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Abstract

Low-light image enhancement (LLIE) aims to improve the visibility and quality of
images captured under poor illumination. However, existing deep enhancement
methods often underemphasize computational efficiency, leading to high energy
and memory costs. We propose Spike-RetinexFormer, a novel LLIE architecture
that synergistically integrates Retinex theory, spiking neural networks (SNNs) and
a Transformer-based design. Leveraging sparse spike-driven computation, the
model reduces theoretical compute energy and memory traffic relative to ANN
counterparts. Across standard benchmarks, the method matches or surpasses strong
ANNs (25.50 dB on LOL-v1; 30.37 dB on SDSD-out) with comparable parameters
and lower theoretical energy. Our work pioneers the synergistic integration of SNNs
into Transformer architectures for LLIE, establishing a compelling pathway toward
powerful, energy-efficient low-level vision on resource-constrained platforms.

1 Introduction

Capturing images in low-light conditions is challenging due to limited photons, sensor noise, and
constrained dynamic range. These factors produce dark, noisy images that hinder downstream tasks
like detection or recognition. LLIE techniques seek to brighten such images and restore details,
enabling better visual quality and utility. Early approaches relied on heuristic image processing
(gamma correction, histogram equalization) and the Retinex theory of human vision [1]], which
decomposes an image into reflectance and illumination. Traditional Retinex-based algorithms [2} 3]
improved visibility by estimating a smooth illumination map and enhancing the reflectance, but often
suffered from artifacts (haloing, color distortion) and were limited by manual parameter tuning.

The advent of deep learning spurred significant advances in LLIE. Convolutional neural networks
(CNNs) have been trained to directly map dark images to brighter ones, outperforming classical
methods in handling noise and complex artifacts. Representative works include LLNet [4], one
of the first deep autoencoders for natural low-light enhancement, and LightenNet [5] for weak
illumination images. More specialized models integrated Retinex theory, such as RetinexNet [6]]
which learned to decompose an image into reflectance and illumination and enhance them with
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Figure 1: Architecture of the Spike-RetinexFormer. It consists of two main stages: (1) the Spiking
Illumination Estimator, which predicts illumination features and a light-up map to adjust initial
brightness, (2) the Spiking Corruption Restorer, which utilizes a multi-scale U-Net structure with
Spiking Illumination-Guided Attention.

deep networks. Many subsequent methods built on this idea, proposing improved Retinex-based
networks with attention or refinement modules [[7} 8} 9]]. Unsupervised and zero-reference techniques
have also emerged: Zero-DCE [10, [11] optimizes a deep curve mapping without ground truth,
while EnlightenGAN [12] uses generative adversarial learning to enhance lighting without paired
data. Recent trends include normalizing flow models [[13] and diffusion models [14] for LLIE,
and Transformer-based architectures [15]] to capture global illumination context. Despite improved
enhancement quality, most deep LLIE methods are computationally heavy and energy-demanding[/16}
17, which limits deployment on resource-constrained devices.

Meanwhile, SNNs have gained interest as the third generation of neural networks, offering event-
driven computation inspired by biological neurons [18]]. Neurons communicate via sparse binary
spikes, leading to significantly reduced power consumption on neuromorphic hardware [[19]. SNN's
have achieved competitive performance on classification [20] and object detection [21] tasks with far
lower energy usage than standard ANN models. However, relatively few works have applied SNNs to
low-level vision: LLIE is a continuous-tone regression problem (enhancing pixel intensities), whereas
most prior SNN works focused on classification or recognition with discrete labels. Directly applying
SNNs to image enhancement must handle fine-grained color and illumination adjustments, requiring
high precision despite the coarse spike-based computations. [22] encoded pixel intensities into spike
latencies and used a recurrent SNN (with ConvLSTM) for unsupervised LLIE. This demonstrates
that SNNs can gradually capture image structure via spike timing.

Transformers [23]] have revolutionized many vision tasks due to their self-attention mechanism
capturing long-range dependencies. Vision Transformers [24] and related models have shown
excellent performance in recognition and even low-level image restoration [25| 26]. For LLIE,
Transformers can globally model illumination variation and object context, yielding more balanced
enhancement [15]]. Merging the energy efficiency of SNNs with the representational strength of
Transformers is a promising direction that remains underexplored. Recent studies have started
integrating spiking neurons into Transformer models [27} 28], 29,30, [31]], mainly for classification or
sequential data processing. These spiking Transformers achieve comparable accuracy to standard
Transformers while greatly reducing Multiply-Accumulate operations via spike-based attention. This
progress motivates our approach to design a spiking Transformer for LLIE.

In this paper, we propose Spike-RetinexFormer, a SNN architecture for LLIE. Spike-RetinexFormer
is a spike-driven variant of RetinexFormer that re-instantiates the one-stage Retinex parameterization
with temporal spike coding, Leaky Integrate-and-Fire (LIF [32]) neurons, surrogate-gradient training,



and an event-driven attention mechanism. To our knowledge, this is among the first feedforward spik-
ing Transformer-style network tailored to LLIE. By coupling Retinex-based illumination modeling
with event-driven computation, the approach aims at high-fidelity enhancement under constrained
compute and energy budgets. Specifically, a spiking illumination estimator predicts a light-up map
and illumination features consistent with the Retinex reparameterization, while a Retinex restoration
module employs spiking illumination-guided attention (SIGA) to aggregate long-range context and
suppress noise. Our network processes images over I’ time steps, accumulating an enhanced output
from spiking neuron responses. In summary, our contributions to the community include:

* We introduce Spike-RetinexFormer, which instantiates a one-stage Retinex enhancement
pipeline entirely using spiking primitives and is trained with surrogate gradients, demon-
strating that continuous image restoration can be effectively addressed in the spike domain.

* We develop a spiking illumination-guided attention mechanism—implemented via spike-
coincidence affinities, illumination-gated sparsification, and binary value routing—and
integrate it into the Retinex framework to enable long-range interactions without forming
dense QK T matrices or softmax normalization.

* Across standard LLIE benchmarks, Spike-RetinexFormer attains competitive enhancement
quality relative to representative ANN counterparts while using comparable parameters and
fewer theoretical FLOPs.

2 Related Works

2.1 Low-Light Image Enhancement

Early methodologies for low-light image enhancement drew upon traditional image processing
techniques and models of human visual perception, prominently featuring the Retinex theory [11],
which models an image as a product of reflectance and illumination components. Subsequent
developments, such as Multi-Scale Retinex with Color Restoration (MSRCR) [2] and LIME [3]],
focused on estimating illumination maps to improve image visibility; however, these approaches
necessitated manual parameter tuning and were susceptible to artifact generation. The emergence
of deep learning marked a paradigm shift, introducing data-driven approaches that often yielded
superior performance. CNN-based models, exemplified by LLNet [4] and LightenNet [5], utilized
large-scale datasets (LOL [6]) to learn the image enhancement mapping directly from data. While
not exclusively focused on LLIE, Ignatov et al. [33] explored broader applications of CNNs in
image enhancement, contributing to the foundational understanding in the field. The principles of
Retinex theory were subsequently incorporated into deep learning frameworks. Notable models
include RetinexNet [6] and its variants [[7, [8]], which explicitly perform image decomposition into
illumination and reflectance, with applications extending to specialized domains such as underwater
imaging [9]] and back-lit scene enhancement.

To address the limitations associated with paired training data, unsupervised and semi-supervised
methods were developed. For instance, Zero-DCE [10] and its subsequent refinement [[11] utilized
non-reference loss functions, while EnlightenGAN [12] and DeepExposure [34] employed generative
models for unpaired learning scenarios. Yang et al. [35]] proposed a semi-supervised framework
designed to strike a balance between image fidelity and perceptual quality. Recent investigations have
focused on leveraging sophisticated neural architectures. Models based on normalizing flows [13]] and
diffusion probabilistic models [[14] have demonstrated capabilities for high-fidelity image enhance-
ment, albeit often at a significant computational cost. Inspired by their success in other computer
vision tasks such as super-resolution [25} 26], Transformer architectures and attention mechanisms
have also been adapted for LLIE, as evidenced by works like [[L5]]. In a related vein, Tang et al. [36]]
introduced a method focusing on disentangling various image components to achieve more flexible
and controllable enhancement.

2.2 Spiking Neural Networks

SNNss are a class of biologically-inspired computational models that process information through dis-
crete temporal events, termed spikes, contrasting with the continuous activation values characteristic
of conventional Artificial Neural Networks (ANNs)[37]. Within SNNs, individual neurons integrate
input currents over time, generating an output spike when their internal membrane potential surpasses



a predefined threshold. This event-driven operational paradigm offers the potential for substantial en-
ergy efficiency, as computationally expensive multiply-accumulate operations prevalent in ANNSs are
often replaced by simpler arithmetic operations (additions), and power consumption is predominantly
associated with active spiking events. Maass [[18]] conceptualized SNNs as the third generation of
neural network models, and subsequent research has established their viability as an alternative to
ANNS in specific application domains. For instance, [[19]] demonstrated that neuromorphic hardware
platforms executing SNNs can achieve energy efficiencies orders of magnitude greater than those of
Graphics Processing Units (GPUs) processing functionally equivalent ANN models.

The practical training of SNNs was initially impeded by the non-differentiable nature of the spike
generation mechanism. However, methodologies such as ANN-to-SNN conversion and surrogate
gradient learning have facilitated the effective training of deep SNN architectures [20].Consequently,
SNNs have demonstrated competitive performance on established image classification bench-
marks [38, 120} 139, 40, 41} 42] and have been successfully applied to more complex vision tasks,
including object detection (Spiking-YOLO [21]]). Notwithstanding these advancements, the ap-
plication of SNNs to low-level vision tasks requiring continuous-valued outputs, such as image
enhancement, remains relatively underexplored. A principal challenge in this context is the genera-
tion of high-resolution, analog-like outputs (an enhanced image) from discrete spike trains. This often
necessitates sophisticated encoding schemes for pixel intensities, such as rate or temporal coding,
thereby introducing additional representational and computational complexity. Addressing this, [22]
investigated LLIE by encoding pixel intensities into spike latencies, which were then processed
by a recurrent SNN. Their findings demonstrated the feasibility of image enhancement using this
paradigm, achieving notable computational reductions compared to some ANN counterparts. These
results provide preliminary evidence for the capability of SNNs in image enhancement tasks.

3 Method

3.1 Spiking Retinex-Based Enhancement Framework

Following Retinex theory, a low-light RGB image e
I € [0,1]#>W>3 is modeled as the Hadamard | }
product of a reflectance image R € [0, 1]H*W>3
and an illumination map L € [0, 1]#*W:

I = ROL. (1) 4—”%—’

I 5x5 Conv
Directly obtaining a lit image by element-wise [0 et Com
division is numerically fragile when L is small. In- omination Estimator
stead, we introduce a light-up map L that approxi-
mates L~ and enforces the constraint L ® L >~ 1. Fijgure 2: Spiking illumination estimator &.
Multiplying by L yields a lit-up image
I, =1I®L =R+ C, 2

where €' € RH*WX3 collects the overall corruption introduced by sensor noise, quantization,
color shifts, and the light-up process itself. We realize (2)) in one stage with a spiking illumination
estimator and a spiking corruption restorer. We adopt a one-stage Retinex-based framework with two
spike-driven modules:

(Ilu7 Eu) = E(I7 Lp)7 Ien = G(Ilu7 Eu)v (3)

where E denotes the spiking illumination estimator and G the spiking corruption restorer. The
illumination prior L,, € RHAXWX1 is the channel-average mean of the input image:

L, = mean(I), @)

and both ' and G are implemented with LIF spiking neurons and operate over 7" discrete time steps;
gradients are estimated via surrogate functions.

As illustrated in Fig. 2] E is a shallow spike-driven CNN that maps [I || L, ] € R¥*W>4 (0 a light-up
image and illumination features:

Cl1: 1x1 fusion — C2: depth-wise 5x5 (light-up features) — C3: 1x1 projection.



G is a U-Net style encoder—decoder with skip connections, implemented entirely with spiking layers.
At each decoder stage, we insert a SIGA block that consumes the current feature maps together with
the scale-aligned F}, (from (3)), injecting long-range, lighting-aware context without dense softmax
attention. A lightweight spike-driven head predicts a residual AT so that

I, = Iy + AL &)

The whole pipeline (@) is trained end-to-end with surrogate gradients.

3.2 Spiking Neuron Model and Training

We use LIF neurons with soft reset and a single, shared time budget of 7" steps for both training and
inference. For each layer ¢ and time step t€ {1,...,T},

UO[] = XOHO[-1]+100], SO1) =eUOH-VY), HOF=UO[-V 5O,

(6)
. ¢
with H[0] = 0, leak A) € (0, 1), and a fixed threshold Vél)

Input encoding and T-normalization.

The illumination estimator F (see (3)) is executed first and receives a time-shared, 7-normalized
current

1
1) = 20l L), @l(X,Y) = wo(X) | £y oY), (2) =log(1+¢2), (D
where || denotes channel concatenation. After E predicts the light-up map L and features Fj, (cf. @,
we form I, = I ® L (cf. @) and its prior L;“ = mean(1}, ). The decoder G then uses

1
1000 = 7 ®ul(lu, L)), ®)

which keeps the total injected charge approximately invariant to 7. We use (=6 and
(K, kp)=(1.0,0.5) in all experiments.

INumination-guided FiLLM. For ¢ > 1 in the decoder G, the synaptic current is a convolution on
spikes modulated by per-channel FiLM parameters:
190 = o @ (WO« sED[H) + 5O, )

where  is a standard convolution and a(©), 3() ¢ R®* are time-shared (constant over t) and broadcast
spatially. They are predicted once from temporally aggregated illumination features (from (3)):

T
— 1 . _ s .
Fio = > Fultl,  f=GAP(Fw), [aB“]=wi"f+off), (10)
t=1
a(@) = Qmin + (amax - O5111in) U(d(g)), ﬁ(g) =S tanh(ﬁ(z)), (11)

with (Qmin, 0max) = (0.5,2.0), s = 0.05, and o(-) the logistic sigmoid. When F7, is lower-
resolution, we bilinearly upsample inside the FILM head; BatchNorm (if used) runs in eval mode
with EMA statistics to remain stable under sparse spikes.

Surrogate gradients and readout. We train end-to-end with a simple piecewise-linear surrogate

derivative around the firing threshold. The network uses a single-step readout identical in training
and inference:

Y = clip(f, + Head(H"[T7]), 0, 1), (12)

where Head is a 1 x 1 convolution to 3 channels; gradients through clip use a straight-through estimator
on [0,1].

2A slow, causal threshold adaptation was explored for extremely dark scenes but is disabled by default to
keep latency minimal.



Objective. The loss combines an L; image term, a firing-rate regularizer, and a temporal TV on the
pre-readout state to suppress flicker without over-smoothing spatial details:

L = [|Y —J[li + Aspk-AvgRate(S) + e - TV, (H™[1:7]), (13)
with (Aspi; Aiv) = (1074, 5x1074).

3.3 Ilumination-Guided Spiking Transformer

We build on the U-Netstyle backbone summarized in Sec. [3.1]and Fig.[I] In this subsection we focus
on how illumination guidance is injected at the decoder scales: the scale-aligned illumination features
Fj, condition both the attention (via SIGA) and FiLM modulation.

At each decoder scale, we deploy a SIGA module as the core long-range dependency unit. SIGA
operates on spike trains with multi-head processing: query—key spike coincidences open hard
binary gates that route value spikes, while per-head FILM parameters—predicted from scale-aligned
illumination features—modulate the )/ K /V projections and gating thresholds and are shared over
time. All attention computations are realized by LIF neurons unrolled across 7" steps; BatchNorm
layers (when present) run in evaluation mode with EMA statistics to maintain stable activations under
spike sparsity. The feed-forward branch is a two-layer spiking MLP with LIF activations, forming
a standard attention+FFN block in spiking form and serving as the decoder’s illumination-aware
context aggregator.

SIGA mechanism: Each SIGA takes spike-encoded query, key, and value streams (Q[t], K'[t], V'[t])
and a scale-aligned illumination feature Fj,,. Multi-head processing is used: channels are split into H
heads, computed in parallel, and concatenated. For each head, Fj, drives FiLM-style parameters that
modulate the /K /V projections and set illumination-aware gating thresholds; these parameters are
predicted once and shared across time steps. Spike coincidences between () and K open binary gates
that route V' spikes, yielding an event-driven hard-attention pattern implemented by LIF neurons
unrolled over T steps.
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Figure 3: Schematic of the SIGA module: illustrating spike-based @, K, V interactions, modulated
by the illumination features (from L/Fi,), to generate a binary attention mask for value routing.

To compute attention in SIGA, we forego explicit floating-point matrix multiplication and softmax.
Instead, spike-driven interactions implement hard gating: when a query neuron at position ¢ fires
at time ¢, synapses to candidate keys are activated; if a key neuron at position j simultaneously
fires, the coincidence Q;[t]=1 A K;[t|=1 opens an instantaneous hard gate A;;[t] whose threshold
is modulated by illumination features. Routing uses the current A;;[t] (preserving causality), while
optional co-firing accumulators over t=1...T" integrate statistics. Owing to spike sparsity (and
optionally a local neighborhood), each query selects a small subset of keys, enforcing efficient hard
attention without forming dense QK " ; complexity scales with spike rate and neighborhood size
rather than quadratic token pairs.

Given the gates at time ¢, value spikes are routed accordingly: a value spike V; [t] contributes to query
position ¢ iff A;;[¢] is open. Implementationally, each head employs LIF neurons receiving value
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Figure 4: Low-light image enhancement results on the LOL-v1 dataset. Compared methods:
URetinex-Net, EnlightenGAN, Diff-Retinex, RetinexFormer and Spike-RetinexFormer(Ours)

inputs masked by A;;[t]; absent a gate, V;[t] has no effect on i. The SIGA head output at position i
is a spike train emitted by a LIF unit that fires when its integrated (binary-weighted) input crosses
threshold; illumination features can shift this threshold via FiLM-style bias.

After the attention stage, head outputs are concatenated and passed through a spiking feed-forward
module (two layers of linear spikes with an intermediate LIF activation), analogous to a Transformer
FFN. Residual connections wrap the SIGA+FFN block with proper temporal alignment—residuals
are added in the membrane-potential domain at each time step—so that the training—inference readout
remains identical to the rest of the network. Multiple SIGA blocks are placed across decoder stages;
at each scale, illumination-guided spiking attention supplies long-range, lighting-aware context while
preserving event-driven efficiency.

4 Experiments

4.1 Experimental Setup

We evaluate Spike-RetinexFormer on a comprehensive suite of standard benchmarks for LLIE,
largely following the protocol of [43]. These include: LOL-v1 [6], LOL-v2 (real and synthetic) [44]],
SID [43]], SMID [46]], SDSD (indoor and outdoor) [47], MIT-Adobe FiveK [48]], and LIME[49]]
which commonly used for qualitative evaluation. For datasets with paired ground truth, we train a
separate model per dataset using the official or widely adopted splits; for RAW datasets, we convert
to sSRGB via the standard ISP pipeline before computing losses and metrics to ensure comparability.

All experiments share the same backbone and training hyperparameters as in Sec.[3] Unless otherwise
stated, we use the AdamW optimizer (base learning rate 2 x 10~%) with cosine annealing (optional
warm-up), unrolling the spiking dynamics for 7" time steps and applying global-norm clipping at 1.0.
Each model is trained until the validation performance saturates. We report the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) [50]] on sSRGB results for quantitative comparison. For
model complexity, we provide parameter counts (Millions) and FLOPs at 256 x 256 input resolution.

4.2 Comparison with ANN models

We compare Spike-RetinexFormer with recent ANN methods, including Retinex-based CNNs and
Transformer-based models: RetinexNet [6], KinD [31]], DeepUPE [52], RUAS [53]], MIRNet [54]],
Uformer [53], Restormer [26]], SNR-Net [56], and RetinexFormer [43]. Quantitative results on
benchmarks with ground truth are summarized in Tab. [T] (LOL) and Tab. 2] (SID, SMID, SDSD).
Overall, Spike-RetinexFormer delivers competitive performance across most datasets and often
matches strong ANN baselines. Notably, on the widely used LOL-v1 dataset, our method attains



Table 1: Quantitative comparison on the datasets of LOL-v1, LOL-v2 (real and synthetic).

Method FLOPs Params LOL-v1 LOL-v2-R LOL-v2-S
(G) ™M) PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
RetinexNet [6] 587.5 0.84 16.77/0.560 15.47/0.567 17.13/0.798
DeepUPE [52] 21.1 1.02 14.38/0.446 13.27/0.452 15.08/0.623
KinD [51] 35.0 8.02 20.86/0.790 14.74/0.641 13.29/0.578
RUAS [53] 0.8 0.003 18.23/0.720 18.37/0.723 16.55/0.652
MIRNet [54] 785.0 31.60 24.14/0.830  20.02/0.820  21.94/0.876
Restormer [26) 144.3 26.10 22.43/0.823 19.94/0.827  21.41/0.830
SNR-Net [56] 26.3 4.01 24.61/0.842  21.48/0.849  24.14/0.928
RetinexFormer [43] 15.6 1.61 25.16/0.845  22.80/0.840  25.67/0.930
Ours 16.2 1.50 25.50/0.842  23.38/0.848  26.47/0.938

Table 2: Quantitative comparison on SID, SMID, and SDSD (indoor/outdoor) datasets. Our method
achieves top performance across these diverse benchmarks.

Method SID SMID SDSD-in SDSD-out FLOPs Params
PSNR/SSIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM (G) ™)
KinD [51] 18.02/0.583 22.18/0.634  21.95/0.672  21.97/0.654 35.0 8.02
MIRNet [54] 20.84/0.605 25.66/0.762  24.38/0.864  27.13/0.837 785.0 31.60
Uformer [55] 18.54/0.577  27.20/0.792  23.17/0.859  23.85/0.748 12.0 5.29
Restormer [26] 22.27/0.649  26.97/0.758  25.67/0.827  24.79/0.802 144.3 26.10
SNR-Net [56] 22.87/0.625 28.49/0.805  29.44/0.894  28.66/0.866 26.3 4.01
RetinexFormer [43]  24.44/0.680  29.15/0.815 29.77/0.896  29.84/0.877 15.6 1.61
Ours 24.68/0.681  29.43/0.820  30.45/0.903  30.37/0.885 16.2 1.50

25.5 dB PSNR and 0.842 SSIM, which is on par with RetinexFormer (25.2 dB, 0.845) and clearly
ahead of earlier Retinex-based CNNs such as RetinexNet (16.8 dB) and KinD (20.8 dB). On the more
challenging LOL-v2 (synthetic), Spike-RetinexFormer reaches 26.5 dB PSNR, representing a 0.8 dB
gain over RetinexFormer with comparable SSIM; trends on SID/SMID/SDSD are similar. We attribute
this competitiveness to the synergy between Retinex decomposition and spiking neural dynamics:
illumination-guided spiking attention helps balance contrast, while iterative spike integration aids
noise suppression under extreme low light. In terms of perceptual quality, our results typically exhibit
fewer color shifts and artifacts; as shown in Fig. [4] our method yields natural, well-exposed images
with preserved details, whereas some baselines may over-smooth or leave residual noise.

As seen in Tab.[T)and 2] our spiking approach shows competitive or improved performance across
the LOL variants and the extremely dark, noisy datasets (SID, SMID, SDSD). On average, Spike-
RetinexFormer improves PSNR by ~ 0.5 dB over strong prior methods, with gains up to ~0.8 dB
depending on the benchmark. In particular, for the dark indoor scenes of SDSD, our method recovers
additional details, reaching 30.45 dB. Meanwhile, the model is compact—1.5M parameters and
16.2 G FLOPs—noticeably lower than heavy Transformers such as Restormer (26M, 144G). We
attribute this efficiency to the one-stage design and the sparsity of spiking computation (neurons
do not fire at every time step), making the approach practical for deployment. On neuromorphic
hardware, energy consumption is expected to decrease because operations are triggered by spikes
rather than dense activations. For example, if a 32-bit MAC costs an order of magnitude more energy
than an accumulate (AC) [19]], and only ~18% of neurons fire per time step in our network (Tab.[5), a
back-of-the-envelope estimate suggests on-the-order-of 5x—-10x energy reduction versus comparable
ANN models under these assumptions. While these savings are theoretical (we have not measured
power on a neuromorphic chip), they highlight the potential advantage of event-driven processing for
power efficiency.

4.3 Ablation Studies

We systematically ablate the one-stage Retinex formulation (ORF), the proposed SIGA, and the
influence of the time step 7'. All ablations are conducted on LOL-v1 using a single RTX 3090.



Table 3: Backbone ablations on LOL-v1 (full-resolution).

Variant PSNR SSIM Params (M) FLOPs (G)
Baseline (Spike-U-Net) 23.11 0.789 1.20 9.5

+ ORF 2456  0.822 1.45 11.8

+ ORF + W-MSA 25.07  0.835 1.62 13.2

+ ORF + G-MSA 2529  0.837 1.75 16.8

+ ORF + SIGA (ours) 25.50  0.842 1.68 14.0

Table 4: Ablation on neuron type and architecture (LOL-v1, T=8).

Activation  Architecture PSNR SSIM  Energy (mJ)
ReLU RetinexFormer 25.16  0.845 71.6
LIF RetinexFormer 20.31 0.714 7.5
LIF Spike-RetinexFormer ~ 25.50  0.842 16.7
IF Spike-RetinexFormer 2531  0.831 18.9
PLIF [57] Spike-RetinexFormer  25.49  0.833 15.8
CLIF [58] Spike-RetinexFormer  25.61 0.848 16.3

Tab. 3] compares five progressively enhanced variants. Baseline is a pure spiking U-Net (no illumina-
tion branch, no SIGA). Introducing the illumination estimator and light-up operation (+ ORF) yields
a+1.45dB PSNR gain (23.11—24.56), indicating that explicit exposure modeling is critical in the
spiking regime. Augmenting the ORF backbone with either a local-window MSA (+ W-MSA) or
a global MSA (+ G-MSA) brings additional improvements. Our SIGA attains the highest fidelity,
outperforming W-MSA and G-MSA by +0.43 and +0.21 dB. Qualitatively, the advantage is most
evident in extreme shadows and mixed-lighting regions, where illumination-aware gating improves
detail recovery and noise suppression.

We ablate neuron types on LOL-v1 (T'=8) with: (i) ANN RetinexFormer; (ii) RetinexFormer with LIF
(ReLU—LIF); (iii) Spike-RetinexFormer (LIF+ORF+SIGA); and (iv) the same spiking backbone with
IF/PLIF/CLIF (Tab.[). Swapping ReLU—LIF in the ANN cuts compute energy to 7.5 mJ (10.5%
of baseline) but reduces fidelity (PSNR —4.85 dB; SSIM 0.845 — 0.714). Adding ORF+SIGA in
the full spiking model restores accuracy while keeping energy low: PSNR 25.50dB (4-0.34 dB vs
ANN), SSIM = ANN, and 16.7 mJ (down from 71.6 mJ, —77%). Fixing the architecture, neuron
choice yields small but consistent gaps: CLIF is best (25.61/0.848) at energy close to LIF; IF/PLIF
are slightly lower, 15.8-18.9mJ.

Tab. [5reports performance and efficiency Table 5: Impact of time steps 7. Avg. SFR is the per-
under varying time-step configurations. centage of active neurons per step; latency is wall-time
Using fewer steps (7'=4) provides lim- on RTX 3090 (ms); AEnergy is normalized to T=8.

ited temporal evidence, leading toamod- 7 pSNR  SSIM  Avg. SFR  Latency AEnergy
est PSNR drop and a higher average

. . : 4 25.21 0.836 0.238 16.5 0.55x%

spike firing rate (SFR). Increasing to 7T'=8
aghieves %1 favf)rabll accuracf—latency 8 2550 0842 0.187 31.0 1.00x
12 2559 0.841 0.185 46.2 1.32%

balance; pushing to T'=12 offers only
marginal PSNR gains while increasing wall-time nearly linearly. We therefore adopt T'=8 as the
default trade-off.

5 Limitations and Future Work

Hardware-validated efficiency and scalability. Although SIGA avoids dense softmax attention,
computing spike co-firing statistics can still scale as O(N?) in the number of spatial tokens N when
firing rates increase or sparsity collapses in high-illumination regions. To address this, we will design
an event-driven sparse attention kernel that constructs co-firing pairs from time-bucketed inverted
indices, enumerating only observed spike events and thereby avoiding any dense map materialization.
In addition, we will investigate top-k gating, block/tile-level sparsity, and kernel-level fusion of
FiLM-style illumination modulation to reduce compute, memory traffic, and latency, and will release
kernels and power traces to facilitate reproducibility.



Robustness and cross-domain generalization. We will pursue RAW-aware training via a differ-
entiable imaging pipeline and camera-conditional normalization to account for sensor variability;
cross-dataset adaptation with self-supervised consistency constraints across RAW-sRGB pairs; and
uncertainty-aware exposure control that disentangles aleatoric and epistemic components to mitigate
over- and under-enhancement. We also plan to extend the framework to video using temporal spike-
consistency losses and frame-adaptive time steps, and to broaden evaluation with no-reference and
perceptual metrics (NIQE, BRISQUE, LPIPS) alongside stress tests for flicker, haloing, and color
fidelity to more rigorously assess deployment robustness.

6 Conclusion

We introduced Spike-RetinexFormer, a low-light image enhancer that unifies spiking neural networks
with a Retinex-inspired Transformer architecture. By guiding spiking self-attention with an estimated
illumination map, our approach achieves competitive enhancement quality on challenging dark images
while demonstrating promising energy efficiency and compact memory use via event-driven, sparse
computation. By integrating the computational efficiency of SNNs with the representational strengths
of Transformers for low-light enhancement, Spike-RetinexFormer offers a practical blueprint for
high-performance, energy-frugal vision systems on power-constrained platforms and points toward
hardware-validated evaluation and video extensions.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [TODO]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
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Justification: [TODO]
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [TODO]
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [TODO]
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No potential positive societal impacts and negative societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [TODO]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [TODO]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [TODO]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [TODO]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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