
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOLCATS: ON LOW-RANK LINEARIZING OF LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works show we can linearize large language models (LLMs)—swapping
the quadratic attentions of popular Transformer-based LLMs with subquadratic
analogs, such as linear attention—avoiding the expensive pretraining costs. How-
ever, linearizing LLMs often significantly degrades model quality, still requires
training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs.
We show that the subquadratic analogs used in prior work struggle to approximate
the original softmax attention layer. We thus propose Low-rank Linear Conver-
sion via Attention Transfer (LOLCATS), a simple two-step method that improves
LLM linearizing quality with orders of magnitudes less memory and compute: (1)
the “attention transfer” training step uses our new linear attention architecture,
designed to improve the approximation fidelity, and minimizes the MSE between
the original and new layer’s attention outputs, (2) we adjust for any approxima-
tion errors by simply using low-rank adaptation (LoRA). LOLCATS significantly
improves linearizing quality, training efficiency, and scalability. LOLCATS pro-
duces state-of-the-art subquadratic LLMs from Llama 3 8B and Mistral 7B v0.1,
leading to 20+ points of improvement on 5-shot MMLU, with only 0.2% of past
methods’ model parameters and 0.4% of their training tokens. Finally, we ap-
ply LOLCATS to create the first linearized 70B and 405B LLMs (50× larger
than prior work). When compared with prior methods under the same compute
budgets, LOLCATS significantly improves linearizing quality, closing the gap
between linearized and original Llama 3.1 70B and 405B LLMs by 78.7% and
77.4% on 5-shot MMLU.

1 INTRODUCTION

“Linearizing” large language models (LLMs)—or converting existing Transformer-based LLMs into
attention-free or subquadratic alternatives—has shown promise for scaling up efficient architectures.
While many such architectures offer complexity-level efficiency gains, like linear-time and constant-
memory generation, they are often limited to smaller models pretrained on academic budgets (Gu
& Dao, 2023; Peng et al., 2023; Yang et al., 2023; Arora et al., 2024; Beck et al., 2024). In a
complementary direction, linearizing aims to start with openly available LLMs—e.g., those with
7B+ parameters trained on trillions of tokens (AI, 2024; Jiang et al., 2023)—and (i) swap their
softmax attentions with subquadratic analogs, before (ii) further finetuning to recover quality. This
holds exciting promise for quickly scaling up subquadratic capabilities in modern LLMs.

However, to better realize this promise and allow anyone to convert LLMs into subquadratic models,
we desire methods that are (1) quality-preserving, e.g., recovering the zero-shot abilities of modern
LLMs; (2) parameter and token efficient, to linearize LLMs on widely accessible compute; and
(3) highly scalable, to support the various 70B+ LLMs available today (Touvron et al., 2023a;b).

Existing methods present opportunities to improve all three criteria. On quality, despite using moti-
vated subquadratic analogs such as RetNet-inspired linear attentions (Sun et al., 2023; Mercat et al.,
2024) or state-space model (SSM)-based Mamba layers (Gu & Dao, 2023; Yang et al., 2024; Wang
et al., 2024), prior works significantly reduce performance on popular LM Evaluation Harness tasks
(LM Eval) (Gao et al., 2023) (up to 23.4-28.2 pts on 5-shot MMLU (Hendrycks et al., 2020)). On pa-
rameter and token efficiency, to adjust for architectural differences, prior methods update all model
parameters in at least one stage of training (Mercat et al., 2024; Wang et al., 2024; Yang et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025Attention
Analog

Softmax
Attention

RMS Norm

RMS Norm

RMS Norm

Outer Product

Inner Product

Cumulative Sum

Q Proj K Proj V Proj

MLP
Feature

Map

MLP
Feature

Map

O Proj

Attention
Analog

RMS Norm

RMS Norm

RMS Norm

→

Outer Product

Inner Product

Cumulative Sum

Q Proj K Proj V Proj

MLP
Feature

Map

MLP
Feature

Map

Trainable Fast
Attention Analog

Outer Product

Inner Product

Cumulative Sum

Q Proj K Proj V Proj

MLP
Feature

Map

MLP
Feature

Map

O Proj Attention
Analog

Attention
Analog

Transformer
Block

LM Head

LM Head

Attn

Norm

MLP

MLP

Attention

Linear
Pass

Softmax
PassSoftmax

Pass

…

Transformer
Block

Embedding

Transformer
Block

LM Head

x N

MLP

Linear
Attn.
Pass

“We linearized the chungus among u_”

“We linearized the chungus among us”

Linear
Attention Pass

Low-rank
updates only

Step 1: Attention Transfer

…

Transformer
Block

Embedding

Transformer
Block

LM Head

Transformer Softmax
Attention Pass

Linear
Attention

…

Transformer
Block

Embedding

Transformer
Block

LM Head

x N

Linear
Attn.
Pass

MLP

Softmax
Attn.
Pass

“The cat sat on the rat.”

Linearizing Model Setup
Layer-wise attention matching

…

Transformer
Block

Embedding

Transformer
Block

LM Head

MLP

Linear
Attn.
Pass

“We linearized the chungus among u_”
Low-rank

updates only

End-to-end next-token prediction with LoRA

x N

Step 2: Low-rank Linearizing
Replace attentions

“We linearized the chungus among us”

+

Figure 1: LOLCATS framework. We linearize LLMs by (1) training attention analogs to approximate
softmax attentions (attention transfer), before swapping attentions and (2) minimally adjusting (with LoRA).

2024), and use 100B tokens to linearize 7B LLMs. On scalability, these training costs make lin-
earizing larger models on academic compute more difficult; existing works only linearize up to 8B
LLMs. This makes it unclear how to support linearizing 70B to 405B LLMs (Dubey et al., 2024).

In this work, we thus propose LOLCATS (LOw-rank Linear Conversion with Attention TranSfer),
a simple approach to improve the quality, efficiency, and scalability of linearizing LLMs. As guiding
motivation, we ask if we can linearize LLMs by simply reducing architectural differences, i.e.,

1. Starting with simple softmax attention analogs such as linear attention (Eq. 2), and training their
parameterizations explicitly to approximate softmax attention (“attention transfer”).

2. Subsequently only training with low-cost finetuning to adjust for any approximation errors, e.g.,
with low-rank adaptation (LoRA) (Hu et al., 2021) (“low-rank linearizing”).

In evaluating this hypothesis, we make several contributions. First, to better understand lineariz-
ing feasibility, we empirically study attention transfer and low-rank linearizing with existing linear
attentions. While intuitive—by swapping in perfect subquadratic softmax attention approximators,
we could get subquadratic LLMs with no additional training—prior works suggest linear attentions
struggle to match softmax expressivity (Keles et al., 2023; Qin et al., 2022) or need full-model up-
dates to recover linearizing quality (Kasai et al., 2021; Mercat et al., 2024). In contrast, we find
that while either attention transfer or LoRA alone is insufficient, we can rapidly recover quality
by simply doing both (Figure 3, Table 1). At the same time, we do uncover quality issues related
to attention-matching architecture and training. With prior linear attentions, the best low-rank lin-
earized LLMs still significantly degrade in quality vs. original Transformers (up to 42.4 pts on 5-shot
MMLU). With prior approaches that train all attentions jointly (Zhang et al., 2024), we also find that
later layers can result in 200× the MSE of earlier ones (Figure 7). We later find this issue aggravated
by larger LLMs; joint training for Llama 3.1 405B’s 126 attention layers fails to linearize LLMs.

Next, to resolve these issues and improve upon our original criteria, we detail LOLCATS’ method
components. For quality, we generalize prior notions of learnable linear attentions to sliding win-
dow + linear attention variants. These remain subquadratic to compute yet consistently yield better
attention transfer via lower mean-squared error (MSE) on attention outputs. For parameter and
token efficiency, we maintain our simple 2-step framework of (1) training subquadratic attentions
to match softmax attentions, before (2) adjusting for any errors via only LoRA. For scalability, we
use finer-grained “block-by-block” training. We split LLMs into blocks of k layers before jointly
training attentions only within each block to improve layer-wise attention matching. We pick k to
balance the speed of training blocks in parallel with the memory of saving hidden state outputs of
prior blocks (as inputs for later ones). We provide a simple cost model to navigate these tradeoffs.

Finally, in experiments, we validate that LOLCATS improves on each of our desired criteria.

• On quality, when linearizing popular LLMs such as Mistral-7B and Llama 3 8B, LOLCATS
significantly improves past linearizing methods (by 0.2−8.0 points (pts) on zero-shot LM Eval
tasks; +17.8 pts on 5-shot MMLU)). With Llama 3 8B, LOLCATS for the first time closes the
zero-shot LM Eval gap between linearized and Transformer models (73.1 vs 73.7 pts), while
supporting 3× higher throughput and 64× larger batch sizes vs. popular FlashAttention-2 (Dao,
2023) implementations (generating 4096 token samples on an 80GB H100). We further validate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Name Architecture Quality
Preserving

Parameter
Efficient

Token
Efficient

Validated
at Scale

Pretrained Attention ✓✓ ✗✗ ✗✗ ✓✓
SUPRA Linear Attention ✗ ✗ ✓ ✓
Mohawk Mamba (2) ✗ ✗ ✓ ✗
Mamba in Llama Mamba (2) ✗ ✗ ✓ ✓

LoLCATs Softmax-Approx.
Linear Attention ✓ ✓ ✓✓ ✓✓

Figure 2: Linearizing comparison. LOLCATS significantly
improves LLM linearizing quality and training efficiency.

LOLCATS-linearizing as a high-quality training method, outperforming strong 7B subquadratic
LLMs (RWKV-v6 (Peng et al., 2024), Mamba (Gu & Dao, 2023), Griffin (De et al., 2024)) and
hybrids (StripedHyena (Poli et al., 2023a), Zamba (Glorioso et al., 2024)) trained from scratch by
1.8 to 4.7 pts on average over popular LM Eval tasks.

• On parameter and token-efficiency, by only training linear attention feature maps in Stage 1,
while only using LoRA on linear attention projections in Stage 2, LOLCATS enables these gains
while updating only <0.2% of past linearizing methods’ model parameters. This also only takes
40M tokens, i.e., 0.003% and 0.04% of prior pretraining and linearizing methods’ token counts.

• On scalability, with LOLCATS we scale up linearizing to support the Llama 3.1 70B and 405B
parameter LLMs (Dubey et al., 2024). LOLCATS presents the first viable approach to linearizing
larger LLMs, creating the first linearized 70B and 405B LLMs with only 9.5 hours on an 8×80GB
H100 node for Llama 3.1 70B and 16 hours across 24 80GB H100s for Llama 3.1 405B. This is
in total less than half the compute reported by prior methods to linearize 8B models (5 days
on 8×80GB H100s) (Wang et al., 2024). Furthermore, under these computational constraints,
LOLCATS significantly improves quality vs. prior linearizing approaches (Kasai et al., 2021;
Mercat et al., 2024). With Llama 3.1 70B and 405B, we close 78.7% and 77.4% of the 5-shot
MMLU gap between Transformers and linearized variants respectively.

2 PRELIMINARIES

To motivate LOLCATS, we first go over Transformers, attention, and linear attention. We then
briefly discuss related works on linearizing Transformers and Transformer-based LLMs.

Transformers and Attention. Popular LLMs such as Llama 3 8B (AI@Meta, 2024) and Mistral
7B (Jiang et al., 2023) are decoder-only Transformers, with repeated blocks of multi-head softmax
attention followed by MLPs (Vaswani et al., 2017). For one head, attention models outputs y ∈
Rl×d from inputs x ∈ Rl×d (where l is sequence length, d is head dimension) with query, key,
and value weights Wq,Wk,Wv ∈ Rd×d. In causal language modeling, we compute q = xWq ,
k = xWk, v = xWv , before getting attention weights a and outputs y via

an,i =
exp(q⊤

n ki/
√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

, yn =

n∑
i=1

an,ivi (1)

Multi-head attention maintains inputs, outputs, and weights for each head, e.g., x ∈ Rh×l×d or
Wq ∈ Rh×d×d (h being number of heads), and computes Eq. 1 for each head. In both cases, we
compute final outputs by concatenating yn across heads, before using output weights Wo ∈ Rhd×hd

to compute ynWo ∈ Rl×hd. While expressive, causal softmax attention requires all {ki,vi}i≤n to
compute yn. For long context or large batch settings, this growing KV cache can incur prohibitive
memory costs even with state-of-the-art implementations such as FlashAttention (Dao, 2023).

Linear Attention. To get around this, Katharopoulos et al. (2020) show a similar attention op-
eration, but with linear time and constant memory over generation length (linear time and space
when processing inputs). To see how, note that softmax attention’s exponential is a kernel function
K(q,k), which in general can be expressed as the dot product of feature maps ϕ : Rd 7→ Rd′

.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Swapping exp(q⊤k/
√
d) with ϕ(q)⊤ϕ(k) in Eq. 1 gives us linear attention weights and outputs:

ân,i =
ϕ(qn)

⊤ϕ(ki)∑n
i=1 ϕ(qn)

⊤ϕ(ki)
, ŷn =

n∑
i=1

âi,nvi (2)

Rearranging terms via matrix product associativity, we get

ŷn =

n∑
i=1

ϕ(qn)
⊤ϕ(ki)vi∑n

i=1 ϕ(qn)
⊤ϕ(ki)

=
ϕ(qn)

⊤
(∑n

i=1 ϕ(ki)v
⊤
i

)
ϕ(qn)⊤

∑n
i=1 ϕ(ki)

(3)

This lets us compute both the numerator sn =
∑n

i=1 ϕ(ki)v
⊤
i and denominator zn =

∑n
i=1 ϕ(ki)

as recurrent “KV states”. With s0 = 0, z0 = 0, we recurrently compute linear attention outputs as

ŷn =
ϕ(qn)

⊤sn
ϕ(qn)⊤zn

for sn = sn−1 + ϕ(kn)v
⊤
n and zn = zn−1 + ϕ(kn) (4)

Eq. 3 lets us compute attention over an input sequence of length n in O(ndd′) time and space,
while Eq. 4 lets us compute n new tokens in O(ndd′) time and O(dd′) memory. Especially during
generation, when softmax attention has to compute new tokens sequentially anyway, Eq. 4 enables
time and memory savings if d′ < (prompt length + prior generated tokens).

Linearizing Transformers. To combine efficiency with quality, various works propose different
ϕ, (e.g., ϕ(x) = 1 + ELU(x) as in Katharopoulos et al. (2020)). However, they typically train
linear attention Transformers from scratch. We build upon recent works that swap the softmax
attentions of existing Transformers with linear attention before finetuning the modified models with
next-token prediction to recover language modeling quality. These include methods proposed for
LLMs (Mercat et al., 2024), and those for smaller Transformers—e.g., 110M BERTs (Devlin et al.,
2018))—reasonably adaptable to modern LLMs (Kasai et al., 2021; Mao, 2022; Zhang et al., 2024).

3 METHOD: LINEARIZING LLMS WITH LOLCATS

We now study how to build a high-quality and highly efficient linearizing method. In Section 3.1, we
present our motivating framework, which aims to (1) learn good softmax attention approximators
with linear attentions and (2) enable low-rank adaptation for recovering linearized quality. In Sec-
tion 3.2, we find that while this attention transfer works surprisingly well for low-rank linearizing
with existing linear attentions, on certain tasks, it still results in sizable quality gaps compared to
prior methods. We also find that attention-transfer quality strongly corresponds with the final lin-
earized model’s performance. In Section 3.3, we use our learned findings to overcome prior issues,
improving attention transfer to subsequently improve low-rank linearizing quality.

3.1 A FRAMEWORK FOR LOW-COST LINEARIZING

In this section, we present our initial LOLCATS framework for linearizing LLMs in an effective
yet efficient manner. Our main hypothesis is that by first learning linear attentions that approximate
softmax, we can then swap these attentions in as drop-in subquadratic replacements. We would then
only need a minimal amount of subsequent training—e.g., that is supported by low-rank updates—to
recover LLM quality in a cost-effective manner effectively. We thus proceed in two steps.

1. Parameter-Efficient Attention Transfer. For each softmax attention in an LLM, we aim to learn
a closely-approximating linear attention, i.e., one that computes attention outputs ŷ ≈ y for all
natural inputs x. We treat this as a feature map learning problem, learning ϕ to approximate
softmax. For each head and layer, let ϕq, ϕk be query, key feature maps. Per head, we compute:

yn =

n∑
i=1

exp(q⊤
n ki/

√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

vi︸ ︷︷ ︸
Softmax Attention

, ŷn =

n∑
i=1

ϕq(qn)
⊤ϕk(ki)∑n

i=1 ϕq(qn)⊤ϕk(ki)
vi︸ ︷︷ ︸

Linear Attention

(5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Attention transfer training efficiency. Even accounting for initial training steps, low-rank lineariz-
ing with attention transfer still consistently achieves lower perplexity faster across feature maps and LLMs.

for all n ∈ [l] with input ∈ Rl×d, and train ϕq, ϕk to minimize sample mean squared error (MSE)

ℓMSE =
1

MH

M∑
m=1

H∑
h=1

ℓh,mMSE , ℓh,mMSE =
1

d

d∑
n=1

(yn − ŷn)
2 (6)

i.e., jointly for each head h in layer m. Similar to past work (Kasai et al., 2021; Zhang et al.,
2024), rather than manually design ϕ, we parameterize each ϕ : Rd 7→ Rd′

as a learnable layer:

ϕq(q) := f(qW̃q + b̃q) , ϕk(k) := f(kW̃k + b̃k)

Here W̃ ∈ Rd×d′
and b̃ ∈ Rd′

are trainable weights and optional biases, f(·) is a nonlinear
activation, and d′ is an arbitrary feature dimension (set to equal head dimension d in practice).

2. Low-rank Adjusting. After training the linearizing layers, we replace the full-parameter train-
ing of prior work with low-rank adaptation (LoRA) (Hu et al., 2021). Like prior work, to ad-
just for the modifying layers and recover language modeling quality, we now train the mod-
ified LLM end-to-end over tokens to minimize a sample next-token prediction loss ℓxent =
−
∑

logPΘ(ut+1 | u1:t). Here PΘ is the modified LLM, Θ is the set of LLM parameters,
and we aim to maximize the probability of true ut+1 given past tokens u1:t (Fig. 1 right).
However, rather than train all LLM parameters, we only train the swapped linear attention
Wq,Wk,Wv,Wo with LoRA. Instead of full-rank updates, W ′ ← W + ∆W , LoRA de-
composes ∆W as the product of two low-rank matrices BA, B ∈ Rd×r, A ∈ Rr×d. For
parameter efficiency, we aim to pick small r ≪ d.

Training footprint and efficiency. Both steps remain parameter-efficient. For Step 1, optimizing
Eq. 6 is similar to a layer-by-layer cross-architecture distillation. We compute layer-wise (x,y) as
pretrained attention inputs and outputs, using an LLM forward pass over natural language samples
(Fig. 1 middle). However, to keep our training footprint low, we freeze the original pretrained
attention layer’s parameters and simply insert new ϕq, ϕk after Wq,Wk in each softmax attention
(Fig. 1 left). We compute outputs y, ŷ with the same attention weights in separate passes (choosing
either Eq. 1 or Eq. 3; Fig. 1 middle). For Llama 3 8B or Mistral 7B, training ϕq, ϕk with d′ = 64
then only takes 32 layers × 32 heads × 2 feature maps × (128 × 64) weights ≈ 16.8M trainable
weights (0.2% of LLM sizes). For Step 2, LoRA with r = 8 on all attention projections suffices for
state-of-the-art quality. This updates just <0.09% of 7B parameter counts.

3.2 BASELINE STUDY: ATTENTION TRANSFER AND LOW-RANK LINEARIZING

We now aim to understand if attention transfer and low-rank adjusting are sufficient for linearizing
LLMs. It is unclear whether these simple steps can lead to high-quality LLMs, given that prior
works default to more involved approaches (Mercat et al., 2024; Yang et al., 2024; Wang et al.,
2024). They use linearizing layers featuring GroupNorms (Wu & He, 2018) and decay factors (Sun
et al., 2023), or alternate SSM-based architectures (Gu & Dao, 2023; Dao & Gu, 2024). They also
all use full-LLM training after swapping in the subquadratic layers. In contrast, we find that simple
linear attentions can lead to viable linearizing, with attention transfer + LoRA obtaining competitive
quality on 4 / 6 popular LM Eval tasks.

Experimental Setup. We test the LOLCATS framework by linearizing two popular base LLMs,
Llama 3 8B (AI, 2024) and Mistral 7B v0.1 (Jiang et al., 2023). For linearizing layers, we study two
feature maps used in prior work (Table 2). To support the rotary positional embeddings (RoPE) (Su

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Llama 3 8B Mistral 7B

Attention T2R Hedgehog T2R Hedgehog

Transfer? PPL@0 PPL@2/4 PPL@0 PPL@2/4 PPL@0 PPL@2/4 PPL@0 PPL@2/4

No ✗ 1539.39 16.05 2448.01 9.02 2497.13 8.85 561.47 4.87
Yes ✓ 79.33 4.11 60.86 3.90 32.78 3.29 18.94 3.04

Table 1: Alpaca validation set perplexity (PPL) of linearized LLMs, comparing attention transfer, no LoRA
adjusting (PPL@0) and PPL after training (PPL@2/4; 2 with attention transfer, 4 without, for equal total steps).

Model Tokens (B) PiQA ARC-E ARC-C HS WG MMLU

Llama 3 8B - 79.9 80.1 53.3 79.1 73.1 66.6
→Mamba2 100 76.8 74.1 48.0 70.8 58.6 43.2
→ Hedgehog 0.04 77.4 71.1 40.6 66.5 54.3 24.2

Mistral 7B - 82.1 80.9 53.8 81.0 74.0 62.4
→ SUPRA 100 80.4 75.9 45.8 77.1 70.3 34.2
→ Hedgehog 0.04 79.3 76.4 45.1 73.1 57.5 28.2

Figure 4: Linearizing comparison on LM Eval.
Task names in Table 4. Acc. norm: ARC-C, HS.
Acc. otherwise. 5-shot MMLU. 0-shot otherwise. Figure 5: Attention MSE vs. PPL. Across feature maps,

LLMs; lower MSE coincides with better linearized quality.

et al., 2024) in these LLMs, we apply the feature maps ϕ after RoPE,1 i.e., computing query features
ϕq(q) = f(RoPE(q)W̃q + b̃)). For linearizing data, we wish to see if LOLCATS with a small
amount of data can recover general zero-shot and instruction-following LLM abilities. We use the
50K samples of a cleaned Alpaca dataset2, due to its ability to improve general instruction-following
in 7B LLMs despite its relatively small size (Taori et al., 2023). Following Zhang et al. (2024), we
train all feature maps jointly. We include training code and implementation details in App. ??).

Feature Map ϕ(q) (same for k) Weight Shapes

T2R ReLU(qW̃ + b̃) W̃ : (128, 128), b̃ : (128,)

Hedgehog [SMd(qW̃)⊕ SMd(−qW̃)] W̃ : (128, 64)

Table 2: Learnable feature maps. Transformer
to RNN (T2R) from Kasai et al. (2021), Hedgehog
from Zhang et al. (2024), both ⊕ (concat) and SMd

(softmax) apply over feature dimension.

To study the effects of attention transfer and
low-rank linearizing across LLMs and linear at-
tention architectures, we evaluate their valida-
tion set perplexity (Table 1, Fig. 3) and down-
stream LM Eval zero-shot quality (Table 4). We
train both stages with the same data, evaluate
with early stopping, and use either two epochs
for both attention transfer and LoRA adjusting
or four epochs with either alone (≈ 40M total training tokens). For LoRA, we use r = 8 as a popular
default (Hu et al., 2021), which results in training 0.2% of LLM parameter counts.

Attention Transfer + LoRA Enables Fast LLM Linearizing. In Table 1 and Fig. 3, we report
the validation PPL of linearized LLMs, ablating attention transfer and LoRA adjusting. We find
that while attention transfer alone is often insufficient (c.f., PPL@0, Table 1), a single low-rank
update rapidly recovers performance by 15–75 PPL (Fig. 3), where training to approximate softmax
leads to up to 11.9 lower PPL than no attention transfer. Somewhat surprisingly, this translates to
performing competitively with prior linearizing methods that train all model parameters (Mercat
et al., 2024; Wang et al., 2024) (within 5 accuracy points on 4 / 6 popular LM Eval tasks; Table 4),
while only training with 0.04% of their token counts and 0.2% of their parameter counts. The results
suggest we can linearize 7B LLMs at orders-of-magnitude less training costs than previously shown.

LOL SAD: Limitations of Low-Rank Linearizing. At the same time, we note quality limitations
with the present framework. While sometimes close, low-rank linearized LLMs perform worse than
full-parameter alternatives and original Transformers on 5 / 6 LM Eval tasks (up to 42.4 points on
5-shot MMLU; Table 4). To understand the issue, we study whether the attention transfer stage can
produce high-fidelity linear approximations of softmax attention. We note three observations:

1. Attention transfer quality (via output MSE) strongly ties to low-rank linearized quality (Fig. 5).

1Unlike prior works that apply ϕ before RoPE (Mercat et al., 2024; Su et al., 2024), our choice preserves the
linear attention kernel connection, where we can hope to learn ϕq, ϕk for exp(q⊤k′/

√
d) ≈ ϕq(q)

⊤ϕk(k
′).

2https://huggingface.co/datasets/yahma/alpaca-cleaned

6

https://huggingface.co/datasets/yahma/alpaca-cleaned

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Attention Entropy (b) Model Layer

Figure 6: Sources of Attention Transfer Error with Llama 3 8B. We find two potential sources of
attention transfer difficulty: (a) low softmax attention entropy and (b) attentions in later layers.

Figure 7: Improving Attention matching MSE. Linearizing with linear + sliding window attention
better matches LLM softmax attentions (lower MSE) over attention entropy values and LLM layers.

2. Larger attention output MSEs coincide with lower softmax attention weight entropies (Fig. 6a).
3. Larger MSEs also heavily concentrate in attention input samples from later layers (Fig. 6b).

We thus hypothesize we can improve quality by reducing MSE in two ways. First, to approximate
samples with lower softmax attention weight entropies—i.e., “spikier” distributions more challeng-
ing to capture with linear attentions (Zhang et al., 2024)—we may need better attention-matching
architectures. Second, to address the difficulty of learning certain attention layers, we may need
more fine-grained layer-wise supervision instead of jointly training all layers.

3.3 LOLCATS: IMPROVED LOW-RANK LINEARIZING

We now introduce two simple improvements in architecture (Section 3.3.1) and linearizing proce-
dure (Section 3.3.2) to improve low-rank linearizing quality.

3.3.1 ARCHITECTURE: GENERALIZING LEARNABLE LINEAR ATTENTIONS

As described, we can apply our framework with any linear attentions with learnable ϕ (e.g., T2R
and Hedgehog, Figure 3). However, to improve attention-matching quality, we introduce a hybrid ϕ
parameterization combining linear attention and sliding window attention. Motivated by prior works
that show quality improvements when combining attention layers with linear attentions (Arora et al.,
2024; Munkhdalai et al., 2024), we combine short sliding windows of softmax attention (Beltagy
et al., 2020; Zhu et al., 2021) (size 64 in experiments) followed by linear attention in a single layer.
This allows attending to all prior tokens for each layer while keeping the entire LLM subquadratic.
For window size w and token indices [1, . . . , n−w, . . . , n], we apply the softmax attention over the
w most recent tokens, and compute attention outputs ŷn as

ŷn =

∑n
i=n−w+1 γ exp(q

⊤
n ki/

√
d− cn)vi + ϕq(qn)

⊤(∑n−w
j=1 ϕk(kj)v

⊤
j

)∑n
i=n−w+1 γ exp(q

⊤
n ki/

√
d− cn) + ϕq(qn)⊤

(∑n−w
j=1 ϕk(kj)⊤

) (7)

γ is a learnable mixing term, and cn is a stabilizing constant as in log-sum-exp calculations (cn =
maxi

{
q⊤
n ki/

√
d : i ∈ [n− w + 1, . . . , n]

}
). Like before, we can pick any learnable ϕ.

Subquadratic efficiency. The hybrid layer retains linear time and constant memory generation.
For n-token prompts, we initially require O(w2d) and O((n − w)dd′) time and space for window

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Training
Tokens (B) PiQA ARC-e ARC-c

(norm)
HellaSwag

(norm)
Wino-
grande

MMLU
(5-shot) Avg. Avg.

(no MMLU)

Mistral 7B - 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Mistral 7B SUPRA 100 80.4 75.9 45.8 77.1 70.3 34.2 64.0 69.9
Mistral 7B Hedgehog 0.04 79.3 76.4 45.1 73.1 57.5 28.2 59.9 66.3
Mistral 7B LoLCATs (Ours) 0.04 81.1 81.1 52.9 80.5 73.2 52.2 70.2 73.8
Llama 3 8B - 79.9 80.1 53.3 79.1 73.1 66.6 72.0 73.1
Mamba2-Llama 3 100 76.8 74.1 48.0 70.8 58.6 43.2 61.9 65.6
Mamba2-Llama 3, 50% Attn. 100 81.5 78.8 58.2 78.4 69.0 56.7 70.4 73.2
Llama 3 8B Hedgehog 0.04 77.4 71.1 40.6 66.5 54.3 24.2 55.7 62.0
Llama 3 8B LoLCATs (Ours) 0.04 80.6 81.8 53.5 79.1 73.4 54.9 70.6 73.7

Table 3: LOLCATS comparison among linearized 7B+ LLMs. Among linearized 7B+ LLMs, LOLCATS-
linearized Mistral 7B and Llama 3 8B consistently achieve best or 2nd-best performance on LM Eval tasks (only
getting 2nd best to Mamba-Transformer hybrids). LOLCATS closes the Transformer quality gap by 73.8%
(Mistral 7B) and 86.1% (Llama 3 8B) (average over all tasks; numbers except Hedgehog cited from original
works), despite only using 40M tokens to linearize (a 2,500× improvement in tokens-to-model efficiency).

and linear attention respectively, attending over a w-sized KV-cache and computing KV and K-states
(Eq. 4). For generation, we only need O(w2d + dd′) time and space for every token. We evict the
KV-cache’s first k, v, compute ϕk(k), and add ϕk(k)v

⊤ and ϕk(k) to KV and K-states respectively.

3.3.2 TRAINING: LAYER (OR BLOCK)-WISE ATTENTION TRANSFER

We describe the training approach and provide a simplified model to show its cost-quality tradeoffs.
To improve layer-wise quality, instead of computing the training loss (Eq. 6) over all m ∈ [M] for a
model with M layers, we compute the loss over k-layer blocks, and train each block independently:

ℓblock
MSE =

1

kH

i+k∑
m=i

H∑
h=1

ℓh,mMSE (for blocks starting at layers i = 0, k, 2k, . . .) (8)

We can choose k to balance cost and quality. There are several approaches for training block-wise,
including via joint training with separate optimizer groups per block or by sequentially training
separate blocks. The primary costs-tradeoffs between these two approaches are:

• Compute. Increasing k increases the compute required per block. While the joint training of
Llama 3.1 405B in 16-bit precision uses multiple NVIDIA H100 8×80GB nodes, separate blocks
of k = 9 or fewer layers fits on a single H100 80GB GPU, at sequence length 1024.

• Memory and training time. The total amount of memory required is 2 × T × d × L
k for total

training tokens T , model dimension d, number of layers L and 2-byte (16-bit) precision. At the
Llama 3.1 405B scale, saving outputs per-layer (k = 1) for 40M tokens would require 165TB of
disk space. Sequentially saving the outputs and training the blocks increases total training time.

4 EXPERIMENTS

Through experiments, we study: (1) if LOLCATS linearizes LLMs with higher quality than existing
subquadratic alternatives and linearizations, and higher generation efficiency than original Trans-
formers (Section 4.1); (2) how ablations on attention transfer loss, subquadratic architecture, and
parameter and token counts impact LLM downstream quality (Section 4.2); (3) how LOLCATS’
quality and efficiency holds up to 70B and 405B LLMs, where we linearize and compare model
quality across the complete Llama 3.1 family (Section 4.3).

4.1 MAIN RESULTS: LOLCATS EFFICIENTLY RECOVERS QUALITY IN LINEARIZED LLMS

In our main evaluation, we linearize the popular base Llama 3 8B (AI, 2024) and Mistral 7B (Jiang
et al., 2023) LLMs. We first test if LOLCATS can efficiently create high-quality subquadratic LLMs
from strong base Transformers, comparing to existing linearized LLMs from prior methods. We also
test if LOLCATS can create subquadratic LLMs that outperform modern Transformer alternatives
pretrained from scratch. For space, we defer linearizing training details to App. A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Training
Tokens (B) PiQA ARC-e ARC-c

(norm)
HellaSwag

(norm)
Wino-
grande

MMLU
(5-shot) Avg. Avg.

(no MMLU)

Transformer
Gemma 7B 6000 81.9 81.1 53.2 80.7 73.7 62.9 72.3 74.1
Mistral 7B 80003 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Llama 3 8B 15000 79.9 80.1 53.3 79.1 73.1 66.6 72.0 73.1

Subquadratic
Mamba 7B 1200 81.0 77.5 46.7 77.9 71.8 33.3 64.7 71.0
RWKV-6 World v2.1 7B 1420 78.7 76.8 46.3 75.1 70.0 - 69.4 69.4
TransNormerLLM 7B 1400 80.1 75.4 44.4 75.2 66.1 43.1 64.1 68.2
Hawk 7B 300 80.0 74.4 45.9 77.6 69.9 35.0 63.8 69.6
Griffin 7B 300 81.0 75.4 47.9 78.6 72.6 39.3 65.8 71.1
Hybrid
StripedHyena-Nous-7B - 78.8 77.2 40.0 76.4 66.4 26.0 60.8 67.8
Zamba 7B 1000 81.4 74.5 46.6 80.2 76.4 57.7 69.5 71.8
Linearized
Mistral 7B LoLCATs (Ours) 0.04 81.1 81.1 52.9 80.5 73.2 52.2 70.2 73.8
Llama 3 8B LoLCATs (Ours) 0.04 80.6 81.8 53.5 79.1 73.4 54.9 70.6 73.7

Table 4: LOLCATS comparison to pretrained subquadratic LLMs. LOLCATS-linearized Mistral 7B and
Llama 3 8B further outperform pretrained subquadratic Transformer alternatives by 0.1 to 9.4 points (Avg.),
while only training 0.2% of the model parameters on 0.013% to 0.003% of their pretraining token counts.

In Table 4, we report results on six popular LM Evaluation Harness (LM Eval) tasks (Gao et al.,
2023). Compared to recent linearizing methods, LOLCATS significantly improves quality and
training efficiency across tasks and LLMs. On quality, LOLCATS closes 73.8% and 81.1% of the
Transformer-linearizing gap for Mistral 7B and Llama 3 8B respectively, notably improving 5-shot
MMLU by 63.8% and 50% against next best fully subquadratic models. On efficiency, we achieve
these results despite only training <0.2% of model parameters via LoRA versus prior full-parameter
training and use 40M tokens versus the prior 100B (0.04% of the latter, a 2500× improvement in
“tokens-to-model” efficiency). Among all 7B LLMs, LOLCATS-linearized LLMs further outper-
form strong subquadratic Transformer alternatives, including RNNs or linear attentions (RWKV-
v6 (Peng et al., 2024), Hawk (De et al., 2024), Griffin (De et al., 2024), TransNormer (Qin et al.,
2023)), state-space models (SSMs) (Mamba (Gu & Dao, 2023)), and hybrid architectures with some
full attention (StripedHyena (Poli et al., 2023b), Zamba (Glorioso et al., 2024)).

4.2 LOLCATS COMPONENT PROPERTIES AND ABLATIONS

We next validate that LOLCATS linearizing enable subquadratic efficiency, and study how each of
LOLCATS’ components contribute to these linearizing quality gains.

(a) Batch size vs. Throughput (b) Batch size vs. Memory

Subquadratic Generation Throughput
and Memory. We measure the gener-
ation throughput and memory of LOL-
CATS LLMs, validating that linearizing
LLMs can significantly improve their gen-
eration efficiency. We use the popular
Llama 3 8B HuggingFace checkpoint4,
and compare LOLCATS implemented in
HuggingFace Transformers with the sup-
ported FlashAttention-2 (FA2) implementation (Dao, 2023). We benchmark on a single 80GB H100
and benchmark two LOLCATS implementations with the Hedgehog feature map and (linear + slid-
ing window) attention in FP32 and BF16. In Fig. 8a and Fig. 8b, we report the effect of scaling batch
size on throughput and memory. We measure throughput as (newly generated tokens × batch size /
total time), using 128 token prompts and 4096 token generations. As batch size scales, LOLCATS-
linearized LLMs achieve significantly higher throughput than FA2. We note this is primarily due to
lower memory, where FA2 runs out of memory at batch size 64. Meanwhile, LOLCATS supports
up to 3000 tokens / second with batch size 2048 (Fig. 8a), only maintaining a fixed “KV state” as
opposed to the growing KV cache in all attention implementations (Fig. 8b).

4https://huggingface.co/meta-llama/Meta-Llama-3-8B

9

https://huggingface.co/meta-llama/Meta-Llama-3-8B

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Feature Map LM Eval
Metric

Swap &
Finetune

+Attention
Transfer

+Sliding Window,
+Attention Transfer

+ Sliding Window,
No Attention Transfer

Avg. Zero-Shot 44.20 55.32 70.60 68.78Hedgehog MMLU (5-shot) 23.80 23.80 52.50 45.80

Avg. Zero-Shot 38.84 54.83 68.28 39.52T2R MMLU (5-shot) 23.20 23.10 40.70 23.80

Table 5: LOLCATS component ablations, linearizing Llama 3 8B over 1024-token sequences.
Default configuration highlighted. Across feature maps, LOLCATS’ attention transfer and sliding
window increasingly improve linearized LLM quality.

PiQA ARC Easy ARC Challenge HellaSwag WinoGrande MMLU (5-shot)
acc acc (acc norm) (acc norm) acc acc

Llama 3.1 70B 83.10 87.30 60.60 85.00 79.60 78.80
Linearized, no attn. transfer 75.70 70.10 39.10 77.40 58.60 26.60
LolCATs (Ours) 82.10 85.00 60.50 84.60 73.70 67.70
Llama 3.1 405B 85.58 87.58 66.21 87.13 79.40 82.98
Linearized, no attn. transfer 84.44 86.62 64.33 86.19 79.87 33.86
LolCATs (Ours) 85.58 88.80 67.75 87.41 80.35 71.90

Table 6: Linearizing Llama 3.1 70B and 405B. Among the first linearized 70B and 405B LLMs
(via low-rank linearizing), LOLCATS significantly improves zero- and few-shot quality.

Ablations. We study how adding the attention transfer and linear + sliding window attention in
LOLCATS contribute to downstream linearized LLM performance, linearizing Llama 3 8B over
1024-token long samples (Table 5). We start with standard linear attentions (Hedgehog, Zhang et al.
(2024); T2R, Kasai et al. (2021)), using the prior linearizing procedure of just swapping attentions
and finetuning the model to predict next tokens (Mercat et al., 2024). We then add either (i) attention
transfer, (ii) linear + sliding window attentions, or (iii) both, and report the average LM Eval score
over the six popular zero-shot tasks in Table 4 and 5-shot MMLU accuracy. Across feature maps,
we validate the LOLCATS combination leads to best performance.

4.3 SCALING UP LINEARIZING TO 70B AND 405B LLMS

We finally use LOLCATS to scale up linearizing to Llama 3.1 70B and 405B models. In Table 6,
we find that LOLCATS provides the first practical solution for linearizing larger LLMs, achiev-
ing significant quality improvements over prior linearizing approaches (Mercat et al., 2024). For
Llama 3.1 70B, we achieve a 41.1 point improvement in 5-shot MMLU accuracy. For Llama 3.1
405B, LOLCATS similarly achieves a 38.0 point improvement over prior methods. These results
highlight LOLCATSs ability to linearize large-scale models with greater efficiency and improved
performance, showing for the first time that we can scale up linearizing to 70B+ LLMs.

5 CONCLUSION

We propose LOLCATS, an efficient LLM linearizing method that (1) trains attention analogs—
such as linear attentions and linear attention + sliding window hybrids—to approximate an LLM’s
self-attentions, before (2) swapping the attentions and only finetuning the replacing attentions with
LoRA. We exploit the fidelity between these attention analogs and softmax attention, where we re-
duce the problem of linearizing LLMs to learning to approximate softmax attention in a subquadratic
analog. Furthermore, we demonstrate that via an MSE-based attention output-matching loss, we are
able to train such attention analogs to approximate the “ground-truth” softmax attentions in practice.
On popular zero-shot LM Evaluation harness benchmarks and 5-shot MMLU, we find this enables
producing high-quality, high-inference efficiency LLMs that outperform prior Transformer alterna-
tives while only updating 0.2% of model parameters and requiring 0.003% of the training tokens to
achieve similar quality with LLM pretraining. Our findings significantly improve linearizing quality
and accessibility, allowing us to create the first linearized 70B and 405B LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our work deals with improving the efficiency of open-weight models. While promising for ben-
eficial applications, increasing their accessibility also raises concerns about potential misuse. Bad
actors could leverage our technique to develop LLMs capable of generating harmful content, spread-
ing misinformation, or enabling other malicious activities. We focus primarily on base models, but
acknowledge that linearizing could also be used on instruction-tuned LLMs; research on whether
linearizing preserves guardrails is still an open question. We acknowledge the risks and believe in
the responsible development and deployment of efficient and widely accessible models.

REPRODUCIBILITY

We include experimental details in Appendix A, including sample code for the linearizing architec-
ture and training (Appendix C).

REFERENCES

Mistral AI. Mixtral of experts. Mistral AI — Frontier AI in your hands, May 2024. URL https:
//mistral.ai/news/mixtral-of-experts/.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

11

https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/togethercomputer/RedPajama-Data
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Lu Wang, Jackie Chi Kit Cheung,
Giuseppe Carenini, and Fei Liu (eds.), Proceedings of the 2nd Workshop on New Frontiers in Sum-
marization, pp. 70–79, Hong Kong, China, November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-5409. URL https://aclanthology.org/D19-5409.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint
arXiv:2405.16712, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A. Smith. Finetuning pretrained transformers into RNNs. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10630–
10643, Online and Punta Cana, Dominican Republic, November 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.830. URL https://aclanthology.
org/2021.emnlp-main.830.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Huanru Henry Mao. Fine-tuning pre-trained transformers into decaying fast weights. In Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 10236–
10242, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.emnlp-main.697. URL https://aclanthology.org/
2022.emnlp-main.697.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. April 2024.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

12

https://aclanthology.org/D19-5409
https://aclanthology.org/2021.emnlp-main.830
https://aclanthology.org/2021.emnlp-main.830
https://aclanthology.org/2022.emnlp-main.697
https://aclanthology.org/2022.emnlp-main.697
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023a.

Michael Poli, Jue Wang, Stefano Massaroli, Jeffrey Quesnelle, Ryan Carlow, Eric Nguyen,
and Armin Thomas. StripedHyena: Moving Beyond Transformers with Hybrid Signal
Processing Models, 12 2023b. URL https://github.com/togethercomputer/
stripedhyena.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. The devil in linear transformer. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 7025–7041, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
473. URL https://aclanthology.org/2022.emnlp-main.473.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Fei Yuan, Xiao Luo, et al. Scaling transnormer to 175 billion parameters. arXiv preprint
arXiv:2307.14995, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. SCROLLS: Standardized CompaRison over long
language sequences. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 12007–12021, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. URL https://aclanthology.org/2022.
emnlp-main.823.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

13

https://github.com/togethercomputer/stripedhyena
https://github.com/togethercomputer/stripedhyena
https://aclanthology.org/2022.emnlp-main.473
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://aclanthology.org/2022.emnlp-main.823
https://aclanthology.org/2022.emnlp-main.823
https://github.com/tatsu-lab/stanford_alpaca

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models. arXiv preprint arXiv:2408.15237, 2024.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
4g02l2N2Nx.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:17723–17736, 2021.

A EXPERIMENTAL DETAILS

For linearizing layers, we replace softmax attentions with hybrid linear + terraced window analogs
(Section 3.3.1), using Hedgehog’s feature map for its prior quality Zhang et al. (2024). For lineariz-
ing data, we report results using the Alpaca-linearized models. We also tried a more typical pre-
training corpus (1B tokens5 of RedPajama Computer (2023)), but found comparable performance
when controlling for number of token updates. To linearize, we simply train all feature maps in
parallel for two epochs with learning rate 1e-2, before applying LoRA on the attention projection
layers for two epochs with learning rate 1e-4. By default, we use LoRA rank r = 8, amounting to
training <0.09% of all model parameters. For both stages, we train with early stopping, AdamW
optimizer Loshchilov & Hutter (2017), and packing into 1024-token sequences with batch size 8.

B RELATED WORK

In this work, we build upon both approaches explicitly proposed to linearize LLMs Mercat et al.
(2024), as well as prior methods focusing on smaller Transformers reasonably adaptable to modern
LLMs Kasai et al. (2021); Mao (2022); Zhang et al. (2024). We highlight two approaches most
related to LOLCATS and their extant limitations next.

Scalable UPtraining for Recurrent Attention (SUPRA). Mercat et al. (2024) linearize LLMs
by swapping softmax attentions with linear attentions similar to Retentive Network (RetNet) lay-
ers Sun et al. (2023), before jointly training all model parameters on the RefinedWeb pretraining
dataset Penedo et al. (2023). In particular, they suggest that linearizing LLMs with the vanilla linear
attention in Eq. 2 is unstable, and swap attentions with

ŷn = GroupNorm
(n∑

i=1

γn−iϕ(qn)
⊤ϕ(ki)vi

)
(9)

GroupNorm Wu & He (2018) is used as the normalization in place of the
∑n

i=1 ϕ(qn)
⊤ϕ(ki) de-

nominator in Eq. 2, γ is a decay factor as in RetNet, and ϕ is a modified learnable feature map from
Transformer-to-RNN (T2R) Kasai et al. (2021) with rotary embeddings Su et al. (2024). In other
words, ϕ(x) = RoPE(ReLU(xW + b)) with W ∈ Rd×d and b ∈ Rd as trainable weights and
biases. With this approach, they recover zero-shot capabilities in linearized Llama 2 7B Touvron
et al. (2023b) and Mistral 7B Jiang et al. (2023) models on popular LM Evaluation Harness Gao
et al. (2023) and SCROLLS Shaham et al. (2022) tasks.

5https://huggingface.co/datasets/togethercomputer/
RedPajama-Data-1T-Sample

14

https://openreview.net/forum?id=4g02l2N2Nx
https://openreview.net/forum?id=4g02l2N2Nx
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hedgehog. Zhang et al. (2024) show we can train linear attentions to approximate softmax at-
tentions, improving linearized model quality by swapping in the linear attentions as learned drop-
in replacements. They use the standard linear attention (Eq. 2), where query, key, value, and
output projections (the latter combining outputs in multi-head attention (Vaswani et al., 2017))
are first copied from an existing softmax attention. They then specify learnable feature maps
ϕ(x) = [softmax(xW + b) ⊕ softmax(−xW − b)] (where ⊕ denotes concatenation, and both
⊕ and the softmax are applied over the feature dimension) for q and k in each head and layer, and
train ϕ such that linear attention weights â match a Transformer’s original softmax weights a. Given
some sample data, they update ϕ with a cross-entropy-based distillation to minimize:

Ln = −
n∑

i=1

exp(q⊤
n ki/

√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

log
ϕ(qn)

⊤ϕ(ki)∑n
i=1 ϕ(qn)

⊤ϕ(ki)
(10)

as the softmax and linear attention weights are both positive and sum to 1. As they focus on task-
specific linearization (e.g., GLUE classification (Wang et al., 2018) or WikiText-103 language mod-
eling (Merity et al., 2017)), for both attention and model training they use task-specific training
data. By doing this “attention distillation”, they show significant linearized quality improvements
over T2R on both smaller Transformers (e.g., 110M parameter BERTs Devlin et al. (2018) and 125M
GPT-2s Radford et al. (2019)), and Llama 2 7B for a specific SAMSum summarization task Gliwa
et al. (2019).

C CODE IMPLEMENTATION

We include sample code for implementing LOLCATS with HuggingFace Transformers API.

1 def compute_loss(self, model: nn.Module, data: dict[torch.Tensor], **
kwargs: any,):

2 """
3 Attention distillation ("attention transfer")
4 - For each layer and head, get attentions and train to
5 minimize some combo of MSE and cross-entropy loss
6 """
7 input_seq_len = data[’input_ids’].shape[-1]
8 inputs = {’input_ids’: data[’input_ids’].to(model.device)}
9

10 # Get softmax attention outputs
11 with torch.no_grad():
12 # Set base_inference to True to use FlashAttention
13 for layer in traverse_layers(model):
14 layer.self_attn.base_inference = True
15 # Get hidden states
16 true_outputs = model(**inputs, output_attentions=True,
17 use_cache=False,)
18 # Save attention layer inputs and outputs in outputs.attentions
19 # attn_inputs = [a[0] for a in true_outputs.get(’attentions’)]
20 # attn_outputs = [a[1] for a in true_outputs.get(’attentions’)]
21 true_attn_io = true_outputs.get(’attentions’) # layer-wise attn

inputs and outputs
22 true_outputs = true_outputs.get(’logits’).cpu()
23 for layer in traverse_layers(model):
24 layer.self_attn.base_inference = False
25

26 # Get trainable subquadratic attention outputs
27 attention_type = getattr(layer.self_attn, ’attention_type’, None)
28 past_key_values = get_attention_cache(attention_type)
29

30 total_seq_len = 0
31 position_ids = torch.arange(input_seq_len).view(1, -1)
32

33 loss_mse = 0
34 for layer_idx, layer in enumerate(traverse_layers(model)):
35 attn_input, attn_output = true_attn_io[layer_idx]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

36 attn_preds = layer.self_attn(attn_input.to(model.device),
37 attention_mask=None,
38 position_ids=position_ids,
39 past_key_value=past_key_values)[1]
40 # MSE on layer outputs
41 loss_mse += criterion_mse(attn_preds, attn_output)
42 loss_mse = loss_mse / (layer_idx + 1) * self.mse_factor
43 loss = loss_mse

Listing 1: Attention Distillation Code

1 class LolcatsLlamaAttention(nn.Module):
2 """
3 Hedgehog attention implementation initialized from a
4 ‘LlamaAttention‘ or ‘MistralAttention‘ object (base_attn)
5

6 Most of the arguments are directly tied to argparse args
7

8 Note that we don’t currently support padding.
9 """

10 def __init__(self,
11 base_attn: nn.Module, # like LlamaAttention
12 feature_map: str,
13 feature_map_kwargs: dict,
14 layer_idx: Optional[int] = None,
15 max_layer_idx: Optional[int] = None,
16 feature_map_mlp: Optional[str] = None,
17 feature_map_mlp_kwargs: Optional[dict] = None,
18 tie_qk_fmap: Optional[bool] = False,
19 rotary_config: Optional[dict] = None,
20 attention_type: Optional[str] = ’hedgehog_llama’,
21 mask_value: int = 0,
22 eps: float = 1e-12,):
23 super().__init__()
24

25 self.mask_value = mask_value
26 self.eps = eps
27 self.layer_idx = (layer_idx if layer_idx is not None
28 else base_attn.layer_idx)
29 self.max_layer_idx = max_layer_idx
30

31 self.rotary_config = rotary_config
32

33 self.tie_qk_fmap = tie_qk_fmap
34 self.init_feature_map_(feature_map, feature_map_kwargs,
35 feature_map_mlp, feature_map_mlp_kwargs)
36 self.init_weights_(base_attn)
37

38 def init_feature_map_(self,
39 feature_map: str,
40 feature_map_kwargs: dict,
41 feature_map_mlp: str = None,
42 feature_map_mlp_kwargs: dict = None):
43 """
44 Initialize feature map
45 """
46 if feature_map_mlp is not None:
47 feature_map_kwargs[’num_heads’] = self.num_heads
48 feature_map_kwargs[’head_dim’] = self.head_dim
49 feature_map_kwargs[’dtype’] = self.q_proj.weight.dtype
50 feature_map_kwargs[’device’] = self.q_proj.weight.device
51 feature_map_mlp = init_feature_map_mlp(feature_map_mlp,
52 feature_map_mlp_kwargs

)
53 self.feature_map_q = init_feature_map_act(name=feature_map,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

54 mlp=feature_map_mlp,
55 **feature_map_kwargs)
56 if self.tie_qk_fmap: # tie mlp weights for query and key feature

maps
57 self.feature_map_k = self.feature_map_q
58 else:
59 self.feature_map_k = copy.deepcopy(self.feature_map_q)
60

61 def init_weights_(self, base_attn: nn.Module):
62 """
63 Initialize module layers, weights, positional dependencies, etc.
64 """
65 self.attention_dropout = 0 # We don’t use dropout
66 self.hidden_size = base_attn.hidden_size
67 self.num_heads = base_attn.num_heads
68 self.head_dim = base_attn.head_dim
69 self.num_key_value_heads = base_attn.num_key_value_heads
70 self.num_key_value_groups = base_attn.num_key_value_groups
71

72 self.q_shape = [self.num_heads, self.head_dim]
73 self.k_shape = [self.num_key_value_heads, self.head_dim]
74 self.v_shape = [self.num_key_value_heads, self.head_dim]
75

76 self.max_position_embeddings = base_attn.max_position_embeddings
77 device = base_attn.q_proj.weight.device
78 scaling_factor = getattr(base_attn.rotary_emb, ’scaling_factor’,

1.)
79 if self.rotary_config is None:
80 self.rotary_emb = get_rotary_embeddings(
81 rope_scaling_type=None,
82 head_dim=self.head_dim,
83 max_position_embeddings=base_attn.rotary_emb.

max_position_embeddings,
84 rope_theta=base_attn.rotary_emb.base,
85 rope_scaling_factor=scaling_factor,
86 device=device,
87)
88 else:
89 if ’device’ not in self.rotary_config:
90 self.rotary_config[’device’] = device
91 self.rotary_emb = get_rotary_embeddings(**self.rotary_config)
92

93 # Just initialize with original weights
94 device = base_attn.q_proj.weight.device
95 self.q_proj = base_attn.q_proj
96 self.k_proj = base_attn.k_proj
97 self.v_proj = base_attn.v_proj
98 self.o_proj = base_attn.o_proj
99 del base_attn

100

101 def linear_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch
.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[
Tuple[torch.Tensor]]]:

102 """
103 Compute linear attention with CUDA kernel implementation from

fast-transformers
104 """
105 dtype = q.dtype
106 y = causal_dot_product(q.contiguous().to(dtype=torch.float32),
107 k.contiguous().to(dtype=torch.float32),
108 v.contiguous().to(dtype=torch.float32)).to

(dtype=dtype)
109 y = y / (torch.einsum("bhld,bhld->bhl", q, k.cumsum(dim=2)) +

self.eps)[..., None]
110 return y, None, None

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

111

112 def forward(self,
113 hidden_states: torch.Tensor,
114 attention_mask: Optional[torch.Tensor] = None,
115 position_ids: Optional[torch.LongTensor] = None,
116 past_key_value: Optional[Tuple[int, torch.Tensor, torch.

Tensor]] = None,
117 output_attentions: bool = False,
118 use_cache: bool = False,
119 **kwargs) -> Tuple[torch.Tensor, Optional[torch.Tensor],

Optional[Tuple[torch.Tensor]]]:
120 """
121 Forward pass modified from transformers.models.mistral.

modeling_mistral (v4.36)
122 """
123 b, l, _ = hidden_states.size()
124 q = self.q_proj(hidden_states)
125 k = self.k_proj(hidden_states)
126 v = self.v_proj(hidden_states)
127 kv_seq_len = k.shape[-2]
128

129 q = q.view(b, l, *self.q_shape).transpose(1, 2)
130 k = k.view(b, l, *self.k_shape).transpose(1, 2)
131 v = v.view(b, l, *self.v_shape).transpose(1, 2)
132

133 if past_key_value is not None:
134 kv_seq_len += past_key_value[0].shape[-2]
135

136 cos, sin = self.rotary_emb(k, seq_len=kv_seq_len)
137 q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
138

139 k = repeat_kv(k, self.num_key_value_groups)
140 v = repeat_kv(v, self.num_key_value_groups)
141 q, k = self.feature_map_q(q), self.feature_map_k(k)
142

143 if attention_mask is not None and q.shape[2] > 1:
144 lin_attn_mask = attention_mask[:, None, :, None]
145 k = k.masked_fill(˜lin_attn_mask, self.mask_value)
146

147 if past_key_value is not None:
148 kv_state = past_key_value.kv_states[self.layer_idx]
149 k_state = past_key_value.k_states[self.layer_idx]
150

151 y_true, _, _ = self.linear_attention(q, k, v)
152 past_key_value.update(k, v, self.layer_idx)
153 else:
154 y_true, _, _ = self.linear_attention(q, k, v)
155

156 y_true = y_true.transpose(1, 2).contiguous().view(b, l, self.
hidden_size)

157 y_true = self.o_proj(y_true)
158 attn_weights = None
159

160 return y_true, attn_weights, past_key_value

Listing 2: LoLCATs Attention Implementation

1 class HedgehogFeatureMap(nn.Module):
2 """
3 Final ’activation’ of feature map. Can probably be combined with
4 ‘HedgehogFeatureMapMLP‘ below
5

6 Full feature map is like f(xW + b)
7 -> This is the ‘f‘ part
8 """

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

9 def __init__(self,
10 head_dim_idx: int = -1,
11 eps: float = 1e-12,
12 mlp: nn.Module = None,
13 halfspace: bool = False,
14):
15 super().__init__()
16 self.head_dim_idx = head_dim_idx
17 self.eps = eps
18 self.mlp = mlp if mlp is not None else nn.Identity()
19 self.activation = (self.halfspace_activation if halfspace
20 else self.fullspace_activation)
21

22 def fullspace_activation(self, x: torch.Tensor):
23 return torch.cat([
24 torch.softmax(x, dim=self.head_dim_idx),
25 torch.softmax(-x, dim=self.head_dim_idx)
26], dim=self.head_dim_idx).clamp(min=self.eps)
27

28 def halfspace_activation(self, x: torch.Tensor):
29 return torch.softmax(x, dim=self.head_dim_idx).clamp(min=self.eps

)
30

31 def forward(self, x: torch.Tensor):
32 """
33 Assume x.shape is (batch_size, n_heads, seq_len, head_dim)
34 """
35 return self.activation(self.mlp(x))
36

37

38 class HedgehogFeatureMapMLP(nn.Module):
39 """
40 Learnable MLP in feature map.
41

42 Full feature map is like f(xW + b)
43 -> This is the ‘W‘ and (optional) ‘b‘ part
44 """
45 def __init__(self,
46 num_heads: int,
47 head_dim: int, # input dim
48 feature_dim: int, # output dim
49 dtype: torch.dtype,
50 device: torch.device,
51 skip_connection: bool = False,
52 bias: bool = False):
53 super().__init__()
54 self.num_heads = num_heads
55 self.head_dim = head_dim
56 self.feature_dim = feature_dim
57 self.dtype = dtype
58 self.device = device
59 self.skip_connection = skip_connection
60 self.bias = bias
61 self.init_weights_()
62

63 def init_weights_(self):
64 """
65 Initialize W and b
66 """
67 self.weight = nn.Parameter(torch.zeros(
68 (self.num_heads, self.head_dim, self.feature_dim),
69 dtype=self.dtype, device=self.device,
70))
71 nn.init.kaiming_uniform_(self.weight)
72

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

73 if self.bias:
74 self.bias = nn.Parameter(torch.zeros(
75 (1, self.num_heads, 1, self.feature_dim),
76 dtype=self.dtype, device=self.device,
77))
78 nn.init.kaiming_uniform_(self.bias)
79 else:
80 self.bias = 0. # hack
81

82 def forward(self, x: torch.Tensor):
83 """
84 Assume x.shape is (batch_size, num_heads, seq_len, head_dim)
85 """
86 _x = torch.einsum(’hdf,bhld->bhlf’, self.layer, x) + self.bias
87 return x + _x if self.skip_connection else _x

Listing 3: Hedgehog Learnable Feature Map Implementation

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 10 20 30 130 140 150
Keys

120

130

140

150
So

ft
m

ax
Q

ue
ri

es

Layer 0 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 15 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 31 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

So
ft

m
ax

Q
ue

ri
es

Layer 0 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 15 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 31 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Lo
LC

AT
s

Q
ue

ri
es

Layer 0 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 15 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 31 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Lo
LC

AT
s

Q
ue

ri
es

Layer 0 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 15 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 31 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Lo
LC

AT
s

(i
ni

t.
)

Q
ue

ri
es

Layer 0 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 15 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 31 Head 0

(a) Llama 3 8B attention weights

0 10 20 30 130 140 150
Keys

120

130

140

150

Lo
LC

AT
s

(i
ni

t.
)

Q
ue

ri
es

Layer 0 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 15 Head 0

0 10 20 30 130 140 150
Keys

120

130

140

150

Layer 31 Head 0

(b) Mistral 7B (v0.1) attention weights

Figure 9: Attention Transfer. For both Llama 3 8B and Mistral 7B v0.1 LLMs, LOLCATS at-
tention transfer trains subquadratic attentions that match original attention weights, despite only
supervising based on attention layer outputs. They also learn to recover weights outside of the soft-
max windows, c.f. trained versus initialized (init.) attentions between queries at positions 130 - 150
and keys at positions 0 - 32.

Figure 10: Linear attention (PRED) and softmax attention (TRUE) weights for hedgehog learned
feature map, with attention transfer.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Linear attention (PRED) and softmax attention (TRUE) weights for hedgehog learned
feature map, without attention transfer.

22

	Introduction
	Preliminaries
	Method: Linearizing LLMs with LoLCATs
	A Framework for Low-cost Linearizing
	Baseline Study: Attention Transfer and Low-rank Linearizing
	LoLCATs: Improved Low-rank Linearizing
	Architecture: Generalizing Learnable Linear Attentions
	Training: Layer (or Block)-wise Attention Transfer

	Experiments
	Main Results: LoLCATs Efficiently Recovers Quality in Linearized LLMs
	LoLCATs Component Properties and Ablations
	Scaling Up Linearizing to 70B and 405B LLMs

	Conclusion
	Experimental Details
	Related Work
	Code Implementation

