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Abstract

We initiate the study of contextual dynamic pricing with a heterogeneous population
of buyers, where a seller repeatedly posts prices (over 1" rounds) that depend on the
observable d-dimensional context and receives binary purchase feedback. Unlike
prior work assuming homogeneous buyer types, in our setting the buyer’s valuation
type is drawn from an unknown distribution with finite support size K,. We
develop a contextual pricing algorithm based on optimistic posterior sampling with

regret 6([( +VdT), which we prove to be tight in d and T up to logarithmic terms.
Finally, we refine our analysis for the non-contextual pricing case, proposing a
variance-aware zooming algorithm that achieves the optimal dependence on K.

1 Introduction

In online learning for contextual pricing, a learner (aka seller) repeatedly sets prices for different
products with the goal of maximizing revenue through interactions with agents (aka buyers or
customers). Concretely, in each round ¢t = 1, ..., T, nature selects a product with a d-dimensional
feature representation u; (context) and the seller selects a price p; > 0. In the simplest variant, the
linear valuation model, customers have a fixed intrinsic valuation model (type) that is unknown to
the learner; this has a d-dimensional representation 6* whose coordinates reflect the valuation that
each product feature adds, i.e., the customer’s valuation is v; = (6*, u;) + &, where ¢ is a noise term.
The customer makes a purchase only when their valuation is higher than the price, i.e., v; > p;. The
learner’s goal is to maximize revenue, i.e., the sum of the prices in rounds when purchases occur. An
equivalent objective is to minimize regret, which is measured against a benchmark that always selects
the customer’s valuation as the price for the given round.

Before outlining our contributions, we highlight the unique challenge of online learning in contextual
pricing. One key difficulty is that the learner faces both an infinite action space (i.e., all possible
prices) and a discontinuous revenue function; indeed, even small price increases can deter a buyer
from purchasing, hence causing sharp revenue loss for the learner. However, the problem offers a
richer feedback structure than classical multi-armed bandits: a non-purchase indicates that all higher
prices would also be rejected by the buyer, while a purchase confirms that all lower prices would
be accepted too. The two primary approaches from the literature to tackle this problem involve
estimating the unknown parameter 6* through online regression or multi-dimensional binary search
(see Section 1.1 for further discussion).
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A crucial limitation for both approaches is that they require all customers to behave homogeneously
according to a single type 6*; see the related work section for results robust to small deviations from
this assumption. Moving beyond this homogeneity assumption, we pose the following question:

How can one design contextual pricing algorithms with a heterogeneous population of customers?

1.1 Our Contribution

Our setting (Section 2). To study contextual pricing with a heterogeneous buyer population, we
assume that the type 6, in round ¢ is drawn from a fixed, unknown distribution D,. When D, is
supported on a single type 6, we recover the homogeneous setting. In our setup, the number of
distinct buyer types K, = | supp D,| reflects the degree of heterogeneity. We assume that K, > 1
throughout the paper.

There are several obstacles to applying existing algorithms from the literature. First, canonical
contextual pricing algorithms based on regression either compete against (simple) linear policies
or assume context-independent and identically distributed (i.i.d.) valuation noise. In contrast, the
optimal policy in our setting may best respond based on a context-dependent type rather than a fixed
type, and the stochasticity due to heterogeneity is inherently context-dependent and thus non-i.i.d.
Second, given that the buyer types are not observable, one cannot connect the observed feedback
to shrinkage of type-dependent uncertainty sets; this rules out running canonical multi-dimensional
binary search / contextual pricing algorithms for each buyer type in parallel. Third, since in our
setting there is a continuum of actions, any canonical contextual bandits algorithm whose regret
scales with the discretized action count (e.g., EXP4) will suffer suboptimal performance.

Our contextual pricing algorithm (Section 3). To tackle the above challenges, we employ recent
advances in the contextual bandit literature that attain a better scaling with the number of actions,
thus evading the shortcomings of EXP4 with naive discretization. In particular, we build on the
optimistic posterior sampling (OPS) approach [29] which, in our setting, maintains a posterior £
over all candidate type distributions. We call these candidate type distributions models and refer
to their (possibly infinite) family as D. At a high level, in every round, OPS best responds to a
model sampled from y,. As typical in online learning, the posterior update penalizes models that
disagree with the observed feedback (model mismatch) aiming to converge to the model D,. To
encourage exploration in the absence of full information, this penalty is reduced by an optimism
bias term that rewards models with the highest potential to positively contribute to the revenue. The
OPS approach enables regret bounds of /T - ¢ - log | D|, scaling with a disagreement coefficient c
that measures the per-context structural complexity of the reward functions and captures the tension
between exploration and exploitation. This coefficient is always bounded by the number of actions
but can be much smaller in general.

Our main technical contributions in adapting OPS to heterogeneous contextual pricing are twofold.
First, to bound the disagreement coefficient ¢, we observe that, for any fixed context, the aggregate
demand function induced by D, has at most K, “jumps”,l thus creating K, + 1 intervals. Over each
interval, we bound the disagreement coefficient by a factor of 2. Combining these arguments with a
novel decomposition lemma for the disagreement coefficient of functions with K, breakpoints, we
show that ¢ < 2(K, 4+ 1). When K, is known, we apply a variant of OPS over a finite covering of the
class D containing all possible distributions over K, types, of log cardinality d K, log T'. Second, to
extend our sublinear regret guarantee to the infinite model class D, we modify OPS to conservatively
perturb its recommended prices (which cannot overly impact regret due to one-sided Lipschitzness
of the revenue function). We then construct a coupling between the actual trajectory of OPS and
one where D, belongs to the finite cover, allowing us to transfer regret bounds. Finally, we adapt to
unknown K, by initializing OPS with a non-uniform prior over models. These technical contributions
enable us to show a regret guarantee of O (K, \VdT ). Finally, we show that this guarantee is optimal

(up to logarithmic terms) with respect to the dependence on both the contextual dimension d and the
time horizon T, establishing a lower bound of 2(v/K,dT) for sufficiently large T = Q(dK?3).

Non-contextual improvements (Section 4). The above upper and lower bounds raise a natural
question on the optimal dependence of the regret on the number of buyer types K, ; we resolve this

"Each “jump” corresponds to a change of type from (say) type 4 to type i + 1.



question in the non-contextual version of the problem (d = 1) by providing an algorithm with an

upper bound of O(v/ K, T). Our algorithm, ZoomV, combines zooming (i.e., adaptive discretization)
methods from Lipschitz bandits [13] with variance-aware confidence intervals [2]. Our analysis
shows that the regret of ZoomV scales with a novel variance-aware zooming dimension that can be
significantly smaller than the standard measure of complexity for Lipschitz bandits. For pricing, this

variance adaptation unlocks our O(min{v/K, T, T2/3}) bound (versus O(T?/?), obtained via the
standard zooming analysis).

We note that the non-contextual version of pricing for heterogeneous buyers was previously studied
by [4], who establish a matching upper and lower bound if all types are “well separated” from each
other. Although our algorithmic approach towards this guarantee is very different, our result can be
viewed as a strengthening of theirs by removing this separation assumption.

Stronger type observability (Section 5). Finally, we consider contextual pricing under the as-
sumption that the learner can identify each arriving type, i.e., where the learner observes ex-post
information about the sampled type 6;. We analyze two observability models: one where the learner
receives a discrete identifier z; € [K,] — under which a computationally efficient pricing algorithm

matches the 5(K .V dT) regret bound of OPS — and another where the full type vector 6; € B is

observed — for which we reduce the dependence on K, and d to achieve regret O(y/min{K,, d}T).
These results demonstrate how richer feedback reduces complexity in dynamic pricing.

Related work. We briefly review three existing lines of work, deferring full discussion to Appendix A.
The closest to ours is contextual pricing/search, where a learner interacts with nature to learn a
hidden vector 6* € R? while receiving single-bit feedback [5, 18, 21, 17, 12, 11, 6, 19]. Under
an appropriate pricing loss, this setting reduces to ours with a homogeneous buyer population, i.e.,
K, = 1. However, the deterministic nature of the feedback leads to aggressive search policies via
cutting planes that do not lend themselves to the heterogeneous case. Although some works tolerate
1.i.d., context-independent valuation noise [12, 11, 6, 19], their methods do not treat our non-i.i.d.,
context-dependent noise due to heterogeneity. Next is the case of non-contextual dynamic pricing
where d = 1, originally treated with multi-armed bandits methods by [14]. The closest non-contextual
work is [4], whose finite-types model reduces to ours with d = 1. We improve upon their regret
bound, but neither our improvement nor the existing methods generalize readily to the contextual
setting. Finally, our setting relates to Lipschitz bandits. Although revenue is not fully Lipschitz, it
satisfies a one-sided Lipschitzness, enabling the use of zooming [13] when d = 1 (see, e.g., [24]).
We successfully refine these for the non-contextual case, but contextual variants of zooming [26, 15]
scale with complexity parameters which admit no direct bounds for heterogeneous pricing.

2 Setup and Preliminaries

Notation. Let || - || and (-, -) denote the Euclidean norm and inner product on R9. Let S9~1 B¢ C R4
denote the unit sphere and ball, respectively. Let A(.S) denote the set of all probability measures on
a measurable set S C R9, and let supp(D) denote the support of D € A(R?). We use Ay (S) for
those D € A(S) with | supp(D)| < k. For a positive integer m, let [m] = {1,2,...,m}.

Problem setup. We consider 7" rounds of repeated interaction between a seller, a population of
buyers, and an adversary. At each round ¢ € [T, the seller posts a price p; € [0, 1] for an item to
be sold and a buyer, sampled from the population, decides whether or not to buy the item based
on their valuation v; € [0, 1]. We denote the indicator of their purchase by y; = 1{v; > p;}. The
valuation of the buyer is determined by two factors: their type 6;, which encodes their intrinsic
preferences, and an external context u;, which describes the current item to be sold and any relevant
environmental factors. The learner does not know 6,, but they do know u;. We employ a linear
valuation model, supposing that 6, and u, lie in d-dimensional spaces © C [0, 1]d and Y C ST,
respectively, and take v, = (0, u;). We assume that (§,u) € [0,1] forall @ € © and u € U. We
impose no further assumptions on the contexts, allowing them to be generated (potentially adaptively)
by the adversary. On the other hand, we assume that each 6, is sampled independently from a fixed
distribution D, € A(O) that describes the buyer population, unknown to the seller. All together, the
following occur at each round ¢ € [T7:

1. the adversary selects a context u; € U;



2. abuyer arrives with type 6; € © sampled independently from D,, with valuation v; = (u¢, 6;);
3. the seller observes u; and posts price p; € [0, 1] for the item;
4. the seller observes the purchase decision y; = 1{v; > p;} and receives revenue p;y;.

Benchmark. The seller’s goal is to maximize their cumulative revenue compared to that which they
could have achieved with knowledge of D,. To express this concisely, we introduce some additional
notation. Each distribution () over valuations in [0, 1] induces the following:

e a demand function demg (p) == P,q[v > pl,
e an expected revenue function revg(p) := p - demg(p),
e arevenue-maximizing best response brg = arg max,co 1] revg(p) (breaking ties arbitrarily),

e and a gap function gap (p) = revg(brg) — revg(p).

Once we restrict to a fixed context u € U, each type 6 € © induces valuation v = (u, #). Thus, each
type distribution D € A(O) induces a projected valuation distribution Q = proj(D, u) € A([0, 1)),
defined as the law of (u,6) when 6 ~ D. We then set demp(p,u) = demq(p), revp(p,u) =
revq(p), brp(u) = brg, and gapp, (p, u) = gapg(p), accordingly. We abbreviate a subscript of D,
by “x” alone, writing, e.g., dem,(p, u) and br, (u). These details are summarized in Table 1.

context u; to a posted price p;. An adversary policy B is a (potentially randomized) map from a
history {u,, 0., p,, yT}Te[t,l] to the next context u;. We then define the seller’s pricing regret by

A seller policy A is a (potentially randomized) map from a history {u,,p,, ¥, }.—} and the current

RA,B(T) = Zte[T] gap*(pt7ut) = Zte[T] (reV*(br*(Ut),Ut) - rev*(pt7ut))7

where {uy, pt }1er) are selected according to A and B. We will omit the policies from the subscript
when clear from context. We focus on controlling the pricing regret in expectation, and will say that
A satisfies a regret bound f(T") if E[R 4 5(T)] < f(T) for all B.

Our guarantees will scale with context dimension d and the degree of heterogeneity, which we quantify
via the support size K, := | supp(D,)| (that may be infinite). We do nor assume that K, is known to
the seller. Designing an effective seller policy is challenging because D, K, and the realized buyer
types are unknown to the seller, who must carefully balance exploration and exploitation given only
the current context and the history of purchase outcomes.

Basic pricing facts. Finally, we provide some basic properties of the pricing problem, with proofs
in Appendix B. Essential for this work is the one-sided Lipschitzness of the expected revenue function.
This is a consequence of the monotonicity of demand functions, and it has previously been used to
apply techniques from Lipschitz bandits to non-contextual pricing [24].

Lemma 2.1 (One-sided Lipschitzness). Fix any distribution Q € A([0,1]) and let 0 <p < p' < 1.
We then have revg(p') — revg(p) < demg(p)(p’ —p) <p' —p.

Problem parameters (known) Instance parameters (unknown)
context dimension d type distribution D, € A(©)
context/feature space U C S?1 # types K, = |supp(D,)|

type/preference space  © C [0,1]¢

Non-contextual primitives Contextual primitives
w.r.t. valuation dist. Q € A([0, 1]) w.r.t. type dist. D € A(O) and context u € U
demand demg(p) = Pyqlv > p] projected value dist.  proj(D,u) € A([0,1])
revenue revg(p) = p- demg(p) rev./dem./gap fo(p,w) = foroj(D,u) (p)
gap gapg(p) =maxrevg(x)—revg(p) rev./dem./gap for D, fi(p,u)=fp,(p,u)

Table 1: Summary of main notation.
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Throughout this work, we must handle distributional uncertainty over value distributions. To compare
two distributions P, @ € P([0, 1]), we employ the Levy metric defined by

dy(P,Q) =1inf{e > 0:demp(x —¢) — e < demg(z) < demp(x +¢)+cVzx e R}. (1)

This quantity is at most 1 and equals the side length of the largest square which can be inscribed
between the graphs of demp and demg (equivalently, the CDFs of P and ). For type distribu-
tions D, D’ € P(O), we use the Levy distance between their projected value distributions, taking
di (D, D') := sup,ega—1 dr,(proj(D, u), proj(D’, w)). We use this metric because, if D and D’ are
close under dr,, then there exists a policy which performs well on both of them; this motivates the use
of the Lévy metric throughout the dynamic pricing literature (see, e.g., 23).

Lemma 2.2 (Pricing implication of Lévy metric bound). Suppose that D, D’ € A(O) satisfy
dr (D, D') < e. Then the conservative best-response policy w(u) = max{brp(u) — ¢, 0} satisfies
revp(m(u),u) > revp(brp(u),u) — € and revp: (m(u), u) > revp: (brp/(u),u) — 3¢ for all u € U.

3 Contextual Algorithm with Optimal Dependence on d and 7'

We now develop statistically efficient (albeit computationally inefficient) algorithms for contextual
pricing. In Section 3.1, we treat the simpler setting where D, belongs to a finite model class D and
K, is known. In Section 3.2, we remove these two assumptions, achieving regret 6(K* VdT ). We
also provide a regret lower bound of Q(v/K,dT), even if K, is known, thus proving the optimality
of our regret bound’s dependence on d and 7'. Omitted proofs appear in Appendix C.

3.1 Warm-Up: Heterogeneous Contextual Pricing with a Finite Model Class

As a warm-up, we consider pricing when D, belongs to a known, finite model class.

Assumption 3.1. Assume that D, € D, where D C A(O) is finite and known to the seller.

This realizability assumption simplifies our analysis, and the resulting algorithm extends naturally to
infinite classes. We employ optimistic posterior sampling (OPS), originally studied for contextual
bandits by [29] under the name “Feel-Good Thompson Sampling.” In our instantiation for contextual
pricing, OPS (Algorithm 1) maintains a posterior distribution over models, initialized at prior p; €
A(D). Atround t with context u; € U, we sample a model D, ~ u,, play the best-response price
pt = brp, (ut), and observe purchase feedback y;. Then, for each candidate model D € D, we
update its posterior weight ;1 1(D) according to the loss £ (proj(D, ut), pt, y: ), defined by

0x(Q,p,y) = (y — demq(p))® — Arevg(brg) .

model mismatch optimism bias

The “model mismatch” penalty captures the extent to which the observed demand y; differs from
that predicted by D when p; is played. In particular, as a function of D € D, the expected model
mismatch E,, [(y: — demp(pt, us))? | pt] is minimized only by those models D which make the
same prediction as D,, i.e., those for which demp(ps,us) = demy(ps, us). On the other hand,
the “optimism bias” reduces the loss for models which have the potential to provide large revenue,
ensuring that we perform sufficient exploration.

ALGORITHM 1: 0PS: Contextual Pricing with a Finite Model Class
Input: finite model class D C A(O), support size K > 1;
initialize uniform prior y1 = Unif(D) and optimism strength A = \/log(|D|)/ KT}
for each round t € [T] do
observe context u;;
sample model D; ~ p;
play p; = brp, (us) and observe y;
update fi;41(D) o p1t(D) exp(—Lx(proj(D, us), pt, y)) for each D € D

Theorem 3.2. Under Assumption 3.1, 0PS with K = K, achieves regret O(/K, T log |D|).



The requirement of known K, is imposed for simplicity and will be removed in Section 3.2. To
prove Theorem 3.2, we employ a disagreement coefficient that controls the per-context complexity of
balancing exploration and exploitation. In general, for an arbitrary measurable space X and function
class F : X — R, we define the disagreement coefficient of F by

2

, §
dis(F) = sup sup — P, (Hf € F By [f(@ <2 Alf(p)| > 5). )
€,0>0veA(X) €

In our setting, each f will measure the discrepancy between the demand function predicted by some
model D and that of the true model D,, for a fixed context (full details will appear shortly). While
not the most primitive complexity measure, variants of this quantity have been successfully used
to analyze a wide variety of structured bandits and active learning problems (see Remark 3.7). The
62 /e scaling was historically chosen so that dis(F) can be directly bounded by the domain size
|X'|. For our application, X = [0, 1] is the (infinite) price set and each function f € F, induced by a
model D € D and context u € U, measures the discrepancy between the demand functions of D and
D, after projection onto u, i.e., f(p) = demp(p,u) — dem,(p, u). In particular, we set

dis(D, D,) == sup dis({demp(-,u) — dem,(-,u) : D € D}).
ueU
By this definition, if dis(D, D) is small and the seller plays price p ~ v when faced with context u,

it is unlikely for a model D to disagree with D, at p if it is close to D, under the L2(V) norm, i.e., if
Eq~v[(demp (g, u) — demy (g, u))?] is small. In particular, playing p ~ v guarantees that

VD € D, |(revp —rev,)(p,u)| >0 = Egou[|(demp — dem,)(q, u)|2] > g2

D poorly models revenue at p D incurs substantial least squares loss on average

with probability at least 1 — f;—zdis(D, D,). Since OPS penalizes models with substantial least squares
loss, while incentivizing exploration via its optimism bonus, we are able to show the following.

Lemma 3.3. Under Assumption 3.1 with optimism strength A > 0, OPS (Algorithm 1) achieves regret
O(A dis(D, D,)T + log(|D|)/)\).

The proof in Appendix C.3 combines the OPS analysis of [29] with a decoupling lemma due to
[8]. To control dis(D, D,.), we show that each function of the form demp(-,u) — dem, (-, u) can
be decomposed into K, + 1 non-increasing pieces. In Appendix C.4, we prove the following
disagreement coefficient bound for non-increasing functions.

Lemma 3.4. Let F : [0,1] — R be the set of nonincreasing functions. Then dis(F) < 2.

Next, we examine the useful notion of composite function classes. A function class G : Z — R
is called an N-composite of F : X — R if there exists a disjoint partition Z = 2, U --- U Zyn
and mappings {h; : Z; — X'};c|n) such that each g € G can be decomposed as g(x) = fi(hi(x))
forall x € Z; and i € [N], for some choice of {f; : & — R},c;n). We show the following in
Appendix C.5.

Lemma 3.5. If G is an N-composite of F, then dis(G) < Ndis(F).

With these results in hand, we bound dis(D, D, ) = O(K,) and prove the theorem. Even though the
action space is infinite, the disagreement coefficient matches that which would arise with K, actions.

Proof of Theorem 3.2. For each u € U, the function dem, (-, u) is piecewise constant with K, + 1
sections, since jumps can only occur at the projections of the K, types. For any D € D, the demand
demp(-,u) is monotonic, since increasing price always reduces demand. Thus, demp(-,u) —
dem,(, u) is non-increasing on each of the K, + 1 sections, and so the function classes defining
dis(D, D,.) are (K, + 1)-composites of the non-increasing function class. Applying Lemmas 3.4
and 3.5 then implies that dis(D, D,.) < 2(K, + 1). The theorem then follows by the regret bound of
Lemma 3.3 and our choice of \. O

Remark 3.6 (Comparison to Thompson sampling). Standard Thompson sampling corresponds to the
alternative choice of log losses: £(Q,p,y) = 10g P Ber(demq (p))[2 = y] = ylogdemg(p) + (1 —
y)log(1 — demg(p)). In comparison, OPS uses the squared loss (this is not essential but simplifies
analysis) and an optimism bias towards models under which the seller can attain large revenue. This
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is crucial for obtaining frequentist (rather than Bayesian) regret bounds, as outlined in [29]. One
appealing aspect of the log loss is that it eliminates models which predict that the observed feedback
would never occur, mirroring the elimination-based methods for contextual pricing when K, = 1.
Thus, one natural question (beyond the current scope) is whether OPS with log loss achieves regret
scaling logarithmically in T when K, = 1.

Remark 3.7 (Relation with existing results). Variants of the disagreement coefficient and the related
Alexander capacity are well-studied in the active learning and empirical process theory literature
[9]. The version above was first considered by [7]. [8] proved a regret bound which translates to

O(+\/dis(D)T log | D|) in our setting, matching Theorem 3.2. However, the estimation-to-decisions
(E2D) meta-algorithm which they employ is non-constructive, hence we apply OPS instead. In [29],
the regret of OPS is controlled by a distinct “decoupling coefficient.” Our proof of Lemma 3.3 shows
that a (slightly modified) decoupling coefficient is bounded by the disagreement coefficient.

3.2 The General Case

We now seek to eliminate the assumptions that D, belongs to a finite class D and that the support
size K, is known to the seller. For the first point, we loosen the requirement that D, belongs to
D and take D to be a large, finite cover of the full distribution space A(©). Then, we replace the
uniform prior 1y with a non-uniform prior that places less weight on models with large support sizes.
Ultimately, this will enable a choice of optimism strength A that is independent of K, achieving our
second goal. Unfortunately, if D, is close but not equal to a model in D, our analysis of OPS fails.

To remedy this, we employ perturbed OPS (POPS, Algorithm 2), an OPS variant with conservatively
perturbed and discretized prices. This modified algorithm and its analysis require some new notation.
Given a value distribution @ € A([0, 1]), define the e-smoothed demand function demg, by

demg, (p) = Esunit(j0,c))[demq (p — 9)].

Similarly, we let revg, (p) := pdemg, (p). Define contextual extensions dem®, (p, u) and dem, (p, u)

as in the non-smoothed case. For discretization, write P, := eNN [0, 1] for prices which are multiples
of € and let brg, = arg max,p_rev®(p) (lifting to bry, (u) as in the non-smoothed case).

Now, at each round ¢ € [T'], POPS samples a model D; ~ p; from the current posterior y; € A(D)
and computes its (discretized) best response p; = br%t (uy). Instead of posting price p; directly, POPS
posts p; = max{p; — d;,0}, where d; ~ Unif([0, ¢]) is a small random perturbation. Due to this
perturbation and discretization, we employ the modified loss £§ (proj(Dy, u), Pt, Yt ), where

N ~ 2
éi(Q,p, y) = (dem‘a(p) — y) — Areva(br%),
The perturbations allow us, in the analysis of POPS, to couple its trajectory when run with D, ¢ D to

a trajectory where D, € D. The discretization is needed to bound a modified disagreement coefficient
which appears in the analysis. All together, we obtain the following.

ALGORITHM 2: Perturbed OPS (POPS) for Contextual Pricing with Infinite Model Class

Input: discretization error € € [0, 1), finite model cover D C A(0©),
model prior p; € A(D), optimism strength A > 0;
for each round t € [T] do
observe context wu;;
sample model D; ~ p; and perturbation strength §; ~ Unif([0,]);
play p; = max{p; — d;,0}, where p; = br}, (u;) and observe y;;
update f1441(D) o< pui (D) exp(—£5 (proj(D,w.), pr, yi)) for each D € D;

Theorem 3.8. With appropriately tuned parameters, POPS (Algorithm 2) achieves regret 5([( «VdT)
without prior knowledge of K. Moreover, even for known K, > 1 and stochastic contexts, no con-
textual pricing policy can achieve expected regret o(r/K,dT) for all instances if T > 8dK? log(2d).

Our analysis views the perturbation at Step 5 as being performed by nature, rather than the seller.
Treating the seller’s action as py, they then observe a purchase (y; = 1) with probability

Es, [dem*(max{f)t - 5t70}7ut) \ ﬁnut] = Es, [dem*(f)t - 5t7ut) | ﬁtvut] = demi(;[)t, Ut)a



justifying the definitions above. Through this lens, POPS can viewed as OPS for an alternative,
smoothed demand model. To bound regret, we apply a three-step argument.

First, we show that POPS maintains our OPS regret bound when D, € D. This requires bounding a
modified decoupling coefficient and is the only step where discretization is used. A direct application
of the previous OPS analysis provides a regret bound with respect to a smoothed and discretized
benchmark. Fortunately, one-sided Lipschitzness of revenue (Lemma 2.1) ensures that this modified
regret benchmark is within O(eT") of the original benchmark, as we prove in Appendix C.6.

Lemma 3.9. Under Assumption 3.1, using prior iy € A(D), discretization error € € [0, 1), and
optimism strength \ > 0, POPS (Algorithm 2) achieves regret O (/\ K. T +log(1/p1(Dy))/ A+ €T).

Next, we show that, if there exists D € D whose smoothed demand function uniformly approximates
that of D,, then the trajectory of POPS under D, can be coupled with that under D, such that the
trajectories coincide with high probability. See Appendix C.7 for the proof.

Lemma 3.10. If there exists D € D for which ||[dem}, — demy, ||« < ¢, then the trajectory

{us, Pr, ye L1 of POPS with type distribution D* can be coupled with that {u}, p,,y,}1_, of POPS
with type distribution D, such that the two trajectories are identical with probability 1 — T.

Finally, we show that, to obtain a uniform e-cover of the smoothed demand functions, it suffices to
find a O(£2)-cover of the type distributions under the Lévy metric dy,, as defined in (1). Moreover,
we show that the family of all type distributions with support size at most K, A (©), admits an
appropriately small Lévy cover. For notation, we write N (X, d, 7) for the size of the smallest subset
X’ C X which covers set X under metric d up to accuracy 7 (i.e., for each z € X, there exists
2’ € X’ such that d(z, z’) < 7). A proof of the following appears in Appendix C.8.

Lemma 3.11. If D, D' € A(©) satisfy di(D, D') <&?/2, then ||dem}, — dem5,/ || < €. Moreover;

we have log N (Ak (0),dy,,e) = O(dK log 1/e).

In Appendix C.9, we combine these lemmas to prove the upper bound of Theorem 3.8. For the lower
bound in Appendix C.10, we modify a construction from [4] for the non-contextual case, so that it
can be tensored into d-dimensions without leaking information between orthogonal contexts.

Remark 3.12 (Bayesian analysis). Consider the Bayesian setting where D, is sampled from a known
prior u € A(D) (keeping D finite for simplicity). Then, Lemma 3.9 with py = p and € = 0 implies
that OPS, with i1 set to u at Step 2, achieves Bayesian regret O ()\K*T—HED*NM [—log M(D*)}/)\) =

O(AK, T + H(u)/\), where H is Shannon entropy. For known K, A can be tuned to achieve regret
O(\/K.TH ()), matching the (non-Bayesian) bound of Theorem 3.2 with H (1) instead of log |D|.

Remark 3.13 (Misspecified/noisy setting). We note that POPS is inherently robust to small misspec-
ifications and noise. Indeed, if D, does not have support size K, but is within Lévy distance § of
the family A g, (©), then the proof of Theorem 3.8 still goes through if we choose € +— T2 + V0,
incurring an additive regret overhead of \/0T?2. The same overhead applies (up to logarithmic fac-
tors) in the noisy model where valuations are subject to mean-zero 82-sub-Gaussian noise, since the
associated convolution can only perturb demands by 9] (0) under the Lévy metric. We do not attempt
fo optimize this overhead but note that one is better off using EXP4 (as below) when 6 > 1/ poly(T).

Remark 3.14 (Large K,). Our lower bound above can be restated as Q(min{\/K*dT, d1/3T2/3}).

When K, = Q((T/d)*/3) and the second term is active, POPS no longer has an advantage over EXP4
with naively discretized actions. In particular, one can run EXP4 with a policy cover of log cardinality

O(de=2) and price set {¢,2¢, ..., 1}, incurring regret overhead €T due to discretization. This gives

a regret bound of O(v/T'd?c=3 + £T'), which balances out to d?/5T*/5 after tuning. Characterizing
the optimal regret in this large K, regime is an interesting question beyond the current scope.

4 Non-Contextual Refinements via Zooming

Our results from Section 3 leave a key open question: what is the optimal regret dependence on K, ?
We resolve this question for the non-contextual setting, where d = 1 and, without loss of generality,
uy = 1 for all ¢. To do so, we employ adaptive discretization (aka zooming) methods from Lipschitz



bandits [13] with novel variance-aware confidence intervals and achieve a regret bound of 5(\/K WT).
Throughout, we label the K, types supp(D,) = {#1) < ) < ... < (K} and set #(*) = 0.

Our algorithm, ZoomV, mirrors standard zooming [13] with two key adjustments. First, since revenue
is only one-sided Lipschitz, we use a dyadic price selection rule inspired by [24]. Second, our
confidence intervals incorporate empirical variance, a method previously used for variance-aware
K -armed bandits [2]. In more detail, ZoomV maintains a set S of active prices in [0, 1] and a variance-
aware confidence interval for the expected revenue at each p € S. Each active price “covers” an
interval of neighboring, larger prices, with the width of this covering interval scaling proportionally
to that of the confidence interval. The intuition is that a small increase in price can only marginally
increase expected revenue, so it is not worth exploring such covered prices. Initially, every price in
[0, 1] is covered by some point in S. At each round, ZoomV optimistically chooses a price in S and
updates its confidence and covering intervals. If after the update there exists an uncovered price, then
we add a new point to S which covers it, maintaining the invariant that every price is covered.

Theorem 4.1. ZoomV (Algorithm 4) achieves regret 6(min{\/ K, T,T? 3}) for non-contextual
pricing, without knowledge of K. This is minimax optimal up to logarithmic factors when K, > 1.

To bound regret, we employ a variance-aware zooming dimension which controls its performance. For
comparison, we first recall the definition of the standard zooming dimension, which characterizes a
certain complexity of the expected reward function rev, (p). For each ¢ > 0, write X5 := {p € [0,1] :
gap, (p) < §} for the set of §-approximate revenue maximizers. Write N (X, ) .= N(X, |- |, ) for
the smallest 6-covering of a set X C R. Then, for each ¢ > 0, define the zooming dimension

ZoomDim(c) := inf{z > 0: N(Xj,d/10) < ¢ % V§ > 0}.

Standard zooming techniques imply that ZoomV achieves regret c!/(+=)T1=1/(2+2) \when
ZoomDim(c) < z, even with confidence intervals that do not incorporate empirical variance. Since
the price interval [0, 1] is one-dimensional, one can bound ZoomDim(c) < 1 for ¢ = O(1), giving
regret O(T2/?). Moreover, the set X5 of approximate revenue maximizers is contained in the union
of K, intervals preceding the unknown types, where the interval corresponding to type 6(*) has width
§/dem, (0)) < §/dem, (0'5+)). This implies ZoomDim(c) = 0 and gives regret O(v/cT'), but only
for c = O(K, /dem, (6+))), which may be arbitrarily large for worst-case instances.

To remedy this, we incorporate variance, writing o%(p) = p?>dem, (p)(1 — dem, (p)) for the revenue
variance when p is played. For the problematic types above with low demand, variance is also
low, and the confidence intervals of ZoomV are designed to adapt to this. Specifically, our proof
in Appendix D.2 shows that the regret of ZoomV scales according to a variance-aware zooming
dimension, defined as follows. First define the variance-weighted covering number N, (X, d) =
inf{ZzeX, o%(z) : X' is a §-cover of X}. Then, for each ¢ > 0, we set

ZoomDimV(c) := inf{z > 0 : Ny (X5,d/10) < ¢ % V6 > 0}.

Note that ZoomDimV(c) < ZoomDim(c), since o%(p) < 1. Moreover, we show ZoomDim(10K,) = 0,
implying the desired O(1/K, T) regret. The lower bound follows from Theorem 3.8 with d = 1.

Remark 4.2 (Comparison to [4]). The non-contextual setting was previously studied by [4], whose

. . ~ _ , (K4 () _gli—1))~°
Algorithm 1 achieves regret O(v/K, T)+V (V +1), where V = max;e g, (05+)) " (1) —0 )
They maintain a set of intervals which contain all types with substantial probability mass, gradually
refining these intervals until they are all of width O(T’l/ %), at which point they employ UCB over
the intervals’ left endpoints. Unfortunately, the instance-dependent term V (V + 1) can blow up to
infinity for worst-case realizations of D, € Ak, (|0, 1]), in contrast to our guarantee.

5 Improved Performance with Ex-Post Type Observability

We now study dynamic pricing with heterogeneous buyer types under the additional assumption that
the learner can identify each arriving type. That is, after setting price p;, the learner observes the
purchase feedback 1{(u;,6;) > p:} and some information about the sampled type ;. We consider
the two models of observability. In the first, the learner only observes an identifier z; € [K,] that
specifies which of the K, candidate types was drawn. In practice, the learner need not know K, a



priori. Here, we design an algorithm that matches the 6(K »VdT') regret bound of POPS and can be
implemented efficiently, using a contextual search algorithm for K, = 1 as a subroutine. In the second
model, the learner observes the full type embedding 6; € ©. Here, we show that best-responding to a

simple plug-in estimate for D, achieves an improved regret bound of O(y/min{K,, d}T).

Observed type identifiers. Our algorithm for the model where the learner only observes the identifier
uses a K, = 1 contextual search algorithm, ProjectedVolume [18], as a subroutine. We maintain
a separate instance of this ProjectedVolume algorithm for each observed type and keep track of
the empirical type frequencies along with the number of times we’ve explored each type. It then
adaptively chooses which types to explore (or exploit) based on confidence estimates for the type
distribution. We present the full algorithm and prove the following regret bound in Appendix E.1.

Theorem 5.1. Consider contextual dynamic pricing with ex-post type observability where the learner

observes which type z € [K,] arrived. Then, Algorithm 5 achieves regret O(K,/dT) and takes no
more than time poly (K., d,T) per round.

Observed type vectors. If the full type vector 6, is revealed at the end of each round, we can achieve
improved regret with a simpler algorithm. Indeed, writing D; = % 23:1 g, for the empirical type
distribution after round ¢, we take each p; as the best response to ﬁt,l along the current context.

Theorem 5.2. Consider contextual dynamic pricing with ex-post type observability where the learner
observes 0, € O at the end of each round. Then the algorithm which plays p1 = 1/2 and best
response py = brp,  (uy) for remaining rounds achieves regret O(\/min{K,, d}T'). Each price
can be computed in time poly (K, d).

The proof in Appendix E.2 uses VC dimension bounds to show that the empirical revenue function
revp, converges uniformly in both arguments (price and context) to the true revenue function rev,.

6 Discussion

In this work, we have introduced contextual dynamic pricing with heterogeneous buyers. Our main
algorithm achieves a regret bound of O(K*+/dT), optimal up to a O(+/K,) factor and logarithmic
terms. Our analysis bounds the disagreement coefficient by leveraging a novel decomposition lemma
for aggregate demand functions with K, breakpoints, thereby ensuring an efficient exploration-
exploitation tradeoff. Additionally, we propose a variance-aware zooming algorithm for the non-
contextual pricing case, improving regret dependence on K, by incorporating adaptive discretization
methods from the Lipschitz bandits literature. Finally, under stronger observability assumptions on the
buyers’ types, we develop efficient algorithms that significantly reduce regret to O(y/min{ K., d}T),
demonstrating the potential benefits of richer feedback in dynamic pricing settings.

There are several natural open questions, the first revolving around computation. The run time of
POPS scales with the size of the discretized model class, which is exponential in K, and d. It would
be interesting to see if there is a way to alleviate this exponential dependence, while achieving
similar regret bounds. The second question is around the optimal dependence on K for the general,
contextual case. While in Section 4 we showed how to optimize the dependence of our bounds on K,
it is unclear how to scale this approach for the contextual version of the problem. One starting point
could be the results on Zooming techniques for contextual bandits (see e.g., 26). Finally, it would
be interesting to see if our results can be applied to more broad families of settings where a learner
tries to learn from heterogeneous agents while obtaining only single-bit feedback: for example, it is
unknown if the approach presented in this work generalizes to general contextual search settings (i.e.,
with e-ball or symmetric loss) or if it generalizes for settings that share some core properties with
pricing, but differ in the fundamental techniques used to address them (see e.g., 10).
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Appendix

A Extended Discussion on Related Work

Our work relates closely to three lines of work: (I) contextual pricing/search; (II) non-contextual
pricing; and (IIT) Lipschitz bandits.

(I) Contextual pricing/search. The closest line to our work is contextual pricing/search. In
contextual search, there is a repeated interaction between a learner and nature, where the learner
is trying to learn a hidden vector §* € R? over time while receiving only single-bit feedback.
Mathematically, at each round ¢ € [T'], the learner receives a (potentially adversarially chosen) context
u; € RY and decides to query 3; € R. The learner receives feedback o; = sgn({u¢, 0*) — ;) €
{—=1,+1} and incurs loss ;(yz, (ut, 8*)) [5]. Notably, the learner does not observe £;(yz, (ut, 0*));
only the binary feedback o;. When the loss function ¢; corresponds to the lost revenue as a result
of posting price y; (i.e., the “pricing loss”), this setting reduces to ours with a homogeneous buyer
population, i.e., K, = 1. The contextual search literature has also considered two other loss functions:
the symmetric/absolute loss ¢ (yz, (us, %)) := |y: — (ue, 0*)| and the e-ball loss £;(yz, (ug, 0*)) =
1{]y: — (u¢, 0*)| > €}, which are motivated by settings other than pricing.

There have been two approaches in the literature for learning in contextual pricing and contextual
search (for homogeneous agents/buyers). The first approach (e.g., 5, 18, 21, 17) employs a version
of multidimensional binary search: specifically, the algorithms maintain a “knowledge set” with
all the possible values of #* which are “consistent” with the feedback that nature has given thus
far. Similar to traditional binary search, the query point is chosen to be the point that (given the
nature’s feedback) will eliminate roughly half of the current knowledge set. As the knowledge set
shrinks, the learner ends up with a small knowledge set for the possible values of §*; this is enough
to guarantee sublinear regret. The series of works in [5, 18, 21, 17] optimized regret bounds for the
three different loss functions (i.e., symmetric, e-ball, and pricing). The specific algorithms were
different at each paper, but they all maintained a “binary search” flavor. Most of the algorithms
employing a multidimensional binary search approach can be “robustified” to very little noise in
the agents’ responses; since the learner will irrevocably shrink the knowledge set according to the
feedback received from nature, they can only afford very few mistakes.

The second approach (e.g., 12, 11, 6, 19) focuses exclusively on pricing settings. This approach uses
regression-based algorithms for learning the correct price and needs to assume stochastic noise in
the buyers’ responses. There have also been works studying other aspects of contextual pricing (e.g.,
strategic agents [1] and unknown noise distribution [28]). Apart from the methodological differences
with our work, both streams of literature focus on a homogeneous agent population and cannot be
readily adapted for a heterogeneous population setting.

Moving closer to the heterogeneous agents problem, [16] studied “corruption-robust” contextual
search, where the agent population is mostly homogeneous, except for C' = o(T") corrupted agent
responses. Their regret bounds were subsequently strengthened by [22], but the latter approach only
works for contextual search with absolute and e-ball loss and does not cover the pricing loss. This
model has been also studied with a Lipschitz target function [30]. Learning with corruptions can be
seen as a first step towards learning from heterogeneous agents, but the approaches above do not scale
appropriately for truly heterogeneous agent populations. In contrast, we focus on fully heterogeneous
settings, where we do not constrain the number or the size of the different buyer types.

(ITI) Non-contextual pricing. The special case of d = 1, where there is no context to inform decision-
making, was introduced by [14], who studied non-contextual dynamic pricing for a homogeneous,
stochastic, and adversarial buyer population. For the adversarial buyer population, the authors
assumed that there can be T different valuations and showed tight regret bounds of O(7%/%). In
contrast, in our setting, we assume that users are “clustered” in K, types), and so the lower bound of
Q(T?/3) of Kleinberg and Leighton [14] does not apply.

The closest to our work is the work of [4], who consider pricing a heterogeneous agent population
with an unknown number of types, but the types are still limited to be less than o(T"). Throughout
the paper, we discuss how their bounds relate to ours for the special case of d = 1. None of the
aforementioned techniques readily generalize to contextual pricing settings.
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(III) Lipschitz bandits. Finally, our work is related to the literature on Lipschitz bandits. Although
the pricing loss is not fully Lipschitz, it has recently been observed that it satisfies a one-sided
Lipschitzness. This allows us to leverage techniques from adaptive discretization [13] to obtain
improved bounds for d = 1. Zooming had previously been applied to pricing (see, e.g., 24), but these
algorithms are insufficient for the K, -types setting. Indeed, their performance scales with a zooming
dimension ZoomDim that is too large here. On the other hand, ZoomV uses variance-aware confidence
intervals so that its performance scales with a smaller, variance-aware zooming dimension ZoomDimV.
In particular, while ZoomDim can equal 1 for worst-case instances, we show that ZoomDimV is 0 (with
a lower-order scaling constant at most K, ).

Finally, [15] consider contextual bandits with continuous action spaces, which encompasses the
setting of this work. Their regret bounds cover the case where, for a fixed context, the expected
reward is Lipschitz in the learner’s action. Although their analysis can be adapted to the one-sided
Lipschitz setting of pricing, their results either require stochastic contexts or incur large regret due
to naive discretization. Even in the stochastic case, their regret bound scales with a policy zooming
coefficient that does not appear to admit a useful bound in terms of K.

B Proofs for Section 2

B.1 One-Sided Lipschitzness of Revenue (Proof of Lemma 2.1)

We simply bound revq (p') — revo(p) = p'demq(p’) — pdemq(p) < demq(p)(p —p) < p' —p,
using monotonicity of demand functions. O

B.2 Pricing Implication of Lévy Metric Bound (Proof of Lemma 2.2)

By the definition of dy,, it suffices to prove the lemma when d = 1. The first revenue lower bound
holds by Lemma 2.1. For the second, omitting the context w and writing [z]; = max{z, 0}, we use
the Lévy metric guarantee to bound

revp: (m) = [brp — €]+ demp/ ([brp — €] 4)
> [brp — €]+ demp: (brp — €) (demand equals 1 for p < 0)
> [brp — €]+ (demp(brp — 2¢) —¢) (dy, bound)
> [brp — €]+ (demp(brp) —€) (monotonicity of demp)
>revp(brp) —2¢
>revp(brpr) — 2¢ (brp maximizes revp)

= bI’D/ demD(er/) — 2¢

> brp/ (demp/(brp —e) —e) — 2¢ (dy, bound)
> brp demp/ (brp/) — 3¢

=revps (brp/) — 3¢,

as desired. O

C Proofs for Section 3

To unify analysis of Sections 3.1 and 3.2, we introduce a more general problem setup and algorithm.

C.1 Generalized Problem Setup

To start, we replace the price set [0, 1] with a subset P C [0, 1], which will remain [0, 1] in Section 3.1
but will be restricted to a finite set for Section 3.2. Then, instead of selecting a type distribution D,
we have the adversary choose a demand function f* which maps price p € P and context u € U to
a purchase probability f*(p,u) € [0,1]. Then, at round ¢, if the adversary selects context u; € U
and the learner posts price p; € P, purchase decision y; € {0, 1} is sampled independently from
Ber(f*(pt, ut)). This abstracts away our previous notions of buyer types and values and will also
model the smoothed environment of Section 3.2. We impose the corresponding notion of realizability.
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Setting C.1 (realizability, general). Under the setup described above, the demand function f* belongs
to a known, finite class F of measurable functions from P x U to [0, 1].

Often, we shall fix a context and consider univariate (non-contextual) demand functions. Given
a univariate demand function ¢ : [0,1] — [0, 1], we define the corresponding revenue function
revy(p) = p - g(p), best-response br, = argmax,.p rev, (breaking ties arbitrarily), and gap
gap,(p) = rev,(bry) — revy(p). For a contextual demand function f : [0,1] x & — [0,1] and a
context u € U, write proj( f, u) for the induced univariate demand function p — f(p, u). We define
revy(p,u) = reVprj(f,u)(P)> brp(u) = brojcru), gaps(p,u) = 8aPproj(f,u) (p), and proj(F,u) =
{proj(f,u) : f € F}, along with rev, := rev., br, = bry., and gap, := gap.. Finally, we define

diS(]:, f*) = bU.ZI/){dIS({f(,u) - f*('7u) : f € ]:})7
ue
generalizing the definition in Section 3.1. Regret is defined as the sum of gaps Z;T:l gap, (p¢, ut).

C.2 Generalized OPS and its Regret Guarantee

We now present a extension of OPS and POPS to the generalized setup of Appendix C.1. Both can
be recovered for appropriate choices of F and P, which we will discuss later. First, for a univariate
demand function g : P — [0, 1], price p, and purchase decision y, we define loss

U(g,2,9) = (9(p) — y)* — Arevy (bry). )
We now adapt OPS to this setting, introducing GOPS (Algorithm 3).

ALGORITHM 3: GOPS: Generalized OPS for Contextual Pricing with Finite Model Class

Input: finite demand function class F, model prior uq € A(F), optimism strength A > 0;
for each round t € [T] do

observe context wu;;

sample demand function f; ~ py;

play p; = bry, (u:) and observe y;

update i¢11(f) o< pue(f) exp(—Ca(proj(f, ut), pe, y¢)) foreach f € F

We prove the following regret bound.

Lemma C.2. Under Setting C.1, with model prior 1 € A(F) and optimism strength X\ > 4/T,
GOPS (Algorithm 3) achieves regret 25\(dis(F, f.) V 1)T' log*(T) 4 log(1/p1(f+))/\.

Our proof employs the following decoupling lemma.

Lemma C.3 (8). Let G be a finite family of univariate demand functions and fix g* € G. Then, for
any v € A(G) and v > 0, we have

dis(G)log?(vy Ve)

Eguw Ug(brg) - 9*(brg)” <6 +7Eg.g~v [(f}(brg) - 9*(brg))2] .

This is simply Lemma E.2 of [8] with function class {g—¢*:g € G} and A — 0. In our proof, G and
g* will be the projections of F and f* onto a fixed context u € U.

The remainder of our analysis is a slight modification to that of [29], which we provide for complete-
ness. For each round ¢ € [T] of OPS, we adopt the following notation:

e history up to round t: Sy := {ur, fr, D, Yr }orq,

* true univariate demand function: g} := proj(f*, u¢),

* univariate demand function posterior: v = proj(pu, us) = Law s, (proj(f, u)),

* sampled univariate demand function: g, := proj(f;, ), so that p; = bry,,

* independently sampled univariate demand function (for analysis): g; ~ v,

* regret: REGy = rev, (bry (ut), us) — revi(pe, ut) = revgs (py) — revgs (pt),
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* least-squares errors: LS;(g) = (g(p:) — 9*(p¢))?,

“feel-good” (optimism) bonuses: FG¢(g) := rev,(br,) — revg: (bry:),
* loss discrepancies: AL:(g) == €x(g,pt, yt) — x(9F, Pty Yt),
* potential function: Z; := Eg, log E ¢ unit(F) exp(— 23:1 ALy (proj(f, ut)))

Our proof requires several supporting lemmas. The first is a basic concentration result.

Lemma C.4. For ¢ > 0 and a random variable X supported on [0, 1], we have log E exp(—cX) <

(3¢ — ¢)E X. For X supported on [a,b], we have log Eexp(cX) < cEX + (b — a)*c®. a

Proof. For the first inequality, we bound
log Eexp(—cX) < Elexp(—cX) — 1] < E[-cX + 3*X?] < E[-cX + 3X] = (32 —¢)EX.

The second inequality is exactly Hoeffding’s lemma. O

The next lemma mirrors Lemma 4 of [29]. This is a consequence of the definition of AL; and the
sub-Gaussianity of its components.

Lemma C.5. For round t of GOPS (Algorithm 3), we have

1 3
log Eg""l’t Eyt|Ut7Pt eXp(_ALt (9)) < 1 ng/t LS; (g) + )\Eg"/”t FG; (9) + §>‘2‘

We note that this lemma does not rely on how p; is selected.

Proof. Let g ~ vy and y ~ Law(y:|ut, pt) = Ber(g:(p:)) be independent. Let e = y — g7 (p:)
denote the discrepancy between the observed and expected demand. Since demands lie in [0, 1],
Lemma C.4 with X = ¢ gives

E, exp(—2¢ (g7 (p) — 9(p1))) < exp (4 (g7 (0) — 9(p1))”) = exp(3LSi(g)). 4

Moreover, we have

~ALi(g) = — (= + gt (pe) — 9(pe)” + % + AFGu(g)
= —22(g (pe) — 9(pr)) — LSi(g) + AFGi(g).
Combining with (4) gives
E, exp(—AL¢(g)) < exp(—3LS:(g) + AFGy(g)).
Therefore, we have
log By, exp(—AL(g)) < logEgexp(—3LS:(g) + AFGy(g))
< %log]Eg exp(—3LS(g)) + %log]Eg exp(3AFGy(g)),

where the last inequality follows by Holder’s inequality. For the first term, we use Lemma C.4 with
X =LS;(g) and ¢ = 3 to bound

2 2/1 )
3 log(Eg exp(—2LS;(g))) < 3 <202 - c) E,LS:(g) = ~16 E, LS:(g).

For the second term, we apply the lemma with X = FG;(g) and ¢ = 3\ to obtain
1 3.2
3 log Eg exp(3AFGy(g)) < AE,FGy(g) + §>\ )

Combining, we have

5 3
log By, exp(—ALy(g)) < 16 E, LS:(9) + AE, FG(g) + 5)\2’

implying the lemma. O
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Our last helper lemma mirrors Lemma 5 of [29].
Lemma C.6. For round t of GOPS (Algorithm 3), we have

1 ~ 3 1
EELSt(gt) — EFGt(gt) S 5)\ + X(Zt,1 — Zt)

This lemma also does not rely on how prices are chosen.
Proof. Recall that y; = Unif(F). Defining W, (f | S;) == exp(— Zj—:l AL (proj(f,us))), we
have Z; = Eg, logEf.,, Wi(f | S¢). Note that

 Wia(f | Si-1)
) = W (7 1 50y)

pa(f)-

We then bound
Efop Wilf | St)
Efop, Weer(f | Se—1)
By Wi (f | Si—1) exp(—=ALg(proj(f, ur)))
Efmpy Weer(f | Si-1)
=Zi—1 +Eg, logEy.,, exp(—ALi(proj(f,ut)))

Zt = Zt—l + ]ES,/ IOg

=Z;-1+Eg, log

(@)
< Zia+ Est—hutapt log E’ytlut,pt EQNVt GXp(—ALt(g))

() 1 3
< Ziq— Z]ELSt@t) +AEFG(g¢) + 5/\27

where (a) uses Jensen’s inequality and (b) uses Lemma C.4. Rearranging gives the lemma. O

Now, we return to Lemma C.2, where we will finally incorporate our price selection rule and the
decoupling lemma.

Proof of Lemma C.2. For each round t € [T, we recall that p; = br,, and decompose
REG; = revg: (bry:) — revg: (p;)
= [revy, (pt) — revg: (pe)] — [revg, (brg,) — revg: (brg:)]
= [revg, (pi) — revg: (pr)] — FGilge).
Conditioning on S;_1 and u;, we apply Lemma C.3 with v = ﬁ to obtain
E[revgt (pt) — revgs (pt) ’ Si_1, ut] =E;u, [revg(brg) — revg: (brg)]
< Egev [lg(brg) — g7 (brg)]
< 2ANdIS(F, £2) 108 (N ™V €) + 1 By gy [(3(br,) — 7 (bry)?)
= 24\ dis(F, f,) log? (4Nt Vee) + % E[LS:(3¢) | Si—1, ]
Taking expectations over S;_; and u;, we bound

1
EREG, < 24\ dis(F, f,)log?(4Xx"t v e) + o ELS:(G:) — EFGy(g:)

3 1
< 24\ dis(F, f,) logZ(4N"t ve) + A5G = 2,
using Lemma C.6. Summing over ¢ € [T] and noting that Z; = 0, we bound

E[R(T)] < T<24 Mis(F, f,) log®(4A"" v e) + 3)\> - %ZT.
Moreover, by realizability, we have
Zr = Es, log(pua (f)Wr(f* | S1)) = log(pa (f+))-
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Combining, we obtain

E[R(T)] < T<24A dis(F, f.) log? (4N~ Ve) + ;) _ M

< T(25X(dis(F, f.) V 1) log*(4A ! Ve)) — w7

log(p1(f+))
A )
as desired. ]

< T(25M\(dis(F, f.) V 1) log® T) —

C.3 Base Regret Bound for OPS (Proof of Lemma 3.3)

Under the general setup of Appendix C.1, we take F to be the class of demand functions induced
by D, set P = [0, 1], and fix x4y = Unif(F). By these choices, GOPS coincides exactly with OPS, as
does our notion of regret. Thus, Lemma C.2 gives the desired regret bound of

log(p1(Dy)) — ~

T(25X(dis(D, D,) V 1) log? T) - 3 = O(A\Tdis(D, D.) + log(|D|)/A). O

C.4 Disagreement Coefficient Bound for Non-increasing Functions (Proof of Lemma 3.4)

Fixing f € F, v € A([0,1]), and p € [0, 1], suppose that E,,[f(¢)?] < £ and |f(p)| > 4. If
f(p) > 6, then f(g) > 6 for all ¢ < p by monotonicity. Thus, Py, (¢ < p)é? < E,,[f(q)?] < €2
Otherwise, if f(p) < —d, we analogously have P, (¢ > p)d* < E,,[f(¢)?] < €2 Thus, for
v € A(X), we have

Pper (3f € F 1 Egun[f(0)%] < €% A|f(p)] > )

g2 g2
S]P)pNV (]PqNV(q S p) S ﬁ \% quu(q 2 p) S 52)

52

52
SPpNV (quz(q S p) S 52) + IPpNV (quwy(q 2 p) S 52)

52
(5*2.

Plugging this into the definition of dis finishes the proof. O

<2

C.5 Disagreement Coefficient Bound for Composite Classes (Proof of Lemma 3.5)

For any distribution v € A(Z), write v; = h; o v|z, for law of h;(p) when p ~ v, conditioned on
p € Z;, and let p1,, (i) = Py, (p € Z;). We then bound

. 5
dis(G) = sup sup E;op, — Pposys, (Hg eg: Equ[g(q)z] <2 Alglp)| > 5)
£,6>0vEP(Z) €
2

) .
< sup S Einp, 75 Py (3 € F () Egan [ (@)Y <2 1 11 (0)] > 6)
£,6>0veP(Z) €

52 g2
< sup sup —Ei.,, {,dis ]—'}
co>0vep(z) €2 102 (4) )
= Ndis(F),
as desired. Here, the first inequality uses that E,,, [g(q)?] > 11, (4) Egus, [f (hi(z)] for some f € F,
and the second uses that v; € A(X) and the definition of dis. O

C.6 Base Regret Bound for POPS (Proof of Lemma 3.9)

POPS as generalized OPS. We observe that POPS is an instance of GOPS (Algorithm 3), with
discretized price set P = P, and smoothed demand function class 7 = {dem%, : D € D} (where
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each f € F is viewed as a function on P, x U rather than [0, 1] x U/). Here, we view each p; as the
posted price instead of p;. Indeed, taking f* = dem$, we have

Elyt|pe, ue] = f*(De, ur)

and, for value distribution @ € A([0, 1]) with smoothed demand function g = dem,, we have

‘ei(Qvﬁtv ut) = g)\(gvﬁtv ut)7
where £ on the right hand size is defined in (3). We do note, however, that the regret benchmark
with smoothed demands and discretized prices differs slightly from the original benchmark.

Fixing the regret benchmark. Applying Lemma C.2 for this choice of P and F, we have that

& log(u1(D..))
~E )

E Z revs (brs (ug), ue) — revs (P, ue)

t=1
Note that

< T(25A(dis(F, fo) vV 1) log® T) —

E =K

T
Z revs (Pe, ut)
t=1

Z rev. (pe, Ut)} )

t=1

so the regret bound above measures cumulative revenue in line with our original regret definition.
Although the benchmark does not match that in the original definition, we have |reve (brS (ug), us) —
revy (bry (us), ut)| = O(e) for all ¢ € [T] due to one-sided Lipschitzness (Lemma 2.1). Consequently,
the regret of POPS is bounded by

E[R(T)] = 5(T/\(dis(]-", fOV1) — w + 6T>.

It remains to bound the disagreement coefficient by O (K, ), giving the lemma. Our argument below
mirrors that in the proof of Theorem 3.2 but takes into account the smoothing and discretization.

Bounded disagreement coefficient. For each u € U, the function dem$ (-, u) with domain P; is
piecewise constant with O(K,) sections. Indeed, the unsmoothed demand function dem, (-, u) is
piecewise constant with O(K, ) sections, and smoothing can only introduce new sections at the
O(K,) prices in P, that are within distance € of a previous section boundary. Moreover, smoothing
preserves monotonicity of demand functions. Hence, the function classes defining dis(F, f,) are
O(K,)-composites of the nonincreasing function class. Applying Lemmas 3.4 and 3.5 then implies
that dis(F, f,) = O(K,), giving the lemma. O

C.7 Trajectory Coupling (Proof of Lemma 3.10)

Fix any round ¢ with context u; and best-response price p;. Since |5 — fp [leo < &, feedback

1y coincides with that which would have been obtained if D, = D with probability at least 1 — ¢,
conditioned on u; and p,. Since the update to (i is only a function of u;, p;, and y; (notably, not the
realized price p;), we can iterate through all rounds and apply a union bound to obtain the lemma. [

C.8 Metric Entropy Bound (Proof of Lemma 3.11)
For part one, fix D, D' € A(©) with di,(D, D') < £2/2. Then, for all u € I and p € [0, 1], we have

Ip (P, 1) = Esunit([0,e)) [demp (max{p — §,0}, u)]

Note that the maximum is unneeded since proj(D, ) is supported on [0, 1] and places no mass on
negative values. Writing ) = proj(D, u) and Q' = proj(D’, u), we then have

|5 (B, u) — [ (B, w)| = [Es~umit (0,6 [demq (p — 6) — demq: (5 — 9)]|

11t
< - / demq(p — 6) — demg/ (p — 9) dé‘

0
1

< - / demgq(t) — demg () dt‘
0
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1 1
/ demg(t) — demg () dt‘.
€lJo

Writing 7 = £2/2, we further have
1 147 1
/0 demg(t) — demg(t) dt = / demg(t —7) — /0 demgy (t) dt

1

< / demg(t — 7) — demg/ (t)dt + 7
< 27,
where the last step uses the fact that dy, ( !

2
) < 7. A symmetric argument gives the reverse bound.
Consequently, we have |5 (p,u) — f5, |<1.2

- 27 = ¢, as desired.

Q,
(B, u)
For part two, let C = {C4, Cs, ..., C,} denote the intersection of the standard partition of R? into
cubes of side length £/+/d with © C [0, 1]%. Denote the lexicographically smallest vertex of each
C; by ¢;, and note that log(n) = O(dlog(d/e)). Given any D € Ag(©), we define the initial
discretization Dy = i, D(C;)d.,. We obtain the final discretized measure D by rounding each

weight to a neighboring multiple of /K (choice doesn’t matter so long as we maintain unit mass,
this is always possible). Then, for any context u € S4~1 and price p € [0, 1], we have

Pop((u,0) <p) =Py p((u,0) <p+e)<e

POND«u’ 9> <p-— 5) - PQND(<U7 9> < p) <e,
using that each cube in C has diameter € and that the mass in each cube was perturbed by at most
/K (so with K cubes the probability of any event is shifted by at most €). Thus, dr,(D, D) < e.
Using balls and bins, we can thus bound

K+K/a>

N(Ax(O),dy¢) < nK< < K (2K /2)¥ = exp(O(Kdlog(d/e) + K log(K /<)),

as desired. O
C.9 Proof of Theorem 3.8, Upper Bound

Upper bound. Fix ¢ = T-2 and A = /d/T. We now construct D and p;. Write M = [logT'],
and, fori = 1,..., M, take D; to be a minimal (¢2/2)-cover of A, (©) under the Lévy metric.
By Lemma 3.11, we have log |D;| = O(2'dlog1/e). Now set D = Dy U --- U D)y and take

p1(D) o (2¢|D;|)~t for D € D;. This ensures that log(1/u1(D)) = O(2'dlog T) for D € D;.

Assume without loss of generality that M > log K ; otherwise, the regret bound is vacuous. Then,
there exists D € Dioq 1,1 C D such that d,(D, D,) < £2/2 and ||[dem, — dem, ||oo < €, again
using Lemma 3.11. Thus, by Lemma 3.10, the realized trajectory of PQOPS {us, pr, pt, yt}thl can be
coupled with an alternative trajectory {u}, p}, p}, ys }1_, of POPS with type distribution D, such that

1A

{ug, Do, ye H_y = {u}, B}, yi }1_, with probability at least 1 — 7. By Lemma 3.9, we have

E Z revp (brp (uy), uy) — revp (ph,uy) | = 5(K\/d7 —/T/d- logul(f))) = O(K,VdT).

te[T]

At this point, we can use the coupling guarantee and the bound dL(ﬁ, D,)) < £? to show that the left
hand side above and the true expected regret differ by O(s2T) = O(1), giving the theorem.

Specifically, by the coupling guarantee, we have

T
E[R(T)] <E | rev.(br,(u), us) — revi(ps,ue) | €| + T
t=1
T
=E Z revy (bry (uy), uy) — revy(pe,uy) | €| +1
t=1
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Since dy,(D, D) < €2, Lemma 2.2 implies that rev,, (br, (u}), u;) < revp (br s (u}), u}) + O(2) for
all rounds ¢t. We further have
Elrev, (pe, uy) | ug, pr] = revp, (pr, uy)
< rev& (pt,ut) +e
= Elrev, (p}, up) | up, by = el + €
< Elrev (ph, uy) | up, py, €] + € + €T

Combining the above, we obtain

T
E[R(T) <E Zrev*(br*(u;),ug) —rev, (pe,u}) | E| +eT?
s
<E Zrevf)(brf)(u;),ué) —rev,(pe,u}) | E| +O(eT?)
Lt=1
s T
=FE Zrevf,(br@(ué),ut 1 Z revy(pe,uy) | uy, pe) | €] + O(1)
=1

r T
<E Zrevf)(brﬁ(ug),ut 1 Z [revp (ph,up) | uy, By, €] ’5 +0(1)
t=1 =1
[T
<E ZrevD br 5 (uy), uy) ZrevD pyuy) | E] +O(1)
Li=1
rT T
<E ZrevD br 7 (uy), uy) ZrevD (P, up)| +0O(1)
Lt=1 t=1
= O(K,VdT),
as desired. O

C.10 Proof of Theorem 3.8, Lower Bound

Previously, [4] gave a lower bound of Q(+/K,T) for the non-contextual case. We now modify their
one-dimensional construction so that it can be cleanly tensored into d dimensions, when K, > 4.

One-dimensional construction (K, > 4). Starting in 1D, we define valuations % = <--- <

v, = lbyw; = 2 + m Define the base distribution Qg on {v1,..., vk, } by
1 .
N B cou= 2 i€ [Ky—1]
Fols) {é, i=K,

Observe that each valuation v; has the same expected revenue of 1/2. Indeed, we compute

demg, (v;) ZQO (vj)

Jj>i
1 1
= (K, — 1) — _
(K =) oK. —2 2
oK, —i—1
2K, —2 )

and

2K, — 2 0K, —i—1\ 1
reva, (vi) = videmoy (vi) = | ——— ) | S =2 ) =3
* *
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Now, for j € {2,..., K, — 1}, we define distribution Q); by slightly lowering the probability of v;_;
and increasing the probability of v; by the some small € > 0, to be determined. That is, we define

1

oK, 3 & 1=j—1
1 .
Qo) = 7o T T
(V) = ,
! %a 1= Ry ’
1
2K, 2 0-W.

which is well-defined so long as ¢ < Tl_Q In contrast to the construction in [4], our (); distributions
share the same multiset of probability weights, differing only in the locations of the perturbed
valuations. This allows us to tensor these problem instances into a d-dimensional instance without

leaking information between instances.

Moreover, the hardness result of [4] is maintained, which applies even if K, is known to the learner.
The proof is quite similar, so we defer it to Appendix C.11.

Lemma C.7 (Regret of one-dimensional family, K, > 4). Fix any number of types K, > 4 and
T > K3. Let A be any algorithm for non-contextual pricing. Then, for tuned ¢ and an instance Q,
drawn uniformly at random from {Q;} jc(2,.... k., —1}, A suffers expected regret at least Q(\/ K, T).

Tensoring one-dimensional instances. To extend these one-dimensional distributions into d dimen-
sions, define the base distribution Dy € A([0, 1]¢) as follows. For i € [K,], let0; := [v;,...,v;] €
R?, w; == Qo(v;), and take Dy = Zfi*l w;0p,. Thatis, §; € [0, 1]¢ has all entries equal to v; and
w; is the probability Dy places on 6;, taken to match @)y at v;. By design, the marginal distribution of
Dy along each coordinate is Qg. Now, for a selection j = (j1,...,ja) € {2,..., K, — 1}4, define
the perturbed instance D; by starting from Dy and modifying it as follows:

e Adjust the probabilities wy and ws by wy <— w1 — € and we <+ ws + €.

e For each dimension ¢ € [d], permute the ¢th coordinates of the 6; vectors so that the marginal
distribution of their /th coordinates coincides with @, .

Specifically, we define D; := Zfi*l W65 where

T

e =6 =1
1 .
G o= IR TE 1=2
v T .
29 1= K*
1
9K, —2° 0.W.
and 6, ,;[(] = Vg (;), for any permutation o of [K,] such that o(j, — 1) = 1, o(j¢) = 2, and

o(K,) = K. Simply swapping jo — 1 and 1 and j, with 2 works unless j, = 3, in which case
onecansend 2 — 1,3 — 2,and 1 — 3. As claimed above, this construction ensures that for each
dimension ¢ € [d], the marginal distribution of D; is @,,. Indeed, for each i € [K,], we have

1

9K, =2 g, 1= jg -1
1 . .
57 —5 T & L=
_ _ )oK, =2 )
Foop, Ol =0 =1 § i=K.
K5 Ki 5, 0.W.
= Qje (Ul)

Lower bounding the regret. For the contextual setting, we sample a selection j = (j1,...,j4) €
{2,..., K, — 1}% uniformly at random and set D, to the perturbed instance D;. We consider

stochastic contexts, where each w; is the standard basis vector along coordinate ¢; sampled uniformly
at random from [d]. Now, fix any contextual pricing policy A for this this randomized environment.
Our high-level intuition is that, for each coordinate ¢ € [d], the sub-environment during the roughly
T'/d rounds when ¢, = ¢ mirrors that of Lemma C.7, and so we incur regret (/K. - T'/d) during
such rounds. Summing over £ € [d] then gives the lower bound.

To formalize this, note that each coordinate is sampled at least 77 = |T'/2d | times under an event £
with probability at least 1 — 1/7". This follows by a Chernoff bound a union bound over coordinates
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since T' > 8dlog(2d). Then, for each ¢ € [d], there is a natural policy A, induced for the non-
contextual setting of Lemma C.7 with time horizon 7”. To start, A, samples a valuation distribution

Q¢ uniformly at random from {Qj}jeqa,.... k. —1y for each £' # £. Further, it instantiates a simulated
copy of A and a counter 7, initialized at 1, tracking the round of this simulation. Then, for round
t'=1,...,T", A, performs the following:

. If 7 > T, play py = 1 for remaining rounds and terminate.

. Otherwise, sample £, uniformly from [d).

. Submit the associated context as u, to .4 and receive suggested price p.

AW N =

. If £, = ¢, play price py = P, submit the purchase feedback 3, = y to A, increment
T < 7 + 1, and continue to the next round.

5. Otherwise, submit 3, ~ Ber(x) where x is the demand of QgT at p,, increment 7 <— 7 + 1,
and return to Step 1.

By design, if Ay is run under the setting of Lemma C.7, its simulated copy of .4 experiences feedback
indistinguishable from that described in our setting above. Thus, writing 7, for the rounds of our
initial setting where ¢; = ¢ and conditioning on £ (under which |7;| > T"), we have

E|S" gap, (pe,u) f:] > B[R4, (T') | €]
teTe
> E[Ra,(T")] -1
= Q( K*T/d),

since 7" > K3 and T > 2d. We then compute
E[RA(T)] > E[RA(T) | €] =1

d
> gap.(prw)

(=11teT,
d
5B S g, () e] L
/=1 teTe

Q(VK.Td),

as desired.

Small K,. If K, = 2, a simpler one-dimensional construction suffices. We set v1 = 1/4, vy
1/2, Qo(v1) = Qo(ve) = 1/2, so that demg,(v1) = 1, demg,(v1) = 1/2, and revg, (v1)
revg, (v2) = 1/4. We then define Q4 (v1) = 1/2 F e and Q4 (v2) = 1/2 + ¢, so that revg, (v1) =
1/4 and revg, (vo) = 1/4 4+ £/2. Moreover, taking ¢ = 1/+/T (valid so long as T > 4, which
we assumed), we can simply employ the standard 2-armed bandits lower bound (e.g., using the
same techniques as in Appendix C.11) to show that no algorithm can achieve regret o(v/T) for both
instances. Our argument above, tensoring one-dimensional instances and obtaining a contextual
lower bound, still goes through, since )+ and () _ share the same set of probability weights, giving a
lower bound of Q(\/T7d) for a worst-case instance. For K, = 3, we can easily tweak the K, = 2
construction to place negligible mass at v3 = 0, and the lower bound still holds. O

C.11 Non-contextual Lower Bound (Proof of Lemma C.7)

We first recall some basic information theory. Write KL(p || ¢) := E, [log(dp/dq)] for the Kullback-
Leibler divergence between distributions p and q on the same domain X'. When p and q are Bernoulli
distributions with success probabilities a, b € [0, 1], we write KL(a || b) = KL(p|| ¢).

Fact C.8 (Pinsker’s inequality). Forp,q € A(X) and M > 0, we have

sup  E,[f] — Eqlf] < My/5KL(p| ).

f:X—[0,M]
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Fact C.9 (Bernoulli KL bound). For a,é € [0, 1] such that a + § € (0,1), we have
52
(a+d6)(1—a—20)
Fact C.10 (KL chain rule). For distributions p, q over sequences X" =(X1,...,X,)€X™,

KL(al|a+6) <

n

KL(pllq) = Z]EX"NP KL(p(Xi | X1,..., Xio1) [ ¢(Xi | X1,..., Xic))],

i=1
where p(X;| X1, ..., X;_1) denotes the conditional distribution of X; under p given X1,..., X;_1.
Next, we observe that, if the buyer valuations are drawn from ()5, the price v; achieves expected

revenue at least 1/2 + (e) whereas all other v; # v; achieve revenue 1/2. Indeed, the demand
function of @); is identical to Qg at all v; # v;, and at v; we have

revg, (v;) = vj(demg, (vj) +¢) = 1/24+ev; > 1/2 4 ¢/2.
Thus, gap, (vi) > €/2 - 1{i = j}. Also, for i > 1, Eq. (5) implies that 1/2 < demg, (v;) < 5/6.
So, imposing that our perturbation size ¢ is less than 1/12, we have that
2

KL (demq, (v;) || demg, (v7)) < ——r = 24> ©6)
2712
foralli,j € {2,..., K, —1}.
Now, let J be drawn uniformly at random from {2,..., K, — 1}, so that Q); coincides with the
random instance from the lemma statement. Conditioned on .J, let the valuations VT = (V4,..., V)

be drawn i.i.d. from @, i.e., VT ~ Q7. Under this set up, v is the unique optimal price, and playing
v; for i # J incurs regret (g). We will be comparing to the alternative world where V7' ~ Q¥ and
all arms have equal expected revenue of 1/2. All expectations under this alternative will be clearly
denoted as such.

Without loss of generality, we assume that the fixed pricing algorithm A is deterministic (since we
may condition on any internal randomness of .4). Applying A to instance ) ; induces a random
sequence of prices Py, ..., Pr, where P, each is a function of the previous purchase decisions
Y, = 1{V; > P;} for 7 € [t — 1]. Without loss of generality, we may assume that each P, belongs
to {va,..., vk, _1}, since rounding up to the nearest element of this set can only increase expected
revenue. Thus, defining the empirical frequencies

T
N; = Z]I{Pt =v;},
t=1

we have Z;{:*Q_ 'N 7 = T. Conditioned on J, the regret of .4 over the 7" rounds is

T
RA(T) = ZgapQJ(Pt)

t=1

N

>

]].{Pt 7é UJ}

t
T_NJ)v

1

>

NI N ™

Thus, we have in expectation over J and V7 that
€
EJ’VT [RA(T)] Z §<T —EJ7‘/T [NJ]) (7)

We next control E ; = [N ;] using the KL chain rule and Pinsker’s inequality. Fixing j € {2,..., K,—
1}, write g;(-) and go(-) for the induced distributions on the entire purchase sequence Y7 =
(Y1,...,Yr) under Q; and Qo, respectively. By the chain rule, we compute

T
KL(q0 | ¢j) = Y Eyrogy [KL(q0(Ys | Y1.....Yio1) [ q;(Yi | Ya,...,Yio0))]
t=1
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Eyrogy [KL(00(Ye | P) [ q;(Ye | P) - 1{P; = v;}]

Il
M=

ﬁ
Il
_

Eyr. g, [KL(demQO (vy) || demg, (vj)) 1P, = vj}}

Il
M=

&
Il
-

T

< 242 Byt [1{P: = v;}] (Eq. 6)
t=1

- 24€2 ]EVTNQ(’I; [N]]

In short, o and ¢; are only distinguishable for rounds in which A selects price v;, and even in these
rounds their divergence is bounded. Now, since N, is a deterministic function of YT for fixed A,

Eyr g, [Nj] < Eyrog[Nj] +eT /24 Ey.q,[N;].

Taking an expectation over .J then gives

E;yr[N;] <E, [EVTNQOT[NJ]} + 5T\/24EJ [JEVTNQOT[NJ]}.
Since Zﬁ;l N; =T and J is uniform over {2, ..., K, — 1}, K, > 4, it follows that

1 & T T
E; [EVTNQS”[NJ]} =% 3 > Eyrogrly] = T 353
* j:2 *

Plugging this into (7) gives

Ejyvr[Ra(T)] > 5 - (T —Eyyr[Ny])

1 / T
T(Qs 24'[(*—2)

We now set € = ﬁ v/ (K4 — 2)/T. Our construction required thate < 1/(2K, —2) ande < 1/12,
which are satisfied under our assumption that 7 > K3. This yields a final lower bound of

Ejyr[Ra(T) > 5 T@ —5,/24K*T_2> - o(VE.T),

as desired. ]

I
CTNOR IO

D Proofs for Section 4

To fully specify the algorithm, we introduce the following notation:
e Since our analysis exclusively reasons about the true type distribution D,., we abbreviate dem =
dem,, rev = rev,, gap = gap,, and br = br,.
e For each price p € [0, 1] and round ¢ € [T], we write
* Ti(p) == {7 €[t — 1] : p; = p} for the set of previous rounds where p was played,

* n¢(p) = |T:(p)| for the count of these rounds,
o u(p) = ﬁ(p) Y oreT (p) Py for the average revenue during these rounds,
s Vi(p) = m Zreﬂ(p) (py: — pt(p))? for the sample variance, and

* 02(p) = p*dem(p)(1 — dem(p)) for the population variance (unknown to the seller).
When n¢(p) = 0, we set p1¢(p) = 0 = V;(p) = 0. When ns(p) = 1, take V;(p) = oc.

e Defining confidence radius r;(p) = / 10V‘n(f’()pl)°gT + 121°g£T1) (taken as +oo if ny(p) < 1), a

nt(p)
variant of Bernstein’s inequality shows that |u;(p) — rev(p)| < r:(p) w.h.p. (see Lemma D.3).
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ALGORITHM 4: ZoomV: Variance-Aware Zooming for Non-Contextual Pricing

Initialize: active price set S {% 21=0,1,..., [log, T|} U {1};
for each round t € [T] do
play p; € arg max, g index;(q);
observe y; = 1{6; < p;} and update n¢11(ps);
if a price p > 1/T becomes uncovered then
g+ min{q € S:q¢ >p};
S SU{lpi+49)/2}

o Write UCB,(p) := u:(p) + r:(p), so that rev(p) < UCB;(p) w.h.p.

e We say a price p is covered by ¢ € S'if p € [q,q + r:(q)] and q is the largest active price no
greater than p, i.e., ¢ = max{q’ € S : ¢’ < p}. One-sided Lipschitzness of the revenue function
(Lemma 2.1) implies that rev(p) — rev(q) < r:(q) w.h.p.

e Define the index of a price ¢ € S as index;(q) := UCB:(q) + 7:(¢). Each price p covered by
some ¢ € S satisfies rev(p) < index;(q).

D.1 Main Regret Bound for ZoomV (Proof of Theorem 4.1)
As mentioned, the lower bound follows by that in Theorem 3.8 when d = 1. For the upper bound, we
prove a generic regret bound in Appendix D.2 depending on the variance-aware zooming dimension.

Lemma D.1. For ¢ > 0, ZoomV achieves regret 6(61/(2+z) Tl_l/(2+z)), where z = ZoomDimV(c).

Next, we prove the zooming dimension bounds claimed in Section 4.
Lemma D.2. We have ZoomDimV (10K, ) = 0 and ZoomDimV(10) < ZoomDim(10) < 1.

Proof. Foreachd > 0and type i € [K,],let X{?) denote the set of activated arms p with gap, (p) < &
that lie in the interval (§¢—1), #(9)], to the left of type i. Since revenue is linearly increasing within
each such interval, with slope d; = dem(O(i)), the gap condition requires that each p € X §i) also
satisfies p > 0() — §d; . Moreover, for p € X, we have 0(p) < d;. Thus, we obtain

No(X5,8/20) < 37 No(x{",6/20) < Y 1047 - d; < 20K,
i€K.) i[K.]

implying the first bound. For the second, we note that N'(X5,6/20) < N([0,1],4/20) < 205~%. O

Combining the two lemmas gives the theorem. Indeed, the /K, T bound follows by Lemma D.1

with ¢ = 10K, and z = 0, using Lemma D.2. Similarly, the 7%/3 bound follows by taking ¢ = 10
and z = 1. O

D.2 Base Regret Bound for ZoomV (Proof of Lemma D.1)

We begin with a few helper lemmas. Throughout, we assume that 7' > 3 (otherwise the regret bound
holds trivially). Our proofs mirror those of similar lemmas in [27], with small adjustments to handle
the variance-adjusted confidence radii and the dyadic price selection rule.

Lemma D.3 (Concentration). Write Ecjean for the event that

1002%(p)logT = 126log(T)
n(p) ni(p) =1

e (p) — rev(p)| < re(p) <

forallt € [T) and for all p € [0,1]. Then P(Eclean) > 1 — 8T 2.

Proof. For fixed p € [0,1] and ¢ € [T], Theorems 10 and 11 of Maurer and Pontil [20] imply that

le(p) — rev(p)| < re(p)
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11logT
|04 (p) /7|_ i

(p)—1

with probability 1 — 87"~5. We note that similar bounds appear in [2], which inspired our adjustments
to the confidence intervals. Under this event, we further bound

10V, ( )logT + 1210gT

\/1002 p)logT \/1010gT\/ 1110gT 12log T
ni(p) — 1

1002(p)logT  126logT
- n(p) n(p) =10

re(p) =

Taking a union bound over ¢, the above must hold for all ¢ € [T'] with probability at least 1 — 87~ 4.
Now, the same Chernoff bound argument used in Claim 4.13 of Slivkins et al. [27] implies that
| (p) — rev(p)| < ry(p) for all p € [0,1] and ¢ € [T'] with probability at least 1 — 87~2. One
technical observation is that Claim 4.13 requires that the set of arms every played by the algorithm is
finite. This holds for ZoomV due to our dyadic arm activation rule. O

Lemma D.4 (Covering invariant). Ar the beginning of each round, every price p > 1/T is covered
by some active arm.

Proof. Atround 1, r,(q) = oo for all active arms ¢ € .S, and so all arms larger than 1/7" are covered
by our choice of S. Now, suppose that the lemma holds up to round ¢, and that playing p; causes a
price p € R to become uncovered. Then, by the definition of covering, we must have

Pt < pe+ripi(p) <p < q < pe+re(pe)s

where ¢ is the nearest active price to the right of p;, selected at Step 6. First, verify that the
added price, p’ == (p: + ¢)/2, is less than p. Since 7411 (p;) must be less than one, we must have
ne+1(p) — 1 = ne(p) > 12. Thus, we can bound

2

Vigi(p) = r - > > W —yn)’

nt+1(p)(nt+1<p) T1ETi+1(p) T2€Ti4+1(p)

> (n(p— Z Z y7'1 yT2
¢ T E€Te(p) T2€T2(p)
ny(p) — 1
=y
( Y1 +(p)
>
> SVip)

Consequently, one can show that

10Viy1(p) logT  121og(T) S 3 [10Vi(p)logT  12log(T) 3
ny(p) +1 ni(p) 4 n:(p) m(p) =1 4

7¢(pt)-

Tt+1(pt) =

Combining, we find that p’ = (p; +¢)/2 < p: + %rt (pt) < pt+riv1(pe) < p, as desired. Moreover,
p’ could not have already been active at round ¢; otherwise, p; would not have been covering p.
Finally, once p’ is added, it covers p since r¢11(p') = 0. O

Lemma D.5 (Gap bound). Condition on Elean- Then gap(p) < 5ry(p) and ny(p) < 2520%(p) log T +

5041og T = gap®)?
et forallp € [0,1] and t € [T).

27



Proof. Write p = max{br, 7}, and fix any price p € [0, 1]. Consider some round ¢ at which p is
played. By Lemma D.4, we know that p was covered at the beginning of round ¢ by some price g € S,
and that p had a higher index than g. Hence,

index;(p) > index;(q) (since p was played)
= UCBy(q) + 1:(q) (by definition of index)
> u(q) +r:(q) (concentration guarantee)
> rev(p). (p covered by ¢)

Moreover, index;(p) < pt(p) + 2r¢(p) < rev(p) + 3r(p). Thus,

gap(p) = rev(p.) — rev(p) < 7 + rev(p) — rev(p) < 7 + 3re().

Now, if ny(p) < 12, gap(p) < 1 < r141(p). Otherwise, the bound above implies that gap(p) <
5r¢+1(p). Since ¢ (p) only changes when p is played and gap(p) < 5r;(p) whent = 1, this guarantee
holds for all £. For the other bound, we apply concentration to obtain

1002(p)logT  126log(T
gap(p) <5 w) @),
n¢(p) n(p) — 1
Rearranging and solving the quadratic inequality in n;(p) gives the stated result. O

Compared to the standard gap bound lemma for zooming (see, e.g., Lemma 4.14 of 27), Lemma D.5
is adapted to the variance of each price p. We can now prove the regret bound.

Lemma D.6 (Active arm separation). Conditioned on Egean, consider any three consecutive active
arms x < y < z which did not belong to S at initialization. Then z — x > 1—10 min{ga p(x), gap(y)}.

Proof. If y was activated before z, then z must have been added as the midpoint of active arms y and
y+2(z —y) = 2z — y at round 7,, when y must have not covered 2z — y. Thus, by Lemma D.5, we
would have 2(z — z) > 2(z — y) = (22 — y) — y > £gap(y). On the other hand, if y was activated
after z, then it must have been added as the midpoint of = and z at round 7, when = must have not
covered z. Again, by Lemma D.5, this would imply z — z > %A(y). O

Proof of Lemma D.1 We freely condition on Ejean, since the complement has negligible probability
O(T~2). For each § > 0, let Y5 C X5 denote the set of activated prices p with gap(p) € [§,26). In
what follows, we say that two prices are adjacent if they are neighboring within Y. Note that at most
O(log T) of the prices in Y5 were activated at initialization. Consider the set Y;? which, for each such
price, contains this price and up to two neighboring prices, such that the remaining prices Y5 \ Y}
can be split into triples of neighboring prices. We then decompose

Vs\ Yy = {p11 <pP12<p13<po1 <pa2<p23<-<Pni<bnz<Dn3}

where p; 1, p; 2, i 3 are neighboring for each ¢ € [n]. By Lemma D.6, we have p; 3 — p; 1 > /10
for all i € [n], and so p; , — pjr > 6/10 for all k € [3] whenever i < j — 1. Thus, we can
partition Y5 \ Y:SO into at most 6 packings, each of which has separation at least §/10. Of course any
(6/10)-packing of Y5 C X5 is contained within a (§/5)-cover of X5s. Consequently, we have

> 0(p) < 6Nyar(X25,6/5) + Olog T) < 6¢5~* + O(log T).
PEYs

Noting that a (§/10)-packing within [0, 1] can have cardinality at most 106!, we further bound
|Ys5| = O(log T + 6~ '). Thus, by Lemma D.5, the regret incurred due to posting prices in Yy is at
most

26 Y O(0®(p)log(T)s > +1og(T)6 ") = O log(T)s " > o*(p) + log(T)[Vs|
PEYs PEYs

= O(log(T) (07177 +1og(T)5 ") + log(T) (log T + 5*1))
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= O(clog(T)s % + 10g2(T)6_1)

Now we sum over § = 1/2,1/4, ..., o, where a will be tuned later, giving a total regret bound of
log(1/a) A _
Z [c log(T)2/1+2) 4 logQ(T)2j} +ol = O(clog(T)of(Hz) +log*(T)a ! + aT).
j=1
Taking a = (clog(T)/T)"/(>+2), we obtain the desired bound of O (c!/(+:)T1-1/(2+2)), O

E Proofs for Section 5
We first recall some results from Vapnik—Chervonenkis (VC) theory. Given distributions D, D’ over

a finite domain X', define the total variation distance ||D — D'[|rv = sup4c x |[D(A) — D'(A)]|.

Lemma E.1 (Section 28.1 of 25). Fix a finite set X, a function family F C {0,1}*, a distribution
DeA(X), and 6€(0,1). Then, for X1,...,X,, sampled i.i.d. from D, we have

o <\/V10g(n/V) + log(1/5)>

n

sup Bl /()] - = S F(X0)

fer

with probability at least 1 — 6, where V is the VC dimension of F.

Lemma E.2 (Theorem 9.3 of 25). The family F = {0,1}* has VC dimension |X|, and the family of

linear thresholds over R has VC dimension d + 1. The former result implies that, under the setting
above, we have

1D~ Dulley = 0( [ log(n/[¥]) + 1og<1/5))

with probability at least 1 — 0.

We also recall Bernstein’s inequality for the case of i.i.d. Bernoulli random variables.
Lemma E.3 (Theorem 2.10 of 3). Foriid. Xi,...,X, ~ Ber(p)and§ >0,

> Xi < pn+ +/2nplog(1/5) + log(1/5)/3
=1

with probability at least 1 — 0.

We now turn to the main proofs.

E.1 Observed Type Identifiers (Proof of Theorem 5.1)

To state our result for the first setting, we introduce an e-ball performance metric for contextual
search. This is a slight strengthening of the standard e-ball metric Zthl 1{|p:s — ve| > €}

Definition E.4 (Strong e-ball regret). Let A be a contextual pricing policy which, at round ¢ € [T
with context uy, outputs a price p; € [0, 1] along with a confidence width w; € [0,1]. For e € (0, 1],
we say that A achieves strong e-ball regret R(7T") for contextual search if, when K, = 1 and D, = dy,,

we have |p; — v;| < w; for each round ¢ and Zthl 1{w; > e} < R(T'), where v, = (uy, 0,).

That is, A produces e-accurate estimates for the true values, outside of up to R(T") rounds for
exploration, and it can identify when these estimates are accurate. In practice, this tends to require
that A maintain a confidence set around 6, whose width, when projected onto the current context, is
greater than ¢ for at most R(7T') rounds. Fortunately, there are existing efficient algorithms which
achieve low e-ball regret.

Lemma E.5 (18). Fore € (0, 1], there exists a contextual search algorithm ProjectedVolume(e),
based on the ellipsoid method, with strong e-ball regret O(dlog(d/e)) and running time poly(d,1/¢)
per round.”

‘We now present our algorithm (Algorithm 5), which uses ProjectedVolume as a subroutine.

?Although [18] state a slightly weaker guarantee, instead bounding 3, 1{|p:—v¢| > e} = O(dlog(d/¢)),
this strengthened result is immediate from their proof.
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ALGORITHM 5: Contextual Pricing with Ex-Post Type Identification

initialize: observed types Z = &, e = +/dlog(T)/T;

for each round t € [T] do

observe context u;;

if exists i € T such that width(A;, u,) > € and my(i) < €T then
play p; = price(A;, u;) and observe y;;

observe type z; € [K,];

update algorithm A; with y; if z; = i;

increment m. () by 1;

else
let S = {i € T : width(A;,u;) <e};

define F/(i) = 3,5 Z’fjl) - 1{price(A;, u) > price(A;, us)} foreach i € S;
set i* = argmax; s F'(i) - price(A;, ur);
play p; = max{price(A;-,u;) — €,0} and observe y;;
observe type z; € [K,];
increment n;(z;) by 1;
if z; ¢ 7 then
| initialize copy A, of ProjectedVolume(e) and setZ <— Z U {z};

Overview of Algorithm 5 We maintain a set Z of observed types, initially empty, and an accuracy
¢ (tuned to minimize regret). We will initialize an independent copy A; of ProjectedVolume for
each ¢ added to Z. Since these copies are simulated, we are free to query the price price(A;, u;) and
confidence width width(.A4;, u;) for a context u; without updating .4;. Moreover, for each i € Z,
the algorithm maintains a frequency count n;(7), recording the number of rounds which we have
followed the recommended price of .4;, along with an exploration count m (), recording the number
of rounds which we have played the price of .4; due to its lack of confidence along the current context.
At each round ¢, we perform the following:

* If there is an observed type ¢ € Z such that width(A;,u;) > ¢ and that its number of
exploration plays m; () is below a threshold of €T'/ K, the algorithm plays price(.A;, us),
observes the outcome and the realized type z;, and updates A; if z; = . In addition, we
increment n;(¢) and my(7).

* Otherwise, it defines active set S = {i € Z : width(A;, u;) < €}, computes for each i € S
the score
F@) = Z ne(4) ]l{price(.A- ug) > price(A;, u )}
t—1 gy Yt) — 7y Ut )
JES
and plays p; = max{price(A;,u;) — £,0} where i* € arg max;cg{F (i) - price(A;, us) }.
It then observes y; and z; and updates the frequency count n;1(z;). Here, F is an estimate
for the demand at the price suggested by .4;, and so ¢* is an estimate for the revenue
maximizing type. We pull back the price recommended by A;+ by ¢ to avoid issues due to
estimation error.

Bounding exploration regret. Write 7; for the set of exploration rounds. By design, an exploration
round is one in which some type i is used with width(.A;, u;) > € and exploration counter satisfying

my(i) < eT. Trivially, | 7;| < €T, so we can incur regret at most €T = O(+/dT’) during exploration.

Bounding mass of types which saturate exploration threshold. Next, consider any type ¢ that has
been explored sufficiently so that my (i) = 7 after time T'; denote by S’ the set of all such types.
We will show that D, plays small mass on S’. Fix i € &’ and write 77 ; for the exploration rounds
where we follow .4;. Conditioned on 77 ;, we note that X; = 1{z; =i}, t € 71, are i.i.d. Bernoulli
random variables with Pr(X; = 1) = D,(4). Defining

Si= > X,

T€T1 i
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our guarantee for ProjectedVolume (Lemma E.5) and the width condition for exploration imply
that S; = O(dlog(d/¢)). On the other hand, by Bernstein’s inequality (Lemma E.3), we have

1
Si > mr(i —2mp(i i) log(T) — 3 log(T).
with probability at least 1 — 1/7. Since mr (i) = €¢T" = /dT log(T), the dominant term is

mr(1)D, (i) for T greater than a sufficiently large constant. Thus, we deduce that

d
eT D, (i) < O(dlog 5)’

or equivalently,

D.(i) < o(dlof(jfl/f)).

Summing over all types in S’ (of which there are at most K,) and taking a union bound, the total
mass in S’ is at most

=Y D.(i) < O(W) = O(K*\/d/T) ®)
€S’
with probability at least 1 — K, /T. We condition on this bound holding for the remainder of the
proof, since doing so contributes a negligible K, to the regret. We also condition on the event that,
for each round ¢ € [T] the empirical frequencies of (all) types deviate from their true masses by at
most O (/K log(T))/t) in total variation. This is permissible by Lemma E.2 and a union bound
over rounds.

Bounding exploitation regret. Fix an exploitation round ¢, and recall the set of accurately estimated
types

S ={i €T :width(A;,us) <e}.
Write vy, ..., vk, € [0,1] for the true values at round ¢. By our construction and the e-ball guarantee
for ProjectedVolume, A; returns a price that is an e-accurate estimate of v;, for each i € S.
Moreover, by our analysis above, the mass on types outside of S is quite small. We thus bound

dem, (pg, ut) = ZD )1{vi > pi}

i€S

> Z%ﬂ{vi Zp:s}—é([@%d/ﬁ) - O(V/K.log(T)/t) (TV bound)
=

> Z;g ;’:t_(zi 1{v; > price(As,u;) — €} — 6([(* dlog(T)/t) (choice of p;)
ic

> Z:S ?t_(ii]l{price(/li, ug) > price( A, ug)} — 5([(* dlog(T)/t) @es)
ic

= F(i,) - 5([(* dlog(T) /t). (choice of )

Consequently, we bound rev, (p;, u;) + O (K* dlog(T)/ t) from below by

peF(i%) > price(Ais, us) F(i*) — e

= max price(Aj, u)F(j) — ¢ (choice of i*)
J

= max pz nt—(i)]l{price(Ai, ug) >ph—e (rev. maximized at jump)
p€l0,1] t—1 -

> m[foi}i] ZD )1 {price(A;,u;) > p} —e — <K*\/d10g(T)/t) (TV bound)
pPE
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> max pZD (O)1{v; > p+et—e—-0 (K*\/dlog(T)/t) (@€

p€(0,1]

> max ZD N{v; >p+e}—c— (K*\/dlog(T)/t> (Eq. (8))

pE[O 1]

= max pdem,(p+e,u) —€ — O(K* dlog(T)/t)

pe(0,1]

= m[zoni] revy(p + €, u) — 2 — (K}leog(T)/t)
pe

= prél[%}i] revy(p,u;) — 3e — O(K* dlog(T)/t).

All together, we see that playing p; incurs regret at most 6(K*\/dlog(T )/ t). Summing over
exploitation rounds and adding the exploration regret gives a total bound of

T
-y 5(K*\/dlog(T)/t) + O(VdT) = O(K,VdT),

as desired. O

E.2 Observed Type Vectors (Proof of Theorem 5.2)

We first show that rev;,  concentrates tightly around rev,, using a simple VC bound.

Lemma E.6. Fix D € Ak (0) and let D, be the empirical measure of t i.i.d. samples from D. We
then have

min{ K, d} log(t) + 10g(1/§))
t

sup  [revp(p,u) —revp (p,u)| = 0(
p€e[0,1],ueld ‘

with probability at least 1 — 0.

Proof. We compute

sup  |revp(p,u) —revy (p,u)| < sup  |demp(p,u) —demp (p,u)
p€e[0,1],ucld p€[0,1],ucld )

= sup |Eg.p[f(0)] — Ey_p, [f(0)]],
fer

where F is the space of linear threshold functions f, ,, : supp(D) — {0, 1} given by f, () =
1{(u,0) > p}. The result then follows by Lemma E.2. O

Now, our best response policy ensures that, at each round ¢ > 1, we have
reve(pe,ue) =revpy  (pr,ur) + revi(pe, u) —revpy — (pe, ur)

>revpy  (bro(u),ur) —  sup frevi(p,u) —revp  (p,u)]
) pel0,1],ueld

> revy(bri(ut),us) =2 sup  |revi(p,u) —revpy  (p,u)l.
p€E[0,1],ueld

Consequently, regret is at most
T—1

R(T)<1+2 Z sup  |rev.(p,u) — revp (p,u)l
t—1 p€[0,1],ucl

T—1

=0 (x/min{K*, d} Z 1/ k)gt(t)> (Lemma E.6 with § = t~2)
t=1

= O(v/min{K,, d}T),

as desired. O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We summarize our key contributions and results, which all have proofs.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

Justification: This is a theoretical work and we point out all necessary assumptions for the
applicability of the results

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not contain any experimental work.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not contain any experimental work.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not contain any experimental work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not contain any experimental work.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not contain any experimental work.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We abide by the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a theoretical work without any clear and immediate social impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not release new assets
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

38



Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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