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Abstract

A fundamental objective of manipulation policy design is to endow robots to com-1

prehend human instructions, reason about scene cues, and execute generalized2

actions in dynamic environments. Recent autoregressive vision-language-action3

(VLA) methods inherit common-sense reasoning capabilities from vision-language4

models (VLMs) for next action-token prediction. However, these methods quantize5

actions into discrete bins, which disrupts the continuity required for precise con-6

trol. In contrast, existing diffusion-based VLA methods incorporate an additional7

diffusion head to predict continuous actions solely conditioned on feature repre-8

sentations extracted by the VLM, without fully leveraging the VLM’s pretrained9

reasoning capabilities through token-level generation. To address these limitations,10

we introduce HybridVLA, a unified framework that absorbs the continuous nature11

of diffusion-based actions and the contextual reasoning of autoregression within a12

single large language model. To mitigate interference between the two generation13

paradigms, we propose a collaborative training recipe that seamlessly incorporates14

diffusion denoising into the next-token prediction process. With this recipe, we15

find these two action prediction methods not only reinforce each other but also16

exhibit varying strength across different tasks. Therefore, we design a collaborative17

action ensemble mechanism that adaptively fuses both predictions, leading to more18

robust control. HybridVLA outperforms previous state-of-the-art VLA methods by19

14% and 19% in mean success rate on simulation and real-world tasks, respectively,20

while demonstrating stable manipulation in unseen configurations.21

1 Introduction22

Developing human-like robots capable of performing manipulation tasks demands intelligent poli-23

cies [1, 2, 3]. In dynamic and unstructured real-world environments, such policies need to interpret24

human instructions and generalize across a wide range of complex tasks [4]. Recently, vision-language25

models (VLMs) [5, 6, 7, 8] have brought forth dramatic breakthroughs in instruction following and26

common-sense reasoning, driven by pretraining on internet-scale image-text pairs. Building on this27

success, several studies have extended VLMs into vision-language-action (VLA) models, enabling28

them to predict low-level action poses for robotic manipulation [9, 10, 11]. This paradigm outlines a29

promising roadmap for building foundation models to facilitate generalist robots.30

On the one hand, autoregressive VLA methods [9, 11, 10, 15] emulate the reasoning paradigm of31

VLMs for next token prediction, effectively leveraging their large-scale pretrained knowledge and32

reasoning capabilities. While such methods enable generalized manipulation skills [10], they quantize33

continuous actions into discrete bins by adding new embeddings into the vocabulary in large language34

models (LLMs), which disrupts the continuity of action pose and hinders precise control [16]. On35

the other hand, building on the success of diffusion models in content generation [17, 18, 19, 20],36
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Figure 1: (a) Unlike recent diffusion-based VLA methods [12, 13, 14] that attach a separate diffusion
head after VLMs, (b) HybridVLA innovatively integrates diffusion and autoregressive action predic-
tion within a single LLM, fully leveraging the continuity of diffusion and the reasoning capabilities
of autoregressive modeling. It is pretrained on large, diverse, cross-embodiment real-world robot
datasets and further fine-tuned on downstream, self-collected data. HybridVLA achieves remarkable
performance across various tasks involving both single-arm and dual-arm robots.

diffusion policies have been introduced in robotic imitation learning [21, 22, 23, 24, 25, 26]. Recent37

diffusion-based VLA methods [13, 14, 16, 12] incorporate a diffusion head after the VLM, leveraging38

probabilistic noise-denoising for action prediction. While these methods enable precise manipulation,39

the diffusion head operates independently of the VLM and lacks internet-scale pretraining. Moreover,40

since the head relies solely on VLM-extracted feature representations as input conditions, these41

methods fail to fully leverage the VLM’s pretrained reasoning capabilities through next-token42

prediction. Given these advantages and limitations, a question arises: “How can we elegantly43

construct a unified VLA model that seamlessly integrates the strengths of both autoregressive and44

diffusion policies, rather than simply concatenating them?"45

To this end, we propose HybridVLA, a unified framework that equips VLMs with both diffusion and46

autoregressive action prediction capabilities, enabling mutual reinforcement between them to facilitate47

robust execution across diverse tasks. As shown in Figure 1, unlike previous diffusion-based VLA48

methods [13, 14] that append an independent diffusion head after the LLM (Figure 1 (a)), we introduce49

a collaborative training recipe that seamlessly integrates diffusion denoising into the autoregressive50

next-token prediction process within a single LLM backbone (Figure 1 (b)). Specifically, since51

the token representations of discrete autoregressive tokens and continuous diffusion latents are52

inconsistent, a token sequence formulation is designed to systematically organize multimodal inputs,53

diffusion tokens, and autoregressive tokens, which are linked through specialized marker tokens.54

Under our proposed collaborative optimization, as both generation methods share the LLM backbone,55

HybridVLA explicitly captures the continuous action representations from diffusion modeling along56

with the pretrained semantic reasoning of autoregressive generation, allowing the two paradigms57

to reinforce each other. Meanwhile, we observe that diffusion generation excels in intricate tasks,58

while autoregression performs better in tasks requiring rich semantic understanding. Therefore, a59

collaborative action ensemble mechanism is proposed, where the two predictions are adaptively fused60

based on autoregressive action token confidence, improving robustness in manipulation.61

To enhance generalization capability, we initialize HybridVLA with an internet-scale pretrained62

VLM [27], and design a step-by-step training approach [13, 10]. As shown in Figure 1, our model63

undergoes further pretraining on large, diverse, cross-embodiment robotic datasets, including Open64

X-Embodiment [28], DROID [29], and ROBOMIND [30], covering 760K trajectories and over 10K65

A800 GPU training hours. Subsequently, HybridVLA is fine-tuned on self-collected simulation66

data [31] and real-world data, achieving state-of-the-art (SOTA) manipulation performance across a67

variety of tasks with both single-arm and dual-arm robots. Meanwhile, HybridVLA demonstrates68

sufficient generalization capabilities to unseen manipulated objects, backgrounds, spatial positions,69

and lighting conditions during real-world testing, highlighting the effectiveness of our collaborative70

model design and training recipe. To optimize inference speed, we also introduce the HybridVLA-dif71

(7B) variant, which integrates diffusion and autoregressive generation during training but relies72

exclusively on diffusion-based actions for inference at 9.4 Hz. Our contributions are as follows:73

• We propose HybridVLA, a unified model that seamlessly integrates diffusion and autoregres-74

sive action generation within a single LLM, effectively absorbing the continuous nature of75

diffusion-based actions and the contextual reasoning of autoregressive generation, thereby76

enabling mutual reinforcement and improving manipulation robustness.77
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• We introduce a collaborative training recipe that bridges the gap between the two action78

generation approaches, enabling mutual reinforcement through a shared LLM backbone.79

Additionally, we propose a collaborative action ensemble mechanism that adaptively fuses80

diffusion- and autoregressive-based actions, enhancing manipulation robustness.81

• Our proposed method achieves SOTA performance across diverse tasks while demonstrating82

strong generalization to several unseen configurations.83

2 Related Work84

Traditional robotic manipulation primarily relies on state-based reinforcement learning [32, 33, 34,85

35], whereas recent approaches [36, 37, 38, 21] integrate visual observations for imitation learning.86

Building on the strong reasoning capabilities of vision-language models (VLMs) [5, 6, 7, 39], recent87

research has integrated them into robotic manipulation [40, 41, 42, 43].88

Vision-language-action (VLA) models. Some studies [2, 1, 3, 44] enable robots to interpret both89

language and visual observations, automatically generating task plans. Meanwhile, vision-language-90

action (VLA) models leverage the inherent reasoning abilities of VLMs to predict low-level SE(3)91

poses. Specifically, RT2[9] quantizes 7-DoF actions into discrete bins for autoregressive pose predic-92

tion. Building on this, ManipLLM[11] incorporates affordance priors through chain-of-thought rea-93

soning, while OpenVLA[10] performs large-scale pretraining on the Open X-Embodiment dataset[28].94

FAST [15] applies the discrete cosine transform to enable fast and scalable training of autoregressive-95

based VLA models. To support continuous action prediction, some VLA approaches [45, 46, 47, 48]96

incorporate a policy head, such as an MLP or LSTM [49], and use regression loss for imitation97

learning. However, quantization in autoregressive methods disrupts action continuity, while regressive98

methods fail to incorporate probabilistic action representations.99

Diffusion models in robotics. Building on the success of diffusion models in content generation [17,100

18, 19, 20], diffusion policies have been applied in robotics, including reinforcement learning [50, 51],101

imitation learning [21, 52, 53, 25, 26], grasping [54, 55, 56], and motion planning [57, 58]. Following102

this, 3D Diffusion Actor [23] and DP3 [21] employ diffusion models to interpret point cloud data.103

Octo [59] and RDT-1B [60] augment a transformer with a diffusion head to predict flexible actions.104

Diffusion-based VLA models. To integrate diffusion with VLMs, π0 [13] adds a diffusion expert105

head that generates actions through flow matching, while TinyVLA [61] incorporates a simple106

diffusion head after the lightweight VLM. CogACT [14] and DiVLA [16] decouple reasoning107

and action prediction into the VLM and an injected diffusion head, respectively. Following this108

architecture, some works [12, 62, 63] introduce a dual-system design to enable control at different109

frequencies. However, in these methods, the diffusion head operates as a separate module and treats110

the VLM as a multimodal feature extractor, limiting its ability to fully exploit pretrained reasoning111

capabilities through next-token prediction. In general scenarios, some works [64, 65, 66, 67] jointly112

tackle multimodal understanding and generation, while others [68, 69, 70] integrate diffusion into113

autoregressive transformers. Unlike prior methods focused on image and language generation quality,114

HybridVLA introduces a robotics-specific collaborative training strategy that integrates diffusion115

action generation into next-token prediction within a single LLM, enabling mutual enhancement.116

3 HybridVLA Method117

Overview. Existing diffusion-based VLA methods [13, 16, 14] append a separate diffusion head118

after the VLM. However, these methods overlook the LLM’s core contextual reasoning mechanism119

(next-token prediction) acquired through internet-scale pretraining, since the head relies solely on120

VLM-extracted multimodal features from a single forward pass as diffusion conditions. In contrast,121

HybridVLA injects diffusion denoising into the next-token prediction process, equipping a single122

LLM with both diffusion and autoregressive action generation capabilities. To construct HybridVLA,123

we first describe the model architecture in Section 3.1. Since simply merging the two generation124

methods could cause inconsistency, we introduce a collaborative training recipe in Section 3.2. To125

further enhance robustness, we propose a collaborative action ensemble mechanism in Section 3.3.126

Problem Statement. At time t, each demonstration consists of image observations ot, language127

description lt, and the current robot state rt. Our model π aims to predict action a to control128

the robot arms, which can be formulated as: π : (ot, lt, rt) → at+1. Following [10, 14], the129
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Figure 2: HybridVLA Framework. All multimodal inputs are encoded into tokens and subsequently
organized into our designed token sequence formulation within the LLM’s embedding space. For dif-
fusion tokens, HybridVLA simultaneously projects the denoising timestep and noise into continuous
vector representations. During inference, we adopt DDIM [71] with four sampling steps, where the
corresponding noisy samples are iteratively fed into the LLM to predict the noise at each step. The
marker tokens, <BOD> (Beginning of Diffusion) and <EOD> (End of Diffusion), are introduced to
bridge the two generation paradigms. Subsequently, autoregressive actions are generated via standard
next action-token prediction, explicitly conditioned on the preceding tokens. Our collaborative
training recipe integrates knowledge from both generation paradigms into the shared LLM, enabling
them to reinforce each other and be adaptively ensembled for robot arm control.

action a represents the end-effector pose, which uses 7-DOF and 14-DOF for single-arm and130

dual-arm control, respectively. Each 7-DOF action includes 3-DOF for relative translation offsets131

([∆x,∆y,∆z] ∈ R3), 3-DOF for rotation (Euler angles ∈ R3), and 1-DOF for the gripper state132

(open/closed ∈ R1). The ground truth (GT) and the model-predicted action are in SE(3), formulated133

as: a = [∆x,∆y,∆z,Roll, P itch, Y aw, 0/1].134

3.1 HybridVLA Architecture135

Pretrained VLM base. This section presents the architecture and workflow of HybridVLA, available136

in two model sizes, using 7B and 2.7B large language models (LLMs). Following [10], both137

HybridVLA(7B) and HybridVLA(2.7B) inherit the base architecture from Prismatic VLMs [27],138

initializing with the corresponding large-scale pretrained VLM parameters. We first introduce the139

two basic components, vision encoders and the LLM, as shown in Figure 2.140

Vision encoders. HybridVLA leverages powerful vision encoder combinations, such as DINOv2 [72]141

and SigLIP [73], to capture rich semantic features fd ∈ RB×Nv×1024 and fs ∈ RB×Nv×1152. B and142

N represent batch size and token sequence length, respectively. These features are concatenated143

along the channel dimension to form fv ∈ RB×Nv×2176, which is subsequently projected into the144

LLM’s word embedding via a projection layer. HybridVLA(2.7B) uses only the CLIP [74] model as145

its vision encoder. When processing multi-view images, a shared vision encoder extracts features,146

which are then concatenated along the token dimension.147

LLM. HybridVLA adopts 7B LLAMA-2 [75] as LLM, responsible for multimodal understanding148

and reasoning. Language prompts are encoded into embedding space fl ∈ RB×Nl×4096 using the149

pre-trained tokenizer, then concatenated with visual tokens and input into LLM. The other specially150

designed LLM inputs (e.g., diffusion noise) are presented in the next section, and the output tokens are151

processed in two ways. First, diffusion-based action (adt+1) generation through a denoising process,152

where an MLP maps the tokens into the action space. Second, autoregressive-based action generation153

(aart+1) is performed using a detokenizer [10], which also computes the mean confidence (cart+1) of the154

predicted tokens, serving as a guiding factor for the collaborative action ensemble. For HybridVLA155

(2.7B), the workflow remains the same as that of HybridVLA (7B) but utilizes the 2.7B Phi-2 [76] as156

the LLM. In the next section, we introduce how to simultaneously equip a single LLM with diffusion157

and autoregressive action generation capabilities.158
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3.2 Collaborative Training Recipe159

Combining continuous diffusion and discrete autoregressive action generation within a single LLM160

presents challenges such as instability and inconsistency in the next-token prediction process. To161

address this, we propose a collaborative training recipe that includes a token sequence formulation,162

hybrid objectives, and structured training stages.163

Token sequence formulation design. As shown in Figure 2, this design aims to organize multi-164

modal tokens, such as robot state, diffusion noise, and autoregressive tokens, within the LLM’s165

embedding space into a unified and ordered token sequence, enabling coordination between the166

two generation paradigms during the next-token prediction process. For the robot state, we inte-167

grate it into the LLM to enhance temporal consistency in action generation. Instead of discretiz-168

ing the robot state and merging it with the language query [11] (Type 3 of Table 1), we employ169

a learnable MLP to map the robot state directly into the embedding space, fr ∈ RB×1×4096.170

Table 1: Token sequence formulations. All mod-
els are trained with both generation methods. Dif
and AR denote evaluations using only diffusion-
generated or autoregressive-generated actions, re-
spectively, across 10 RLBench tasks.

Large Language Model

Type 1(Ours)

Large Language Model

Type 2

Type 3

Large Language Model

Type 4

: Diffusion token : Autoregressive token : Robot state embedding

: Special tokens (<BOD> & <EOD>) : Discreate robot state bins

Large Language Model

Paradigm Type1(Ours) Type2 Type3 Type4
Dif 0.66 0.56 0.61 0.57
AR 0.62 0.54 0.59 0.60

The motivation is that diffusion action tokens are171

generated using all preceding tokens as condi-172

tions. Introducing discrete robot states could173

negatively impact the diffusion prediction of174

continuous actions. For diffusion-based ac-175

tions, we predict them through a diffusion de-176

noising process. During training, the denois-177

ing step i and noisy actions ait are projected178

into the LLM’s word embeddings through an179

MLP, represented as continuous vectors. To180

seamlessly connect previous multimodal tokens,181

diffusion tokens, and subsequent discrete to-182

kens within a sequence, we introduce special183

beginning-of-diffusion (<BOD>) and end-of-184

diffusion (<EOD>) tokens to encapsulate the185

diffusion tokens. This design not only clarifies186

the boundaries between diffusion and autore-187

gressive generation but also prevents confusion188

in the next-token prediction process, such as189

avoiding diffusion tokens directly predicting masked discrete tokens (Type 2 of Table 1). For au-190

toregressive actions, we quantize the end-effector pose into discrete bins and replace part of the191

vocabulary in the LLM [10], which is then tokenized into a sequence of discrete tokens. Due to192

the autoregressive nature of LLMs [77], both the question and the answer, including the discrete193

action ground truth (GT), are provided during training, whereas only the question is available during194

inference. Therefore, placing autoregression before the diffusion tokens may cause action GT leakage195

(Type 4 in Table 1), as all preceding tokens (which contain GT during training) serve as conditions in196

diffusion modeling. To avoid this, we position diffusion tokens before autoregression to explicitly197

provide continuous latent conditions for subsequent token prediction. Moreover, since diffusion198

operates on noise, it naturally circumvents the risk of information leakage.199

Hybrid objectives. To simultaneously train diffusion and autoregressive action generation, we200

require two distinct loss functions. For the diffusion part, following previous diffusion policies [21],201

we minimize the mean squared error between the predicted noise (ϵπ) from the VLA model and202

the GT noise (ϵ). The loss function is defined as follows: Ldif = Ea,i,c||ϵ − ϵπ(a
i
t, i, c)||2, where203

ϵ ∼ N(0, 1) and c denote the condition. Additionally, classifier-free guidance [78] is not used in order204

to ensure stable robot arm behavior [60]. For the autoregressive part, the cross-entropy loss (Lce)205

is adopted to supervise the discrete output. With our designed token sequence formulation, the two206

losses can be seamlessly combined for collaborative penalization, defined as: Lhybrid = Ldif + Lce.207

Since Ldif and Lce penalize a shared LLM backbone, their gradients are jointly backpropagated,208

allowing the model to effectively absorb both the continuous characteristics of diffusion-based actions209

and the semantic reasoning representations derived from autoregressive generation, thereby enabling210

mutual reinforcement between the two paradigms.211

Structured training stage. After loading the pretrained VLM parameters, HybridVLA undergoes212

two training stages with hybrid objectives: large-scale pretraining on open-source robotic data and213

fine-tuning on self-collected data. During pretraining, we train HybridVLA for 5 epochs on 35214

datasets [28, 29, 29]. The pretrain datasets contain 760k robot trajectories, comprising 33m frames.215
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Due to dataset differences, pretraining relies solely on single 2D observations, whereas fine-tuning216

relies on either single or multi-view observations, depending on the downstream task. The details of217

the pretraining dataset are provided in Appendix A.1.218

3.3 Collaborative Action Ensemble219

During inference, HybridVLA takes visual, language, and robot state inputs to concurrently generate220

actions via both diffusion and autoregressive methods, and ensembles them for execution.221

Autoregressive actions. As shown in Figure 2, the autoregressive generation begins after the222

special token <EOD>. Unlike previous autoregressive VLA methods [10, 11], HybridVLA’s223

autoregressive generation additionally conditions on continuous action representations derived from224

the latent features of diffusion tokens. This results in superior manipulation performance compared225

to independent autoregressive discrete generation paradigms that lack explicit continuous latent226

conditioning, as demonstrated in the ablation study.227

Diffusion actions. When generating diffusion actions, we append the special token <BOD> after the228

previous condition tokens to indicate that the model should perform the denoising process. We employ229

DDIM [71] with n sampling steps. In HybridVLA, we observe that the number of inference denoising230

steps can be reduced to 4 without causing any performance degradation. As illustrated in the denoising231

process of Figure 2, we repeat the process for 4 DDIM steps by feeding the noisy sample from the232

previous step into the LLM to predict the noise token for the current step, thereby fully leveraging the233

LLM’s contextual reasoning capabilities. In this way, we effectively inherit the LLM’s pretrained234

knowledge and seamlessly integrate diffusion generation into the next-token prediction process.235

Moreover, since we deliberately place the diffusion action tokens before the autoregressive tokens,236

the autoregressive predictions cannot be directly used as diffusion conditions. However, as discussed237

in the previous section, both generation methods share the same LLM backbone, which is jointly238

trained with hybrid objectives. As a result, the LLM is able to absorb the unique knowledge from239

each generation paradigm, thereby enhancing its overall representation. To accelerate the sampling240

process, we introduce the KV cache before the diffusion tokens, forwarding conditional information,241

the denoising timestep, and pure noise only during the initial sampling step. In subsequent steps, the242

cached keys and values from the first pass are reused, while only the timestep and noise are iteratively243

forwarded. This strategy eliminates redundant computations and improves inference speed.244

Ensembled actions. After obtaining the two types of actions under our collaborative training recipe,245

we empirically observe two phenomena. 1) Different action types demonstrate varying performance246

across tasks. Diffusion-based predictions excel in precise manipulation tasks, such as Phone on base247

and Close laptop lid, while autoregressive predictions perform better in tasks requiring scene semantic248

reasoning, such as Water plants and Frame off hanger. 2) The confidence of autoregressive tokens249

serves as a reliable indicator of action quality. In over 80% of successfully completed test samples,250

the average confidence of autoregressive action tokens exceeds 0.96. Quantitative evaluations are251

provided in Appendix B.1 and B.2. Therefore, as shown in Figure 2, we use the mean confidence of252

autoregressive tokens (cart+1) to guide the action ensemble. If the confidence exceeds θ (θ = 0.96), we253

consider the autoregressive action (aart+1) sufficiently accurate and perform an average operation with254

the diffusion action (adt+1). Otherwise, we rely solely on the diffusion action to control the robot.255

4 Experiment256

In Section 4.1, we compare the manipulation ability and inference speed of HybridVLA with previous257

VLA methods in simulation environments. The effectiveness of each component is validated in258

Section 4.2 and Appendix B. In Section 4.3, we present both quantitative and qualitative manipulation259

results of HybridVLA in real-world scenarios, including single-arm and dual-arm robot tasks. The260

generalization capabilities of HybridVLA are examined in Section 4.4, testing on unseen manipulated261

instances, background, spatial positions, and lighting conditions.262

4.1 Simulation Experiment263

Simulation benchmark. To systematically evaluate, we select the RLBench [31] benchmark in the264

CoppeliaSim simulator, which contains 10 different tabletop tasks. These tasks, performed using265

a Franka Panda robot and a front-view camera, include Close box, Close Laptop, Toilet seat down,266
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Table 2: Comparison of HybridVLA and baselines on RLBench. We train all methods in the
Multi-task setting [79] and report the success rates (S.R.). The success condition follows the definition
in RLBench. (7B), (2.7B), and (2.6B) refer to the sizes of the LLM used in the VLA model.

Close Close Toilet Sweep Close Phone Umbrella Frame Wine at Water Mean Infer.
Models box laptop lid seat down to dustpan fridge on base out off hanger rack plants S.R. & Var speed
ManipLLM (7B) [11] 0.50 0.80 0.40 0.20 0.80 0.35 0.10 0.25 0.15 0.20 0.38 ±0.042 2.2 Hz
OpenVLA (7B) [10] 0.65 0.40 0.75 0.60 0.80 0.20 0.35 0.15 0.10 0.10 0.41 ±0.038 6.3 Hz
π0 (2.6B) [13] 0.90 0.60 1.00 0.30 0.90 0.25 0.35 0.75 0.05 0.45 0.55 ±0.035 13.8 Hz
CogACT (7B) [14] 0.80 0.85 0.90 0.65 0.90 0.50 0.60 0.35 0.25 0.25 0.60 ±0.041 9.8 Hz
HybridVLA-dif (7B) 0.85 0.75 1.00 0.80 0.95 0.50 0.50 0.30 0.70 0.25 0.66 ±0.040 9.4 Hz
HybridVLA (2.7B) 1.00 0.80 0.90 0.80 0.90 0.25 0.20 0.45 0.25 0.25 0.58 ±0.031 12.3 Hz
HybridVLA (7B) 0.85 0.95 1.00 0.90 1.00 0.50 0.50 0.70 0.50 0.50 0.74 ±0.037 6.1 Hz

Sweep to dustpan, Close fridge, Phone on base, Take umbrella out, Frame off hanger, Wine at rack,267

and Water plants. The data are collected using pre-defined waypoints and the Open Motion Planning268

Library [80]. Following the frame-sampling method used in previous works [79, 81, 82], we construct269

the training dataset, with each task consisting of 100 trajectories.270

Training and Evaluation Details. We compare our method with four previous SOTA VLA models,271

including autoregressive-based approaches such as ManipLLM [11] and OpenVLA [10], as well as272

diffusion-based methods like π0 [13] and CogAct [14] with a DiT-base action head. Meanwhile, we273

categorize our method into three modes: HybridVLA (7B), HybridVLA (2.7B), and HybridVLA-274

dif (7B). All modes are jointly trained using our proposed collaborative training recipe; however,275

HybridVLA-dif relies solely on diffusion-based action generation during inference. To ensure a fair276

comparison, we load the official pretrained parameters provided by each method, adhering to their277

respective training settings. For HybridVLA, the single-view RGB input is resized to 224 × 224,278

and the robot state is consistent with predicted actions (7-DOF end-effector poses). During training,279

we use the AdamW optimizer with a fixed learning rate of 2e-5 to update both the LLM and the280

injected MLP parameters. Our models are trained for 300 epochs on 8 NVIDIA A800 GPUs with281

mixed-precision training. For evaluation, we follow [10, 14] and test all methods using 20 rollouts282

from the latest epoch checkpoint. Since RLBench employs a sampling-based motion planner [83],283

we evaluate each model three times per task and report the mean success rate along with its variance.284

Quantitative Results. As shown in Table 2, HybridVLA(7B) achieves an average success rate of 74%285

across 10 distinct tasks, outperforming the previous SOTA autoregressive-based VLA (OpenVLA)286

and diffusion-based VLA (CogACT) by 33% and 14%, respectively. These results demonstrate that287

our method effectively combines the two generation approaches within a shared LLM backbone,288

simultaneously capturing the continuous characteristics of diffusion-based actions and the pretrained289

semantic reasoning capabilities learned through autoregression. Remarkably, compared to CogACT290

and π0, HybridVLA-dif also achieves performance improvements of 6% and 11%, respectively.291

These results highlight that, unlike previous approaches which attach the diffusion head after the292

VLM, our method more effectively leverages the VLM’s pretrained knowledge to fully unlock the293

potential of diffusion prediction. Finally, HybridVLA(2.7B) delivers satisfactory results, confirming294

our method’s effectiveness in enhancing VLM manipulation capabilities across different model sizes.295

Inference Speed. In Table 2, when tested on an NVIDIA 4090D GPU, HybridVLA-dif (7B) and296

HybridVLA (2.7B) achieve satisfactory control frequencies comparable to CogACT (7B) and π0297

(2.6B), thanks to the reduced DDIM denoising steps and the use of KV cache in HybridVLA. Note298

that all models are run with bfloat16 precision during inference, without employing action chunking.299

4.2 Ablation Study300

We conduct ablation experiments on 10 RLBench tasks, using the same training and evaluation set-301

tings as in the simulation experiments. To evaluate the effectiveness of the Collaborative Training302

recipe (CTR), we compare Ex1 with Ex2 and Ex3 with Ex4, as shown in Table 3. HybridVLA-dif303

(Ex1) and HybridVLA-ar (Ex3) are both trained under our proposed CTR that integrates diffu-304

sion and autoregressive action generation. Since diffusion tokens precede autoregressive tokens,305

HybridVLA-dif (Ex1) is evaluated solely on diffusion generation, while HybridVLA-ar (Ex3) per-306

forms diffusion denoising followed by autoregressive generation, but is tested only on autoregressive307

actions. Compared to Ex2 and Ex4, which are trained solely on individual generation methods, both308

HybridVLA-dif (Ex1) and HybridVLA-ar (Ex3) demonstrate improved manipulation performance.309

These results validate that our proposed CTR not only avoids negative interference between the310

two generation paradigms, but also effectively captures the continuous action representations from311

diffusion-based generation and the pretrained reasoning capabilities from autoregressive generation,312
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Table 3: Impact of each component. AR and Dif
represent autoregressive and diffusion-based ac-
tion generation, respectively. LSP denotes large-
scale pretraining on assembled robotic datasets,
while RSE refers to the injected robot state embed-
ding. CTR and CAE represent our proposed col-
laborative training recipe with hybrid objectives
and the collaborative action ensemble method.

AR Dif LSP RSE CTR(LHybrid) CAE Mean↑
Ex0 ✓ ✓ ✓ ✓ ✓ ✓ 0.74
Ex1 - ✓ ✓ ✓ ✓ - 0.66
Ex2 - ✓ ✓ ✓ - - 0.60
Ex3 ✓ - ✓ ✓ ✓ - 0.62
Ex4 ✓ - ✓ ✓ - - 0.57
Ex5 ✓ ✓ - ✓ ✓ ✓ 0.22
Ex6 ✓ ✓ ✓ - ✓ ✓ 0.68

Table 4: Generalization. “Object", “Back-
ground", “Height", and “Lighting" denote un-
seen manipulated objects, backgrounds, spatial
positions, and lighting conditions, respectively.
The image above depicts the unseen test scenar-
ios, with red boxes marking the key differences.

Object Background Height Lighting

Task Pick and place(single arm) Lift ball and place(dual arm)
Scenario HybridVLA Cogact HybridVLA π0

Original 0.90 0.80 0.80 0.65
Object 0.60(-33%) 0.45(-43%) 0.75(-6%) 0.60(-8%)
Background 0.80(-11%) 0.50(-37%) 0.60(-25%) 0.50(-23%)
Height 0.75(-17%) 0.50(-37%) 0.60(-25%) 0.45(-31%)
Lightning 0.70(-22%) 0.60(-25%) 0.75(-6%) 0.55(-15%)

enabling mutual reinforcement. The various token formulation designs used in our training recipe are313

explored in Table 1 and Section 3.2. For large-scale pretraining (LSP), we compare Ex5 with Ex0.314

Although Ex5 is initialized with pretrained VLM parameters, it suffers from a significant drop in315

accuracy, highlighting the essential role of large-scale pretraining on robot datasets in ensuring stable316

control. For robot state embedding (RSE), by comparing Ex6 with Ex1, we observe that injecting317

robot state information enhances the model’s temporal consistency during action prediction. Due to318

space limitations, Appendix B.2 provides additional ablation studies on: (1) confidence thresholds in319

the collaborative action ensemble, (2) the influence of the KV cache on inference speed, and (3) the320

impact of DDIM sampling steps on performance.321

4.3 Real-World Experiment322

Self-collected Data. For single-arm tasks, we use a Franka Research 3 robot with a static front-view323

and a wrist-view camera. We perform 5 tasks: 1) Pick and place, 2) Unplug charger, 3) Open drawer324

and place inside, 4) Pour water, 5) Wipe blackboard. For each task, 100 demonstrations are collected325

via teleoperation using a SpaceMouse device. For dual-arm tasks, we use an AgileX dual-arm robot326

equipped with a static exterior view, a right-wrist view, and a left-wrist view camera. We conduct 5327

coordinated dual-arm tasks: 1) Pick and place, 2) Lift ball and place, 3) place two bottles at rack,328

4) Wipe blackboard, 5) Fold shorts. Similarly, 100 demonstrations are collected for each task using329

master-puppet teleoperation. Additional details are provided in Appendix A.2.330

Training and Evaluation Details. We evaluate HybridVLA (7B) and HybridVLA-dif (7B) against331

previous VLA methods, π0 [13] and CogAct [14]. The implementation details remain consistent with332

our simulation experiments, except for using two-view inputs for single-arm tasks and three-view333

inputs for dual-arm tasks. For evaluation, we use the checkpoint from the latest epoch to perform 20334

rollouts across diverse tabletop positions.335

Quantitative and Qualitative Results. In Table 5, HybridVLA and HybridVLA-dif achieve out-336

standing performance across single-arm tasks. For Pick and place and Unplug charger, HybridVLA337

achieves success rates of 90% and 95%, respectively, demonstrating accurate object position predic-338

tion. For Pour water, HybridVLA and HybridVLA-dif outperform the previous SOTA method by339

35% and 30%, respectively, showcasing their ability to comprehend object relationships and predict340

precise rotations. The superior performance on Wipe blackboard and Open drawer and place inside341

further underscores the robustness of our method in long-horizon tasks. For dual-arm tasks, we342

extend the action dimensions of both diffusion and autoregressive tokens to 14-DOF, representing343

the 7-DOF end-effector poses for both the right and left arms. Our method consistently outperforms344

previous VLA approaches across five distinct tasks, highlighting HybridVLA’s ability to effectively345

leverage VLMs’ reasoning capabilities for dual-arm coordination in complex scenarios. Furthermore,346

in the lower part of Table 5, we present visualizations of the manipulation processes performed by our347

method, which accurately predicts actions across various task demands, including precise positioning348

and rotation, dual-arm coordination, and scene understanding. Additional qualitative results and349

failure case analyses are provided in Appendix C and Appendix D, respectively, and execution350

videos are available in the supplementary materials.351
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Table 5: Real-world experiments. All methods are trained in a single-task setting [22], with success
determined by human evaluation. Since CogAct lacks support for multi-view images, which are
crucial for dual-arm tasks [13, 37], we conduct our dual-arm comparison solely with π0.

Franka single-arm robot AgileX dual-arm robot

Models Pick Unplug Pour Wipe Open drawer Mean. Pick Lift ball Place bottles Wipe Fold Mean.
and place charger water blackboard and place inside S.R. ↑ and place and place at rack blackboard shorts S.R. ↑

π0 (2.6B) [13] 0.50 0.35 0.45 0.35 0.60 0.45 0.75 0.65 0.40 0.30 0.65 0.55
CogACT (7B) [14] 0.80 0.70 0.40 0.65 0.50 0.61 - - - - - -
HybridVLA-dif(7B) 0.85 0.95 0.75 0.85 0.60 0.80 0.80 0.75 0.60 0.45 0.70 0.66
HybridVLA(7B) 0.90 0.95 0.80 0.85 0.65 0.83 0.90 0.80 0.60 0.55 0.70 0.71

Pour water

Open drawer 
and place inside

Place bottles at 
rack

Wipe blackboard

Task Progress

Dual-arm real-world tasksSingle-arm real-world tasks

Task Progress

Lift ball and 
place inside

Wipe blackboard

4.4 Generalization Experiment352

Since CogAct and π0 excel in single-arm and dual-arm tasks, respectively, we design four common353

generalization experiments, comparing our HybridVLA with CogAct on the single-arm Pick and place354

task and with π0 on the dual-arm Lift ball and place task. 1) Unseen manipulated objects. In this355

scenario, we replace the training manipulated objects with a series of unseen objects, e.g., replacing356

the red block with a charger. As shown in the “Object" row of Table 4, our method demonstrates the357

smallest accuracy drop. These results indicate that, unlike previous diffusion-based VLA methods,358

HybridVLA effectively integrates diffusion into the autoregressive next-token prediction process, not359

only capturing the continuous characteristics of diffusion-based generation, but also preserving the360

object-level semantic reasoning capabilities of autoregressive generation. 2) Unseen background. In361

this scenario, cluttered backgrounds are introduced during testing, such as adding unseen flowers362

around the manipulated object. HybridVLA still shows satisfactory results, further demonstrating363

that our collaborative training recipe effectively inherits the VLM’s scene-level reasoning capabilities,364

enhancing robustness to environmental variations. 3) Unseen Spatial position. Unlike position shifts365

within the same plane, we introduce height variations during testing, further challenging the model’s366

spatial comprehension. As shown in the “Height" row of Table 4, HybridVLA consistently achieves367

precise manipulation even when encountering objects in previously unseen spatial positions. These368

results highlight that HybridVLA exhibits strong trajectory generalization capabilities through the369

ensemble of two action generation methods. 4) Unseen lighting conditions. Finally, we introduce370

variations in lighting conditions, a common challenge in real-world environments. All methods371

maintain satisfactory performance, demonstrating that large-scale pretraining on robotic datasets372

enhances their generalization across diverse data distributions.373

5 Conclusion and Limitation374

In this paper, we introduce HybridVLA, a unified Vision-Language-Action (VLA) framework that375

equips a single LLM with both diffusion-based and autoregressive action generation capabilities.376

To bridge the gap between these two paradigms, we propose a collaborative training recipe that377

integrates diffusion denoising into the next-token prediction process, enabling mutual reinforce-378

ment and improving manipulation robustness. By effectively absorbing the continuous nature of379

diffusion-based action generation and the semantic reasoning capabilities of autoregressive methods,380

HybridVLA achieves outstanding performance and strong generalization across both simulation and381

real-world tasks. One limitation of HybridVLA is that its inference speed is constrained by the slower382

autoregressive generation, similar to prior autoregressive VLA methods [10, 9, 11]. However, our383

collaborative training enables mutual reinforcement between the two generation methods, allowing384

inference using only the diffusion process (HybridVLA-dif), achieving a 9.4 Hz inference speed.385

Finally, we state the broader impact of our work in Appendix E.386
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Figure 3: Real-World Assets and Experimental Settings. We provide visualizations of the assets
used and the experimental settings for single-arm FR3 robot tasks and dual-arm AgileX robot tasks,
respectively.

Appendix A. We begin by detailing the large-scale pretraining and self-collected real-world datasets.715

Appendix B. Additional simulation experiments and ablation studies are presented.716

Appendix C. We include further visualizations of both single-arm and dual-arm manipulation717

processes.718

Appendix D. An analysis of failure cases encountered when using HybridVLA to control a robot.719

Appendix E. A brief conclusion and hope to our work’s broader impact.720

A Additional Dataset Details721

A.1 Large-scale Pretraining Dataset722

Our pre-training dataset collection comprises 35 datasets, encompassing a total of 760k trajectories723

and 33m frames. Table 6 provides a comprehensive list of our pre-training datasets along with their724

respective sampling weights. The number of trajectories and the sampling weights can be automati-725

cally adjusted during dataset assembly. Following the prior data preprocessing approach [10], we726

reformulate the pre-training datasets to emphasize end-effector sequence control, ensuring alignment727

with the specific requirements of our model training. Due to inherent differences among datasets,728

only single 2D observations are used during pre-training. However, during fine-tuning, HybridVLA729

can accommodate both single- and multi-view observations depending on the task requirements. For730

instance, AgileX dual-arm robot tasks require three viewpoints—an ego view and two wrist camera731

views—to capture a comprehensive observation of the object while mitigating occlusions caused732

by the robot arm. HybridVLA processes multi-view images using a shared vision encode and then733

concatenates the visual feature along the token dimension. Notably, the difference in the number734

of images used during pre-training and fine-tuning does not impact manipulation performance in735

downstream tasks.736

A.2 Self-collected Real-world Dataset737

The experimental assets and environments for the single-arm and dual-arm setups are shown in738

Figure 3 (a) and (b), respectively. For the single-arm setup, a 3D-printed UMI gripper [117] is739

attached to the Franka robot and is used across all baselines. We utilize RealSense 435 and RealSense740

515 cameras to capture both wrist and front views. For the dual-arm setup, two Orbbec DABAI741

cameras are used to capture the left and right wrist views, while a RealSense 515 is mounted overhead742

to capture a static third-person view. We provide a detailed explanation of the real-world tasks and743

their success conditions. We begin by describing the single-arm tasks:744

1. Pick and place. This task requires the robot to pick up a specifically colored block based on a745

language description and place it in a specifically colored bowl.746
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Table 6: The dataset name and sampling weight used in our mixed large-scale pretraining dataset.

Training Dataset Mixture
Fractal [38] 9.1%
Kuka [84] 27.8%
Bridge[85, 86] 4.1%
Taco Play [87, 88] 2.1%
Jaco Play [89] 0.3%
Berkeley Cable Routing [90] 0.2%
Roboturk [91] 1.7%
Viola [92] 0.7%
Berkeley Autolab UR5 [93] 0.9%
Toto [94] 1.5%
Language Table [95] 3.1%
Stanford Hydra Dataset [96] 3.2%
Austin Buds Dataset [97] 0.2%
NYU Franka Play Dataset [98] 0.6%
Furniture Bench Dataset [99] 1.8%
UCSD Kitchen Dataset [100] <0.1%
Austin Sailor Dataset [101] 1.6%
Austin Sirius Dataset [102] 1.2%
DLR EDAN Shared Control [103] <0.1%
IAMLab CMU Pickup Insert [104] 0.7%
UTAustin Mutex [105] 1.6%
Berkeley Fanuc Manipulation [106] 0.6%
CMU Stretch [107] 0.1%
BC-Z [108] 5.4%
FMB Dataset [109] 5.0%
DobbE [110] 1.0%
DROID [29] 7.2%
Stanford Kuka Dataset [111] 0.1%
Stanford Robocook Dataset [112] 0.1%
Maniskill [113] 6.3%
Berkeley RPT [114] 0.1%
QUT Dexterous Manipulation [115] 0.1%
RoboSet [116] 1.8%
BridgeData V2 [86] 4.7%
RoboMind [30] 5.2%

2. Unplug charger. The robot needs to grasp the charger at an optimal position and rotation, and then747

lift it to a certain height without slipping.748

3. Pour water. The robot needs to first pick the bottle, then rotate it to a position slightly above the749

cup, and tilt it to perform the pouring action. The task is deemed successful only if the bottle opening750

is correctly aligned with the cup.751

4. Wipe blackboard. The robot needs to first grasp an eraser and then use it to remove the red752

markings from a blackboard placed on the tabletop. The red markings are drawn on an unfixed region,753

and the task is considered successful only if they are completely erased.754

5. Open drawer and place inside. The robot needs to open the top drawer, pick up the required755

objects based on the language description, place them in the opened drawer, and then close it. This756

task consists of four sequential sub-tasks: open drawer, pick object, place object, and close drawer.757

The task is considered complete once all sub-tasks have been successfully executed.758

We then describe the details of dual-arm tasks:759

1. Pick and place. The robot must use both its left and right arms to pick up two objects based on the760

language description and place them in the container.761
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2. Lift ball and place. Both the left and right arms must simultaneously make contact with the ball,762

which is secured between the two grippers. The arms coordinate their movements to transport the763

ball to the container while ensuring it does not slip. This task highly tests the model’s dual-arm764

coordination capabilities.765

3. Place bottles at rack. The left and right robot arms need to grasp the bottles placed on their766

respective sides and rotate them to position them parallel to the rack.767

4. Wipe blackboard. Unlike the single-arm setting, the dual-arm setting requires one arm to hold the768

whiteboard while the other picks up the eraser and wipes off the red marker.769

5. Fold shorts: This task requires folding a pair of shorts, involving two sequential steps. First, one770

pant leg is folded over the other to align them. Then, the pants are folded in half from top to bottom.771

Throughout the process, both arms must coordinate their movements. For example, in the first step,772

the left arm holds the bottom of the pant leg while the right arm grips the upper part, working together773

to complete the folding.774

B Additional Quantitative Results775

B.1 Additional Simulation Experiments776

In Table 7, we validate the first observed phenomenon mentioned in Section 3.3: different action777

types within our proposed framework exhibit varying performance across tasks. Meanwhile, we778

categorize our method into three modes: HybridVLA (7B), HybridVLA-ar (7B), and HybridVLA-dif779

(7B). All modes undergo joint training using our proposed collaborative training recipe; however,780

HybridVLA-ar and HybridVLA-dif rely exclusively on autoregressive-based and diffusion-based781

action generation during inference, respectively. The experiments are conducted in the RLBench782

simulator across 10 tasks, and evaluated based on success rate. Comparing HybridVLA-ar and783

HybridVLA-dif, HybridVLA-ar outperforms in 4 out of 10 tasks, while HybridVLA-dif leads in784

the remaining 6 tasks. These results validate our findings that, within the HybridVLA framework,785

diffusion-based predictions excel in precise manipulation tasks, such as Phone on base, Toilet seat786

down, and Close laptop lid, whereas autoregressive predictions perform better in tasks requiring scene-787

level semantic reasoning, such as Sweep to dustpan, Water plants, and Frame off hanger. Therefore,788

while collaborative training allows diffusion-based and autoregressive-based action generation to789

reinforce each other, assembling both methods results in more robust actions.790

Table 7: Detailed Simulation Experiments. We validate that different action types within our
proposed framework exhibit varying performance across tasks. All models undergo joint training
using our proposed collaborative training recipe; however, HybridVLA-ar and HybridVLA-dif
rely exclusively on autoregressive-based and diffusion-based action generation during inference,
respectively. Underlining indicates the highest score between HybridVLA-ar and HybridVLA-dif.

Close Close Toilet Sweep Close Phone Umbrella Frame Wine at Water Mean.
Models box laptop lid seat down to dustpan fridge on base out off hanger rack plants S.R. ↑

HybridVLA-ar(7B) 0.85 0.70 0.90 0.85 0.95 0.30 0.25 0.40 0.45 0.50 0.62
HybridVLA-dif(7B) 0.85 0.75 1.0 0.80 0.95 0.50 0.50 0.30 0.70 0.25 0.66

HybridVLA(7B) 0.85 0.95 1.0 0.90 1.0 0.50 0.50 0.70 0.50 0.50 0.74

Table 8: Ablation Study. We explore the impact of different confidence thresholds on the performance
of ensemble actions.

Threshold 0.90 0.92 0.94 0.96 0.98

Success rate 0.66 0.64 0.70 0.74 0.69

B.2 Additional Ablation Study791

The impact of confidence threshold in collaborative action ensemble. The proposed collaborative792

ensemble strategy determines whether to use the action predicted by diffusion alone or the averaged793

output of both diffusion and autoregressive methods, guided by a mean confidence threshold derived794

from the autoregressive action token. In this experiment, we investigate the optimal confidence795

threshold required to ensure the accuracy of autoregressive actions and enhance the overall precision796
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Figure 4: The impact of denoising steps, where the x-axis and y-axis represent the denoising steps
and manipulation success rate.

of the ensemble-generated action. Specifically, as shown in Table 8, we vary the threshold from 0.90797

to 0.98. We find that when the confidence threshold drops below 0.94, autoregressive predictions798

become unreliable, leading to a slight degradation in the performance of the ensemble action.799

Conversely, when the threshold reaches 0.98, the number of valid autoregressive actions becomes800

too limited, causing the performance of the ensemble action to closely match that of the diffusion-801

predicted action. Empirically, we conclude that setting the threshold to 0.96 ensures a stable action802

ensemble.803

The impact of KV cache in inference speed. As described in Section 3.3, we adopt the KV cache804

to eliminate redundant computations and improve inference speed. In this experiment, we examine805

the extent to which this mechanism accelerates inference. With the KV cache enabled (Table 2806

of the main paper), HybridVLA-dif achieves an average success rate of 66% across 10 simulation807

tasks with an inference speed of 9.4 Hz. Removing it results in a similar average success rate but808

reduces the inference speed to 5.0 Hz. Although the KV cache has typically been used in previous809

autoregressive VLA methods [10, 11], we are the first to integrate it into an LLM’s diffusion-based810

action generation.811

The impact of denoising steps. In Figure 4, we explore the relationship between manipulation812

performance and different denoising steps on HybridVLA-dif. Consistent with the findings of813

previous work [12, 60], we reduced the number of DDIM denoising steps of inference from 30 to 4814

without observing a significant degradation in manipulation performance. To balance inference speed815

and accuracy, we set the diffusion denoising steps to 4 in our final implementation.816
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Figure 5: Single-arm Execution Visualization. We visualize key frames of the agent’s execution
process from the front perspective.
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Figure 6: Dual-arm Execution Visualization. We visualize key frames of the agent’s execution
process from a static exterior view.

C Additional Visualizations817

Figure 5 and Figure 6 illustrate keyframes of single-arm and dual-arm real-world execution processes.818

Notably, our Franka Research 3 (FR3) operates with controller version 5.6.0, libfranka version 0.13.3,819

Franka ROS version 0.10.0, and Ubuntu 20.04 with ROS Noetic. Under these software settings, the820

FR3 remains in green light execution mode with the FCI switch set to ‘on’.821

These tasks demonstrate HybridVLA’s capability in accurately predicting position and rotation,822

as well as determining the precise timing for changing the gripper’s open state. Additionally, the823

dual-arm tasks highlight HybridVLA’s ability to coordinate both robotic arms, enabling it to complete824

tasks beyond the capability of a single arm, such as transporting a ball to a container. Notably, the825

single-arm task ‘open drawer and place’ and the dual-arm tasks ‘wipe whiteboard’ and ‘fold shorts’826

are long-horizon tasks that involve at least three multi-step actions. These results further confirm827

that HybridVLA can reliably predict sequential actions, demonstrating the capability to complete828

long-horizon tasks.829

D Failure Case Analysis.830

Through extensive real-world experiments, we identify three primary failure categories that impact831

the performance of HybridVLA. The first category, rotational prediction deviations, is particularly832

evident in tasks requiring precise rotation control, such as Pour water and Place bottle at rack. These833

failures include accumulated errors in multi-step rotational movements and incorrect rotation angles834

when interacting with target objects. The second category pertains to pose predictions that exceed835

the robot’s degree of freedom limits. The model sometimes predicts poses beyond the mechanical836

constraints of the Fr3 arm or AgileX dual-arm robot, generates target positions that fall outside the837

workspace boundaries, or produces kinematically infeasible configurations during complex transitions.838

The third category involves failures in dual-arm coordination, where both arms must collaborate to839

complete a task. Since the model predicts each arm’s actions based on the current object state, any840

interaction by one arm can alter the object’s state, potentially invalidating the previously predicted841

action of the other arm.842
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E Broader Impact843

Our work proposed a collaborative framework to combine the continuous nature of diffusion-based844

action and the contextual reasoning of autoregression within a single LLM. This work focused on845

the innovation of the above VLA structure and does not have a direct impact on society. And we846

hope that this effort can promote the progress in the field of robot manipulation and open up a new847

paradigm for better providing foundation models in the field of embodiment intelligence, so as to848

promote the healthy, controllable and sustainable development of the entire field.849
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NeurIPS Paper Checklist850

1. Claims851

Question: Do the main claims made in the abstract and introduction accurately reflect the852

paper’s contributions and scope?853

Answer: [Yes]854

Justification: The abstract and/or introduction clearly state the claims made, including the855

contributions made in the paper and important assumptions and limitations.856

Guidelines:857

• The answer NA means that the abstract and introduction do not include the claims858

made in the paper.859

• The abstract and/or introduction should clearly state the claims made, including the860

contributions made in the paper and important assumptions and limitations. A No or861

NA answer to this question will not be perceived well by the reviewers.862

• The claims made should match theoretical and experimental results, and reflect how863

much the results can be expected to generalize to other settings.864

• It is fine to include aspirational goals as motivation as long as it is clear that these goals865

are not attained by the paper.866

2. Limitations867

Question: Does the paper discuss the limitations of the work performed by the authors?868

Answer: [Yes]869

Justification: The paper has discussed limitations in the paper.870

Guidelines:871

• The answer NA means that the paper has no limitation while the answer No means that872

the paper has limitations, but those are not discussed in the paper.873

• The authors are encouraged to create a separate "Limitations" section in their paper.874

• The paper should point out any strong assumptions and how robust the results are to875

violations of these assumptions (e.g., independence assumptions, noiseless settings,876

model well-specification, asymptotic approximations only holding locally). The authors877

should reflect on how these assumptions might be violated in practice and what the878

implications would be.879

• The authors should reflect on the scope of the claims made, e.g., if the approach was880

only tested on a few datasets or with a few runs. In general, empirical results often881

depend on implicit assumptions, which should be articulated.882

• The authors should reflect on the factors that influence the performance of the approach.883

For example, a facial recognition algorithm may perform poorly when image resolution884

is low or images are taken in low lighting. Or a speech-to-text system might not be885

used reliably to provide closed captions for online lectures because it fails to handle886

technical jargon.887

• The authors should discuss the computational efficiency of the proposed algorithms888

and how they scale with dataset size.889

• If applicable, the authors should discuss possible limitations of their approach to890

address problems of privacy and fairness.891

• While the authors might fear that complete honesty about limitations might be used by892

reviewers as grounds for rejection, a worse outcome might be that reviewers discover893

limitations that aren’t acknowledged in the paper. The authors should use their best894

judgment and recognize that individual actions in favor of transparency play an impor-895

tant role in developing norms that preserve the integrity of the community. Reviewers896

will be specifically instructed to not penalize honesty concerning limitations.897

3. Theory assumptions and proofs898

Question: For each theoretical result, does the paper provide the full set of assumptions and899

a complete (and correct) proof?900

Answer: [NA]901
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Justification: The paper does not include theoretical results.902

Guidelines:903

• The answer NA means that the paper does not include theoretical results.904

• All the theorems, formulas, and proofs in the paper should be numbered and cross-905

referenced.906

• All assumptions should be clearly stated or referenced in the statement of any theorems.907

• The proofs can either appear in the main paper or the supplemental material, but if908

they appear in the supplemental material, the authors are encouraged to provide a short909

proof sketch to provide intuition.910

• Inversely, any informal proof provided in the core of the paper should be complemented911

by formal proofs provided in appendix or supplemental material.912

• Theorems and Lemmas that the proof relies upon should be properly referenced.913

4. Experimental result reproducibility914

Question: Does the paper fully disclose all the information needed to reproduce the main ex-915

perimental results of the paper to the extent that it affects the main claims and/or conclusions916

of the paper (regardless of whether the code and data are provided or not)?917

Answer: [Yes]918

Justification: The results are reproducible.919

Guidelines:920

• The answer NA means that the paper does not include experiments.921

• If the paper includes experiments, a No answer to this question will not be perceived922

well by the reviewers: Making the paper reproducible is important, regardless of923

whether the code and data are provided or not.924

• If the contribution is a dataset and/or model, the authors should describe the steps taken925

to make their results reproducible or verifiable.926

• Depending on the contribution, reproducibility can be accomplished in various ways.927

For example, if the contribution is a novel architecture, describing the architecture fully928

might suffice, or if the contribution is a specific model and empirical evaluation, it may929

be necessary to either make it possible for others to replicate the model with the same930

dataset, or provide access to the model. In general. releasing code and data is often931

one good way to accomplish this, but reproducibility can also be provided via detailed932

instructions for how to replicate the results, access to a hosted model (e.g., in the case933

of a large language model), releasing of a model checkpoint, or other means that are934

appropriate to the research performed.935

• While NeurIPS does not require releasing code, the conference does require all submis-936

sions to provide some reasonable avenue for reproducibility, which may depend on the937

nature of the contribution. For example938

(a) If the contribution is primarily a new algorithm, the paper should make it clear how939

to reproduce that algorithm.940

(b) If the contribution is primarily a new model architecture, the paper should describe941

the architecture clearly and fully.942

(c) If the contribution is a new model (e.g., a large language model), then there should943

either be a way to access this model for reproducing the results or a way to reproduce944

the model (e.g., with an open-source dataset or instructions for how to construct945

the dataset).946

(d) We recognize that reproducibility may be tricky in some cases, in which case947

authors are welcome to describe the particular way they provide for reproducibility.948

In the case of closed-source models, it may be that access to the model is limited in949

some way (e.g., to registered users), but it should be possible for other researchers950

to have some path to reproducing or verifying the results.951

5. Open access to data and code952

Question: Does the paper provide open access to the data and code, with sufficient instruc-953

tions to faithfully reproduce the main experimental results, as described in supplemental954

material?955

24



Answer: [Yes]956

Justification: We have released the code on Github.957

Guidelines:958

• The answer NA means that paper does not include experiments requiring code.959

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/960

public/guides/CodeSubmissionPolicy) for more details.961

• While we encourage the release of code and data, we understand that this might not be962

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not963

including code, unless this is central to the contribution (e.g., for a new open-source964

benchmark).965

• The instructions should contain the exact command and environment needed to run to966

reproduce the results. See the NeurIPS code and data submission guidelines (https:967

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.968

• The authors should provide instructions on data access and preparation, including how969

to access the raw data, preprocessed data, intermediate data, and generated data, etc.970

• The authors should provide scripts to reproduce all experimental results for the new971

proposed method and baselines. If only a subset of experiments are reproducible, they972

should state which ones are omitted from the script and why.973

• At submission time, to preserve anonymity, the authors should release anonymized974

versions (if applicable).975

• Providing as much information as possible in supplemental material (appended to the976

paper) is recommended, but including URLs to data and code is permitted.977

6. Experimental setting/details978

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-979

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the980

results?981

Answer: [Yes]982

Justification: The experimental setting is clearly presented in the paper.983

Guidelines:984

• The answer NA means that the paper does not include experiments.985

• The experimental setting should be presented in the core of the paper to a level of detail986

that is necessary to appreciate the results and make sense of them.987

• The full details can be provided either with the code, in appendix, or as supplemental988

material.989

7. Experiment statistical significance990

Question: Does the paper report error bars suitably and correctly defined or other appropriate991

information about the statistical significance of the experiments?992

Answer: [No]993

Justification: The existing results can already reflect the performance of method.994

Guidelines:995

• The answer NA means that the paper does not include experiments.996

• The authors should answer "Yes" if the results are accompanied by error bars, confi-997

dence intervals, or statistical significance tests, at least for the experiments that support998

the main claims of the paper.999

• The factors of variability that the error bars are capturing should be clearly stated (for1000

example, train/test split, initialization, random drawing of some parameter, or overall1001

run with given experimental conditions).1002

• The method for calculating the error bars should be explained (closed form formula,1003

call to a library function, bootstrap, etc.)1004

• The assumptions made should be given (e.g., Normally distributed errors).1005

• It should be clear whether the error bar is the standard deviation or the standard error1006

of the mean.1007
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• It is OK to report 1-sigma error bars, but one should state it. The authors should1008

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1009

of Normality of errors is not verified.1010

• For asymmetric distributions, the authors should be careful not to show in tables or1011

figures symmetric error bars that would yield results that are out of range (e.g. negative1012

error rates).1013

• If error bars are reported in tables or plots, The authors should explain in the text how1014

they were calculated and reference the corresponding figures or tables in the text.1015

8. Experiments compute resources1016

Question: For each experiment, does the paper provide sufficient information on the com-1017

puter resources (type of compute workers, memory, time of execution) needed to reproduce1018

the experiments?1019

Answer: [Yes]1020

Justification: The paper indicates the type of compute workers.1021

Guidelines:1022

• The answer NA means that the paper does not include experiments.1023

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1024

or cloud provider, including relevant memory and storage.1025

• The paper should provide the amount of compute required for each of the individual1026

experimental runs as well as estimate the total compute.1027

• The paper should disclose whether the full research project required more compute1028

than the experiments reported in the paper (e.g., preliminary or failed experiments that1029

didn’t make it into the paper).1030

9. Code of ethics1031

Question: Does the research conducted in the paper conform, in every respect, with the1032

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1033

Answer: [Yes]1034

Justification: We follow the NeurIPS Code of Ethics.1035

Guidelines:1036

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1037

• If the authors answer No, they should explain the special circumstances that require a1038

deviation from the Code of Ethics.1039

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1040

eration due to laws or regulations in their jurisdiction).1041

10. Broader impacts1042

Question: Does the paper discuss both potential positive societal impacts and negative1043

societal impacts of the work performed?1044

Answer: [NA]1045

Justification: There is no societal impact of the work performed.1046

Guidelines:1047

• The answer NA means that there is no societal impact of the work performed.1048

• If the authors answer NA or No, they should explain why their work has no societal1049

impact or why the paper does not address societal impact.1050

• Examples of negative societal impacts include potential malicious or unintended uses1051

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1052

(e.g., deployment of technologies that could make decisions that unfairly impact specific1053

groups), privacy considerations, and security considerations.1054

• The conference expects that many papers will be foundational research and not tied1055

to particular applications, let alone deployments. However, if there is a direct path to1056

any negative applications, the authors should point it out. For example, it is legitimate1057

to point out that an improvement in the quality of generative models could be used to1058
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generate deepfakes for disinformation. On the other hand, it is not needed to point out1059

that a generic algorithm for optimizing neural networks could enable people to train1060

models that generate Deepfakes faster.1061

• The authors should consider possible harms that could arise when the technology is1062

being used as intended and functioning correctly, harms that could arise when the1063

technology is being used as intended but gives incorrect results, and harms following1064

from (intentional or unintentional) misuse of the technology.1065

• If there are negative societal impacts, the authors could also discuss possible mitigation1066

strategies (e.g., gated release of models, providing defenses in addition to attacks,1067

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1068

feedback over time, improving the efficiency and accessibility of ML).1069

11. Safeguards1070

Question: Does the paper describe safeguards that have been put in place for responsible1071

release of data or models that have a high risk for misuse (e.g., pretrained language models,1072

image generators, or scraped datasets)?1073

Answer: [NA]1074

Justification: The paper poses no such risks.1075

Guidelines:1076

• The answer NA means that the paper poses no such risks.1077

• Released models that have a high risk for misuse or dual-use should be released with1078

necessary safeguards to allow for controlled use of the model, for example by requiring1079

that users adhere to usage guidelines or restrictions to access the model or implementing1080

safety filters.1081

• Datasets that have been scraped from the Internet could pose safety risks. The authors1082

should describe how they avoided releasing unsafe images.1083

• We recognize that providing effective safeguards is challenging, and many papers do1084

not require this, but we encourage authors to take this into account and make a best1085

faith effort.1086

12. Licenses for existing assets1087

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1088

the paper, properly credited and are the license and terms of use explicitly mentioned and1089

properly respected?1090

Answer: [Yes]1091

Justification: We have cited the original paper that produced the code package or dataset.1092

Guidelines:1093

• The answer NA means that the paper does not use existing assets.1094

• The authors should cite the original paper that produced the code package or dataset.1095

• The authors should state which version of the asset is used and, if possible, include a1096

URL.1097

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1098

• For scraped data from a particular source (e.g., website), the copyright and terms of1099

service of that source should be provided.1100

• If assets are released, the license, copyright information, and terms of use in the1101

package should be provided. For popular datasets, paperswithcode.com/datasets1102

has curated licenses for some datasets. Their licensing guide can help determine the1103

license of a dataset.1104

• For existing datasets that are re-packaged, both the original license and the license of1105

the derived asset (if it has changed) should be provided.1106

• If this information is not available online, the authors are encouraged to reach out to1107

the asset’s creators.1108

13. New assets1109

Question: Are new assets introduced in the paper well documented and is the documentation1110

provided alongside the assets?1111
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Answer: [NA]1112

Justification: The paper does not release new assets.1113

Guidelines:1114

• The answer NA means that the paper does not release new assets.1115

• Researchers should communicate the details of the dataset/code/model as part of their1116

submissions via structured templates. This includes details about training, license,1117

limitations, etc.1118

• The paper should discuss whether and how consent was obtained from people whose1119

asset is used.1120

• At submission time, remember to anonymize your assets (if applicable). You can either1121

create an anonymized URL or include an anonymized zip file.1122

14. Crowdsourcing and research with human subjects1123

Question: For crowdsourcing experiments and research with human subjects, does the paper1124

include the full text of instructions given to participants and screenshots, if applicable, as1125

well as details about compensation (if any)?1126

Answer: [NA]1127

Justification: The paper does not involve crowdsourcing nor research with human subjects.1128

Guidelines:1129

• The answer NA means that the paper does not involve crowdsourcing nor research with1130

human subjects.1131

• Including this information in the supplemental material is fine, but if the main contribu-1132

tion of the paper involves human subjects, then as much detail as possible should be1133

included in the main paper.1134

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1135

or other labor should be paid at least the minimum wage in the country of the data1136

collector.1137

15. Institutional review board (IRB) approvals or equivalent for research with human1138

subjects1139

Question: Does the paper describe potential risks incurred by study participants, whether1140

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1141

approvals (or an equivalent approval/review based on the requirements of your country or1142

institution) were obtained?1143

Answer: [NA]1144

Justification: The paper does not involve crowdsourcing nor research with human subjects.1145

Guidelines:1146

• The answer NA means that the paper does not involve crowdsourcing nor research with1147

human subjects.1148

• Depending on the country in which research is conducted, IRB approval (or equivalent)1149

may be required for any human subjects research. If you obtained IRB approval, you1150

should clearly state this in the paper.1151

• We recognize that the procedures for this may vary significantly between institutions1152

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1153

guidelines for their institution.1154

• For initial submissions, do not include any information that would break anonymity (if1155

applicable), such as the institution conducting the review.1156

16. Declaration of LLM usage1157

Question: Does the paper describe the usage of LLMs if it is an important, original, or1158

non-standard component of the core methods in this research? Note that if the LLM is used1159

only for writing, editing, or formatting purposes and does not impact the core methodology,1160

scientific rigorousness, or originality of the research, declaration is not required.1161

Answer: [NA]1162
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Justification: The core method development in this research does not involve LLMs.1163

Guidelines:1164

• The answer NA means that the core method development in this research does not1165

involve LLMs as any important, original, or non-standard components.1166

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1167

for what should or should not be described.1168
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