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ABSTRACT

Recent advances in reinforcement learning (RL) have substantially improved the
training of large-scale language models, leading to significant gains in generation
quality and reasoning ability. However, most existing research focuses on dense
models, while RL training for Mixture-of-Experts (MoE) architectures remains
underexplored. To address the instability commonly observed in MoE training,
we propose a novel router-aware approach to optimize importance sampling (IS)
weights in off-policy RL. Specifically, we design a rescaling strategy guided by
router logits, which effectively reduces gradient variance and mitigates training
divergence. Experimental results demonstrate that our method significantly im-
proves both the convergence stability and the final performance of MoE models,
highlighting the potential of RL algorithmic innovations tailored to MoE archi-
tectures and providing a promising direction for efficient training of large-scale
expert models.

1 INTRODUCTION

Reinforcement Learning (RL) has demonstrated strong potential in enhancing LLM reasoning
through inference-time scaling, as exemplified by the OpenAI-o1 model (OpenAI, 2024). More
recently, DeepSeek-R1 (Guo et al., 2025) has shown that reinforcement learning with verifiable re-
wards (RLVR), which relies on simple, rule-based reward functions, can elicit emergent reasoning
abilities and deliver substantial performance gains on challenging tasks such as mathematical prob-
lem solving and program synthesis (Yang et al., 2025; Team et al., 2025a; Chen et al., 2025). In
parallel, Mixture-of-Experts (MoE) architectures have emerged as an efficient approach to scaling
model capacity (Fedus et al., 2022). By activating only a small subset of experts per token, MoE
models achieve higher parameter efficiency while keeping computation cost nearly constant, making
them particularly attractive for large-scale RL training where compute efficiency is critical.

Despite these advances, applying RLVR to MoE models remains highly challenging due to stabil-
ity issues (Zheng et al., 2025; Chen et al., 2025; Yang et al., 2025). A central difficulty is router
fluctuation: the set of experts selected for the same input token may vary significantly across policy
updates (Dai et al., 2022; Zheng et al., 2025). Such routing drift not only increases the variance of
importance sampling (IS) weights, but can also destabilize optimization and even cause reward col-
lapse. Furthermore, most implementations adopt token-level IS ratios (Schulman et al., 2017), which
are poorly aligned with the sequence-level rewards typically used in RLVR, introducing additional
variance and further compounding instability. Prior work such as GSPO proposes computing IS ra-
tios at the sequence level to mitigate this issue, yet it does not fundamentally address the instability
introduced by router fluctuations.

We experimentally explored two natural stabilization strategies: freezing the router parameters and
routing replay, where routing decisions are cached and reused across updates. However, both ap-
proaches proved unsatisfactory—freezing the router hampers model adaptability, while routing re-
play restricts exploration and degrades performance. These results suggest that rigid control over
the router is suboptimal, and a more flexible mechanism is needed.

To address these challenges, we propose Router-Shift Policy Optimization (RSPO),
an RL algorithm specifically designed for MoE architectures to achieve stable and efficient training.
Instead of fully constraining the router, RSPO introduces a router shift ratio, computed from router
scores between the current and old policies. This ratio quantifies the degree of routing deviation for
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each token and is used to softly rescale IS weights. In doing so, RSPO reduces gradient variance and
mitigates divergence caused by router instability, while preserving the router’s capacity to adapt.

We validate the effectiveness of RSPO on the Qwen2.5 model for the countdown task and on Qwen3-
30B-A3B across multiple mathematical reasoning benchmarks. Extensive experiments demonstrate
that RSPO achieves more stable training and superior performance. Our main contributions are
summarized as follows:

• We propose RSPO, which combines a router-aware rescaling strategy with sequence-level ag-
gregation of importance sampling ratios, effectively stabilizing off-policy RL training for MoE
models.

• Unlike router freezing or routing replay, RSPO adopts a soft adjustment mechanism: it leverages
a router shift ratio to quantify routing deviation for each token and adaptively reweight updates,
limiting overly large updates while retaining router flexibility.

• We evaluate RSPO on both the countdown task and multiple mathematical reasoning bench-
marks, demonstrating its stability and effectiveness, and highlighting the importance of incorpo-
rating router-aware strategies and sequence-level importance weighting in RL for MoE models.

2 PRELIMINARIES

Group Relative Policy Optimization (GRPO) Traditional reinforcement learning (RL) algo-
rithms, such as Proximal Policy Optimization (PPO) (Schulman et al., 2017), have been widely
applied to RL training of large language models (LLMs). However, PPO still suffers from high
computational cost and challenges in tuning value model. To address these limitations, GRPO (Shao
et al., 2024) builds upon PPO by removing the value model and introducing a group-relative advan-
tage estimation.

Specifically, for a given query x, GRPO samples G candidate responses {yi}Gi=1, computes their
relative advantages within the group, and optimizes the following objective:

JGRPO(θ) = Ex∼D, {yi}G
i=1∼πθold (·|x)

 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,t(θ) Âi,t, clip

(
wi,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t

) ,

(1)

where G denotes the number of responses generated for each query x. For each token yi,t, the
importance sampling ratio wi,t(θ) and the group-normalized advantage Âi,t are given by:

wi,t(θ) =
πθ(yi,t | x, yi,<t)

πθold(yi,t | x, yi,<t)
, Âi = Âi,t =

r(x, yi)− mean
(
{r(x, yi)}Gi=1

)
std
(
{r(x, yi)}Gi=1

) . (2)

Group Sequence Policy Optimization (GSPO). Unlike GRPO, which performs importance sam-
pling and clipping at the token level, Group Sequence Policy Optimization (GSPO) (Zheng et al.,
2025) defines the importance sampling ratio at the sequence level and applies clipping accordingly.
This modification corrects the misalignment between sequence-level rewards and token-level impor-
tance sampling ratios present in GRPO under the RLVR objective. The GSPO optimization objective
can be formulated as:

JGSPO(θ) = Ex∼D, {yi}G
i=1∼πθold (·|x)

[
1

G

G∑
i=1

min
(
si(θ)Âi, clip (si(θ), 1− ε, 1 + ε) Âi

)]
,

where the sequence-level advantage Âi usually comes from a rule based reward and calculate in the
same way as GRPO:

Âi =
r(x, yi)−mean

(
{r(x, yj)}Gj=1

)
std
(
{r(x, yj)}Gj=1

) , (3)
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The sequence-level importance ratio si(θ) based on sequence likelihood is defined as:

si(θ) =

(
πθ(yi | x)
πθold(yi | x)

) 1
|yi|

= exp

 1

|yi|

|yi|∑
t=1

log
πθ(yi,t | x, yi,<t)

πθold(yi,t | x, yi,<t)

 . (4)

Essentially, this replaces the arithmetic mean of the importance sampling ratios across the sequence
with their geometric mean.

Geometric-Mean Policy Optimization (GMPO). While GSPO operates at the sequence level by
defining a sequence-level importance sampling ratio and applying clipping over entire sequences,
GMPO (Zhao et al., 2025) retains the token-level decomposition but replaces the arithmetic mean
aggregation of per-token importance ratios with their geometric mean. In GMPO, each token’s ratio
(new/old) is treated multiplicatively, and the |y|-th root (or equivalently the sum of log ratios) is used
to obtain a single sequence-level ratio, which is more robust against extreme individual token ratios.
Unlike GSPO, where extreme token-level ratios may still dominate the overall sequence likelihood,
GMPO reduces the influence of such outliers while preserving token-level granularity.

3 METHOD

3.1 MOTIVATION

Modern Mixture-of-Experts (MoE) models often have extremely large model sizes (Guo et al., 2025;
Liu et al., 2024; Yang et al., 2025; Team et al., 2025a),, making off-policy reinforcement learning
(RL) crucial for maintaining training efficiency on reasoning tasks. However, as highlighted by
GSPO, two key issues arise when applying traditional GRPO to MoE models:

(1) Routing fluctuations: As shown in Figure 1 after policy updates, the set of experts activated for
the same token may change (approximately 10% of experts differ according to prior studies).And
even when the selected experts remain unchanged, their routing probabilities may still shift.Such
changes cause substantial fluctuations in the importance-sampling ratios, frequently triggering the
clipping mechanism and introducing additional variance into the training process.This phenomenon
was also reported previously in STABLEMOE (Dai et al., 2022);

Router

Expert 1 Expert 2 Expert 3 Expert 4

Router

Expert 3Expert 1 Expert 2 Expert 4

Just wait for Just wait for 

Update 1

Old log prob New log prob

⊕ ⊕

Update 2

… …

Figure 1: Router fluctuation in off-policy training.

(2) Variance mismatch: Most implementations of GRPO align sequence-level advantages using
token-level importance sampling ratios, creating a mismatch: token-level variance does not accu-
rately reflect sequence-level variance. In MoE settings, this effect is amplified by multiple experts
per token, often triggering clipping and destabilizing training. Combined with routing fluctuations,
this variance mismatch can significantly hinder stable and efficient learning.

A straightforward mitigation is routing replay (Zheng et al., 2025), which reuses the expert assign-
ments from the old policy when computing current log-probabilities, thus eliminating routing drift.
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However, this approach constrains router updates and incurs significant memory and communication
overhead, harming scalability and performance. GSPO handle the variance mismatch by adopting
sequence-level importance ratios and clipping, which better aligns the optimization objective with
rule based rewards and it is functionally similar with GMPO (using a geometric rather than arith-
metic mean). Nonetheless, GSPO does not fundamentally resolve routing distribution drift, and its
sequence-level clipping can over-prune tokens, potentially discarding useful gradient information.

3.2 OUR APPROACH

To address these limitations, we propose Router-Shift Policy Optimization (RSPO),
a routing-aware off-policy RL algorithm for MoE models. RSPO retains the use of sequence-level
importance ratios but applies token-level clipping to reduce information loss. Furthermore, we in-
troduce a router shift ratio that measures the deviation of router distributions between the current
and old policies. This ratio is used both to reweight token-level importance ratios and to softly clip
tokens exhibiting severe routing drift, thereby stabilizing training without freezing the routert. The
optimization objective of RSPO is formulated as:

JRSPO(πθ) = Ex∼Q, {oi}G
i=1∼πθold

(·|x)

1

G

G∑
i=1

{ |oi|∏
t=1

(
min

[(
wi,t(θ)

)sgn(Âi)
, clip

(
(wi,t(θ))

sgn(Âi), ϵ1, ϵ2
)]
·γi,t

)sgn(Âi)} 1
|oi|

Âi

(5)

The terms wi,t(θ) and Âi are defined in the same way as in GRPO, sgn(Âi) represents the sign of
the advantage, guaranteeing that the clipping mechanism functions as intended. The key innovation
of our method is the introduction of router shift ratio, which quantifies the degree of routing drift and
dynamically adjusts the magnitude of policy updates. Specifically, γi,t denotes the router shift ratio,
and r

(ℓ)
ϕ represents the routing score of expert e(ℓ)i,t at layer ℓ. We compute the deviation between

ϕold and ϕ by averaging the scores of the top-K experts that were activated under the old policy
during the log-probability computation. Since routing deviations may accumulate across layers, we
aggregate the per-layer router shifts multiplicatively. The resulting γi,t is applied as a reweighting
factor after clipping at the token level, thus preserving the original clipping behavior while further
down-weighting tokens that experience excessive routing drift. This design improves the stability of
the training without interfering with the variance control mechanism provided by clipping.

γi,t = exp

(
− 1

L

L∑
ℓ=1

1

K

K∑
k=1

∣∣∣log r(ℓ)ϕ

(
e
(ℓ,k)
i,t | x, yi,<t

)
− log r

(ℓ)
ϕold

(
e
(ℓ,k)
i,t | x, yi,<t

)∣∣∣),
γi,t = max

(
γi,t, γmin

)
.

(6)

This construction ensures that γi,t ∈ (0, 1] reflects the degree of router distribution drift, allowing
tokens with larger routing shifts to be down-weighted or clipped during optimization.

Another important aspect of our method is the use of a geometric mean for aggregating importance
sampling ratios at the sequence level. As discussed earlier, the variance of off-policy updates can be
further amplified in MoE architectures due to routing drift. Our experiments show that applying a
geometric mean to the importance ratios significantly improves training stability, whether clipping
is performed at the token level (GMPO) or at the sequence level (GSPO). As shown in Figure 2, the
model trained with GRPO experiences reward collapse on the small-scale setting, while GSPO and
GMPO remain stable. On the large-scale Qwen3-30B-A3B model, GRPO achieves substantially
lower reward compared to GSPO and GMPO, further confirming the advantage of using geometric
mean aggregation.

Our proposed Router-Shift Policy Optimization (RSPO) method can be seamlessly integrated into
existing reinforcement learning training pipelines. Specifically, it adjusts the importance sampling
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ratios based on the token-level router shift, mitigating instability caused by routing fluctuations
during training.:

Router-Shift Policy Optimization (PyTorch Implementation)

# ----------- Step 1: Compute router shift ratio -----------
# Measure the routing probabilities change between steps
old_log_probs = torch.log(torch.clamp(old_topk_probs, min=eps))
current_log_probs = torch.log(torch.clamp(selected_current_probs, min=

eps))
delta_log_probs = torch.abs(current_log_probs - old_log_probs)
router_shift_ratio = torch.exp(-delta_log_probs).mean(dim=-1)

# ----------- Step 2: Clip router shift ratio -----------
# Avoid extreme values that may destabilize training
router_clip_mask = (router_shift_ratio < clip_threshold) & (

response_mask > 0)

# ----------- Step 3: Apply router shift ratio -----------
# Smooth the importance sampling ratio
log_router_weights = torch.log(torch.clamp(router_shift_ratio, min=1e

-8))
negative_approx_kl_min = negative_approx_kl_min + log_router_weights
ratio = torch.exp(negative_approx_kl_min)

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Training Setup. We first conduct exploratory experiments and ablation studies on a small-scale
MoE model built on the Qwen2.5 (Qwen et al., 2025) architecture to validate the effectiveness of
our proposed approach and better understand its behavior. We pretrain the model on the Countdown
task, with a total parameter size of 385M and 85M activated parameters. Each layer contains 8
experts, with top-k = 1 expert routing. The pretraining is conducted with a learning rate of 1 ×
10−4 on 8 H100 GPUs. The RL implementation is built upon the verl training library. For large-
scale evaluation, we compare our method against GRPO (Shao et al., 2024), GSPO (Zheng et al.,
2025), and GMPO (Zhao et al., 2025) on the Qwen3-MoE-30B-A3B (Qwen et al., 2025) model.
All experiments are conducted under an off-policy training setting with a response length of 8k, a
global batch size of 128, and a mini-batch size of 64. For GRPO, we adopt the commonly used
clipping range of 0.2, while for GSPO and GMPO we follow the recommended hyperparameter
settings reported in their respective papers.

Training Datasets. For training, we use the DeepScaleR (Luo et al., 2025) dataset, which contains
approximately 40,000 unique mathematics problem–solution pairs. This dataset is compiled from
multiple sources, including: AIME (American Invitational Mathematics Examination) problems
from 1984–2023, AMC (American Mathematics Competition) problems prior to 2023, the Omni-
MATH (Gao et al., 2024) dataset, and the Still dataset. During RL training, we employ a rule-based
reward function that evaluates the correctness of generated answers against the reference solutions.

Evaluation Datasets. We assess the effectiveness of our approach on five mathematical reasoning
datasets spanning a wide range of difficulty levels, following the experimental protocol of Dr.GRPO.
The evaluation includes: AIME24, a set of 30 high-school level problems from the 2024 Ameri-
can Invitational Mathematics Examination; AMC, with 83 moderately challenging multiple-choice
questions; MATH500, a 500-problem subset of the MATH (Hendrycks et al., 2021) dataset cover-
ing algebra, geometry, and number theory; Minerva (MIN) (Lewkowycz et al., 2022), consisting
of 272 graduate-level problems requiring multi-step reasoning; and OlympiadBench (Huang et al.,
2024), which contains 675 advanced olympiad-style questions. Together, these benchmarks compre-
hensively evaluate reasoning capabilities across problem domains and difficulty scales. We report
results using the Pass@1 metric, which measures whether a single generated solution is correct.
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Table 1: Performance comparison on five mathematical reasoning benchmarks.

Method AIME24 AMC MATH500 Minerva OlympiadBench Avg.
Base 80.4 90.0 90.7 47.7 62.0 74.2
GRPO (Shao et al., 2024) 77.0 82.5 91.8 48.2 58.1 71.5
GSPO (Zheng et al., 2025) 80.4 95.0 93.6 48.9 64.0 76.4
GMPO (Zhao et al., 2025) 80.1 92.5 94.2 49.3 65.9 76.4
RSPO 80.1 95.0 94.2 50.7 65.8 77.1

For AIME24, we report the mean accuracy over 32 runs. For all benchmarks, we use deterministic
decoding by setting the temperature to 0.0 and produce one answer per problem.

4.2 MAIN RESULTS

Table 1 provides a comprehensive comparison of our proposed RSPO method against several es-
tablished baselines, including GRPO, GSPO, and GMPO, across five widely used mathematical
reasoning benchmarks: AIME24, AMC, MATH500, Minerva, and OlympiadBench. The evaluation
was conducted using the Qwen3-30B-A3B model. From the results, it is evident that RSPO consis-
tently outperforms the competing methods across nearly all benchmarks, with particularly notable
gains in Minerva and OlympiadBench. While GSPO and GMPO already show strong performance
on MATH500 and OlympiadBench, RSPO achieves the highest average score of 77.1, highlight-
ing its effectiveness in enhancing the model’s reasoning capabilities. These results underscore the
robustness and generalizability of RSPO for complex mathematical reasoning tasks.
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Figure 2: Compare RSPO with other baselines

Furthermore, Figure 2 illustrates the
reward progression and validation
score trends during training for RSPO
and the baseline methods. Notably,
GRPO exhibits a pronounced per-
formance collapse around 200–500
training steps, particularly evident in
the sharp decline in validation score,
indicating severe instability during
early training. Although GRPO even-
tually recovers partially, its perfor-
mance remains highly volatile and
consistently lower than the other
methods throughout training. GSPO
and GMPO show more stable tra-
jectories, but RSPO consistently
achieves the highest and most stable
validation scores across all training steps, demonstrating both rapid convergence and robustness.
This behavior highlights RSPO’s ability to stabilize training dynamics in multi-expert settings,
whereas GRPO not only lags behind other baselines in average performance but, as shown in Table 1,
even underperforms the base model in terms of mean validation score.

The reward and test score trajectories further support the conclusion that GRPO suffers from insta-
bility when applied to MoE models. In contrast, RSPO not only achieves consistently better results
across benchmarks but also demonstrates significantly more stable training behavior. These findings
highlight the critical role of incorporating the router shift ratio, which contributes both to improved
performance and training robustness in MoE-based RL fine-tuning.

4.3 ANALYSIS

Additional Attempts on Router Stabilization In addition to our main approach, we also investi-
gated several alternative strategies aimed at improving the stability of MoE RL training.

One straightforward idea is to freeze the router during training, with the expectation that eliminating
router updates could mitigate the fluctuations observed in expert selection. While simple to imple-
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ment, this approach assumes that the initial router configuration is already well aligned with the
optimization objective, which may not necessarily hold in practice.

Beyond freezing, we drew inspiration from the router replay technique proposed in GSPO, which
provides a more fundamental direction for addressing router drift. To this end, we designed and
tested two distinct variants of router replay.

0 100 200 300 400 500 600 700
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd
 S

co
re

GRPO
Freeze Router
Routing Replay 1
Routing Replay 2
GRPO + Router Shift

Figure 3: Routing replay and freeze router

(1) Copying logits from the old pol-
icy. In this variant, the router logits
of the old policy are directly copied
to replace those of the current pol-
icy. As a result, both expert selection
and expert weighting become fully
aligned with the old policy. However,
since the router logits are no longer
computed by the current model, the
router in the current policy cannot
propagate gradients. This restriction
significantly limits the router’s abil-
ity to update and adapt to the evolv-
ing training dynamics.

(2) Reusing expert indices. Alter-
natively, instead of transferring logits
directly, we record the indices of the
experts activated by the old policy and enforce the current policy to select experts according to
these stored indices. This strategy preserves the discrete expert choices of the old policy while still
allowing the current router to compute its own logits, albeit with constrained selection.

As illustrated in Figure 3, we conducted experiments on Qwen2.5 to systematically evaluate these
three methods: freezing the router, copying old router logits, and reusing expert indices. The em-
pirical results indicate that none of these approaches led to satisfactory improvements in training
stability. These findings suggest that while intuitive, such heuristic methods are insufficient to ad-
dress the inherent instability of MoE routers, further highlighting the necessity of more principled
solutions such as the proposed RSPO.

Combine Router Shift with Other Algorithms An appealing property of our approach is its in-
herent compatibility with a wide range of reinforcement learning algorithms, making it a flexible
component that can be readily integrated into different training paradigms. To empirically validate
this property, we applied the proposed router shift ratio in combination with two representative base-
lines, GSPO and GRPO. Specifically, we incorporated router shift into the training and evaluation
of the Countdown task using the Qwen2.5 MoE model, as illustrated in Figure 4.
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(a) Validation score of GRPO
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(b) Validation score of GSPO

Figure 4: Combine router shift with other algorithm
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The results clearly show that introducing router shift consistently improves both training stability
and final task performance when paired with either GSPO or GRPO. For GSPO, the integration of
router shift further smooths the optimization trajectory, reducing fluctuations that commonly arise
from the stochasticity of expert selection. For GRPO, which is more prone to instability in MoE
settings, router shift effectively alleviates divergence issues and enables more reliable convergence.
In both cases, the observed improvements highlight that router shift does not interfere with the
core mechanisms of the underlying algorithms but instead acts as a stabilizing and performance-
enhancing augmentation.

Taken together, these findings underscore the versatility of our technique and demonstrate its poten-
tial to be seamlessly combined with existing RL methods. By enhancing stability while boosting
performance, router shift offers a general solution for improving the robustness of reinforcement
learning on MoE-based large language models, beyond the scope of a single algorithmic frame-
work.
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Figure 5: Training stability signals of Qwen3-30B-A3B

Training Stability To better understand the effect of RSPO on training dynamics, we monitor
several key stability-related metrics throughout the training of Qwen3-MoE-30B-A3B, including
token-level entropy and the ratio of non-shifted routing.

As illustrated in Figure 5, RSPO consistently maintains higher token entropy compared to baseline
methods, suggesting that it preserves a more diverse distribution over experts and mitigates prema-
ture collapse into suboptimal routing patterns.

The ratio of non-shifted routing offers valuable insights into the model’s training dynamics. This
metric reflects the proportion of tokens for which the current policy model’s routing decisions match
those of the previous policy model, i.e., no routing shift occurs. The steadily increasing trend of this
ratio during training shows that, as the model converges, the routing policy becomes increasingly
consistent with its previous version, reducing the need for shift corrections. Early in training, a
larger fraction of tokens requires routing shifts to maintain stability, but as optimization progresses,
the policy naturally aligns with prior decisions, demonstrating that RSPO’s reweighting mechanism
effectively promotes stable and consistent routing over time.

5 RELATED WORK

5.1 REINFORCEMENT LEARNING FOR LLM

Recently, the emergence of DeepSeek R1 (Guo et al., 2025) has demonstrated the significant poten-
tial of combining reinforcement learning (RL) with reasoning for pushing the performance bound-
aries of large language models (LLMs). At the core of R1 lies the Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) algorithm, which represents an improvement over the well-known
Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm. GRPO estimates advantages
within groups, thereby eliminating the need for an expensive value function model while maintain-
ing performance comparable to PPO.The success of R1 has sparked widespread interest in GRPO

8
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and inspired the development of numerous variants. For instance, DAPO (Yu et al., 2025) intro-
duces techniques such as dynamic sampling and higher clipping thresholds, addressing challenges
related to training efficiency and stability. Dr. GRPO (Liu et al., 2025) focuses on mitigating length
bias by removing the length and standard deviation normalization terms in GRPO, thereby reducing
optimization bias and improving token efficiency.More recently, several studies have highlighted
issues with the token-level importance sampling ratio used in GRPO, which can lead to increased
variance. To address this, GMPO (Zhao et al., 2025) proposes maximizing token-level rewards us-
ing a geometric mean, resulting in more stable training dynamics. Similarly, GSPO (Zheng et al.,
2025) approaches the problem from the sequence-level importance ratio perspective, ultimately also
converging on a geometric mean formulation for enhanced stability. Notably, GSPO reports that this
geometric mean approach is particularly effective for reinforcement learning training in Mixture-of-
Experts (MoE) models.

5.2 STABILITY IN MOE TRAINING.

Mixture-of-Experts (MoE) models have emerged as a key technique for scaling neural networks
to trillions of parameters while maintaining computational efficiency by sparsely activating only a
small subset of experts per token. However, this sparse activation introduces unique challenges,
including expert under-utilization, load imbalance, and routing instability. Severe load imbalance
can lead to some experts being overloaded while others receive few or no tokens, resulting in inef-
ficient use of model capacity and degraded convergence. Switch Transformer (Fedus et al., 2022)
addresses these challenges by introducing an auxiliary load-balancing loss to encourage uniform
expert utilization and a capacity factor to cap the number of tokens routed to each expert, thus
preventing overload. While effective, large auxiliary losses can introduce non-negligible gradient
interference with the main training objective. Wang et al. mitigate this by proposing the Loss-Free
Balancing method, which dynamically adjusts expert-wise biases on routing scores before top-k se-
lection to balance expert loads without introducing additional loss terms, thereby avoiding gradient
interference and improving the attainable model performance. StableMoE (Dai et al., 2022) further
identifies routing fluctuation as a key source of instability, proposing to distill a stable teacher router
and freeze it during training to reduce token assignment variance. Another line of work focuses on
improving gradient flow through non-differentiable top-k routing by using differentiable relaxations
such as Gumbel-Softmax or straight-through estimators (Wang et al., 2024b; Puigcerver et al., 2023;
Zhou et al., 2022), thereby reducing gradient variance and enabling end-to-end optimization.

More recently, researchers have observed that MoE models are particularly unstable under reinforce-
ment learning (RL) training, where reward sparsity and high-variance policy gradients exacerbate
routing fluctuations. To address this, several approaches aim to stabilize MoE routers during RL
fine-tuning. For instance, GSPO (Zheng et al., 2025) stabilizes off-policy updates by reusing expert
assignments from previous policies and clipping sequence-level importance sampling ratios, effec-
tively reducing update variance. Ring-lite (Team et al., 2025b) introduces constrained token-level
routing budgets to regularize expert selection and further reduce variance. Despite these advances,
understanding the interplay between routing dynamics, gradient variance, and RL credit assignment
remains an open research direction, motivating methods like RSPO that explicitly account for router
shift when shaping policy updates.

6 CONCLUSION

In this work, we propose RSPO, a method that stabilizes policy training and improves final perfor-
mance by employing sequence-level importance sampling for more accurate gradient estimation, and
introducing a router shift ratio to down-weight tokens that exhibit excessive router shift during off-
policy training. This approach also helps maintain token entropy at a relatively high level.Extensive
experiments on mathematical reasoning benchmarks demonstrate that RSPO consistently outper-
forms current baselines in both stability and overall effectiveness.This work represents a step for-
ward in developing more stable and effective RL training methods tailored for mixture-of-experts
(MoE) models, facilitating their reliable deployment in large-scale reasoning tasks.
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A APPENDIX

REPRODUCIBILITY STATEMENT

We emphasize that our experimental setup is designed to be highly reproducible. All model archi-
tectures, training hyperparameters, and evaluation protocols are described in detail in the paper. The
training datasets we use are publicly available, and our implementation is based on open-source deep
learning frameworks. These choices ensure that researchers can reliably reproduce our results and
build upon our work.

ETHICS STATEMENT

This work focuses on improving the efficiency and stability of Mixture-of-Experts models. It does
not involve the collection or use of sensitive personal data. Potential societal impacts include both
positive contributions by enabling more efficient large-scale models and risks such as misuse for
generating harmful content, which we mitigate by recommending alignment and safety checks be-
fore deployment.

LLM USAGE STATEMENT

We acknowledge the use of a large language model (OpenAI ChatGPT) as a general-purpose as-
sistive tool during the preparation of this manuscript. Specifically, the LLM was employed for
language polishing and improving readability of the text (e.g., refining grammar, rephrasing sen-
tences for clarity, and adjusting tone to match academic style). No part of the research design, data
collection, analysis, or substantive interpretation of results was performed by the LLM. The authors
take full responsibility for the accuracy and integrity of all contents presented in this paper.
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