solving339

processes, where the Critic’s feedback refines the340

solutions from the Proposer. Consequently, MRS341

facilitates a more reliable and robust SQL selection.342

An illustrative example of this iterative process is343

given in Appendix N, and the detailed prompt for344

MRS is shown in Appendix H.345

Algorithm 1 Multi-Role SQL Selection (MRS)
Input: User query Q, provided hints H , SQL can-

didates {Sk}, and their execution results {Ek}
Output: Final selected SQL S∗

1: R1, S1 = Proposer(Q, H , {Sk}, {Ek})
▷ R1, S1 are the initial reasoning process and
selected SQL

2: for i = 1 to N do
3: Fi = Critic(Q, H , Ri, Si)

▷ N is the number of iterations, which is not
limited to a certain value
▷ Fi is the i-th negative feedback, requiring
the Proposer to refine its reasoning

4: Ri+1, Si+1 = Proposer(Ri, Fi)
▷ Ri+1, Si+1 are the refined reasoning pro-
cess and selected SQL

5: Fi+1 = Critic(Q, H , Ri+1, Si+1)
6: if Fi+1 is positive then
7: Return Fi+1, Ri+1, Si+1

8: end if
9: end for

10: S∗ = Summarizer(Fi+1, Ri+1, Si+1)
11: return S∗ ▷ Final selected SQL

4 Experiments346

This section evaluates the performance of DSMR-347

SQL on multiple datasets. Extensive experiments348

were conducted to answer the following questions:349

RQ1. How does DSMR-SQL perform compared350

with previous LLM-based approaches in SQL gen-351

eration? RQ2. What is the contribution of each352

module in DSMR-SQL to its overall effectiveness?353

4.1 Experimental Setup354

Datasets. In this study, the efficacy of DSMR-SQL355

was assessed on Spider (Yu et al., 2018), BIRD356

(Li et al., 2024b), Spider-DK (Gan et al., 2021b),357

Spider-Realistic (Deng et al., 2021), and Spider-358

Syn (Gan et al., 2021a). Further details about the359

datasets are given in Appendix A.360

Implementation Details. In this study, Llama-3.2- 361

3B-Instruct (Touvron et al., 2023) and StableCode- 362

3B (Pinnaparaju et al., 2024) were utilized to gener- 363

ate SQL through SFT. Additionally, GPT-4o (Hurst 364

et al., 2024) and Gemini-1.5-Pro (Team et al., 2024) 365

were employed to generate diverse SQL via ICL, 366

which were then used in MRS. Notably, the modu- 367

lar design of DSMR-SQL ensures its adaptability 368

with various LLMs, thereby extending its applica- 369

bility beyond the models used in this study. Further 370

details can be found in Appendix B. 371

Evaluation Metrics. In this study, the official eval- 372

uation scripts from Spider1 were used to assess Spi- 373

der and its variant datasets, which include Execu- 374

tion Accuracy (EX) (Yu et al., 2018) and Test-suite 375

Accuracy (TS)2 (Zhong et al., 2020). For BIRD, 376

its official evaluation scripts were employed3, in- 377

volving EX and Valid Efficiency Score (VES) (Li 378

et al., 2024b). The definitions of these metrics are 379

provided in Appendix C. 380

4.2 Overall Performance (RQ1) 381

To validate the efficacy of the proposed DSMR- 382

SQL framework in SQL generation, a detailed eval- 383

uation was conducted across multiple datasets. De- 384

scriptions of the compared approaches are provided 385

in Appendix D, with performance results detailed 386

in Tables 1 and 2. Notably, DSMR-SQL consis- 387

tently outperformed other LLM-based approaches 388

across diverse datasets. For instance, DSMR-SQL 389

achieved an EX of 89.7% and a TS of 84.5% on 390

Spider-Dev using GPT-4o, surpassing methods like 391

MCS-SQL (Lee et al., 2024), which generated 100 392

SQL candidates for each user query. 393

Additionally, the efficacy of each stage within 394

DSMR-SQL was analyzed in Tables 3 and 4, high- 395

lighting the impact of its modular design on overall 396

performance. For instance, during the first stage on 397

Spider-Dev, using GPT-4o for systematic step-by- 398

step reasoning (i.e., ICLGPT-4o2) yielded the high- 399

est individual performance among SQL candidates, 400

with an EX of 87.4% and a TS of 81.2%. Build- 401

ing on this foundation, the incorporation of MRS 402

further improved performance, elevating the EX 403

to 89.7% and the TS to 84.5%. This resulted in 404

an increase of 2.3% in EX and 3.3% in TS com- 405

pared to the standalone ICLGPT-4o2. These results 406

underscored the synergistic effectiveness of DSG 407

1https://yale-lily.github.io/spider
2TS is not reported for Spider-Test and Spider-DK due to

the absence of test suites for these datasets.
3https://bird-bench.github.io/

5



Method Spider-Dev Spider-Test BIRD-Dev
EX TS EX EX VES

In-Context Learning
DIN-SQL + GPT-4 (Pourreza and Rafiei, 2024a) 82.8 74.2 85.3 50.7 58.8

DAIL-SQL + GPT-4 (Gao et al., 2024) 83.5 76.2 86.6 54.8 56.1
DEA-SQL + GPT-4 (Xie et al., 2024b) 85.4 - 87.1 52.4 -

TA-SQL + GPT-4 (Qu et al., 2024) 85.0 - - 56.2 -
MAG-SQL + GPT-4 (Xie et al., 2024a) 85.3 - 85.6 61.1 -
PTD-SQL + GPT-4 (Luo et al., 2024) 85.7 - - 57.0 57.7

MAC-SQL + GPT-4 (Wang et al., 2024) 86.8 - 82.8 59.4 66.4
MCS-SQL + GPT-4 (Lee et al., 2024) 89.5 - 89.6 63.4 64.8
PURPLE + GPT-4o (Ren et al., 2024) 87.8 83.3 - 63.0 -

Fine-Tuning
DTS-SQL (Pourreza and Rafiei, 2024b) 85.5 - 84.4 55.8 60.3

CodeS-15B (Li et al., 2024a) 84.9 79.4 - 58.5 59.9
SENSE-13B (Yang et al., 2024) 84.1 83.5 86.6 55.5 -

Ours (In-Context Learning + Fine-Tuning)
DSMR-SQL + Gemini-1.5-Pro 89.4 83.7 89.3 66.4 70.9

DSMR-SQL + GPT-4o 89.7 84.5 89.7 67.2 71.8

Table 1: Performance of different methods on the Spider-Dev, Spider-Test, and BIRD-Dev datasets. Note that “-”
indicates that the result was not reported in the original paper.

Method Spider-DK Spider-Realistic Spider-Syn
EX EX TS EX TS

SENSE-13B (Yang et al., 2024) 80.2 84.1 76.6 77.6 70.2
CodeS-15B (Li et al., 2024a) 70.7 83.1 75.6 77.0 69.4

PURPLE + GPT-4o (Ren et al., 2024) 75.3 79.9 - 74.0 -
DSMR-SQL + Gemini-1.5-Pro 80.0 86.4 77.8 81.3 72.7

DSMR-SQL + GPT-4o 80.4 87.0 78.3 82.2 73.8

Table 2: Performance of different methods on the Spider-variant datasets, including Spider-DK, Spider-Realistic,
and Spider-Syn. Note that “-” indicates that the result was not reported in the original paper.

and MRS, demonstrating the framework’s capacity408

to enhance SQL generation.409

4.3 Analysis of DSMR-SQL (RQ2)410

We further analyzed the performance of DSMR-411

SQL on Spider-Dev, focusing on the contribu-412

tions of Dual-Strategy SQL Generation (DSG) and413

Multi-Role SQL Selection (MRS).414

4.3.1 Dual-Strategy SQL Generation (DSG)415

The performance of DSG was evaluated under vary-416

ing numbers of SQL candidates and different LLM417

configurations. The results in Figure 3 and Ap-418

pendix M revealed the following key insights:419

(1) Impact of the Number of SQL Candidates:420

We compared the performance of DSMR-SQL us-421

ing different numbers of SQL candidates. Note that422

MRS was not applied when only one SQL was con-423

sidered. As shown in Figure 3(a), both EX and TS 424

showed steady growth with the increasing number 425

of SQL candidates, showcasing the benefits of inte- 426

grating multiple SQL within a collaborative frame- 427

work. Accordingly, DSG effectively mitigated the 428

limitations of single-model settings. Notably, EX 429

improved from 86.5% to 89.7%, and TS increased 430

from 80.2% to 84.5% with the rise in the number of 431

SQL queries. However, the trend of improvement 432

began to plateau as the candidate pool expanded. 433

Based on this observation, five SQL queries for 434

each user question were selected in this study. 435

(2) Effect of Dual-Strategy Configuration: 436

The performance of DSMR-SQL was compared 437

using SFT only, ICL only, and a combination of 438

SFT and ICL. As shown in Figure 3(b), the integra- 439

tion of SFT and ICL achieved the highest perfor- 440

mance, with an EX of 88.6% and a TS of 82.9%, 441
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Method Spider-Dev Spider-Test BIRD-Dev
EX TS EX EX VES

Stage 1 – DSG

SFT
Llama-3.2-3B-Instruct 84.8 79.5 85.8 57.0 57.8

StableCode-3B 86.0 80.7 85.1 58.7 60.5

ICL

ICLGemini-1.5-Pro1 87.0 80.4 86.6 62.5 67.4
ICLGemini-1.5-Pro2 86.7 81.1 87.1 63.1 67.9
ICLGemini-1.5-Pro3 86.7 80.7 86.8 63.4 70.2

ICLGPT-4o1 87.2 79.7 87.2 63.0 68.0
ICLGPT-4o2 87.4 81.2 87.5 63.4 70.4
ICLGPT-4o3 87.1 80.0 87.1 63.8 70.6

Stage 2 – MRS
Gemini-1.5-Pro 89.4 83.7 89.3 66.4 70.9

GPT-4o 89.7 84.5 89.7 67.1 71.8

Table 3: Experimental results of different modules in DSMR-SQL on the Spider-Dev, Spider-Test, and BIRD-
Dev datasets. Note that DSG and MRS indicate Dual-Strategy SQL Generation and Multi-Role SQL Selection,
respectively. Moreover, the subscripts in ICL represent three reasoning processes mentioned in DSG for each model.

Method Spider-DK Spider-Realistic Spider-Syn
EX EX TS EX TS

Stage 1 – DSG

SFT
Llama-3.2-3B-Instruct 72.5 81.3 76.6 75.3 68.6

StableCode-3B 75.7 79.9 75.0 74.5 68.8

ICL

ICLGemini-1.5-Pro1 78.5 85.4 75.2 78.6 70.1
ICLGemini-1.5-Pro2 77.4 84.8 76.8 80.2 71.2
ICLGemini-1.5-Pro3 78.7 84.3 76.6 80.5 71.6

ICLGPT-4o1 77.6 84.8 74.8 79.4 70.6
ICLGPT-4o2 79.6 83.5 75.8 80.9 73.8
ICLGPT-4o3 78.7 85.2 74.8 81.4 73.0

Stage 2 – MRS
Gemini-1.5-Pro 80.0 86.4 77.8 81.3 72.7

GPT-4o 80.3 87.0 78.3 82.2 73.8

Table 4: Experimental results of different modules in DSMR-SQL on the Spider-DK, Spider-Realistic, and Spider-
Syn datasets. Note that DSG and MRS indicate Dual-Strategy SQL Generation and Multi-Role SQL Selection,
respectively. Moreover, the subscripts in ICL represent three reasoning processes mentioned in DSG for each model.

surpassing ICL alone by 0.9% in EX and 1.3% in442

TS. This improvement underscored the synergistic443

effect of combining both strategies to optimize the444

generation of diverse SQL candidates by capitaliz-445

ing on their respective strengths. This dual-strategy446

setting is also crucial for the subsequent MRS in447

effectively identifying the optimal SQL.448

4.3.2 Multi-Role SQL Selection (MRS)449

As illustrated in Figure 4, the proposed MRS was450

compared with Consistency-Voting (CV), Direct451

SQL Selection (DS), and SQL Selection with Ex-452

planation (SE). Specifically, CV selected the SQL453

candidate via majority voting on execution results454

across all options. DS employed LLMs to directly455

identify the most accurate SQL candidate without456

providing explanations. SE used LLMs to select457

the optimal SQL, incorporating explanatory reason-458

ing into the selection process. The results in Table 5 459

indicated that MRS outperformed CV, DS, and SE. 460

For instance, when using GPT-4o, MRS achieved 461

the highest performance, surpassing SE by 0.7% in 462

EX and 1.1% in TS on Spider-Dev. These findings 463

highlighted MRS’s capacity to leverage multi-role 464

decision-making processes, facilitating more accu- 465

rate and reliable identification of the optimal SQL. 466

The detailed prompts regarding CV, DS, and SE 467

are provided in Appendix I, J, and K. 468

4.3.3 Case Study 469

To offer a clear illustration of how DSMR-SQL 470

enhances the generation of higher-quality SQL, a 471

case study was conducted on the 463rd question 472

from Spider-Dev, as described in Appendix N. 473

Specifically, the question required the name and 474

rank points of the winner who won the most times. 475
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(a) Performance comparisons among different numbers of SQL
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(b) Performance comparisons among using SFT only, using
ICL only, and using both SFT and ICL.

Figure 3: The performance of DSG with varying numbers of SQL candidates and different strategy settings on the
Spider-Dev dataset. Note that the experimental results are based on open-source models and GPT-4o.

Method Spider-Dev
EX TS

Gemini-1.5-Pro

CV 87.8 81.6
DS 88.3 82.5
SE 88.7 82.8

MRS 89.4 83.7

GPT-4o

CV 88.2 82.1
DS 88.5 82.6
SE 89.0 83.4

MRS 89.7 84.5

Table 5: Results of using Multi-Role SQL Selection
(MRS), Consistency-Voting (CV), Direct SQL Selection
(DS), and SQL Selection with Explanation (SE) on the
Spider-Dev dataset.

To address this, five SQL queries were produced.476

The first two SQL were generated via SFT, while477

the remaining three SQL were produced using ICL.478

(1) The first two SQL queries correctly retrieved479

the winner name and rank points by grouping480

records based on the winner ID or winner name,481

which aligned with the query intent.482

(2) The third and fourth SQL candidates deviated483

from the user intent by unnecessarily separating484

the winner’s first and last names, which introduced485

irrelevant complexity.486

(3) The fifth SQL grouped records by both the487

winner name and rank points. However, grouping488

by rank points risked producing incorrect results if489

a player’s rank points varied across matches. This490

fragmentation would split the total win counts into491

separate groups based on different rank points.492

SQL1 / Result1

SQL2 / Result2

SQLp / Resultp

Final SQL

Final SQL

Explanation
+ Final SQL

Consistency
Voting

SQL Selection
with Explanation

Direct SQL
Selection

...
Figure 4: Illustration of Consistency-Voting (CV), Di-
rect SQL Selection (DS), and SQL Selection with Ex-
planation (SE).

Notably, simple SQL selection strategies (i.e., 493

CV, DS, and SE) favored the overly complex third 494

and fourth SQL candidates. In contrast, MRS em- 495

ployed the collaboration of various roles to com- 496

prehensively analyze the provided SQL queries. 497

Through its iterative reasoning process, MRS ul- 498

timately identified the SQL query that most accu- 499

rately aligned with the user intent. 500

5 Conclusion 501

This study introduces DSMR-SQL, a SQL gener- 502

ation framework leveraging dual-strategy reason- 503

ing and multi-role SQL selection. Experiments on 504

several datasets demonstrate the framework’s supe- 505

rior performance, and extensive analyses were con- 506

ducted to further validate its effectiveness. Overall, 507

this study presents a pragmatic solution for im- 508

proving model reasoning and accurately selecting 509

the optimal SQL. It creates opportunities for re- 510

searchers in this field to further explore and refine 511

SQL generation techniques. 512
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Limitations513

Despite the promising results achieved by DSMR-514

SQL, there are several limitations that deserve fur-515

ther attention. (1) Human Reasoning Processes:516

While our framework partially mimics human rea-517

soning behaviors, significant gaps remain in fully518

understanding and incorporating advanced human519

reasoning processes into SQL generation. In-depth520

research into these processes could be crucial for521

enhancing the model’s performance; (2) Candi-522

date Coverage: In this study, only five SQL can-523

didates are used for selection. However, this re-524

stricted number might fail to sufficiently encom-525

pass the full SQL query space, particularly in com-526

plex datasets like BIRD. Therefore, dynamically527

adjusting the number of SQL candidates to opti-528

mize SQL generation performance offers a com-529

pelling avenue for future research.530

Ethical Considerations531

In this study, the efficacy of the proposed DSMR-532

SQL is assessed using both open-source and closed-533

source LLMs. It is important to highlight that534

these models demand substantial computational535

resources, which leads to a rise in carbon dioxide536

emissions and high energy consumption. Besides,537

the datasets we utilized in this study are openly538

available, and there are no data privacy concerns.539
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A Appendix A: Description of the833

Experimental Datasets834

This section provides detailed information on the835

datasets used in this study. Additional details on836

database and query complexity are presented in Ta-837

ble 6 (Liu et al., 2024). These datasets are publicly838

available under the CC BY-SA 4.0 license, per-839

mitting modifications and inclusion of additional840

annotations on the original datasets.841

Spider: Spider (Yu et al., 2018) serves as a com-842

prehensive dataset, comprising 11840 NL questions843

in English and 6448 unique SQL queries across 138844

distinct domains. It contains 8659 samples in the845

training set, 1034 in the development set, and 2147846

in the test set4.847

Spider-Variant Datasets: Spider-DK (Gan848

et al., 2021b) highlights the role of domain-specific849

knowledge in SQL generation with 535 samples850

in English5. Spider-Realistic (Deng et al., 2021)851

focuses on challenging queries that omit explicit852

column references, which includes 508 samples in853

English6. Spider-Syn (Gan et al., 2021a) is a vari-854

ant of Spider, in which schema-specific terms in NL855

queries are replaced with synonyms. It provides856

1034 samples for model evaluation in English7.857

BIRD: BIRD (Li et al., 2024b) has gained858

widespread attention for incorporating additional859

complexities, such as complex SQL functions and860

operations not found in Spider. It contains 9428861

training samples and 1534 samples in the develop-862

ment set. The NL queries in BIRD are in English8.863

B Appendix B: Description of the864

Implementation Details865

In this study, DSMR-SQL was implemented using866

PyTorch (Paszke et al., 2019). Besides, SFT and867

ICL were combined to improve SQL generation.868

(1) SFT: Specifically, Llama-3.2-3B-Instruct9869

(Touvron et al., 2023) and StableCode-3B10 (Pin-870

naparaju et al., 2024) were utilized for SQL gener-871

ation via SFT. The former excels in query compre-872

hension, while the latter specializes in code gener-873

ation. Moreover, the CodeS framework (Li et al.,874

2024a) was employed to perform SFT, with the875

learning rate, batch size, and number of epochs set876

4https://yale-lily.github.io/spider
5https://github.com/ygan/Spider-DK
6https://zenodo.org/records/5205322#.YTts_o5Kgab
7https://github.com/ygan/Spider-Syn
8https://bird-bench.github.io/
9https://hf-mirror.com/meta-llama/Llama-3.2-3B-Instruct

10https://hf-mirror.com/stabilityai/stable-code-3b

to 5 × 10−6, 2, and 4, respectively. In addition, 877

the AdamW optimizer (Zhou et al., 2024) with mo- 878

mentum parameters β1 = 0.9, β2 = 0.95, and 879

ϵ = 1 × 10−8 was adopted. Other parameter set- 880

tings remained the same as in the original CodeS11. 881

All experiments in SFT were conducted on four 882

NVIDIA GeForce A100 40GB GPUs. 883

(2) ICL: Specifically, GPT-4o (Hurst et al., 884

2024) and Gemini-1.5-Pro (Team et al., 2024) were 885

employed to generate diverse SQL queries via 886

ICL12. Notably, two SQL candidates generated 887

by the open-source LLMs and three SQL candi- 888

dates generated by GPT-4o (or Gemini-1.5-Pro) 889

were adopted for MRS within GPT-4o (or Gemini- 890

1.5-Pro). Besides, the number of chat completion 891

choices (n) and the temperature (T ) were set to 1 892

and 0, respectively. The number of SQL candidates 893

was determined based on the experiments in Sec- 894

tion 4.3.1(1). It is worth noting that the modular 895

design of DSMR-SQL enables the utilization of dif- 896

ferent numbers of open-source and closed-source 897

LLMs for multiple SQL generation. 898

C Appendix C: Description of the 899

Evaluation Metrics 900

Evaluation metrics are crucial for gauging the ef- 901

ficacy of text-to-SQL systems from a quantitative 902

perspective. In this study, we used the following 903

metrics to assess the model’s performance. 904

(1) Execution Accuracy (EX) (Yu et al., 2018) 905

assesses the execution outcomes of predicted SQL 906

queries against the ground truth. This metric is 907

valuable for verifying the functional correctness of 908

SQL queries. 909

(2) Test-suite Accuracy (TS) (Zhong et al., 910

2020) is proposed to gauge the semantic correct- 911

ness of text-to-SQL systems by constructing a 912

compact test suite from a substantial collection 913

of databases. This approach enables the differ- 914

entiation between fully correct and nearly correct 915

SQL queries. During the evaluation phase, TS mea- 916

sures the model’s ability to correctly execute SQL 917

queries across these databases, thereby establishing 918

a stringent upper bound for semantic accuracy. 919

(3) Valid Efficiency Score (VES) (Li et al., 920

2024b) quantifies the execution efficiency of SQL 921

queries by simultaneously considering the accuracy 922

and execution efficiency of SQL outputs. 923

11https://github.com/RUCKBReasoning/codes
12We utilized this website to employ closed-source LLMs:

https://gpt.zhizengzeng.com/
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Dataset Database Complexity Query Complexity
# Databases # Tables # Tables # Selects # Agg # Math Comp

Spider 206 1056 1.83 1.17 0.54 0
Spider-DK 169 887 1.71 1.16 0.54 0

Spider-Realistic 166 876 1.79 1.21 0.50 0
Spider-Syn 166 876 1.68 1.17 0.59 0

BIRD 80 611 2.07 1.09 0.61 0.27

Table 6: Additional information of the experimental datasets. Note that # Agg and # Math Comp indicate the number
of aggregation functions and mathematical computations, respectively.

D Appendix D: Description of the924

Compared Methods925

We compared various LLM-based SQL generation926

methods in the literature, which are divided into927

two categories.928

(1) In-Context Learning-based Approaches:929

• DIN-SQL (Pourreza and Rafiei, 2024a) seg-930

mented the SQL generation process into four931

distinct modules, namely schema linking, clas-932

sification and decomposition, SQL generation,933

and self-correction.934

• DAIL-SQL (Gao et al., 2024) incorpo-935

rated structural knowledge through skeleton936

similarity-based few-shot prompt selection937

and improved reasoning efficiency by restrict-938

ing cross-domain specific terms in the repre-939

sentation.940

• DEA-SQL (Xie et al., 2024b) implemented a941

structured workflow for SQL generation, in-942

volving gathering database information, iden-943

tifying query types, devising solution strate-944

gies, generating SQL syntax, conducting ini-945

tial self-checks, and reviewing past errors to946

mitigate repetitive mistakes.947

• TA-SQL (Qu et al., 2024) introduced Task948

Alignment (TA) to reduce model hallucina-949

tions.950

• MAG-SQL (Xie et al., 2024a) adopted the951

Least-to-Most Prompting approach (Zhou952

et al., 2022), incrementally generating each953

sub-question by adding conditions to the pre-954

vious one.955

• PTD-SQL (Luo et al., 2024) utilized query956

group partitioning to strengthen LLM’s rea-957

soning abilities.958

• MAC-SQL (Wang et al., 2024) introduced a 959

novel LLM-based multi-agent collaborative 960

framework to enhance tool utilization and 961

agent collaboration, involving the Selector, 962

Decomposer, and Refiner. 963

• MCS-SQL (Lee et al., 2024) generated var- 964

ious candidate SQL using diverse prompts, 965

followed by filtering and multiple-choice se- 966

lection to finalize the output. 967

• PURPLE (Ren et al., 2024) adopted trained 968

classifiers to link questions with database 969

schemas and reduced irrelevant informa- 970

tion via pattern pruning, thereby improving 971

schema linking efficiency in SQL generation. 972

(2) Fine-Tuning-based Approaches: 973

• DTS-SQL (Pourreza and Rafiei, 2024b) was 974

composed of two sub-tasks, namely schema 975

linking and SQL generation. A two-stage 976

fine-tuning approach was implemented to ef- 977

fectively align the performance of the open- 978

source LLM with that of the closed-source 979

LLM. 980

• CodeS (Li et al., 2024a) built a BM25 index 981

from database content, retrieving top-k values 982

from relevant columns to enhance semantic 983

representation for SQL generation. Moreover, 984

it introduced a bi-directional data augmenta- 985

tion approach to automatically generate a di- 986

verse set of (NL, SQL) pairs. 987

• SENSE (Yang et al., 2024) proposed a syn- 988

thetic data approach that combines strong data 989

from larger and high-performing models with 990

weak data produced by smaller and less well- 991

aligned models. 992
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E Appendix E: Prompt for Direct SQL Generation993

Prompt for Direct SQL Generation

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
Please directly generate the SQL queries according to the provided evidence and the following
[Hints] with no explanations.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.
- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!
- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!
- Fuzzy matching (LIKE): Used to match similar strings.
- Exact matching (=): Used for precise matching.
- INTERSECT: Used to obtain the intersection of two query results.
- UNION: Used to merge two query results.
- Never use ‘||’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.
- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.
- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.
- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.
- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.
- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.
- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.
- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY’.
- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.
- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

Some example questions and corresponding SQL queries are provided based on similar problems:
{Examples}

Sqlite SQL tables, with their properties:
{Database Schema}

Here are some data information about database references:
994
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{Example Database Values}

Foreign key information of Sqlite SQL tables, used for table joins:
{Foreign Key Information}

Some evidence can help you generate high-quality SQL:
{Evidence (Only in the BIRD dataset)}

The input question is:
{Question}

Please read the given examples, the input question, the [Hints], and the database schema again.
Let’s take a deep breath and think step by step, you must think more steps. Please remember to
stay in strict accordance with the nature of the provided identity. If you can generate high-quality
SQL queries satisfying the question demands, I will give you one million dollars.

995

F Appendix F: Prompt for Strict Step-by-Step Reasoning 996

Prompt for Strict Step-by-Step Reasoning

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
Please strictly obey the following steps to generate high-quality SQL queries:

[Steps]
- Step 1: Read the Question: You need to understand the primary focus and specific details of the
question. Ensure each part of the SQL statement aligns with the user’s query intent.
- Step 2: Analyze the Database Schema: Understand the relation between the database and the
question accurately.
- Step 3: Analyze the Given Examples: Understand the similar examples provided to you for better
SQL generation.
- Step 4: Analyze the Given Evidence: Understand the given evidence provided to you below for
better SQL generation.
- Step 5: Analyze the Given Hints: Understand all the given hints provided to you below for better
SQL generation.
- Step 6: Finalize the SQL query: Construct correct SQLite SQL corresponding to the given
question.
- Step 7: Validation and Syntax Check: Before finalizing, verify that generated SQL query is
coherent with the database schema, all referenced columns exist in the referenced table, all joins
are correctly formulated, aggregation logic is accurate, and the SQL syntax is correct.

You need to explain your detailed reasoning step by step. Note that you MUST obey the following
[Hints] to generate SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.

997
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- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!
- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!
- Fuzzy matching (LIKE): Used to match similar strings.
- Exact matching (=): Used for precise matching.
- INTERSECT: Used to obtain the intersection of two query results.
- UNION: Used to merge two query results.
- Never use ‘||’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.
- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.
- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.
- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.
- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.
- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.
- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.
- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY’.
- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.
- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

Some example questions and corresponding SQL queries are provided based on similar problems:
{Examples}

Sqlite SQL tables, with their properties:
{Database Schema}

Here are some data information about database references:
{Example Database Values}

Foreign key information of Sqlite SQL tables, used for table joins:
{Foreign Key Information}

Some evidence can help you generate high-quality SQL:
{Evidence (Only in the BIRD dataset)}

The input question is:
{Question}

Please read the given examples, the input question, the [Hints], and the database schema again.
Let’s take a deep breath and think step by step, you must think more steps. Please remember to
stay in strict accordance with the nature of the provided identity. If you can generate high-quality
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SQL queries satisfying the question demands, I will give you one million dollars.
999

G Appendix G: Prompt for Flexible Reasoning 1000

Prompt for Flexible Reasoning

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
Please generate high-quality SQL queries with your detailed reasoning. Note that you MUST refer
to the provided evidence and obey the following [Hints] to generate SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.
- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!
- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!
- Fuzzy matching (LIKE): Used to match similar strings.
- Exact matching (=): Used for precise matching.
- INTERSECT: Used to obtain the intersection of two query results.
- UNION: Used to merge two query results.
- Never use ‘||’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.
- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.
- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.
- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.
- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.
- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.
- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.
- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY’.
- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.
- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

Some example questions and corresponding SQL queries are provided based on similar problems:
{Examples}

Sqlite SQL tables, with their properties:
1001
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{Database Schema}

Here are some data information about database references:
{Example Database Values}

Foreign key information of Sqlite SQL tables, used for table joins:
{Foreign Key Information}

Some evidence can help you generate high-quality SQL:
{Evidence (Only in the BIRD dataset)}

The input question is:
{Question}

Please read the given examples, the input question, the [Hints], and the database schema again.
Let’s take a deep breath and think step by step, you must think more steps. Please remember to
stay in strict accordance with the nature of the provided identity. If you can generate high-quality
SQL queries satisfying the question demands, I will give you one million dollars.

1002

H Appendix H: Prompt for Multi-Role SQL Selection1003

Prompt for Multi-Role SQL Selection

You are an AI language model employing iterative reasoning through three distinct roles, each
encapsulated within specific XML tags:
<proposer>...</proposer>
<critic>...</critic>
<summarizer>...</summarizer>

[Roles and Responsibilities]
<proposer>
1. Objective: Select the best SQL query to answer the question based on the given SQL and their
corresponding execution results. Propose one or more reasoning steps towards solving the given
problem.
2. Instructions:
(1) Generate clear and concise propositions that advance the reasoning process.
(2) Build upon previous valid propositions and consider any critiques provided.
<critic>
1. Objective: Critically evaluate the proposer’s reasoning steps and the selection of the best SQL
based on the execution results.
2. Instructions:
(1) Analyze the propositions for logical consistency and accuracy.
(2) Provide detailed natural language critiques highlighting any errors or areas for improvement.
<summarizer>
1. Objective: Synthesize the agreed propositions and the corresponding feedback, outputting the
final SQL solution.
2. Instructions:
(1) Review the agreed propositions and critiques.
(2) Extract and organize the valid reasoning steps.
(3) Present the final answer.
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[Process Flow]
1. Iteration Begins: The <proposer> presents one or more reasoning steps to select the best SQL.
2. Critical Evaluation: The <critic> analyzes these steps, providing natural language critiques and
suggesting refinements.
3. Assessment and Synthesis: The <summarizer> consolidates the agreed propositions and critiques
to output the final selected SQL.
4. Repeat: This cycle continues, with the <proposer> refining or adding propositions based on the
<critic>’s feedback, until the <proposer> and the <critic> agree on the propositions.

[Formatting Guidelines]
1. Clarity: Ensure each reasoning step and critique is easy to understand.
2. Logical Progression: Each proposition should logically follow from previous ones, considering
any critiques.
3. Tags: Always encapsulate your output within the correct XML tags.
4. Natural Language: Use detailed explanations in critiques to provide meaningful feedback.
5. Note that the content in the <summarizer> is the final SQL only with no explanations.
You MUST adhere to the following format to output results!!!

[Example Interaction]
<proposer>
[Proposer’s reasoning step 1]
</proposer>
<critic>
[Critic’s detailed natural language critique 1]
</critic>
<proposer>
[Proposer’s reasoning step 2]
</proposer>
<critic>
[Critic’s detailed natural language critique 2]
</critic>
... (continue)
<summarizer>
[Final selected SQL only]
</summarizer>

Note that you MUST obey the following [Hints] to select SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.
- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!
- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!
- Fuzzy matching (LIKE): Used to match similar strings.
- Exact matching (=): Used for precise matching.
- INTERSECT: Used to obtain the intersection of two query results.
- UNION: Used to merge two query results.
- Never use ‘||’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
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the columns as they are.
- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.
- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.
- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.
- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.
- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.
- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.
- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY’.
- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.
- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

The input question is:
{Question}

The candidate SQL are:
Candidate SQL 1: {Candidate SQL1}. Execution result 1: {Execution Result1 from Candidate
SQL1}.
Candidate SQL 2: {Candidate SQL2}. Execution result 2: {Execution Result2 from Candidate
SQL2}.
Candidate SQL 3: {Candidate SQL3}. Execution result 3: {Execution Result3 from Candidate
SQL3}.
Candidate SQL 4: {Candidate SQL4}. Execution result 4: {Execution Result4 from Candidate
SQL4}.
Candidate SQL 5: {Candidate SQL5}. Execution result 5: {Execution Result5 from Candidate
SQL5}.

Please read the input question, the given [Hints], the candidate SQL and corresponding execution
results again. Let’s take a deep breath and think step by step, you must think more steps. Please
remember to stay in strict accordance with the nature of the provided identity. If you can select the
best SQL satisfying the question demands, I will give you one million dollars.
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I Appendix I: Prompt for Consistency Voting1007

Prompt for Consistency Voting

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
You have been provided with several responses to the latest user query and their execution results.
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Your task is to select the SQL query with the highest execution result consistency, which means the
SQL execution result appears the most frequently.
You need to explain your detailed reasoning step by step. You MUST adhere to the following
format to output results.

[Example Interaction]
<Reasoning>
[Detailed reasoning process]
</Reasoning>
<SQL>
[Final selected SQL]
</SQL>

Input question is:
{Question}.

The candidate SQL are:
Candidate SQL 1: {Candidate SQL1}. Execution result 1: {Execution Result1 from Candidate
SQL1}.
Candidate SQL 2: {Candidate SQL2}. Execution result 2: {Execution Result2 from Candidate
SQL2}.
Candidate SQL 3: {Candidate SQL3}. Execution result 3: {Execution Result3 from Candidate
SQL3}.
Candidate SQL 4: {Candidate SQL4}. Execution result 4: {Execution Result4 from Candidate
SQL4}.
Candidate SQL 5: {Candidate SQL5}. Execution result 5: {Execution Result5 from Candidate
SQL5}.

Please read the given candidate SQL and corresponding execution results again. Let’s take a
deep breath and think step by step, you must think more steps. Please remember to stay in strict
accordance with the nature of the provided identity. If you can complete this task well, I will give
you one million dollars.
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J Appendix J: Prompt for Direct SQL Selection 1010

Prompt for Direct SQL Selection

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
You have been provided with several responses to the latest user query and their execution results.
Your task is to select the most suitable SQL query satisfying user needs. You only need to output
SQL only with no explanations.

Note that you MUST obey the following [Hints] to select SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
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columns or values.
- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!
- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!
- Fuzzy matching (LIKE): Used to match similar strings.
- Exact matching (=): Used for precise matching.
- INTERSECT: Used to obtain the intersection of two query results.
- UNION: Used to merge two query results.
- Never use ‘||’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.
- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.
- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.
- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.
- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.
- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.
- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.
- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY’.
- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.
- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

The input question is:
{Question}.

The candidate SQL are:
Candidate SQL 1: {Candidate SQL1}. Execution result 1: {Execution Result1 from Candidate
SQL1}.
Candidate SQL 2: {Candidate SQL2}. Execution result 2: {Execution Result2 from Candidate
SQL2}.
Candidate SQL 3: {Candidate SQL3}. Execution result 3: {Execution Result3 from Candidate
SQL3}.
Candidate SQL 4: {Candidate SQL4}. Execution result 4: {Execution Result4 from Candidate
SQL4}.
Candidate SQL 5: {Candidate SQL5}. Execution result 5: {Execution Result5 from Candidate
SQL5}.

Please read the input question, the [Hints], the candidate SQL and corresponding execution results
again. Please remember to stay in strict accordance with the nature of the provided identity. If you
can select the best SQL satisfying the question demands, I will give you one million dollars.
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K Appendix K: Prompt for SQL Selection with Explanation 1013

1014

Prompt for SQL Selection with Explanation

From now on, you are an excellent Database Analyst, who has expertise in understanding complex
database schemas, tables, relationships, and can perform detailed analyses to extract required
information. Answer the following question while staying in strict accordance with the nature of
the provided identity.

[Instructions]
You have been provided with several responses to the latest user query and their execution results.
Your task is to select the most suitable SQL query satisfying user needs.
You need to explain your detailed reasoning step by step. You MUST adhere to the following
format to output results.

[Example Interaction]
<Reasoning>
[Detailed reasoning process]
</Reasoning>
<SQL>
[Final selected SQL]
</SQL>

Note that you MUST obey the following [Hints] to select SQL queries.

[Hints]
- SELECT: Only select columns explicitly mentioned in the user’s question. Avoid unnecessary
columns or values.
- Capitalization: Pay closer attention to the capitalization in the question. You MUST maintain the
original capitalization from the question in the generated SQL!
- FROM/JOIN: Only include tables which are explicitly mentioned in the question. You MUST
NOT use LEFT JOIN!
- Fuzzy matching (LIKE): Used to match similar strings.
- Exact matching (=): Used for precise matching.
- INTERSECT: Used to obtain the intersection of two query results.
- UNION: Used to merge two query results.
- Never use ‘||’ or any other method to concatenate strings in the ‘SELECT’ clause. Rather output
the columns as they are.
- BETWEEN ... AND ...: If the question requires selecting values within a specified range, you
should use ‘BETWEEN ... AND ...’ operator.
- ASC and DESC: If the question does not explicitly mention specific order such as ascending or
descending order, you MUST NOT add ‘ASC’ or ‘DESC’ in SQL queries.
- Column and Table Selection: Remember to only include columns and tables explicitly requested
in the query. Remember to select the most correct tables in the ‘FROM’ clause.
- Aggregation: When using ‘MAX’ or ‘MIN’, please perform joins before selecting these aggregates.
DO NOT use ‘MAX’ or ‘MIN’ in the ‘WHERE’ clause! Always use the ‘ORDER BY’ clause in
combination with ‘LIMIT X’.
- GROUP BY: When the question does not explicitly and clearly perform calculations on grouped
data, you MUST NOT add ‘GROUP BY’ clause.
- DISTINCT: When the question does not explicitly and clearly search for unique values from a
column, you should not add ‘DISTINCT’ clause.
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- Order and Grouping: Use ‘GROUP BY <column>’ before ‘ORDER BY <column> ASC/DESC’
to ensure distinct grouped results. Pay more attention to the content after ‘ORDER BY’.
- LIMIT: Apply ‘LIMIT’ only when the question specifies a retrieval count.
- WHERE: Double-check that all ‘WHERE’ clauses accurately represent the conditions needed to
filter the data as per the question’s requirements.

The input question is:
{Question}.

The candidate SQL are:
Candidate SQL 1: {Candidate SQL1}. Execution result 1: {Execution Result1 from Candidate
SQL1}.
Candidate SQL 2: {Candidate SQL2}. Execution result 2: {Execution Result2 from Candidate
SQL2}.
Candidate SQL 3: {Candidate SQL3}. Execution result 3: {Execution Result3 from Candidate
SQL3}.
Candidate SQL 4: {Candidate SQL4}. Execution result 4: {Execution Result4 from Candidate
SQL4}.
Candidate SQL 5: {Candidate SQL5}. Execution result 5: {Execution Result5 from Candidate
SQL5}.

Please read the input question, the [Hints], the candidate SQL and corresponding execution results
again. Let’s take a deep breath and think step by step, you must think more steps. Please remember
to stay in strict accordance with the nature of the provided identity. If you can select the best SQL
satisfying the question demands, I will give you one million dollars.
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L Appendix L: An Example of ICL-based Methods 1017

 Question: Find the name and rank points of the winner who won the most times.

Direct SQL Generation: 
SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY
m.winner_id ORDER BY COUNT(*) DESC LIMIT 1;

Flexible Reasoning: 
<Reasoning>
To solve this problem, I need to determine the winner who has won the most matches. The relevant data can be obtained from the `matches` table using
the `winner_id`, which references the `player_id` in the `players` table to get the name of the player. Additionally, I need the rank points of this winner, which
can be retrieved from the `matches` table where `winner_rank_points` are stored. The approach is to join the `matches` table with the `players` table to get
the winner's name and count the number of wins for each winner. I will order by the count of wins to find the top winner and limit the result to one. 
</Reasoning>
<SQL>
SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY
m.winner_id ORDER BY COUNT(*) DESC LIMIT 1;
</SQL>

Strict Step-by-Step Reasoning: 
<Reasoning>  
Step 1: Read the Question: The question asks for the name and rank points of the winner who has won the most matches.  
Step 2: Analyze the Schema: The `matches` table contains information about match winners, including their `winner_name` and `winner_rank_points`.
The `winner_id` in the `matches` table references the `player_id` in the `players` table, which can be used to join these tables if needed.  
Step 3: Analyze the Given Examples: The examples demonstrate the use of `GROUP BY` to count occurrences and `ORDER BY` with `LIMIT 1` to find
the maximum.  
Step 4: Analyze the Given Hints: The hints emphasize using `GROUP BY` for counting, `ORDER BY` for sorting, and `LIMIT 1` to retrieve the top result.  
Step 5: Finalize the SQL Query: The query will group by `winner_name` and `winner_rank_points`, count the number of wins, and order the results in
descending order of the count. The top result will be retrieved using `LIMIT 1`.  
Step 6: Validation and Syntax Check: The query is validated to ensure it adheres to the schema, uses correct syntax, and satisfies the question's
requirements.  
</Reasoning>  
<SQL>  
SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_name, winner_rank_points ORDER BY COUNT(*) DESC LIMIT 1;  
</SQL>

Figure 5: An illustrative example of using three different reasoning processes in ICL-based methods.

M Appendix M: Additional Experimental Results 1018

N Appendix N: Case Study of DSMR-SQL 1019
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Figure 6: Additional experimental results via using SFT and ICL on the Spider-Dev dataset. For simplicity, L and S
indicate Llama-3.2-3B-Instruct and StableCode-3B, respectively. A1, A2, and A3 represent the three reasoning
processes in the ICL-based strategy, respectively.

26



 Question: Find the name and rank points of the winner who won the most times.

SQL Candidates:

(1) SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_id ORDER BY COUNT(*) DESC LIMIT 1

(2) SELECT winner_name ,  winner_rank_points FROM matches GROUP BY winner_name ORDER BY count(*) DESC LIMIT 1

(3) SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY m.winner_id ORDER BY COUNT(*) DESC LIMIT 1

(4) SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY m.winner_id ORDER BY COUNT(*) DESC LIMIT 1

(5) SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_name, winner_rank_points ORDER BY COUNT(*) DESC LIMIT 1

Execution Result:

('Angelique Kerber', 3715)

('Angelique Kerber', 3715)

('Angelique', 'Kerber', 3715)

('Angelique', 'Kerber', 3715)

('Elena Vesnina', 2340)

Consistency-Voting (CV) / Direct SQL Selection (DS) / SQL Selection with Explanation (SE):

SELECT p.first_name, p.last_name, m.winner_rank_points FROM matches AS m JOIN players AS p ON m.winner_id = p.player_id GROUP BY m.winner_id ORDER BY COUNT(*) DESC LIMIT 1
Execution Result:

('Angelique', 'Kerber', 3715)

<proposer>
The question asks for the name and rank points of the winner who won the most times. 
### Analysis of the provided SQL queries:
1. **sql1**: This query groups by `winner_id` and orders by the count of matches won. It returns the `winner_name` and `winner_rank_points` of the winner with the most wins. The result is
`('Angelique Kerber', 3715)`.
2. **sql2**: This query groups by `winner_name` and orders by the count of matches won. It returns the `winner_name` and `winner_rank_points` of the winner with the most wins. The result is
`('Angelique Kerber', 3715)`.
3. **sql3**: This query joins the `matches` and `players` tables to retrieve the `first_name` and `last_name` of the winner, along with their `winner_rank_points`. It groups by `winner_id` and orders by
the count of matches won. The result is `('Angelique', 'Kerber', 3715)`.
4. **sql4**: This query joins the `matches` and `players` tables to retrieve the `first_name` and `last_name` of the winner, along with their `winner_rank_points`. It groups by `winner_id` and orders by
the count of matches won. The result is `('Angelique', 'Kerber', 3715)`.
5. **sql5**: This query groups by both `winner_name` and `winner_rank_points`. However, grouping by `winner_rank_points` is unnecessary and could lead to incorrect results if a player has multiple
rank points across matches. The result is `('Elena Vesnina', 2340)`.
### Conclusion:
The best SQL query is **sql3** or ** sql4**, since they provide additional details (first and last name), thereby making the information more comprehensive.
</proposer>
<critic>
For **sql3** and **sql4**, While they provide additional details (first and last name), the question only asks for the name and rank points, making this query overly detailed.
Given the above, **sql1** is actually the most robust and accurate query, as it groups by `winner_id` to uniquely identify winners and avoids potential issues with duplicate names. While **sql2**
returns the same result as **sql1**, it is less robust in scenarios with duplicate names.
Recommendation: The best SQL query is **sql1**, not **sql3** or **sql4**.
</critic>
<proposer>
Based on the critic's feedback, I acknowledge that **sql1** is better. Therefore, I revise my conclusion and propose that **sql1** is the best SQL query for this question.
</proposer>
<critic>
The revised proposition is correct. **sql1** is indeed the best SQL query, as it groups by `winner_id` to uniquely identify winners and avoids potential issues with duplicate names. The reasoning is
now complete and accurate.
</critic>
<summarizer>
SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_id ORDER BY COUNT(*) DESC LIMIT 1;
</summarizer>

Multi-Role SQL Selection (MRS):

SELECT winner_name, winner_rank_points FROM matches GROUP BY winner_id ORDER BY COUNT(*) DESC LIMIT 1

Execution Result:

('Angelique Kerber', 3715)

Figure 7: Case study of DSMR-SQL. Notably, consistency-voting (CV) and simple SQL selection techniques (i.e.,
DS and SE) select the wrong SQL, while the proposed MRS chooses the correct SQL satisfying user intent.
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