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ABSTRACT

Federated recommendation is a new Internet service architecture that aims to1

provide privacy-preserving recommendation services in federated settings. Ex-2

isting solutions are used to combine distributed recommendation algorithms and3

privacy-preserving mechanisms. Thus it inherently takes the form of heavyweight4

models at the server and hinders the deployment of on-device intelligent models5

to end-users. This paper proposes a novel Personalized Federated Recommen-6

dation (PFedRec) framework to learn many user-specific lightweight models7

to be deployed on smart devices rather than a heavyweight model on a server.8

Moreover, we propose a new dual personalization mechanism to effectively learn9

fine-grained personalization on both users and items. The overall learning process10

is formulated into a unified federated optimization framework. Specifically,11

unlike previous methods that share exactly the same item embeddings across12

users in a federated system, dual personalization allows mild finetuning of item13

embeddings for each user to generate user-specific views for item representations14

which can be integrated into existing federated recommendation methods to15

gain improvements immediately. Experiments on multiple benchmark datasets16

have demonstrated the effectiveness of PFedRec and the dual personalization17

mechanism. Moreover, we provide visualizations and in-depth analysis of the18

personalization techniques in item embedding, which shed novel insights on the19

design of RecSys in federated settings.20

1 INTRODUCTION21

Federated recommendation is a new service architecture for Internet applications, and it aims to22

provide personalized recommendation service while preserving user privacy in the federated set-23

tings. Existing federated recommendation systems (Ammad-Ud-Din et al., 2019; Chai et al., 2020;24

Muhammad et al., 2020; Perifanis & Efraimidis, 2022; Singhal et al., 2021) are usually to be an25

adaptation of distributed recommendation algorithms by embodying the data locality in federated26

setting and adding privacy-preserving algorithms with guaranteed protection. However, these im-27

plementations of federated recommendations still inherit the traditional service architecture, which28

is to deploy large-scale models at servers. Thus it is impractical and inconsistent with the newly29

raised on-device service architecture, which is to deploy a lightweight model on the device to pro-30

vide service independently without frequently communicating with the server. Given the challenge31

of implementing data locality on devices in federated settings, the personalization mechanism needs32

to be reconsidered to better capture fine-grained personalization for end-users.33

Personalization is the core component of implementing federated recommendation systems. Inher-34

ited from conventional recommendation algorithms, existing federated recommendation frameworks35

are usually composed of three modules: user embedding to preserve the user’s profile, item embed-36

ding to maintain proximity relationships among items, and the score function to predict the user’s37

preference or rating for a given item. They usually preserve user-specific personalization in the user38

embedding module while sharing consensus on item embeddings and score functions.39

This paper proposes a new dual personalization mechanism designed to capture fine-grained two-40

fold personal preferences for users in the federated recommendation system. Inspired by human41

beings’ decision logic, we believe all modules in the recommendation framework should be used42

to preserve part of personalization rather than use user embedding only. For example, the score43
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Figure 1: Different frameworks for the personalized federated recommendation. The green block
represents a personalized module, which indicates the part of model is to preserve user preference.
Our proposed model will preserve dual personalization on two modules.

function is to mimic the user’s personal decision logic that is natural to be diverse across clients.44

Furthermore, given an itemset, different people may have a different view to measure their prox-45

imity relationships. Therefore, personalized item embedding could be essential to capture people’s46

personal preferences further.47

To implement the aforementioned ideas in federated settings, we propose a new federated recom-48

mendation framework to implement fine-grained personalization on multiple modules which are49

illustrated in Figure 1 (c). First, we use a personalized score function to capture users’ preferences,50

and it could be implemented using a multi-layer neural networks. Second, we remove the user51

embedding from the framework because the current neural-based personalized score function has52

enough representation capability to preserve the information of user embeddings. Third, we imple-53

ment a light fine-tuning to learn personalized item embeddings 1 in federated settings. This proposed54

decentralized intelligence architecture is a natural simulation of human beings’ decision-making that55

each person has a relatively independent mind to make decisions.56

The learning procedure is also carefully tailored in a federated setting. A personalized score function57

will be learned using its own data on the device, and then it won’t be sent to the server for model58

aggregation that usually generates a general view for all devices. Moreover, the personalized item59

embedding will be implemented through light fine-tuning in a federated learning framework, thus it60

can leverage both the general view from server and the personalized view from its own data.61

In summary, we propose a novel federated recommendation framework that integrates both the per-62

sonalized score function and personalized item embedding via light finetuning from the shared item63

embedding. Our key contributions are summarized as follows.64

• We propose a novel federated recommendation framework which is more naturally consis-65

tent with layer-wise neural architecture which can better fit federated learning.66

• We design a novel dual personalization to capture user preferences using a personalized67

score function and to fine-grained personalization on item embeddings. It can be integrated68

with other baselines to improve their performances.69

• We formulate the proposed federated recommendation learning problem into a unified fed-70

erated optimization framework with the meta-learning objective.71

• Our method can significantly outperform existing federated recommendation baselines.72

2 RELATED WORK73

2.1 PERSONALIZED FEDERATED LEARNING74

Federated Learning (FL) is a new machine learning paradigm that a server orchestrates a large75

number of clients to train a model without accessing their data (Kairouz et al., 2021; Li et al., 2020;76

Bonawitz et al., 2019; Yang et al., 2019). The vanilla federated learning method, FedAvg (McMahan77

et al., 2017), is to learn a robust model at the server while embodying data locality for each device78

1When the items are one-hot encoding vectors, we can simply equivalent use item embedding network and
item embedding representations.
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with non-IID data. Personalized Federated Learning (PFL) is to learn a personalized model for79

each device to tackle the non-IID challenge. A simple PFL method could train a global model80

with FedAvg, then conduct a few steps of finetuning on each client (Cheng et al., 2021). In this81

framework, knowledge sharing is model aggregation, and model personalization is local finetuning.82

Per-FedAvg (Fallah et al., 2020) adds finetuning as a regularization term to the objective learning83

function of the global model. Ditto (Li et al., 2021) proposes a bi-level optimization framework for84

PFL while constraining the distance between the local and global models. Investigations by (Sham-85

sian et al., 2021; Chen et al., 2018) aim to train a global hyper-network or meta-learner instead of86

a global model before sending it to clients for local optimization. SCAFFOLD (Karimireddy et al.,87

2020) proposes to learn personalized control variate that corrects the local model accordingly. Fe-88

dRecon (Singhal et al., 2021) is a meta-learning-based method that preserves a local model for each89

client and trains a global model collaboratively with FedAvg. Layer-wise personalization (Arivazha-90

gan et al., 2019; Liang et al., 2020) is also a simple and effective technique in PFL.91

2.2 FEDERATED RECOMMENDATION SYSTEMS92

Federated recommendation has attracted much attention recently due to the rising concern about93

privacy. Some recent works focus on using the interaction matrix only. FCF (Ammad-Ud-Din et al.,94

2019) is the first FL-based collaborative filtering method, which employs the stochastic gradient ap-95

proach to update the local model, and FedAvg is adopted to update the global model. Improving on96

user privacy protection, Chai et al. present FedMF (Chai et al., 2020), which adapts distributed ma-97

trix factorization to FL setting and introduces the homomorphic encryption technique on gradients98

before uploading to the server. MetaMF (Lin et al., 2020b) is a federated meta-learning framework99

where a meta-network is adopted to generate the rating prediction model and private item embed-100

ding. (Wu et al., 2021) presents FedGNN where each user maintains a GNN model to incorporate101

high-order user-item information. However, the server in both methods preserves all the recommen-102

dation model parameters which can be used to infer the user’s interaction information, resulting in103

the risk of user privacy leakage. FedNCF (Perifanis & Efraimidis, 2022) adapts Neural Collabora-104

tive Filtering (NCF) (He et al., 2017) to the federated setting which introduces neural network to105

learn user-item interaction function to enhance the model learning ability. Federated recommen-106

dation using rich information considers multiple data sources or modalities in modeling. Fed-107

Fast (Muhammad et al., 2020) extends FedAvg (McMahan et al., 2017) with an active aggregation108

method to facilitate the convergence. Efficient-FedRec (Yi et al., 2021) decomposes the model into a109

large news model on the server and a light user model on the client, and reduces the computation and110

communication cost for users. Both works rely on more data sources, such as user features or news111

attributes rather than an interaction matrix. (Lin et al., 2020a; Du et al., 2021; Yang et al., 2021;112

Minto et al., 2021; Lin et al., 2021) are endeavors that focus on enhancing privacy of FedRec. There113

are also attempts for other applications in FedRec, such as federated attack (Wu et al., 2022b; Zhang114

et al., 2022), social recommendation (Liu et al., 2022b), Click-Through Rate (CTR) prediction (Wu115

et al., 2022a), fair recommendation (Liu et al., 2022a) and payload optimization (Khan et al., 2021).116

3 PROBLEM FORMULATION117

Federated Learning is to learn a global model parameterized by θ to serve all clients whose data118

are private. The optimal solution should minimize the accumulated loss of all clients. That is,119

min
θ

N∑
i=1

αiLi(θ) (1)

where Li(θ) is the supervised loss on the i-th client with dataset Di, and all clients share the global120

parameter θ. The αi is a weight for the loss of the i-th client. For example, the conventional121

federated learning algorithm, FedAvg (McMahan et al., 2017), defines αi as the fraction of the size122

of the client’s training data, i.e., αi := |Di|/
∑N
j=1 |Dj |. Once the global model is trained, it can be123

used for prediction tasks on all clients.124

Personalized Federated Learning simultaneously leverages common knowledge among clients125

and learns a personalized model for each client. The learning objective is usually formulated as126

min
θ,{θi}Ni=1

N∑
i=1

αiLi(θ, θi) (2)
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where each client has a unique personalized parameter θi, and θ is the global parameter as mentioned127

in Eq. 1. For example, Fallah et al. (2020) leverage θ as initialization of θi, i.e., θi := θ − ∇li(θ),128

where li(θ) is the loss of a vanilla model on the i-th client. The Li(θ, θi) is then formulated as129

Li(θ, θi) := li(θ −∇li(θ)) (3)

Recommendation on Neural Networks This work focuses on a fundamental scenario where rec-130

ommendation only relies on user-item interaction matrix. The recommendation task is then fulfilled131

by the Neural Collaborative Filtering (NCF) model (He et al., 2017), which consists of three parts:132

a score function S, a user embedding module E and an item embedding module E. We denote these133

modules’ parameters as θ := (θs, θu, θm) and formulate the learning objective in Eq. 4134

min
θ
L(θ; r, r̂) := min

θ
L(θ; r, S(E(eu), E(em))) (4)

where eu and em are one-hot encoding representing users and items. r is a user’s rate to the given135

item and r̂ is a prediction from the score function S(E(eu), E(em)). L is the loss evaluating predic-136

tion performance. It could be a point-wise loss as used in (Wang et al., 2016; He et al., 2017), or a137

pair-wise loss as in (Rendle et al., 2012; Wang et al., 2019). It is worth noting that conventional Ma-138

trix Factorization (MF) methods could be viewed as a special case of the NCF (He et al., 2017), i.e.,139

the conventional MF is a model where the score function S is simplified as the multiplication opera-140

tor without learnable parameters, and the embedding of user/item is obtained by the decomposition141

of the user-item interaction matrix.142

4 METHODOLOGY143

In this section, we propose a novel Personalized Federated Recommendation (PFedRec) framework,144

which aims to simultaneously learn many user-specific NCF models deployed on end devices.145

4.1 OBJECTIVE FUNCTION146

Federated Learning Objective We regard each user as a client under FL settings. The on-device147

recommendation task is then depicted as a PFL problem. Particularly, the item embedding mod-148

ule Ei is assigned to be a global component which learns common item information and the score149

function Si is maintained locally to learn personalized decision logic. To further capture the dif-150

ference between users and achieve a preference-preserving item embedding, we devise a bi-level151

optimization objective,152

min
θm,{θi}Ni=1

N∑
i=1

αiLi(θi; r, r̂)

s.t. θi := (θm −∇θmLi, θsi )

(5)

where θi := (θmi , θ
s
i ) is the personalized parameter for Ei and Si, and Li will be evaluated on the153

i-th client local data Di. Under this framework, PFedRec first tunes E into a personalized item154

embedding module Ei, and then learns a lightweight local score function Si to make personalized155

predictions. Different from the conventional recommendation algorithms, the user embedding mod-156

ule E is depreciated since the personalization procedure on a client will automatically capture the157

client’s preference. There is no use to learn extra embeddings to describe clients.158

Loss for Recommendation Equipped with the item embedding module and score function, we159

formulate the prediction of j-th item by i-th user’s recommendation model as,160

r̂ij = Si(Ei(e
j)) (6)

Particularly, we discuss the typical recommendation task with implicit feedback, that is, rij = 1161

if i-th user interacted with j-th item; otherwise rij = 0. With the binary-value nature of implicit162

feedback, we define the loss function of i-th user as the binary cross-entropy loss,163

Li(θi; r, r̂) = −
∑

(i,j)∈Di

log r̂ij −
∑

(i,j′)∈D−i

log(1− r̂ij′) (7)
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where D−i is the negative instances set of user. Notably, other loss functions can also be used, and164

here we choose the binary cross-entropy loss to simplify the description. Particularly, to construct165

D−i efficiently, we first count all the uninteracted items set as,166

I−i = I\Ii (8)
where I denotes the full item list and Ii is the interacted item set of i-th user. Then, we uniformly167

sample negative instances from I−i by setting the sampling ratio according to the number of observed168

interactions and obtain D−i .169

4.2 DUAL PERSONALIZATION170

We have implemented a dual personalization mechanism to enable the proposed framework can171

preserve fine-grained personalization for both user and item.172

Using partial-based federated model aggregation to learn personalized user score function on173

each device. Our proposed model is composed of a neural-based score function parameterized by174

θs and an item embedding module parameterized by θm. The coordinator/server of federated sys-175

tem will iteratively aggregate model parameters or gradients collected from each participant/device.176

Due to the concern of personalization and privacy, we could implement a partial model aggregation177

strategy by keeping the score function as a private module on devices while sharing the item em-178

bedding to the server. Therefore, the server only aggregates the gradients or parameters θm from179

the item embedding network. The user’s personalized score function network θs won’t be sent to180

the server and thus won’t be aggregated. More discussion about learning efficiency of personalized181

score function can be found in Appenidx A.1.182

Fine-tuning the item embedding module to generate personalized representations for items183

on each device. According to Eq. 5, the learning objective of θm could be viewed as searching184

for a ”good initialization” that could be fast adaptive to the learning task on different devices. It185

shares similar ideas with meta-learning based methods (Fallah et al., 2020) which have a local loss186

in Eq. 3. However, our proposed method takes a different optimization strategy we call post-tuning.187

Specifically, rather than directly tuning a global model on clients’ local data, it first learns the local188

score function with the global item embedding network, and then replaces the global item embedding189

with personalized item embedding obtained by fine-tuning θm. Details of the learning process is190

illustrated in Algorithm. 1 and extensive experiments show it will achieve superior performance191

to the vanilla meta-learning based methods. Furthermore, we discuss the effectiveness of one-step192

fine-tuning in Appendix A.2.193

4.3 ALGORITHM194

Optimization To solve the optimization problem as descripted in Sec. 4.1 - objective function, we195

conduct an alternative optimization algorithm to train the model. As illustrated in Algorithm 1, when196

client receives the item embedding network from server, it first replace its embedding with global197

one, and then updates the score function while keeping item embedding network fixed. Then the198

client updates the item embedding based on the updated personalized score function. Finally, the199

updated item embedding would be uploads to server for global update.200

Workflow. The overall workflow of the algorithm could be summarized into several steps as follows.201

The server is responsible for updating shared parameters and organizing all clients to complete202

collaborative training. At the beginning of federated optimization, the server initializes the model203

parameters, which would be used as initial parameters for all client models. In each round, the204

server selects a random set of clients and distributes the global item embedding θm to them. When205

local training is over, the server collects the updated item embedding network from each client to206

perform global aggregation. We build on the simplified version of FedAvg, a direct average of207

locally uploaded item embedding network. The overall procedure is summarized in Algorithm 1.208

5 DISCUSSIONS209

5.1 PRIVACY ON FEDERATED RECOMMENDATION210

Privacy-preserving is an essential motivation to advance existing cloud-centric recommendation211

to client-centric recommendation service architecture. In general, the federated learning’s decen-212
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Algorithm 1 Dual Personalization for Federated Recommendation

ServerExecute:
1: Initialize item embedding θm ← θm0 and score function θs ← θs0
2: for each round t = 1, 2, ... do . Global communication rounds
3: St ← (select a set of size n randomly from all N clients)
4: for each client index i ∈ St in parallel do
5: θmi ← ClientUpdate(i, θm) . Distribute global item embedding to client for update
6: θm ← 1

n

∑n
i=1 θ

m
i . Global aggregation over n local item embedding network

ClientUpdate:
1: Initialize θmi with θm
2: Initialize θsi with the latest updates
3: Retrieve user positive feedback Di according to user index i
4: Sample negative feedbcak D−i from unobserved instances
5: B ← (split Di ∪D−i into batches of size B)
6: for e from 1 to E do . Local training epochs
7: for batch b ∈ B do
8: Compute Li(θi; r, r̂) with Eq. 7 . Model loss of batch data b
9: θsi ← θsi − η∇θsLi . Score funtion update

10: Compute Li(θi; r, r̂) with Eq. 7 . Model loss with the updated θsi
11: θmi ← θmi − η′∇θmLi . post-tuning for personalized item embedding network
12: Return θmi to server

tralized framework can embody data locality and information minization rules (GDPR) that could213

greatly mitigate the risk of privacy leakage (Kairouz et al., 2019). To provide service with privacy214

guranttee, the FL framework should be integrated with other privacy-preserving methods, such as215

Differential Privacy and secure communication. Our proposed framework derives the same decen-216

tralized framework from vaniall FL to preserve data locality. For example, to tackle the privacy217

leakage risk caused by sending item embedding network to the server, we could simply apply dif-218

ferential privacy to inject noise into the gradients so that the server cannot simply infer the updated219

items by watching the changes of gradients. More discussion can be found in Appendix D.4220

5.2 A GENERAL FRAMEWORK FOR FEDERATED RECOMMENDATION221

The proposed framework in Figure 1 (c) could be a general form of federated recommendation.222

Because our framework could be easily transformed to an equivalent form of other frameworks. For223

example, if we assign the score function as a one-layer neural network, PFedRec is equal to FedMF224

and FedRecon in Figure 1 (a). Moreover, if we change the personalized score function from full225

personalization to partial layer personalization, our method could be equivalent to FedNCF in Figure226

1 (b) which has a shared score function across clients. Furthermore, our proposed framework’s227

architecture could be naturally aligned to the classic neural network architecture, thus it has a bigger228

potential to achieve a better learning efficiency and is more flexible to extend. More discussion about229

communication efficiency and time complexity can be found in Appendix B.1 and B.2230

6 EXPERIMENTS231

6.1 EXPERIMENTAL SETUP232

We evaluate the proposed PFedRec on four real-world datasets: MovieLens-100K, MovieLens-1M,233

Lastfm-2K and Amazon-Video. They are all widely used datasets in assessing recommendation234

models. Specifically, two MovieLens datasets were collected through the MovieLens website, con-235

taining movie ratings and each user has at least 20 ratings. Lastfm-2K is a music recommendation236

dataset, and each user maintains a list of her favorite artists and corresponding tags. Amazon-Video237

was collected from the Amazon site, containing product reviews and metadata information. We ex-238

cluded users with less than 5 interactions in Lastfm-2K and Amazon-Video. The characteristics of239

datasets are shown in Appendix C.1. For dataset split, We follow the prevalent leave-one-out eval-240

uation (He et al., 2017). We evaluate the model performance with Hit Ratio (HR) and Normalized241

Discounted Cumulative Gain (NDCG) metrics. Details can be referred to Appendix C.2.242
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6.2 BASELINES AND IMPLEMENTATION DETAILS243

Baselines Our method is compared with baselines in both centralized and federated settings. Fo-244

cusing on the performance improvement of the infrastructure of recommendation models that all245

others derive from, we select the general and fundamental baselines that conduct recommendations246

based on the interaction matrix.247

• Matrix Factorization (MF) (Koren et al., 2009): This method is a typical recommendation al-248

gorithm. Particularly, it decomposes the rating matrix into two embeddings located in the same249

latent space to characterize user and item, respectively.250

• Neural Collaborative Filtering (NCF) (He et al., 2017): This method models user-item interac-251

tion function with an MLP, and is one of the most representative neural recommendation models.252

Specifically, we apply the interaction function with a three-layers MLP for comparison, adopted253

in the original paper.254

• FedMF (Chai et al., 2020): It is a federated version of MF and a typical FedRec method. It255

updates user embedding locally and uploads item gradients to the server for global update.256

• FedNCF (Perifanis & Efraimidis, 2022): It is a federated version of NCF. Specifically, each user257

updates user embedding locally and uploads item embedding network and score function to the258

server for global update.259

• Federated Reconstruction (FedRecon) (Singhal et al., 2021): It is a state-of-the-art PFL frame-260

work, and we test it under the matrix factorization scenario. Between every two rounds, this261

method does not inherit user embedding from the previous round but trains it from scratch.262

Implementation details We randomly sample 4 negative samples for each positive sample fol-263

lowing (He et al., 2017). For a fair comparison, we keep the same latent user (item) embedding size264

for all methods, i.e., 32 and set other model details of baselines according to their original papers.265

For our method, we assign the score function with a one-layer MLP for simplification, which can266

be regarded as an enhanced FedMF with the dual personalization mechanism. We implement the267

methods based on the Pytorch framework and run all the experiments for 5 repetitions and report the268

average results. Parameter configuration can be found in Appendix C.3269

6.3 COMPARISON ANALYSIS270

We conduct experiments on four datasets for performance comparison.

Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Rec NCF 64.14± 0.98 37.91± 0.37 64.17± 0.99 37.85± 0.68 82.44± 0.42 67.43± 0.89 60.16± 0.43 38.97± 0.14
MF 64.43± 1.02 38.95± 0.56 68.45± 0.34 41.37± 0.18 82.71± 0.54 71.04± 0.62 46.69± 0.65 29.83± 0.45

FedRec

FedNCF 60.62± 0.59 33.25± 1.35 60.54± 0.46 34.17± 0.40 81.55± 0.38 61.03± 0.63 57.77± 0.07 36.86± 0.06
FedRecon 64.45± 0.81 37.78± 0.38 63.28± 0.15 36.59± 0.33 82.06± 0.38 67.58± 0.35 59.80± 0.14 38.87± 0.13
FedMF 65.15± 1.16 39.38± 1.08 67.72± 0.14 40.90± 0.14 81.64± 0.48 69.36± 0.42 59.67± 0.19 38.55± 0.21
PFedRec (Ours) 71.62± 0.83 43.44± 0.89 73.26± 0.20 44.36± 0.16 82.38± 0.92 73.19± 0.38 60.08± 0.08 39.12± 0.09

Table 1: Performance of HR@10 and NDCG@10 on four datasets. Rec and FedRec represent
centralized and federated methods, respectively. The results are the mean and standard deviation of
five repeated trials.271

Results & discussion As shown in Table 1, (1) PFedRec obtains better performance than central-272

ized methods in some cases. In centralized scenario, only user embedding is regarded as personal-273

ized component to learn user characteristics, and other components are totally shared among users.274

In comparison, our dual personalization mechanism considers two forms of personalization, which275

can further exploit user preferences. (2) PFedRec realizes outstanding advances on the two Movie-276

Lens datasets. These two contain more samples for training, which supports the personalization277

depiction. (3) PFedRec consistently achieves the best performance on all settings. In FedRec, the278

common item embedding helps transfer the shared information among users, which facilitates col-279

laborative training of individual user models. However, different users present rather distinct prefer-280

ences for items. Our dual personalization mechanism offers fine-grained personalization which fits281

the local data. It filters out the interference of redundant information and obtains better performance.282

We also analyse spacial and computational efficiency of our proposed model and compare with283

baselines, including parameter volume, training epoch and running time. Specifically, our proposed284
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method achieves best performance with relatively low level of running time consumption. It shows285

that our dual personalization mechanism will not increase spatial and computational compexity.286

Detailed analysis could be found in Appendix D.1. Besides, we present the convergence curves of287

PFedRec and all baselines on all datasets in Appendix D.2. It shows PFedRec is the consistently288

the fastest one to converge, which emphasizes our method’s advanced efficiency.289

6.4 INTEGRATING BASELINES WITH OUR DUAL PERSONALIZATION MECHANISM290

This paper proposes a lightweight dual personalization mechanism to enhance personalization han-291

dling, which can be easily transferred to nearly-all federated learning methods. We apply it to292

FedRec baselines to exhibit its efficacy.

Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

FedNCF 60.62± 0.59 33.25± 1.35 60.54± 0.46 34.17± 0.40 81.55± 0.38 61.03± 0.63 57.77± 0.07 36.86± 0.06
w/ DualPer 68.82± 1.35 39.33± 0.85 68.17± 0.55 39.56± 0.29 82.31± 0.56 71.64± 0.43 59.57± 0.57 38.73± 0.62
Improvement ↑ 13.53% ↑ 18.29% ↑ 12.60% ↑ 15.77% ↑ 0.93% ↑ 17.38% ↑ 3.12% ↑ 5.07%
FedRecon 64.45± 0.81 37.78± 0.38 63.28± 0.15 36.59± 0.33 82.06± 0.38 67.58± 0.35 59.80± 0.14 38.87± 0.13
w/ DualPer 70.20± 0.90 41.83± 0.71 68.89± 0.26 40.04± 0.16 83.51± 0.23 74.83± 0.44 60.23± 0.16 39.20± 0.12
Improvement ↑ 8.92% ↑ 10.72% ↑ 8.87% ↑ 9.43% ↑ 1.77% ↑ 10.73% ↑ 0.72% ↑ 0.85%

FedMF 65.15± 1.16 39.38± 1.08 67.72± 0.14 40.90± 0.14 81.64± 0.48 69.36± 0.42 59.67± 0.19 38.55± 0.21
w/ DualPer 71.62± 0.83 43.44± 0.89 73.26± 0.20 44.36± 0.16 82.38± 0.92 73.19± 0.38 60.08± 0.08 39.12± 0.09
Improvement ↑ 9.93% ↑ 10.31% ↑ 8.18% ↑ 8.46% ↑ 0.91% ↑ 5.52% ↑ 0.69% ↑ 1.48%

Table 2: Performance improvement for integrating our dual personalization mechanism to baseline
algorithms. Improvement denotes the performance gain beyond the baselines due to incorporating
our dual personalization mechanism (DualPer). The results are the mean and standard deviation of
five repeated trials, and the significant improvemments (over 5%) are highlighted.293

Results & discussion According to Table 2, all the baselines are significantly improved by inte-294

grating our dual personalization mechanism since our mechanism enhances their modeling of user295

personalization. The highest HR and NDCG increases exist at FedNCF on MovieLens-100K, i.e.,296

13.53% and 18.29%. The enhancement of FedNCF attains the most remarkable boost, which em-297

phasizes the necessity of learning personalized item embedding for each user and the capacity of298

our dual personalization mechanism. Comparing with Lastfm-2K and Amazon-Video, the improve-299

ment of this mechanism is more evident on the two MovieLens datasets, almost around 10%, where300

each user has more samples locally. In summary, our proposed dual personalization mechanism can301

help the local model to learn more information when training personalized item embedding, which302

benefits the recommendation system prominently.303

Impact Factor Analysis To further analysis the efficacy of PFedRec, we design comprehensive304

impact factor influence analysis, including latent embedding size, negative sample size and clients305

volume participationg in each round. In a nutshell, the best embedding size for all datasets is 32.306

Generally, the performance grows gradually as the negative samples increases. PFedRec is able to307

obtain the best performance regardless of different volume of client samples, while more clients308

facilitate the convergence. For more details please refer to Appendix D.3.309

6.5 A CLOSE LOOK OF PERSONALIZATION IN PFEDREC310

In our method, we learn the personalized item embedding network for each user based on the global311

item embedding to learn fine-grained personalization. To further verify and analyze the role of312

personalized item embedding, we conduct empirical experiments to answer the questions:313

• Q1: Why personalized item embeddings benefit recommendation more than the global one?314

• Q2: How specific are the personalized item embeddings between users?315

To answer Q1, We first discuss its straightforward insight, then we present visualization to demon-316

strate our claim. The recommendation system is supposed to provide user-specific recommendations317

by exploiting historical interactions. In the FedRec setting, item embedding is consistently consid-318

ered to maintain the common characteristics among users, and its role in depicting user-specific319

preferences has been neglected. On the other hand, describing users with common item embedding320

leads in noisy information, which may incur unsuitable recommendations. Through personalizing321

item embedding, we enhance personalization modeling in federated learning methods, which de-322

picts the user-specific preference. We will demonstrate how precise the personalized embedding323

describes user preference of our method compared with baselines.324
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We compare the item embedding learned by baselines with our method. Particularly, we select a325

user randomly from the MovieLens-100K dataset and visualize the embeddings by mapping them326

into a 2-D space through t-SNE (Maaten & Hinton, 2008). In this paper, we mainly focus on the327

implicit feedback recommendation, so each item is either a positive or negative sample of the user.328

As shown in Figure 2, the item embeddings of positive (blue) and negative (purple) samples are329

mixed together in baselines. However, they can be obviously divided into two clusters by PFedRec.330

We can easily conclude that our model learns which items the user prefers.
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Figure 2: TSNE visualization of item embeddings learnd by baselines and our method.

331 To answer Q2, we compare three usages of item embedding as follows:332

– Another random user: Each client is assigned with item embedding from another random user,333

i.e., every client runs with its score function and item embedding from another random user.334

– Global: We assign each client with globally shared item embedding, i.e., every client runs with its335

score function and global item embedding.336

– Own: It follows our setting that every client runs with its own score function and item embedding.337

Specifically, we first train PFedRec, then assign the learned item embeddings as the above three338

ways for inference. Experimental results are shown in Figure 3. Clients with their item embedding339

achieve the best performance, and clients with item embedding from others degrade significantly.340

Item embedding from another user contains a relatively low level of helpful information for in-341

ference, even less than the common characteristics in global item embedding. The personalized342

item embedding learned by PFedRec has been adapted to the client preference, and different clients343

achieve rather distinct item embeddings, which depict the user-specific information.344
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Figure 3: Client inference using different item embeddings.

7 CONCLUSION345

This paper proposes a novel personalized federated recommendation framework to learn many on-346

device models simultaneously. We are the first to design the dual personalization mechanism that347

can learn fine-grained personalization on both users and items. This work could be a fundamental348

work to pave the way for implementing a new service architecture with better privacy preservation,349

fine-grained personalization, and on-device intelligence. Given the complex nature of modern rec-350

ommendation applications, such as cold-start problems, dynamics, using auxiliary information, and351

processing multi-modality contents, our proposed framework is simple and flexible enough to be352

extended to tackle many new challenges. Moreover, the proposed dual personalization is a simple-353

but-effective mechanism to be easily integrated with existing federated recommendation systems.354
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A MORE DISCUSSION ABOUT DUAL PERSONALIZATION473

A.1 LEARNING EFFICIENCY OF PERSONALIZED SCORE FUNCTION474

Due to the design of dual personalization, the user’s critical information is decomposed into person-475

alized item embeddings and a personalized score function. Therefore, in most scenarios, including476

inactive users, the score function module does not demand a large neural network. The simple and477

swift multi-layer neural network is capable of tackling most scenarios. For example, in our imple-478

mentation, we use a one-layer MLP as the score function, which achieves significant performance479

improvement again baselines. Particularly, we conduct empirical experiments to analyze the model’s480

effectiveness on inactive users and details can be found in D.6. Moreover, to further improve the481

learning efficiency, we could pre-train a neural score model for each user group considering their482

demographic features.483

A.2 EFFECTIVENESS OF ONE-STEP FINE-TUNING484

The one-step gradient fine-tuning is necessary for our proposed PFedRec, and our design is sup-485

ported by the theoretical analysis in Pillutla et al. (2022). A significant consideration is that the486

PFedRec alternately tunes one gradient step each for the global item embedding module and the487

client-specific score function. This learning process is consistent with the partial personalization488

scheme studied in Pillutla et al. (2022), where theoretical analysis shows that one gradient step is489

sufficient and the algorithm’s convergence is guaranteed when the following assumptions hold: (1)490

The gradient of a local loss function is L-Lipschitz smooth. (2) The gradient of a local loss function491

has bounded variance. (3) the variance of the gradient of local loss functions on different clients is492

bounded. As the three assumptions are universal and hold for most functions, the conclusions from493

12



Under review as a conference paper at ICLR 2023

Pillutla et al. (2022) also hold in our proposed PFedRec, i.e., the one-step fine-tuning is sufficient494

and guaranteed to converge.495

B KEY ISSUES DISCUSSION IN FEDERATED RECOMMENDATION496

B.1 COMMUNICATION EFFICIENCY497

Due to the nature of federated learning, multiple rounds of parameter transfers are required between498

the server and the clients to complete the training process, and communication efficiency is an impor-499

tant consideration in federated learning modeling. For the FedRec model, there are three key factors500

that determine the communication cost, including the parameter volume M transmitted between501

server and clients, the number of sampled clients S in each round, and the total communication502

rounds T . The overall communication cost can be formulated as,503

C =M · S · T (9)

Since S and T are constant among different models, the communication cost is positively corre-504

lated to M, i.e., C ∝ M. Generally, item embedding is regarded as the shared component in505

FedRec research. For example, FedMF Chai et al. (2020) and FedRecon Singhal et al. (2021) only506

transmit item embedding whoseM = |I| · d, where |I| is the number of items and d denotes the507

embedding size. Besides, there are also some works that take the score function or user embed-508

ding as common components transmitted between server and clients together with item embedding.509

FedNCF Perifanis & Efraimidis (2022) and MetaMF Lin et al. (2020b) transmit both item embed-510

ding and score function whose M = |I| · d + |F|, where |F| is the parameter volume of score511

function, such as a three-layer MLP. FedGNN Wu et al. (2021) also share user embedding whose512

M = |I| · d + |F| + |U| · d, where |U| is the number of users. In our method, we only share513

item embedding among users, which results in the minimal transmission parameter volume, i.e.,514

M = |I| · d.515

In our implementation, each client does not need to maintain the full item embedding table. Since516

each user only trains her local model with historical interactions and randomly sampled negative517

instances2, e.g., 5 times of historical interactions. As a result, the number of items processed by the518

user is much less than the complete item list, which further improves the communication efficiency519

of the proposed method. Take Lastfm-2K as an example, the size of the item set is 12,454, and the520

average size of historical interactions is 116, which is further less than transmitting the full item set.521

Moreover, in this paper, we mainly focus on the fundamental recommendation task that only relies522

on the interaction matrix, and it is necessary to instantiate the item embedding module with the item523

embedding table. When implementing our framework under the scenario where item attributes are524

available, we can replace the item embedding table with a lightweight neural network similar to525

the score function. Then the local model on each device can be more lightweight, which results in526

less communication cost. More empirical results about communication efficiency can be found in527

Efficiency Comparison D.1, Convergence Analysis D.2 and Hyper-Parameter Study–Effect of528

client samples participating in each round D.3.529

B.2 TIME COMPLEXITY530

We analyze the time complexity of PFedRec. For clarity, we restate the notation that |I| · d is the531

item embedding table, where |I| is the number of items and d is the latent embedding size; θs is the532

score function, and we instantiate it with a single-layer MLP whose size is d; let e denotes the local533

training epochs, S is the sampled clients in each round and T is the total communication rounds.534

Since e is usually a small constant, e.g., e = 1 in our implementation, then the time complexity of535

PFedRec is O(|I|d2ST ).536

C EXPERIMENTAL SETUP DETAILS537

C.1 MORE DETAILS OF THE DATASETS538

2For practical implementation, the server could randomly sample ordinary instances rather than negative
instances only, and then send it to the client to judge whether it is a negative instance. The server’s item set size
is usually much bigger than the number of interacted items by a user. Thus most randomly selected instances
will be negative instances.
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We filter the users whose historic interactions are less than 5 and the characteristics of the four539

datasets used in experiments are shown in Table 3. Since we focus on the implicit feedback recom-540

mendation scenario in this paper, we transform the ratings in each dataset into implicit data, that is,541

let 1 mark that the user has rated an item.

DatasetDatasetDataset InteractionsInteractionsInteractions UsersUsersUsers ItemsItemsItems SparsitySparsitySparsity
MovieLens-100K 100,000 943 1,682 93.70%
MovieLens-1M 1,000,209 6,040 3,706 95.53%
Lastfm-2K 185,650 1,600 12,454 99.07%
Amazon-Video 63,836 8,072 11,830 99.93%

Table 3: Datasets statistics.
542

C.2 EVALUATION PROTOCOLS543

For dataset split, we adopt prevalent leave-one-out evaluation, following He et al. (2017). For each544

user, we take her last interaction as the test data and remain other interactions for training. Addition-545

ally, we regard the latest raction in the training set as the validation data to find hyper-parameters.546

For the final evaluation, we follow the regular strategy Koren (2008); He et al. (2017) that randomly547

samples 99 unobserved items for each user, ranking the test item among the 100 items. We evaluate548

the ranked list with Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) metrics.549

In particular, HR measures whether the test data is in the top-K list, while NDCG considers the test550

data’s position in the list. The two evaluation metrics could be formulated as follows,551

HR =
1

N

N∑
u=1

hits(u) (10)

where N is the number of users and hits(u) = 1 indicates that the test data of user u is in the top-K552

recommendation list, otherwise hits(u) = 0.553

NDCG =
1

N

N∑
u=1

log 2

log(pu + 1)
(11)

where pu denotes the position of test data of user u in the recommendation list and pu → ∞ when554

the test data is not in the top-K recommendation list. Here we set K = 10 for all experiments.555

C.3 PARAMETER CONFIGURATION556

In the implementation, we set the latent embedding size as 32 and the batchsize is fixed as 256 for all557

baselines and our method. The total number of communication rounds is set to 100, and this value558

enables all methods to be trained to converge through experiments. For learning rate, we search559

it in [0.0001; 0.0005; 0.001; 0.005; 0.01; 0.05; 0.1; 0.5] and the specific setting on four datasets are560

summarized in Table 4. For other empirical experiments of our method, we directly used the same561

parameters without researching.

Method ML-100K ML-1M Lastfm-2K Amazon
NCF 0.005 0.005 0.005 0.005
MF 0.0005 0.0005 0.001 0.001
FedNCF 0.5 0.5 0.5 0.5
FedNCF w/ DualPer 0.5 0.5 0.5 0.5
FedRecon 0.1 0.1 0.1 0.05
FedRecon w/ DualPer 0.1 0.1 0.1 0.1
FedMF 0.1 0.1 0.05 0.05
PFedRec (Ours) 0.1 0.1 0.05 0.01

Table 4: Learning rate configuration for all methods on four datasets. w/ DualPer indicates the
model enhanced with our proposed dual personalization mechanism.

562
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D MORE EXPERIMENTAL RESULTS563

D.1 EFFICIENCY COMPARISON564

In federated learning, space and time efficiency are prominent factors for application. We compare565

the model’s efficiency, including parameter volume, training epochs and running time, as shown in566

Table 5. According to the results, (1) FedNCF has the largest volumes of parameters. Parameters of567

recommendation systems consist of several parts, i.e., user and item embedding and score function.568

The embedding size is the same for all methods in each dataset. For score function, FedNCF employs569

a three-layers MLP, which leads to much more parameters than one-dimensional embedding in other570

methods. (2) FedRecon takes the most training epochs to converge. The reconstruction mechanism571

in FedRecon demands retraining the local module from scratch in each round, which results in572

more training epochs. Taking MovieLens-100K as an example, our method converges in 61 training573

epochs, while FedRecon requires 465 training epochs, approaching 8 times ours. FedNCF takes the574

second longest training epochs and training time. On MovieLens-100K, the total training time of575

FedNCF is about 2 times as long as ours. (3) The space and time efficiency of FedMF is at the576

same level as our method. Our method enhances the personalization modeling and achieves the best577

performance without extra computational complexity. In our experiments, we found that just one578

local gradient descent step to learn personalized item embedding can yield advanced performance.

Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
parameters epochs time (s) parameters epochs time (s) parameters epochs time (s) parameters epochs time (s)

FedNCF 86,753 90 1,800 314,625 98 18,718 452,481 95 4,750 639,617 60 5,820
w/ finetune 86,753 90 1,876 314,625 98 19213 452,481 83 4,680 639,617 32 4,120
FedRecon 53,856 465 9,486 118,624 470 123,892 398,560 98 7,154 378,592 57 3,819
w/ finetune 53,856 444 9,380 118,624 476 125,230 398,560 87 6,740 378,592 91 4,760
FedMF 53,856 72 936 118,624 93 12,927 398,560 82 3,280 378,592 56 3,920
PFedRec 53,857 61 854 118,625 95 13,585 398,561 60 2,340 378,593 75 5,100

Table 5: Efficiency comparison results on four datasets, including model parameter volume, training
epochs and running time.

579
D.2 CONVERGENCE ANALYSIS580

We show the convergence curves of the two evaluation metrics for our method and baselines on four581

datasets. As shown in Figure 4, our method achieves the fastest convergence on all datasets and met-582

rics almost all the time, followed by FedMF and FedRecon. FedNCF has the slowest convergence583

speed because it has the most parameters and requires a longer number of iterations.
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Figure 4: Model convergence comparison. The horizontal axis is the number of federated optimiza-
tion rounds, and the vertical axis is the model performance, where (a)-(d) are HR@10 metric and
(e)-(h) are NDCG@10 metric.
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D.3 HYPER-PARAMETERS STUDY584

Effect of latent embedding size We tune the latent embedding size from {16, 32, 64, 128}. Ac-585

cordingly, the architecture of the score function, i.e., one-layer MLP, is 16 → 1, 32 → 1, 64 → 1586

and 128 → 1, respectively. Experimental results are shown in Table 6. Almost all four datasets587

achieve the best results when the latent embedding size is 32. Due to the limited data of a single588

user, increasing the model parameters did not obtain further performance improvement. Generally,589

setting the dimension to 16 or 32 can achieve advanced performance. A small volume of parameters590

helps to build a lightweight on-device recommendation model.

Dataset Metrics 16 32 64 128

Movielens-100K
HR@10 72.81 ± 0.90 71.62± 0.83 71.64± 0.44 71.75± 0.80

NDCG@10 43.32± 0.43 43.44± 0.89 44.70± 1.01 45.42 ± 0.88

Movielens-1M
HR@10 72.70± 0.18 73.26 ± 0.20 71.91± 0.41 70.67± 0.15

NDCG@10 43.04± 0.19 44.36 ± 0.16 44.19± 0.15 43.74± 0.36

Lastfm-2K
HR@10 81.93± 0.80 82.38 ± 0.92 81.93± 0.41 82.01± 0.64

NDCG@10 72.47± 0.65 73.19 ± 0.38 72.41± 0.88 72.63± 0.29

Amazon-Video
HR@10 59.96± 0.18 60.08 ± 0.08 59.75± 0.15 59.60± 0.16

NDCG@10 39.14 ± 0.07 39.12± 0.09 39.07± 0.14 38.99± 0.11

Table 6: Performance of different latent embedding sizes on four datasets. The results are the mean
and standard deviation of the five repeated trials. Each number has an order of magnitude of 1e-2.

591

Effect of negative sample size We set the negative sample size from 1 to 10 and observe the592

effect on model performance. Experimental results are shown in Figure 5. For two MovieLens593

datasets, model performance improves significantly as the number of negative samples increases.594

Since these two datasets have more user data than Lastfm-2K and Amazon, they contain richer user595

preference information to learn. Sampling more negative instances help the model to further identify596

user preferences. On the other two datasets, 4 negative samples are enough to obtain ideal model597

performance.

1 2 3 4 5 6 7 8 9 10
Number of Negatives

35

45

55

65

75

85

95

Pe
rf

or
m

an
ce

(a) MovieLens-100K

HR@10
NDCG@10

1 2 3 4 5 6 7 8 9 10
Number of Negatives

35

45

55

65

75

85

95

Pe
rf

or
m

an
ce

(b) MovieLens-1M

HR@10
NDCG@10

1 2 3 4 5 6 7 8 9 10
Number of Negatives

65

70

75

80

85

90

Pe
rf

or
m

an
ce

(c) Lastfm-2K

HR@10
NDCG@10

1 2 3 4 5 6 7 8 9 10
Number of Negatives

30

40

50

60

70

80

Pe
rf

or
m

an
ce

(d) Amazon

HR@10
NDCG@10

Figure 5: Performance under different negative sample numbers for each positive sample.
598

Effect of client samples participating in each round There is a trade-off between client sam-599

pling ratio and communication efficiency in federated optimization. Generally, the more clients are600

selected to participate in the global aggregation, the faster the model converges in each round. How-601

ever, in the physical scenario, it is difficult for the server to collect the complete model information602

from all the clients. Particularly, there are a large number of user clients in the recommendation603

scenario, which further increases the difficulty. To verify the relationship between the model’s con-604

vergence and the clients’ participation in each round, we conduct experiments on four datasets with605

various client samples. To create a consistent validation environment for all datasets, we set the606

number of users selected in each round as 100, 200, 300, 400 and 500, respectively. Experimental607

results are represented in Figure 6.608

We run the model until convergence and report the best validation performance with the corre-609

sponding epoch. According to the experimental results, we can observe that PFedRec could reach610

consistently advanced performance in all settings on all datasets, even only with 100 clients selected611

in each round during model training. On the other hand, it is obvious that more clients participating612
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Figure 6: Performance under different client numbers participating in each round.

in each round of training lead to a quicker convergence. PFedRec supports the server to update with613

insufficient clients accessible, which is ubiquitous in physical circumstances.614

D.4 PROTECTION WITH DIFFERENTIAL PRIVACY615

In addition to data locality inherited from the FL framework, introducing privacy-preserving meth-616

ods into our method can further enhance privacy protection in FedRec. In our model, item embed-617

ding is the shared component in the federated optimization process. There is the risk of user interac-618

tion information exposure when the client uploads the updated item embedding to the server. Adding619

noise to the item embedding is a general method to defend against the privacy leakage attack, such620

as introducing differential privacy and homomorphic encryption into the model. Moreover, design-621

ing a reasonable pseudo-interactions injection method is also a potential solution to further enhance622

privacy protection, which can be discussed in future work.623

Here we integrate the local differential privacy technique Choi et al. (2018) into our method as an624

example. Particularly, we add the zero-mean Laplacian noise to the client’s item embedding before625

uploading to the server,626

θm = θm + Laplace(0, λ) (12)

where λ is the noise strength. We set λ = [0, 0.1, 0.2, 0.3, 0.4, 0.5] to test our method’s performance627

and the results are shown in Table 7. We can see that the performance declines slightly as the noise628

strength λ grows, while the performance drop is still acceptable. For example, when we set λ = 0.4,629

the performance is also better than baselines in most cases. Hence, a moderate noise strength is630

desirable to achieve a good balance between recommendation accuracy and privacy protection.

Dataset Noise strength λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5

ML-100K
HR@10 71.62±0.83 71.45±1.01 71.26±0.62 71.13±1.16 70.84±0.96 70.88±0.97
NDCG@10 43.44±0.89 43.36±0.85 43.30±0.81 43.22±0.58 43.14±0.75 43.21±0.69

ML-1M
HR@10 73.26±0.20 73.13±0.11 73.19±0.21 73.05±0.21 73.18±0.29 73.08±0.19
NDCG@10 44.36±0.16 44.16±0.18 44.25±0.32 44.26±0.14 44.23±0.24 44.18±0.40

Lastfm-2K
HR@10 82.38±0.92 82.04±0.63 81.91±0.95 81.85±0.23 81.98±0.52 81.88±0.34
NDCG@10 73.19±0.38 72.41±0.39 72.23±0.49 72.43±0.68 72.39±0.27 72.36±0.42

Amazon
HR@10 60.08±0.08 59.31±0.12 59.29±0.04 59.21±0.02 59.15±0.62 59.06±0.71
NDCG@10 39.12±0.09 37.97±0.12 37.92±0.03 37.83±0.05 37.81±0.08 37.34±0.11

Table 7: Results of applying differential privacy technique into our method with various Laplacian
noise strength λ.

631

D.5 EVALUATION BASED ON FULL RANKING LIST632

As illustrated in C.2, in the main experiments, we adopt the efficient sampled metric. To provide633

a more comprehensive comparison, we conduct experiments to evaluate the test item in the full634

ranking list, which is more challenging than the sampled metric. As shown in Table 8, our proposed635

method still outperforms other baselines in all benchmark datasets, which emphasizes its outstanding636

efficacy.637
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Method MovieLens-100K MovieLens-1M Lastfm-2K Amazon-Video
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Rec NCF 14.00± 0.62 7.23± 0.53 6.69± 0.39 3.27± 0.37 30.23± 1.18 19.75± 0.34 7.03± 0.17 2.52± 0.35
MF 15.76± 0.68 8.35± 0.43 8.80± 0.19 4.38± 0.14 37.06± 0.43 25.88± 0.50 7.19± 0.23 2.74± 0.31

FedRec

FedNCF 9.95± 0.43 5.03± 0.12 5.70± 0.31 2.87± 0.15 15.43± 1.33 7.09± 1.69 6.96± 0.07 2.44± 0.04
FedRecon 13.10± 0.75 6.92± 0.31 6.80± 0.21 3.25± 0.11 31.63± 0.94 20.00± 2.76 6.70± 0.09 2.05± 0.12
FedMF 16.22± 0.85 8.58± 0.37 8.51± 0.11 4.17± 0.02 38.24± 0.16 19.66± 3.07 7.11± 0.42 2.46± 0.59
PFedRec (Ours) 19.19± 0.32 10.57± 0.25 9.75± 0.23 4.83± 0.15 56.65± 0.40 33.11± 5.52 7.28± 0.12 2.42± 0.04

Table 8: Performance of HR@10 and NDCG@10 on full ranking list.

D.6 MODEL PERFORMANCE ON INACTIVE USERS638

In the recommendation task, there are usually some users with fewer available interactions, and we639

call them inactive users, which poses a great challenge for model training. Here we show the model640

performance on inactive users to verify the effectiveness of our method. Particularly, we count the641

number of ratings from all users, then extract inactive users and calculate their performance. The642

inactive users’ statistics of each dataset are summarized in Table 9. We omit the Amazon-Video due643

to its high sparsity, where the average size of historical interactions for each user is 8.

Dataset Interactions range Inactive users volume Ratio of inactive users
ML-100K 20∼30 199 21.10%
ML-1M 20∼30 751 12.43%
Lastfm-2k 5∼20 641 40.06%

Table 9: Inactive users’ statistics of each dataset.
644

The comparison results of performance on inactive and full users are shown in Table 10. Our method645

achieves similar or even better performance on the inactive users set than the full users set, indicating646

that our method can effectively tackle inactive users.

User group MovieLens-100K MovieLens-1M Lastfm-2K
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Full users 71.79 43.39 73.10 44.24 82.50 73.27

Inactive users 79.40 52.51 77.76 53.24 78.94 69.08

Table 10: Comparison results of HR@10 and NDCG@10 on inactive users and full users.
647
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