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Abstract

Simulating blood flow is paramount in identifying flow-based biomarkers for vascular-
related diseases. A segmented vessel graph is used as a domain for the simulation. Tradi-
tionally, partial differential equations are solved with numerical methods. Here, we propose
an alternative solver for the simulation of blood flow on a vascular graph leveraging geo-
metric deep learning. Specifically, we reformulate the problem as an implicit function on
the graph and learn the simulation by imposing the physics in the loss through a message
passing layer. The resultant flow is accurate, fast, and applicable to various tasks.
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1. Introduction

Computational fluid dynamics provides a mathematical model of blood flow in our cir-
culatory system. Given an inflow through a feeding artery and a computational domain
(blood vessel geometry), we can solve the dynamic blood flow pattern. However, an accu-
rate solution in the volumetric domain requires solving the Navier-Stokes equation and is
compute-intensive Kissas et al. (2020); Shit et al. (2021).

On the brighter side, depending on the vessel’s resolution, we can often approximate
the vascular network with a graph structure with local properties (such as vessel length and
thickness). These graphs lead to a drastic simplification of the flow simulation task and can
be scaled up to a larger vascular region or fine capillaries. Conventionally, given a network,
a numerical solver is used to solve the continuity equation Reichold et al. (2009); Schmid
et al. (2017). This approach, however, requires external library and can not be used in an
end-to-end pipeline to simulate flow from an image measurement.

With the advent of geometric deep learning, many emerging solutions have been pro-
posed to leverage the geometric nature of vessel networks Li et al. (2021); Suk et al. (2021).
These models take advantage of geometric deep learning algorithms to accelerate the flow
simulation by exploring the geometric prior and constraints imposed by a differential equa-
tion. At the same time, current methods can directly infer vessel networks from image data
Paetzold et al. (2021); Shit et al. (2022). Integrating a blood flow simulation into these
inferred graphs calls for an end-to-end trainable feature on the flow solver.

This paper presents a novel blood flow solver based on an implicit function learned on
graph. We particularly make use of the Pytorch-Geometric library to implement a message
passing layer to impose physical constraint in the loss function. We show poof-of-concept
results on a synthetic dataset, demonstrating our proposed solver’s efficacy and applicability
to a wide variety of tasks.
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Figure 1: Overview of the Graflow solver.

2. Method

We first formulate the flow simulation problem and then detail the application of graph
learning to obtain the solution.

2.1. Governing Equation

Let the vascular network be defined by an undirected graph G = (V, ), where V are the
nodes and & are the edges. Each edge e;jle;; € € has two properties; area (A;;) and
length (L;;). We consider a Dirichlet boundary condition on each node n; as ¢; (non-zero
at inlet/outlet and zero elsewhere). Solving the flow requires mapping from the graph
structure and its properties to pressure (p;) at each node and flow rate (Fj;) at each edge.
Given the physical properties of vessels and fluid properties of blood, we can construct the
flow (Fj;) and conductance (Gyj;) of each vessel as 2
Fij = Gij(pi —pj); Gij= QSZqu’ (1)
where p and p are the dynamic viscosity and blood density, respectively. a = 1 represents
a perfectly cylindrical vessel, and a < 1 accounts for deviation from the ideal scenario.
Assuming rigid vessel walls, one needs to solve the following equation to obtain the pressure.

Z Gij(pi — pj) = @i (2)

J

2.2. Graflow

Clearly, the pressure distribution is a function of the geometrical structure and is driven
by the boundary condition. Taking inspiration from implicit function learning Raissi et al.
(2020); Sitzmann et al. (2020); Tancik et al. (2020) we model the pressure as an implicit
function on the graph as

p= Ny (g)v (3)
where Ny is an implicit function with learnable parameter #. Next, p goes through a message
passing layer to obtain LHS of Eq. 2. Finally, we train the model with the following ¢5 loss

L= > 1D Giwi—p)—alz+ D Il (4)

tlid¢outlet  J i|i€outlet



GRAFLOW

0.00200 1 —— Graflow

0.00175 A —— Linear Solver

0.00150 A

0.00125 A

0.00100 A

MSE in Flow

0.00075 A

0.00050 A

0.00025 A

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

Pressure Flow

Figure 2: (Left) shows that Graflow converges faster to the correct solution. (Right) shows
an exemplary visualization of the resultant pressure map and flow respectively.

The first part of the loss enforces the flow to be consistent with the inlet boundary condition
and zero flow everywhere else except the outlet. The second part of the loss enforces zero
pressure conditions at the outlet. We use Fourier features of the nodes as input features
and the SIREN activation function. We use Adam with a second-order LBFGS optimizer
with a learning rate of 1 for 20000 iterations. For simulation we assume the following values
p = 0.0015 Pa.s and p = 1060 kg/M?3.

3. Experiment

In this paper, we present a proof of concept study to showcase our proposed solver’s efficacy
and general applicability. We compare against a LBFGS based constrained linear solver for
comparison.

Dataset & Metric We used a synthetic vessel dataset Paetzold et al. (2021) and extracted
50 vessel trees with on average 1.7k nodes and 1.6k edges. We set the input flow at the
largest feeding artery following Reichold et al. (2009); Lorthois et al. (2011).

Results We plot the mean-squared error of predicted flow in each node and their boundary
condition in Fig. 2, demonstrating that the implicit neural solver converges faster than the
constrained linear solver. Overall on average, for the whole dataset, we observe a ~15%
decrease in simulation time for Graflow, while the constrained linear solver reaches the same
accurate solution in ~12 min using a Quadro P6000 GPU. Qualitative visualization of the
resultant flow and pressure demonstrates the accuracy of our solution, as shown in Fig. 2.

4. Conclusion

In this paper, we propose a novel implicit solver to simulate blood flow on the vascular
graph. We show proof-of-concept results on a synthetic vessel dataset which suggests that
our solver produces an accurate solution with reasonable reduction in simulation time.
Future work will emphasize time-varying solutions on the graph by modeling the dynamic
behavior of blood and vessel structures.
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