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ABSTRACT

Recent works show we can linearize large language models (LLMs)—swapping
the quadratic attentions of popular Transformer-based LLMs with subquadratic
analogs, such as linear attention—avoiding the expensive pretraining costs. How-
ever, linearizing LLMs often significantly degrades model quality, still requires
training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs.
We show that the subquadratic analogs used in prior work struggle to approximate
the original softmax attention layer. We thus propose Low-rank Linear Conver-
sion via Attention Transfer (LOLCATS), a simple two-step method that improves
LLM linearizing quality with orders of magnitudes less memory and compute: (1)
the “attention transfer” training step uses our new linear attention architecture,
designed to improve the approximation fidelity, and minimizes the MSE between
the original and new layer’s attention outputs, (2) we adjust for any approxima-
tion errors by simply using low-rank adaptation (LoRA). LOLCATS significantly
improves linearizing quality, training efficiency, and scalability. LOLCATS pro-
duces state-of-the-art subquadratic LLMs from Llama 3 8B and Mistral 7B v0.1,
leading to 204 points of improvement on 5-shot MMLU, with only 0.2% of past
methods’ model parameters and 0.4% of their training tokens. Finally, we ap-
ply LOLCATS to create the first linearized 70B and 405B LLMs (50x larger
than prior work). When compared with prior methods under the same compute
budgets, LOLCATS significantly improves linearizing quality, closing the gap
between linearized and original Llama 3.1 70B and 405B LLMs by 78.7% and
77.4% on 5-shot MMLU.

1 INTRODUCTION

“Linearizing” large language models (LLMs)—or converting existing Transformer-based LLMs into
attention-free or subquadratic alternatives—has shown promise for scaling up efficient architectures.
While many such architectures offer complexity-level efficiency gains, like linear-time and constant-
memory generation, they are often limited to smaller models pretrained on academic budgets (Gu
& Dao, 2023; Peng et al., 2023; Yang et al., 2023; Arora et al., 2024; Beck et al., 2024). In a
complementary direction, linearizing aims to start with openly available LLMs—e.g., those with
7B+ parameters trained on trillions of tokens (AI, 2024; Jiang et al., 2023)—and (i) swap their
softmax attentions with subquadratic analogs, before (ii) further finetuning to recover quality. This
holds exciting promise for quickly scaling up subquadratic capabilities in modern LLMs.

However, to better realize this promise and allow anyone to convert LLMs into subquadratic models,
we desire methods that are (1) quality-preserving, e.g., recovering the zero-shot abilities of modern
LLMs; (2) parameter and token efficient, to linearize LLMs on widely accessible compute; and
(3) highly scalable, to support the various 70B+ LLMs available today (Touvron et al., 2023a;b).

Existing methods present opportunities to improve all three criteria. On quality, despite using moti-
vated subquadratic analogs such as RetNet-inspired linear attentions (Sun et al., 2023; Mercat et al.,
2024) or state-space model (SSM)-based Mamba layers (Gu & Dao, 2023; Yang et al., 2024; Wang
et al., 2024), prior works significantly reduce performance on popular LM Evaluation Harness tasks
(LM Eval) (Gao et al., 2023) (up to 23.4-28.2 pts on 5-shot MMLU (Hendrycks et al., 2020)). On pa-
rameter and token efficiency, to adjust for architectural differences, prior methods update all model
parameters in at least one stage of training (Mercat et al., 2024; Wang et al., 2024; Yang et al.,
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Figure 1: LOLCATS framework. We linearize LLMs by (1) training attention analogs to approximate
softmax attentions (attention transfer), before swapping attentions and (2) minimally adjusting (with LoRA).

2024), and use 100B tokens to linearize 7B LLMs. On scalability, these training costs make lin-
earizing larger models on academic compute more difficult; existing works only linearize up to 8B
LLMs. This makes it unclear how to support linearizing 70B to 405B LLMs (Dubey et al., 2024).

In this work, we thus propose LOLCATS (LOw-rank Linear Conversion with Attention TranSfer),
a simple approach to improve the quality, efficiency, and scalability of linearizing LLMs. As guiding
motivation, we ask if we can linearize LLMs by simply reducing architectural differences, i.e.,

1. Starting with simple softmax attention analogs such as linear attention (Eq. 2), and training their
parameterizations explicitly to approximate softmax attention (“attention transfer”).

2. Subsequently only training with low-cost finetuning to adjust for any approximation errors, e.g.,
with low-rank adaptation (LoRA) (Hu et al., 2021) (“low-rank linearizing”).

In evaluating this hypothesis, we make several contributions. First, to better understand lineariz-
ing feasibility, we empirically study attention transfer and low-rank linearizing with existing linear
attentions. While intuitive—by swapping in perfect subquadratic softmax attention approximators,
we could get subquadratic LLMs with no additional training—prior works suggest linear attentions
struggle to match softmax expressivity (Keles et al., 2023; Qin et al., 2022) or need full-model up-
dates to recover linearizing quality (Kasai et al., 2021; Mercat et al., 2024). In contrast, we find
that while either attention transfer or LoRA alone is insufficient, we can rapidly recover quality
by simply doing both (Figure 3, Table 1). At the same time, we do uncover quality issues related
to attention-matching architecture and training. With prior linear attentions, the best low-rank lin-
earized LLMs still significantly degrade in quality vs. original Transformers (up to 42.4 pts on 5-shot
MMLU). With prior approaches that train all attentions jointly (Zhang et al., 2024), we also find that
later layers can result in 200 x the MSE of earlier ones (Figure 7). We later find this issue aggravated
by larger LLMs; joint training for Llama 3.1 405B’s 126 attention layers fails to linearize LLMs.

Next, to resolve these issues and improve upon our original criteria, we detail LOLCATS’ method
components. For quality, we generalize prior notions of learnable linear attentions to sliding win-
dow + linear attention variants. These remain subquadratic to compute yet consistently yield better
attention transfer via lower mean-squared error (MSE) on attention outputs. For parameter and
token efficiency, we maintain our simple 2-step framework of (1) training subquadratic attentions
to match softmax attentions, before (2) adjusting for any errors via only LoRA. For scalability, we
use finer-grained “block-by-block™ training. We split LLMs into blocks of k layers before jointly
training attentions only within each block to improve layer-wise attention matching. We pick £ to
balance the speed of training blocks in parallel with the memory of saving hidden state outputs of
prior blocks (as inputs for later ones). We provide a simple cost model to navigate these tradeoffs.

Finally, in experiments, we validate that LOLCATS improves on each of our desired criteria.

* On quality, when linearizing popular LLMs such as Mistral-7B and Llama 3 8B, LOLCATS
significantly improves past linearizing methods (by 0.2—8.0 points (pts) on zero-shot LM Eval
tasks; +17.8 pts on 5-shot MMLU)). With Llama 3 8B, LOLCATS for the first time closes the
zero-shot LM Eval gap between linearized and Transformer models (73.1 vs 73.7 pts), while
supporting 3x higher throughput and 64 x larger batch sizes vs. popular FlashAttention-2 (Dao,
2023) implementations (generating 4096 token samples on an 80GB H100). We further validate
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LoLCATSs-linearizing as a high-quality training method, outperforming strong 7B subquadratic
LLMs (RWKV-v6 (Peng et al., 2024), Mamba (Gu & Dao, 2023), Griffin (De et al., 2024)) and
hybrids (StripedHyena (Poli et al., 2023a), Zamba (Glorioso et al., 2024)) trained from scratch by
1.8 to 4.7 pts on average over popular LM Eval tasks.

* On parameter and token-efficiency, by only training linear attention feature maps in Stage 1,
while only using LoRA on linear attention projections in Stage 2, LOLCATS enables these gains
while updating only <0.2% of past linearizing methods’ model parameters. This also only takes
40M tokens, i.e., 0.003% and 0.04% of prior pretraining and linearizing methods’ token counts.

* On scalability, with LOLCATS we scale up linearizing to support the Llama 3.1 70B and 405B
parameter LLMs (Dubey et al., 2024). LOLCATS presents the first viable approach to linearizing
larger LLMs, creating the first linearized 70B and 405B LLMs with only 9.5 hours on an 8 x80GB
H100 node for Llama 3.1 70B and 16 hours across 24 80GB H100s for Llama 3.1 405B. This is
in total less than half the compute reported by prior methods to linearize 8B models (5 days
on 8x80GB H100s) (Wang et al., 2024). Furthermore, under these computational constraints,
LOLCATS significantly improves quality vs. prior linearizing approaches (Kasai et al., 2021;
Mercat et al., 2024). With Llama 3.1 70B and 405B, we close 78.7% and 77.4% of the 5-shot
MMLU gap between Transformers and linearized variants respectively.

2 PRELIMINARIES

To motivate LOLCATS, we first go over Transformers, attention, and linear attention. We then
briefly discuss related works on linearizing Transformers and Transformer-based LLMs.

Transformers and Attention. Popular LLMs such as Llama 3 8B (Al@Meta, 2024) and Mistral
7B (Jiang et al., 2023) are decoder-only Transformers, with repeated blocks of multi-head softmax
attention followed by MLPs (Vaswani et al., 2017). For one head, attention models outputs y &
R4 from inputs € R!*? (where [ is sequence length, d is head dimension) with query, key,
and value weights W, Wy, W,, € R%*?, In causal language modeling, we compute ¢ = xW,,
k = xWj, v = W, before getting attention weights a and outputs y via

Ap i =

exp(q, ki /Vd "
nxp(q T/ ) y Yn = Zan,ivi (D
ZiZI exp(qn kl/\/a) i—=1

Multi-head attention maintains inputs, outputs, and weights for each head, e.g., € R"*!*? or
W, € Rh>*d%d (B being number of heads), and computes Eq. 1 for each head. In both cases, we
compute final outputs by concatenating w,, across heads, before using output weights W,, € R@xhd
to compute y, W, € R*"d While expressive, causal softmax attention requires all {k;, v; };<,, to
compute y,,. For long context or large batch settings, this growing KV cache can incur prohibitive
memory costs even with state-of-the-art implementations such as FlashAttention (Dao, 2023).

Linear Attention. To get around this, Katharopoulos et al. (2020) show a similar attention op-
eration, but with linear time and constant memory over generation length (linear time and space
when processing inputs). To see how, note that softmax attention’s exponential is a kernel function

K(q, k), which in general can be expressed as the dot product of feature maps ¢ : R? R
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Swapping exp(q " k/+/d) with ¢(q) " (k) in Eq. | gives us linear attention weights and outputs:

, ¢(an) " ¢(k:)
Ap 3 = Z;l ] ¢(qn)T¢ - Zaz nUi (2)

Rearranging terms via matrix product associativity, we get

. Z ko @) (X0 ek)v])
zz 1¢> ¢<> o(a.)T Lo, olk)

This lets us compute both the numerator s,, = >, ¢(k;)v;” and denominator z,, = >_._, ¢(k;)
as recurrent “KV states”. With sy = 0, zy = 0, we recurrently compute linear attention outputs as

i = ¢(qn)Tsn
" ?(qn) " 2zn

Eq. 3 lets us compute attention over an input sequence of length n in O(ndd’) time and space,
while Eq. 4 lets us compute n new tokens in O(ndd’) time and O(dd’) memory. Especially during
generation, when softmax attention has to compute new tokens sequentially anyway, Eq. 4 enables
time and memory savings if d’ < (prompt length + prior generated tokens).

3)

for 8, = 8,1+ ¢(kn)v,) and z, = z,_1 + ¢(k,) (4)

Linearizing Transformers. To combine efficiency with quality, various works propose different
o, (e.g., #(x) = 1+ ELU(z) as in Katharopoulos et al. (2020)). However, they typically train
linear attention Transformers from scratch. We build upon recent works that swap the softmax
attentions of existing Transformers with linear attention before finetuning the modified models with
next-token prediction to recover language modeling quality. These include methods proposed for
LLMs (Mercat et al., 2024), and those for smaller Transformers—e.g., 110M BERTSs (Devlin et al.,
2018))—reasonably adaptable to modern LLMs (Kasai et al., 2021; Mao, 2022; Zhang et al., 2024).

3 METHOD: LINEARIZING LLMS wWiTH LOLCATS

We now study how to build a high-quality and highly efficient linearizing method. In Section 3.1, we
present our motivating framework, which aims to (1) learn good softmax attention approximators
with linear attentions and (2) enable low-rank adaptation for recovering linearized quality. In Sec-
tion 3.2, we find that while this attention transfer works surprisingly well for low-rank linearizing
with existing linear attentions, on certain tasks, it still results in sizable quality gaps compared to
prior methods. We also find that attention-transfer quality strongly corresponds with the final lin-
earized model’s performance. In Section 3.3, we use our learned findings to overcome prior issues,
improving attention transfer to subsequently improve low-rank linearizing quality.

3.1 A FRAMEWORK FOR LOW-COST LINEARIZING

In this section, we present our initial LOLCATS framework for linearizing LLMs in an effective
yet efficient manner. Our main hypothesis is that by first learning linear attentions that approximate
softmax, we can then swap these attentions in as drop-in subquadratic replacements. We would then
only need a minimal amount of subsequent training—e. g., that is supported by low-rank updates—to
recover LLM quality in a cost-effective manner effectively. We thus proceed in two steps.

1. Parameter-Efficient Attention Transfer. For each softmax attention in an LLM, we aim to learn
a closely-approximating linear attention, i.e., one that computes attention outputs y =~ y for all
natural inputs . We treat this as a feature map learning problem, learning ¢ to approximate
softmax. For each head and layer, let ¢, ¢; be query, key feature maps. Per head, we compute:

o exp(q,) k;/v/d) bq(qn) " o1 (k;) ..
U = 2 el kv Zzz alan) Tk

Softmax Attention Linear Attention
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Figure 3: Attention transfer training efficiency. Even accounting for initial training steps, low-rank lineariz-
ing with attention transfer still consistently achieves lower perplexity faster across feature maps and LLMs.

for all n € [I] with input € R'*?, and train ¢,, ¢4 to minimize sample mean squared error (MSE)

| oMoH 14
— h,m hm __ ~ N2
Ivse = m Z_l };EMSE s éMSE = g Zl(yn - yn) (6)
i.e., jointly for each head h in layer m. Similar to past work (Kasai et al., 2021; Zhang et al.,
2024), rather than manually design ¢, we parameterize each ¢ : R? R as a learnable layer:

do(q) == f(@W,+by) , ou(k):= f(EW) + by)

Here W € R%*? and b € R? are trainable weights and optional biases, f (+) is a nonlinear
activation, and d’ is an arbitrary feature dimension (set to equal head dimension d in practice).

2. Low-rank Adjusting. After training the linearizing layers, we replace the full-parameter train-
ing of prior work with low-rank adaptation (LoRA) (Hu et al., 2021). Like prior work, to ad-
just for the modifying layers and recover language modeling quality, we now train the mod-
ified LLM end-to-end over tokens to minimize a sample next-token prediction 10ss fyeny =
— > log Po(uty1 | u1+). Here Pg is the modified LLM, © is the set of LLM parameters,
and we aim to maximize the probability of true u;4; given past tokens wy.; (Fig. 1 right).
However, rather than train all LLM parameters, we only train the swapped linear attention
W,, Wi, W,, W, with LoRA. Instead of full-rank updates, W' < W 4+ AW, LoRA de-
composes AW as the product of two low-rank matrices BA, B € R¥*7 A € R™*<. For
parameter efficiency, we aim to pick small r < d.

Training footprint and efficiency. Both steps remain parameter-efficient. For Step 1, optimizing
Eq. 6 is similar to a layer-by-layer cross-architecture distillation. We compute layer-wise (x, y) as
pretrained attention inputs and outputs, using an LLM forward pass over natural language samples
(Fig. | middle). However, to keep our training footprint low, we freeze the original pretrained
attention layer’s parameters and simply insert new ¢4, ¢, after W, Wy, in each softmax attention
(Fig. 1 left). We compute outputs y, ¢y with the same attention weights in separate passes (choosing
either Eq. | or Eq. 3; Fig. | middle). For Llama 3 8B or Mistral 7B, training ¢, ¢ with d’ = 64
then only takes 32 layers x 32 heads x 2 feature maps x (128 x 64) weights ~ 16.8M trainable
weights (0.2% of LLM sizes). For Step 2, LoRA with » = 8 on all attention projections suffices for
state-of-the-art quality. This updates just <0.09% of 7B parameter counts.

3.2 BASELINE STUDY: ATTENTION TRANSFER AND LOW-RANK LINEARIZING

We now aim to understand if attention transfer and low-rank adjusting are sufficient for linearizing
LLMs. It is unclear whether these simple steps can lead to high-quality LLMs, given that prior
works default to more involved approaches (Mercat et al., 2024; Yang et al., 2024; Wang et al.,
2024). They use linearizing layers featuring GroupNorms (Wu & He, 2018) and decay factors (Sun
et al., 2023), or alternate SSM-based architectures (Gu & Dao, 2023; Dao & Gu, 2024). They also
all use full-LLM training after swapping in the subquadratic layers. In contrast, we find that simple
linear attentions can lead to viable linearizing, with attention transfer + LoRA obtaining competitive
quality on 4 / 6 popular LM Eval tasks.

Experimental Setup. We test the LOLCATS framework by linearizing two popular base LLMs,
Llama 3 8B (Al 2024) and Mistral 7B v0.1 (Jiang et al., 2023). For linearizing layers, we study two
feature maps used in prior work (Table 2). To support the rotary positional embeddings (RoPE) (Su
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Llama 3 8B Mistral 7B
Attention T2R Hedgehog T2R Hedgehog
Transfer? PPL@0 PPL@2/4 PPL@O PPL@2/4 PPL@0 PPL@2/4 PPL@0 PPL@2/4
No X 1539.39 16.05 2448.01 9.02 2497.13 8.85 561.47 4.87
Yes v 79.33 4.11 60.86 3.90 32.78 3.29 18.94 3.04

Table 1: Alpaca validation set perplexity (PPL) of linearized LLMs, comparing attention transfer, no LoRA

adjusting (PPL@0) and PPL after training (PPL@2/4; 2 with attention transfer, 4 without, for equal total steps).
Llama 3 8b ) Mistral 7B
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T80 & Hedgehog : A Hedgehog °
Llama 3 8B = 799 80.1 533 79.173.1 666 = R o .
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Figure 4: Linearizing comparison on LM Eval.
Task names in Table 4. Acc. norm: ARC-C, HS.
Acc. otherwise. 5-shot MMLU. 0-shot otherwise.
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Figure 5: Attention MSE vs. PPL. Across feature maps,
LLMs; lower MSE coincides with better linearized quality.

et al., 2024) in these LLMs, we apply the feature maps ¢ after RoPE,' i.e., computing query features
$4(q) = f(ROPE(q)W, + b)). For linearizing data, we wish to see if LOLCATS with a small
amount of data can recover general zero-shot and instruction-following LLM abilities. We use the
50K samples of a cleaned Alpaca dataset?, due to its ability to improve general instruction-following
in 7B LLMs despite its relatively small size (Taori et al., 2023). Following Zhang et al. (2024), we
train all feature maps jointly. We include training code and implementation details in App. ??).

To study the effects of attention transfer and  Feature Map #(q) (same for k) Weight Shapes
low-rank linearizing across LLMs and linear at-  T2rR ReLU(qW +b) W :(128,128),b: (128,)
tention architectures, we evaluate their valida-  Hedgehog [SMq(qgW) @ SMa(—gW)] W : (128,64)
tion set perplexity (Table 1, Fig. 3) and down- ]
stream LM Eval zero-shot quality (Table 4). We Table 2: Learnable feature maps. Transformer
. . to RNN (T2R) from Kasai et al. (2021), Hedgehog
train both stages with the same data, evaluate ) )
. . B from Zhang et al. (2024), both & (concat) and SMy
with early stopping, and use either two §:po§hs (softmax) apply over feature dimension.
for both attention transfer and LoRA adjusting
or four epochs with either alone (= 40M total training tokens). For LoRA, we use = 8 as a popular
default (Hu et al., 2021), which results in training 0.2% of LLM parameter counts.

Attention Transfer + LoRA Enables Fast LLM Linearizing. In Table | and Fig. 3, we report
the validation PPL of linearized LLMs, ablating attention transfer and LoRA adjusting. We find
that while attention transfer alone is often insufficient (c.f, PPL@0, Table 1), a single low-rank
update rapidly recovers performance by 1575 PPL (Fig. 3), where training to approximate softmax
leads to up to 11.9 lower PPL than no attention transfer. Somewhat surprisingly, this translates to
performing competitively with prior linearizing methods that train all model parameters (Mercat
et al., 2024; Wang et al., 2024) (within 5 accuracy points on 4 / 6 popular LM Eval tasks; Table 4),
while only training with 0.04% of their token counts and 0.2% of their parameter counts. The results
suggest we can linearize 7B LLMs at orders-of-magnitude less training costs than previously shown.

LoL SAD: Limitations of Low-Rank Linearizing. At the same time, we note quality limitations
with the present framework. While sometimes close, low-rank linearized LLMs perform worse than
full-parameter alternatives and original Transformers on 5 / 6 LM Eval tasks (up to 42.4 points on
5-shot MMLU; Table 4). To understand the issue, we study whether the attention transfer stage can
produce high-fidelity linear approximations of softmax attention. We note three observations:

1. Attention transfer quality (via output MSE) strongly ties to low-rank linearized quality (Fig. 5).

"Unlike prior works that apply ¢ before RoPE (Mercat et al., 2024; Su et al., 2024), our choice preserves the
linear attention kernel connection, where we can hope to learn ¢, ¢y for exp(q' k' /vVd) =~ ¢4(q) " ¢r(K').
2https ://huggingface.co/datasets/yahma/alpaca-cleaned
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Figure 6: Sources of Attention Transfer Error with Llama 3 8B. We find two potential sources of
attention transfer difficulty: (a) low softmax attention entropy and (b) attentions in later layers.
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Figure 7: Improving Attention matching MSE. Linearizing with linear + sliding window attention
better matches LLM softmax attentions (lower MSE) over attention entropy values and LLM layers.

2. Larger attention output MSEs coincide with lower softmax attention weight entropies (Fig. 6a).
3. Larger MSE:s also heavily concentrate in attention input samples from later layers (Fig. 6b).

We thus hypothesize we can improve quality by reducing MSE in two ways. First, to approximate
samples with lower softmax attention weight entropies—i.e., “spikier” distributions more challeng-
ing to capture with linear attentions (Zhang et al., 2024)—we may need better attention-matching
architectures. Second, to address the difficulty of learning certain attention layers, we may need
more fine-grained layer-wise supervision instead of jointly training all layers.

3.3 LOLCATS: IMPROVED LOW-RANK LINEARIZING

We now introduce two simple improvements in architecture (Section 3.3.1) and linearizing proce-
dure (Section 3.3.2) to improve low-rank linearizing quality.

3.3.1 ARCHITECTURE: GENERALIZING LEARNABLE LINEAR ATTENTIONS

As described, we can apply our framework with any linear attentions with learnable ¢ (e.g., T2R
and Hedgehog, Figure 3). However, to improve attention-matching quality, we introduce a hybrid ¢
parameterization combining linear attention and sliding window attention. Motivated by prior works
that show quality improvements when combining attention layers with linear attentions (Arora et al.,
2024; Munkhdalai et al., 2024), we combine short sliding windows of softmax attention (Beltagy
et al., 2020; Zhu et al., 2021) (size 64 in experiments) followed by linear attention in a single layer.
This allows attending to all prior tokens for each layer while keeping the entire LLM subquadratic.
For window size w and token indices [1,...,n —w,...,n], we apply the softmax attention over the
w most recent tokens, and compute attention outputs y,, as

S w1 VXD, ki /Vd = €n)vi + 64(an) T (X721 d(kj)v] )
Z?:n—uﬂd VGXP(QIki/\/g —cn) + ¢q(Qn)T ( Z;L;lw (bk(kj)—r)

~ is a learnable mixing term, and ¢,, is a stabilizing constant as in log-sum-exp calculations (c,, =
max; {q, ki/Vd:i € [n—w+1,...,n]}). Like before, we can pick any learnable ¢.

gn = (7)

Subquadratic efficiency. The hybrid layer retains linear time and constant memory generation.
For n-token prompts, we initially require O(w?d) and O((n — w)dd’) time and space for window
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Trainin . ARC-c  HellaSwa Wino- MMLU Avg.
Model ‘ Tokens (gB) PiQA  ARC-e (norm) (norm) ¢ grande  (5-shot) Avg. (no MI\%ILU)

Mistral 7B - 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Mistral 7B SUPRA 100 80.4 75.9 45.8 77.1 70.3 342 64.0 69.9
Mistral 7B Hedgehog 0.04 79.3 76.4 45.1 73.1 57.5 28.2 59.9 66.3
Mistral 7B LoLCATSs (Ours) 0.04 81.1 81.1 529 80.5 73.2 52.2 70.2 73.8
Llama 3 8B - 79.9 80.1 53.3 79.1 73.1 66.6 72.0 73.1
Mamba2-Llama 3 100 76.8 74.1 48.0 70.8 58.6 43.2 61.9 65.6
Mamba2-Llama 3, 50% Attn. 100 81.5 78.8 58.2 78.4 69.0 56.7 70.4 73.2
Llama 3 8B Hedgehog 0.04 77.4 71.1 40.6 66.5 54.3 242 55.7 62.0
Llama 3 8B LoLCATSs (Ours) 0.04 80.6 81.8 53.5 79.1 73.4 54.9 70.6 73.7

Table 3: LOLCATS comparison among linearized 7B+ LLMs. Among linearized 7B+ LLMs, LOLCATS-
linearized Mistral 7B and Llama 3 8B consistently achieve best or 2nd-best performance on LM Eval tasks (only
getting 2nd best to Mamba-Transformer hybrids). LOLCATS closes the Transformer quality gap by 73.8%
(Mistral 7B) and 86.1% (Llama 3 8B) (average over all tasks; numbers except Hedgehog cited from original
works), despite only using 40M tokens to linearize (a 2,500 x improvement in tokens-to-model efficiency).

and linear attention respectively, attending over a w-sized KV-cache and computing KV and K-states
(Eq. 4). For generation, we only need O(w?d + dd’) time and space for every token. We evict the
KV-cache’s first k, v, compute ¢y, (k), and add ¢ (k)v " and ¢y (k) to KV and K-states respectively.

3.3.2 TRAINING: LAYER (OR BLOCK)-WISE ATTENTION TRANSFER

We describe the training approach and provide a simplified model to show its cost-quality tradeoffs.
To improve layer-wise quality, instead of computing the training loss (Eq. 6) over all m € [M] for a
model with M layers, we compute the loss over k-layer blocks, and train each block independently:

itk H
: 1 m . .
ok — i E E el}\/fSE (for blocks starting at layers i = 0, k, 2k, .. .) (8)

m=1 h=1

We can choose k to balance cost and quality. There are several approaches for training block-wise,
including via joint training with separate optimizer groups per block or by sequentially training
separate blocks. The primary costs-tradeoffs between these two approaches are:

* Compute. Increasing k increases the compute required per block. While the joint training of
Llama 3.1 405B in 16-bit precision uses multiple NVIDIA H100 8 x 80GB nodes, separate blocks
of k = 9 or fewer layers fits on a single H100 80GB GPU, at sequence length 1024.

* Memory and training time. The total amount of memory required is 2 x 7" x d X % for total
training tokens 7', model dimension d, number of layers L and 2-byte (16-bit) precision. At the
Llama 3.1 405B scale, saving outputs per-layer (k = 1) for 40M tokens would require 165TB of
disk space. Sequentially saving the outputs and training the blocks increases total training time.

4 EXPERIMENTS

Through experiments, we study: (1) if LOLCATS linearizes LLMs with higher quality than existing
subquadratic alternatives and linearizations, and higher generation efficiency than original Trans-
formers (Section 4.1); (2) how ablations on attention transfer loss, subquadratic architecture, and
parameter and token counts impact LLM downstream quality (Section 4.2); (3) how LOLCATS’
quality and efficiency holds up to 70B and 405B LLMs, where we linearize and compare model
quality across the complete Llama 3.1 family (Section 4.3).

4.1 MAIN RESULTS: LOLCATS EFFICIENTLY RECOVERS QUALITY IN LINEARIZED LLMS

In our main evaluation, we linearize the popular base Llama 3 8B (Al, 2024) and Mistral 7B (Jiang
etal., 2023) LLMs. We first test if LOLCATS can efficiently create high-quality subquadratic LLMs
from strong base Transformers, comparing to existing linearized LLMSs from prior methods. We also
test if LOLCATS can create subquadratic LLMs that outperform modern Transformer alternatives
pretrained from scratch. For space, we defer linearizing training details to App. A.
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Training . ARC-c  HellaSwag Wino- MMLU Avg.
Model ‘ Tokens (B) PiQA  ARC-e (norm) (norm) grande  (5-shot) Avg. (no MMLU)

Transformer
Gemma 7B 6000 81.9 81.1 532 80.7 73.7 62.9 72.3 74.1
Mistral 7B 8000° 82.1 80.9 53.8 81.0 74.0 62.4 72.4 74.4
Llama 3 8B 15000 79.9 80.1 533 79.1 73.1 66.6 72.0 73.1
Subquadratic
Mamba 7B 1200 81.0 77.5 46.7 77.9 71.8 333 64.7 71.0
RWKV-6 World v2.1 7B 1420 78.7 76.8 46.3 75.1 70.0 - 69.4 69.4
TransNormerLLM 7B 1400 80.1 75.4 444 75.2 66.1 43.1 64.1 68.2
Hawk 7B 300 80.0 74.4 459 77.6 69.9 35.0 63.8 69.6
Griffin 7B 300 81.0 75.4 479 78.6 72.6 39.3 65.8 71.1
Hybrid
StripedHyena-Nous-7B - 78.8 77.2 40.0 76.4 66.4 26.0 60.8 67.8
Zamba 7B 1000 81.4 74.5 46.6 80.2 76.4 57.7 69.5 71.8
Linearized
Mistral 7B LoLCATSs (Ours) 0.04 81.1 81.1 52.9 80.5 73.2 52.2 70.2 73.8
Llama 3 8B LoLCATSs (Ours) 0.04 80.6 81.8 535 79.1 734 54.9 70.6 73.7

Table 4: LOLCATS comparison to pretrained subquadratic LLMs. LOLCATS-linearized Mistral 7B and
Llama 3 8B further outperform pretrained subquadratic Transformer alternatives by 0.1 to 9.4 points (Avg.),
while only training 0.2% of the model parameters on 0.013% to 0.003% of their pretraining token counts.

In Table 4, we report results on six popular LM Evaluation Harness (LM Eval) tasks (Gao et al.,
2023). Compared to recent linearizing methods, LOLCATS significantly improves quality and
training efficiency across tasks and LLMs. On quality, LOLCATS closes 73.8% and 81.1% of the
Transformer-linearizing gap for Mistral 7B and Llama 3 8B respectively, notably improving 5-shot
MMLU by 63.8% and 50% against next best fully subquadratic models. On efficiency, we achieve
these results despite only training <0.2% of model parameters via LoRA versus prior full-parameter
training and use 40M tokens versus the prior 100B (0.04% of the latter, a 2500 improvement in
“tokens-to-model” efficiency). Among all 7B LLMs, LOLCATS-linearized LLMs further outper-
form strong subquadratic Transformer alternatives, including RNNs or linear attentions (RWKV-
v6 (Peng et al., 2024), Hawk (De et al., 2024), Griffin (De et al., 2024), TransNormer (Qin et al.,
2023)), state-space models (SSMs) (Mamba (Gu & Dao, 2023)), and hybrid architectures with some
full attention (StripedHyena (Poli et al., 2023b), Zamba (Glorioso et al., 2024)).

4.2 LOLCATs COMPONENT PROPERTIES AND ABLATIONS

We next validate that LOLCATS linearizing enable subquadratic efficiency, and study how each of
LOLCATS’ components contribute to these linearizing quality gains.

Subquadratic Generation Throughput — wof=woee T < womene
and Memory. We measure the gener- _=wof., Whinee |, o, 'II | R e
ation throughput and memory of LOL- § o b g

CATs LLMs, validating that linearizing — &= I I I I I g .

LLMs can significantly improve their gen- & b s

eration efficiency. We use the popular U1 I EEEE?E .

6 32 64 128 256 51210242048 o 500 1000
Batch Size Batch Size

Llama 3 8B HuggingFace checkpoint®, i
and compare LOLCATS implemented in . )
HuggingFace Transformers with the sup- (a) Batch size vs. Throughput (b) Batch size vs. Memory
ported FlashAttention-2 (FA2) implementation (Dao, 2023). We benchmark on a single 80GB H100
and benchmark two LOLCATS implementations with the Hedgehog feature map and (linear + slid-
ing window) attention in FP32 and BF16. In Fig. 8a and Fig. 8b, we report the effect of scaling batch
size on throughput and memory. We measure throughput as (newly generated tokens x batch size /
total time), using 128 token prompts and 4096 token generations. As batch size scales, LOLCATS-
linearized LLMs achieve significantly higher throughput than FA2. We note this is primarily due to
lower memory, where FA2 runs out of memory at batch size 64. Meanwhile, LOLCATS supports
up to 3000 tokens / second with batch size 2048 (Fig. 8a), only maintaining a fixed “KV state” as
opposed to the growing KV cache in all attention implementations (Fig. 8b).

1500 2000

*nttps://huggingface.co/meta-llama/Meta—-Llama-3-8B
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Feature M LM Eval Swap & +Attention  +Sliding Window, + Sliding Window,
cature vlap Metric Finetune Transfer +Attention Transfer No Attention Transfer
Hedgcho Avg. Zero-Shot 44.20 55.32 70.60 68.78
EENOE MMLU (5-shot)  23.80 23.80 52.50 45.80
TR Avg. Zero-Shot 38.84 54.83 68.28 39.52
MMLU (5-shot) 23.20 23.10 40.70 23.80

Table 5: LOLCATS component ablations, linearizing Llama 3 8B over 1024-token sequences.
Default configuration highlighted. Across feature maps, LOLCATS’ attention transfer and sliding
window increasingly improve linearized LLM quality.

PiQA  ARCEasy ARC Challenge HellaSwag WinoGrande MMLU (5-shot)

acc acc (acc norm) (acc norm) acc acc
Llama 3.1 70B 83.10 87.30 60.60 85.00 79.60 78.80
Linearized, no attn. transfer  75.70 70.10 39.10 77.40 58.60 26.60
LolCATs (Ours) 82.10 85.00 60.50 84.60 73.70 67.70
Llama 3.1 405B 85.58 87.58 66.21 87.13 79.40 82.98
Linearized, no attn. transfer 84.44 86.62 64.33 86.19 79.87 33.86
LolCATs (Ours) 85.58 88.80 67.75 87.41 80.35 71.90

Table 6: Linearizing Llama 3.1 70B and 405B. Among the first linearized 70B and 405B LLMs
(via low-rank linearizing), LOLCATS significantly improves zero- and few-shot quality.

Ablations. We study how adding the attention transfer and linear + sliding window attention in
LOLCATS contribute to downstream linearized LLM performance, linearizing Llama 3 8B over
1024-token long samples (Table 5). We start with standard linear attentions (Hedgehog, Zhang et al.
(2024); T2R, Kasai et al. (2021)), using the prior linearizing procedure of just swapping attentions
and finetuning the model to predict next tokens (Mercat et al., 2024). We then add either (i) attention
transfer, (ii) linear + sliding window attentions, or (iii) both, and report the average LM Eval score
over the six popular zero-shot tasks in Table 4 and 5-shot MMLU accuracy. Across feature maps,
we validate the LOLCATS combination leads to best performance.

4.3 SCALING UP LINEARIZING TO 70B AND 405B LLMSs

We finally use LOLCATS to scale up linearizing to Llama 3.1 70B and 405B models. In Table 6,
we find that LOLCATS provides the first practical solution for linearizing larger LLMs, achiev-
ing significant quality improvements over prior linearizing approaches (Mercat et al., 2024). For
Llama 3.1 70B, we achieve a 41.1 point improvement in 5-shot MMLU accuracy. For Llama 3.1
405B, LOLCATS similarly achieves a 38.0 point improvement over prior methods. These results
highlight LOLCATSs ability to linearize large-scale models with greater efficiency and improved
performance, showing for the first time that we can scale up linearizing to 70B+ LLMs.

5 CONCLUSION

We propose LOLCATS, an efficient LLM linearizing method that (1) trains attention analogs—
such as linear attentions and linear attention + sliding window hybrids—to approximate an LLM’s
self-attentions, before (2) swapping the attentions and only finetuning the replacing attentions with
LoRA. We exploit the fidelity between these attention analogs and softmax attention, where we re-
duce the problem of linearizing LLMs to learning to approximate softmax attention in a subquadratic
analog. Furthermore, we demonstrate that via an MSE-based attention output-matching loss, we are
able to train such attention analogs to approximate the “ground-truth” softmax attentions in practice.
On popular zero-shot LM Evaluation harness benchmarks and 5-shot MMLU, we find this enables
producing high-quality, high-inference efficiency LLMs that outperform prior Transformer alterna-
tives while only updating 0.2% of model parameters and requiring 0.003% of the training tokens to
achieve similar quality with LLM pretraining. Our findings significantly improve linearizing quality
and accessibility, allowing us to create the first linearized 70B and 405B LLMs.
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ETHICS STATEMENT

Our work deals with improving the efficiency of open-weight models. While promising for ben-
eficial applications, increasing their accessibility also raises concerns about potential misuse. Bad
actors could leverage our technique to develop LLMs capable of generating harmful content, spread-
ing misinformation, or enabling other malicious activities. We focus primarily on base models, but
acknowledge that linearizing could also be used on instruction-tuned LLMs; research on whether
linearizing preserves guardrails is still an open question. We acknowledge the risks and believe in
the responsible development and deployment of efficient and widely accessible models.

REPRODUCIBILITY

We include experimental details in Appendix A, including sample code for the linearizing architec-
ture and training (Appendix C).
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A EXPERIMENTAL DETAILS

For linearizing layers, we replace softmax attentions with hybrid linear + terraced window analogs
(Section 3.3.1), using Hedgehog’s feature map for its prior quality Zhang et al. (2024). For lineariz-
ing data, we report results using the Alpaca-linearized models. We also tried a more typical pre-
training corpus (1B tokens’ of RedPajama Computer (2023)), but found comparable performance
when controlling for number of token updates. To linearize, we simply train all feature maps in
parallel for two epochs with learning rate le-2, before applying LoRA on the attention projection
layers for two epochs with learning rate le-4. By default, we use LoRA rank r» = 8, amounting to
training <0.09% of all model parameters. For both stages, we train with early stopping, AdamW
optimizer Loshchilov & Hutter (2017), and packing into 1024-token sequences with batch size 8.

B RELATED WORK

In this work, we build upon both approaches explicitly proposed to linearize LLMs Mercat et al.
(2024), as well as prior methods focusing on smaller Transformers reasonably adaptable to modern
LLMs Kasai et al. (2021); Mao (2022); Zhang et al. (2024). We highlight two approaches most
related to LOLCATS and their extant limitations next.

Scalable UPtraining for Recurrent Attention (SUPRA). Mercat et al. (2024) linearize LLMs
by swapping softmax attentions with linear attentions similar to Retentive Network (RetNet) lay-
ers Sun et al. (2023), before jointly training all model parameters on the RefinedWeb pretraining
dataset Penedo et al. (2023). In particular, they suggest that linearizing LL.Ms with the vanilla linear
attention in Eq. 2 is unstable, and swap attentions with

g = GroupNorm (>~ "~ 6(g.) "6 (k:)v;) ©
i=1

GroupNorm Wu & He (2018) is used as the normalization in place of the >, ¢(q,) " ¢(k;) de-
nominator in Eq. 2, v is a decay factor as in RetNet, and ¢ is a modified learnable feature map from
Transformer-to-RNN (T2R) Kasai et al. (2021) with rotary embeddings Su et al. (2024). In other
words, ¢(x) = RoPE(ReLU(xW + b)) with W € R%*?4 and b € R? as trainable weights and
biases. With this approach, they recover zero-shot capabilities in linearized Llama 2 7B Touvron
et al. (2023b) and Mistral 7B Jiang et al. (2023) models on popular LM Evaluation Harness Gao
et al. (2023) and SCROLLS Shaham et al. (2022) tasks.

5https ://huggingface.co/datasets/togethercomputer/
RedPajama-Data-1T-Sample
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Hedgehog. Zhang et al. (2024) show we can train linear attentions to approximate softmax at-
tentions, improving linearized model quality by swapping in the linear attentions as learned drop-
in replacements. They use the standard linear attention (Eq. 2), where query, key, value, and
output projections (the latter combining outputs in multi-head attention (Vaswani et al., 2017))
are first copied from an existing softmax attention. They then specify learnable feature maps
¢(x) = [softmax(xW + b) @ softmax(—xW — b)] (where & denotes concatenation, and both
@ and the softmax are applied over the feature dimension) for g and k in each head and layer, and
train ¢ such that linear attention weights a@ match a Transformer’s original softmax weights a. Given
some sample data, they update ¢ with a cross-entropy-based distillation to minimize:

_ N eplanki/ V) dlan) (ki)
= ;Z?:lexp@;ki/ﬁ)lgZ?:m(qn)wki) (10)

as the softmax and linear attention weights are both positive and sum to 1. As they focus on task-
specific linearization (e.g., GLUE classification (Wang et al., 2018) or WikiText-103 language mod-
eling (Merity et al., 2017)), for both attention and model training they use task-specific training
data. By doing this “attention distillation”, they show significant linearized quality improvements
over T2R on both smaller Transformers (e.g., 110M parameter BERTs Devlin et al. (2018) and 125M
GPT-2s Radford et al. (2019)), and Llama 2 7B for a specific SAMSum summarization task Gliwa
etal. (2019).

C CoODE IMPLEMENTATION

We include sample code for implementing LOLCATS with HuggingFace Transformers API.

def compute_loss(self, model: nn.Module, data: dict[torch.Tensor], =*x
kwargs: any,):
nnn
Attention distillation ("attention transfer")
- For each layer and head, get attentions and train to
minimize some combo of MSE and cross—-entropy loss
nmnn
input_seq_len = data[’input_ids’].shape[-1]
inputs = {’/input_ids’: datal[’input_ids’].to(model.device) }

# Get softmax attention outputs
with torch.no_grad() :
# Set base_inference to True to use FlashAttention
for layer in traverse_layers (model) :
layer.self_attn.base_inference = True
# Get hidden states
true_outputs = model (xxinputs, output_attentions=True,
use_cache=False,)
# Save attention layer inputs and outputs in outputs.attentions

# attn_inputs = [a[0] for a in true_outputs.get ('attentions’) ]
# attn_outputs = [a[l] for a in true_outputs.get (’attentions’) ]
true_attn_io = true_outputs.get ('attentions’) # layer-wise attn

inputs and outputs
true_outputs = true_outputs.get (’logits’) .cpul()
for layer in traverse_layers (model) :
layer.self_attn.base_inference = False

# Get trainable subquadratic attention outputs
attention_type = getattr(layer.self_attn, ’attention_type’, None)
past_key_values = get_attention_cache (attention_type)

total_seq_len = 0
position_ids = torch.arange (input_seq_len) .view(1l, -1)

loss_mse = 0

for layer_idx, layer in enumerate (traverse_layers (model)) :
attn_input, attn_output = true_attn_io[layer_ idx]
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loss
loss

class Lo
nmwn

attn_preds = layer.self_attn(attn_input.to(model.device),
attention_mask=None,
position_ids=position_ids,
past_key_value=past_key_values) [1]

# MSE on layer outputs

loss_mse += criterion_mse (attn_preds, attn_output)

_mse = loss_mse / (layer_idx + 1) % self.mse_factor

= loss_mse

Listing 1: Attention Distillation Code

lcatsLlamaAttention (nn.Module) :

Hedgehog attention implementation initialized from a
‘LlamaAttention' or ‘MistralAttention‘ object (base_attn)

Most
Note

wnon

def

def

of the arguments are directly tied to argparse args
that we don’t currently support padding.
__init_ (self,
base_attn: nn.Module, # like LlamaAttention
feature_map: str,
feature_map_kwargs: dict,
layer_idx: Optional[int] = None,
max_layer_idx: Optional[int] = None,
feature_map_mlp: Optional[str] = None,
feature_map_mlp_kwargs: Optional[dict] = None,
tie_gk_fmap: Optional [bool] = False,
rotary_config: Optional[dict] = None,
attention_type: Optional[str] = ’hedgehog_llama’,
mask_value: int = 0,
eps: float = le-12,):
super () .__init__ ()

self.mask_value = mask_value

self.eps = eps

self.layer_idx = (layer_idx if layer_idx is not None
else base_attn.layer_idx)

self.max_layer_idx = max_layer_idx

self.rotary_config = rotary_config

self.tie_qgk_fmap = tie_qgk_fmap

self.init_feature_map_ (feature_map, feature_map_kwargs,
feature_map_mlp, feature_map_mlp_kwargs)

self.init_weights_ (base_attn)

init_feature_map_ (self,
feature_map: str,
feature_map_kwargs: dict,
feature_map_mlp: str = None,
feature_map_mlp_kwargs: dict = None):

nun

Initialize feature map

mmwn

if feature_map_mlp is not None:
feature_map_kwargs [’ num_heads’] = self.num_heads
feature_map_kwargs[’head_dim’] = self.head_dim
feature_map_kwargs|[’dtype’] = self.qg proj.weight.dtype
feature_map_kwargs[’device’] = self.q proj.weight.device
feature_map_mlp = init_feature_map_mlp (feature_map_mlp,

feature_map_mlp_kwargs

self.feature_map_g = init_feature_map_act (name=feature_map,
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54 mlp=feature_map_mlp,

55 *+feature_map_kwargs)

56 if self.tie_gk_fmap: # tie mlp weights for query and key feature
maps

57 self.feature_map_k = self.feature_map_g

58 else:

59 self.feature_map_k = copy.deepcopy (self.feature_map_qg)

60
61 def init_weights_ (self, base_attn: nn.Module) :

nun

63 Initialize module layers, weights, positional dependencies, etc.

64 nun

65 self.attention_dropout = 0 # We don’t use dropout
66 self.hidden_size = base_attn.hidden_size

67 self.num_heads = base_attn.num_heads

68 self.head_dim = base_attn.head_dim

69 self.num_key_value_heads = base_attn.num_key_value_heads
70 self.num_key_value_groups = base_attn.num_key_value_groups
71

72 self.qg _shape = [self.num_heads, self.head_dim]

73 self.k_shape = [self.num_key_value_heads, self.head_ dim]

74 self.v_shape = [self.num_key_value_heads, self.head_dim]

75

76 self.max_position_embeddings = base_attn.max_position_embeddings

77 device = base_attn.g proj.weight.device

78 scaling_factor = getattr (base_attn.rotary_emb, ’'scaling factor’,
1.)

79 if self.rotary_config is None:

80 self.rotary_emb = get_rotary_embeddings (

81 rope_scaling_type=None,

82 head_dim=self.head_dim,

83 max_position_embeddings=base_attn.rotary_emb.
max_position_embeddings,

84 rope_theta=base_attn.rotary_emb.base,

85 rope_scaling_factor=scaling_factor,

86 device=device,

87 )

88 else:

89 if ’device’ not in self.rotary_config:

90 self.rotary_config[’device’] = device

91 self.rotary_emb = get_rotary_embeddings (xxself.rotary_config)

92

93 # Just initialize with original weights
94 device = base_attn.g proj.weight.device
95 self.g proj = base_attn.g proj

96 self.k_proj = base_attn.k_proj

97 self.v_proj = base_attn.v_proj

98 self.o_proj = base_attn.o_proj

99 del base_attn

100

101 def linear_attention(self, g: torch.Tensor, k: torch.Tensor, v: torch

.Tensor) —-> Tuple[torch.Tensor, Optional[torch.Tensor], Optional]|

Tuple[torch.Tensor]]]:

102 mmwnw

103 Compute linear attention with CUDA kernel implementation from

fast-transformers

104 o

105 dtype = g.dtype

106 y = causal_dot_product (g.contiguous () .to (dtype=torch.float32),

107 k.contiguous () .to (dtype=torch.float32),

108 v.contiguous () .to (dtype=torch.float32)) .to
(dtype=dtype)

109 y =y / (torch.einsum("bhld,bhld->bhl", g, k.cumsum(dim=2)) +
self.eps)[..., None]

110 return y, None, None
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def forward(self,

Tensor]] =

hidden_states: torch.Te
attention_mask: Optiona
position_ids: Optional[
past_key_value: Optiona

None,
output_attentions: bool
use_cache: bool = False

*xkwargs) —-> Tuple[torc

Optional [Tuple[torch.Tensor]]]:

modeling mistral

nun

Forward pass modified from tran
(v4.36)

nun

b, 1, _ = hidden_states.size ()
q = self.q proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
kv_seqg_len = k.shape[-2]

g = g.view(b, 1, =xself.g _shape)
k = k.view(b, 1, xself.k_shape)
v = v.view(b, 1, xself.v_shape)

if past_key_value is not None:
kv_seq_len += past_key_valu

cos, sin = self.rotary_emb(k, s
g, k = apply_rotary_pos_emb (q,
k = repeat_kv (k,

v
a, k

repeat_kv (v,
self.feature_map_g(q), s

if attention_mask is not None a
lin_attn_mask =
k = k.masked_fill ("lin_attn

if past_key_value is not None:

attention_mask[:,
_mask,

nsor,
l[torch.Tensor] = None,
torch.LongTensor] = None,

1[Tuple[int, torch.Tensor,

= False,

’
h.Tensor,

sformers.models.mistral.

2)
2)
2)

.transpose (1,
.transpose (1,
.transpose (1,

e[0] .shape[-2]

eq_len=kv_seq_len)
k, cos, sin, position_ids)

self.num_key_value_groups)
self.num_key_value_groups)

elf.feature_map_k (k)

nd g.shape[2] > 1:
None, :, None]
self.mask_value)

kv_state = past_key_value.kv_states[self.layer_idx]

k_state = past_key_value.k

y_true, _, =
past_key_value.update (k,
else:
y_true, _,

vy

y_true = y_true.transpose(l, 2)

hidden_size)

y_true self.o_proj(y_true)
attn_weights = None

return y_true, attn_weights,

Pra

self.linear_.

self.linear_.

_states[self.layer_idx]

attention (g, k,
self.layer_idx)

v)

attention(q, k, v)

.contiguous () .view (b, 1, self.

st_key_value

Listing 2: LoLCATSs Attention Implementation

class HedgehogFeatureMap (nn.Module) :

wnon

Final

"activation’ of feature map.

‘HedgehogFeatureMapMLP ' below

Full feature map is like f(xW + b)

—-> This is the

wnn

‘f' part
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def

def

def

def

__init_ (self,
head_dim_idx: int = -1,
eps: float = le-12,
mlp: nn.Module = None,
halfspace: bool = False,
) g

super () .__init__ ()

self.head_dim_idx = head_dim_idx

self.eps = eps

self.mlp = mlp if mlp is not None else nn.Identity()

self.activation = (self.halfspace_activation if halfspace
else self.fullspace_activation)

fullspace_activation(self, x: torch.Tensor) :
return torch.cat ([
torch.softmax ( x, dim=self.head_dim_idx),
torch.softmax (-x, dim=self.head_dim_idx)
], dim=self.head dim_idx) .clamp (min=self.eps)

halfspace_activation(self, x: torch.Tensor) :
return torch.softmax (x, dim=self.head_dim_idx).clamp (min=self.eps

forward(self, x: torch.Tensor):
mmwn

Assume x.shape is (batch_size, n_heads, seqg_len, head_dim)
nmmon

return self.activation(self.mlp (x))

class HedgehogFeatureMapMLP (nn.Module) :

nnn

Learnable MLP in feature map.

Full feature map is like f (xW + Db)
-> This is the ‘W' and (optional) ‘b‘ part

wnn

def

def

__init_ (self,
num_heads: int,
head_dim: int, # input dim
feature_dim: int, # output dim
dtype: torch.dtype,
device: torch.device,
skip_connection: bool = False,
bias: bool = False):
super () .__init__ ()
self.num_heads = num_heads
self.head_dim = head_dim
self.feature_dim = feature_dim
self.dtype = dtype
self.device = device
self.skip_connection = skip_connection
self.bias = bias
self.init_weights_ ()

init_weights_ (self):

nun

Initialize W and b

self.weight = nn.Parameter (torch.zeros (
(self.num_heads, self.head dim, self.feature_dim),
dtype=self.dtype, device=self.device,

))

nn.init.kaiming_uniform_(self.weight)
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def

if self.bias:
self.bias = nn.Parameter (torch.zeros (
(1, self.num_heads, 1, self.feature_dim),
dtype=self.dtype, device=self.device,
))
nn.init.kaiming uniform_(self.bias)
else:
self.bias = 0. # hack

forward(self, x: torch.Tensor):
mmwnw

Assume x.shape is (batch_size, num_heads, seqg _len, head_dim)
mmwn

_x = torch.einsum(’hdf,bhld->bhlf’, self.layer, x) + self.bias
return x + _x if self.skip_connection else _x

Listing 3: Hedgehog Learnable Feature Map Implementation
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Figure 9: Attention Transfer. For both Llama 3 8B and Mistral 7B v0.1 LLMs, LOLCATS at-
tention transfer trains subquadratic attentions that match original attention weights, despite only
supervising based on attention layer outputs. They also learn to recover weights outside of the soft-
max windows, c.f. trained versus initialized (init.) attentions between queries at positions 130 - 150

and keys at positions 0 - 32.
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feature map, with attention transfer.
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Figure 11: Linear attention (PRED) and softmax attention (TRUE) weights for hedgehog learned
feature map, without attention transfer.
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