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Abstract

Recently, diffusion models have demonstrated great potential for image synthesis
due to their ability to generate high-quality synthetic data. However, when applied
to sensitive data, privacy concerns have been raised about these models. In this
paper, we evaluate the privacy risks of diffusion models through a membership
inference (MI) attack, which aims to identify whether a target example is in the
training set when given the trained diffusion model. Our proposed MI attack learns
a single quantile regression model that predicts (a quantile of) the distribution
of reconstruction loss for each example. This enables us to identify a unique
threshold on the reconstruction loss tailored to each example when determining
their membership status. We show that our attack outperforms the prior state-of-
the-art MI attack and avoids their high computational cost from training multiple
shadow models. Consequently, our work enriches the set of practical tools for
auditing the privacy risks of large-scale generative models.

1 Introduction

Diffusion models, based on generative neural networks, have gained attention in the field of image
generation [9, 19]. It has been shown that diffusion models are remarkably capable of generating
images that are higher-quality than previous approaches such as GANs and VAEs, while also being
more scalable. However, as the size of these models has grown drastically over the last decade, so
has the privacy concern that these large-scale diffusion models may reveal sensitive information on
the dataset they are trained on.

One of the most popular methods to evaluate the privacy risks of ML models is membership inference
(MI) attacks [24, 12, 11, 13, 16, 2, 10, 18] , in which an attacker aims to determine if a target example
belongs to the training dataset given the trained model. MI captures the privacy risk that the presence
of a data set could reveal sensitive information. For example, membership in a medical dataset
may indicate a particular disease. In addition, MI attacks can be a building block for other more
sophisticated attacks such as extraction attacks on generative models [3]. Prior work in MI attacks
typically assumes that the attacker has some side information, such as auxiliary examples drawn
from the same data distribution P or a similar one [2, 1, 8, 22]. In general, a successful MI attack
with reasonable side information is a strong indicator of the failure of privacy protection. Finally,
when applied to differentially private algorithms [7], MI attacks can serve as privacy auditing tools by
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providing lower bounds on the privacy parameters, which in turn assess the tightness of the privacy
analyses [11, 15] and help identify potential errors in the privacy proof or implementation [21, 20].

A majority of the existing MI attacks focus on supervised learning [24, 23, 13, 16, 18, 2], and there
has been significantly less development on MI attacks against generative models (e.g., [8, 22]). The
goal of our work is to develop strong MI attacks against state-of-the-art diffusion models.

Our work extends the quantile-regression-based attacks in [1] for supervised learning to attacks for
diffusion models. For a given trained diffusion model θ, our attack first learns a quantile regression
model on public auxiliary data that predicts the α-quantile q(z) of the θ’s reconstruction loss on
each example z (formally defined in Definition 2.1). Then for each example, we indicate that it is a
member of the training set if its reconstruction loss is lower than the predicted α-quantile. By design,
the attack has a false positive rate of α, that is the probability that it incorrectly declares a randomly
selected point z that was not used in training to have been used in training is α. We evaluate our
attack on diffusion models trained on image datasets, and demonstrate three major advantages:

1. Our quantile-regression-based attack obtains state-of-the-art accuracy on several popular
vision datasets. Even though our attacks leverage the same reconstruction loss function
considered in [6], their attack leverages the same marginal approach in [24] that applies a
that applies a uniform threshold (that is, the α-quantile on the marginal distribution over the
reconstruction loss) across all examples. In comparison, our attack is conditional since it
applies a finer-grained per-example threshold when performing membership inference.

2. Compared to the prior state-of-the-art MI attacks against diffusion models [17], we achieve
higher accuracy without suffering their computational cost. Similar to the LiRA attack
proposed by [2], the GSA attack in [17] requires training multiple shadow models, each of
which is obtained by running the training algorithm on a randomly drawn dataset. While
the accuracy of the MI attack improves as the number of shadow models increases, their
approach also becomes computationally prohibitive. In comparison, our approach only
requires learning a single quantile regression model.

3. Since our attack does not rely on shadow models, it also requires significantly fewer details
about the training algorithm, such as hyperparameters and network architecture used in
training. In fact, our attack is effective even though the neural network for the quantile
regression model has significantly fewer parameters than the attacked diffusion models.

2 Membership Inference Attacks on Diffusion Models

Membership inference (MI) is a common privacy attack that attempts to predict whether a given
example was used to train a machine learning model [24, 12, 11, 13, 16, 2, 10, 18]. Our work focuses
on performing MI attacks on diffusion models.

Problem statement. Given a training dataset Z drawn from an underlying distribution P , a diffusion
model θ is trained on Z. The goal of a membership inference attack is to infer whether a target
example z∗ was included in the training set Z or not.

Adversary’s side information. Similar to almost all prior work on membership inference [2, 6, 1, 18],
we assume the adversary has access to some public data drawn from P . In the standard terminology
of MI, there are also two types of access to the algorithm’s output. In a black-box attack, the adversary
only has access to the generated synthetic dataset S. In a white-box attack, the adversary has access
to the generative model G. In this work, we focus on white-box attacks.

The reconstruction loss function, termed as t-error [6], is used in our MI attack.
Definition 2.1. (t-error) For a given sample z0 ∼ P and the deterministic reverse result z̃t = Φθ(z0, t)
at times t, the approximated posterior estimation error at step t is defined as t-error:

ℓ̂t(θ, z0) = ||ψθ(ϕθ(z̃t, t), t)− z̃t||2 (1)

Intuitively, the t-error function measures how much we change z̃t if we take one step in the deter-
ministic diffusion process ϕθ and then rewind back with one step of deterministic denoising ψθ.
While this loss function is not what the training algorithm optimizes, it provides a deterministic
approximation to loss function during training [6, 9]. Thus, smaller t-error values provides evidence
that z0 was used to train the model θ.
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Algorithm 1 Quantile Regression MI attacks for Diffusion Model

Require: A set of auxiliary examples D drawn from P , target example z∗, trained model from the
algorithm θ, a choice of t for t-error function. Target false-positive rate α.

Require: A quantile regression learner Q (that e.g., minimize the pinball loss or fits a parametric
density model).
for each z ∈ D do

evaluate the score ℓ̂t(θ, z)
end for
Use learner Q to learn a quantile regression model q such that q(z) predicts the α-quantile of the
score ℓ̂t(θ, z) conditioned on z. P[ℓ̂t(θ, z) ≤ q(z) | z] ≈ α.
return "IN" if ℓ̂t(θ, z∗) ≤ q(z∗), otherwise "NO"

3 MI Attacks with Quantile Regression

We will now describe our new membership inference attacks. Under the setting in Sec. 2, we assume
that the attacker has access to a set of public examples D drawn from the underlying distribution P .
Given the public dataset D, a choice of t for the t-error function, and the trained diffusion model θ,
the attacker learns a quantile regressor q such that q(z) predicts the α-quantile of the t-error ℓ̂t(θ, z)
for each example z in D, where α is a parameter that controls the false-positive rate. Then on any
target example z∗, the attacker declares the example is a member of the training set if and only if the
t-error ℓ̂t(θ, z∗) ≤ q(z∗). The formal description of the algorithm is in Algorithm 1.

By design, our attack has a false-positive rate of α—that is the probability that that attacker incorrectly
declares a randomly selected point z that was not used in training to have been used in training is α.
By varying the parameter α, we can then trace the trade-off curves of true-positive rates at different
false-positive rates. We will now describe two ways to learn the quantile regression model.

Quantile regression learner. First, a generic way to train a quantile regression model is to optimize
over the pinball loss over some function class Q (e.g., neural networks). Formally, for any observed
t-error ℓ̂ and quantile prediction q at a target level α, the pinball loss is defined as

Lα(ℓ̂, q) = (q − ℓ̂)(1[ℓ̂ ≤ q]− α) (2)

Then we can find a quantile regression model q(·) that minimizes the pinball loss:

min
q∈Q

∑
z∈D

Lα(ℓ̂t(θ, z), q(z)) (3)

The pinball loss is minimized by the function that predicts for each z the target α-quantile of the
t-error conditioned on z. However, prior work [1] show that pinball loss tends to be a difficult loss
function to minimize.

To complement the pinball loss minimization approach, we also consider a parametric approach, in
which we learn a parametric distribution model to each example’s t-error distribution. Based on the
empirical evidence shown in Figure 1 in the appendix, we choose to model the distribution over the
log of t-error with a Gaussian distribution. Thus, for each example z, our learner predicts the mean
µ(z) and the standard deviation σ(z) to fit the t-error distribution conditioned on z. This allows us to
derive a quantile estimate from learned Gaussian distribution. Concretely, we will use the following
log-likelihood objective to fit individual Gaussian distributions over the examples z in D:

min
µ,σ

∑
z∈D

− log

(
1√

2πσ(z)
exp

(
− (µ(z)− log(ℓ̂t(θ, z)))

2

2σ(z)2

))
(4)

where µ(·) and σ(·) are given by neural networks.

Empirically, we observe that the log-likelihood objective is easier to optimize than the pinball loss
function. Thus, for learning a model that predicts quantiles, we opt to use the parametric approach.
We also observe that quantiles predicted from a model learned with the parametric approach gives
lower pinball loss values on the holdout set than quantiles learned by directly minimizing pinball
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loss do. It suggests that the pinball loss itself is still indicative of whether an MI attack would be
successful. Better optimization techniques are needed for directly optimizing the pinball loss with a
neural network as the base model.

4 Experimental Details

We demonstrate the effectiveness of our MI attack via quantile regression on four de-noising diffusion
probabilistic models [9] (DDPMs) trained on CIFAR-10, CIFAR-100 [14], STL-10 [5] and Tiny-
ImageNet, respectively. On each dataset, data samples are split into two halves, and one half is
regarded as the private samples Z for training a DDPM. The other half is then split into two sets,
including one as the public samples D that are auxiliary information, and the other as the holdout set
for testing. On public samples, we train a quantile regression model using the parametric approach.

The base for our quantile regression is a ResNet model, and it is attached with two prediction heads,
of which one is for the mean parameter and the other log of the standard deviation. Compared to the
standard ResNet-18 model for classifying CIFAR-10, due to the simplicity of the score function, we
reduce the number of channels in each layer by a factor of 4. In our experiments, a fixed t = 50 is
used in the t-error function. [6] suggested that the choice of t does not influence the results drastically.

We adopt the same evaluation metric as prior work [1, 2]. Specifically, we are interested in the True
Positive Rates (TPRs) at very low False Positive Rates (FPRs). Intuitively, a successful membership
inference attack should identify true members with high accuracy, and in the meantime, make few
mistakes on accusing nonmembers as members.

Comparison Partners. We mainly compare our MI attacks via quantile regression with two
approaches. The first one is a simple marginal baseline, and for a target FPR value α, it computes
the quantile on t-errors of the public samples, and then the performance of this marginal baseline is
evaluated on the private samples and the holdout set. Thus, the marginal baseline only produces a
single threshold for a target FPR, and it does not condition on the input images, whereas ours learns
to predict the threshold for a given image, thus each images has a different threshold for a target FPR.

The other comparison partner is also a white-box attack using LiRA with gradient information
[17], namely GSA. The LiRA attack formulates MI as hypothesis testing. Let θ denote the trained
generative model, then the two competing hypotheses are H0 : θ ∼ A(Z) | z∗ ̸∈ Z and H1 : θ ∼
A(Z) | z∗ ∈ Z. These hypotheses correspond to whether or not the input dataset Z includes the
target example z∗. Despite the simple formulation, estimating the two distributions requires training
shadow models using random subsets from the same data domain, and in our case, each shadow
model is a diffusion model, which may take days to train. The advantages of our attack is that,
firstly, our hypothesis testing setup takes the condition on the target model, which makes our attack
model-specific; secondly, our attack only requires learning a single model, which is much more
computationally-efficient.

Results are presented in Table 1 and Table 2. Our attack on CIFAR10, besides being much more
efficient, outperforms GSA attacks when we focus on lower TPR (0.1%). We also have demonstrated
the effectiveness of our attack on diffusion models trained on other image datasets in Table 1 and
2. Besides the performance improvement over prior work, our algorithm is also computationally
efficient and requires no knowledge about the training algorithm of the diffusion models.

Table 1: Performance of MI Attacks on CIFAR10 and CIFAR100.
Dataset CIFAR-10 CIFAR-100

MI Attack TPR @ 1% FPR TPR @ 0.1% FPR TPR @ 1% FPR TPR @ 0.1% FPR
Quantile (Single Model) 99.18% 98.956% 99.48% 99.26%
GSA1 (Shadow Models) 99.70% 82.90% - -
GSA2 (Shadow Models) 97.88% 58.57% - -

Marginal Baseline 9.6% 0.7% 11.06% 5.76%
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Table 2: Performance of MI Attacks on Tiny-ImageNet and STL-10
Dataset Tiny-ImageNet STL-10

MI Attack TPR @ 1% FPR TPR @ 0.1% FPR TPR @ 1% FPR TPR @ 0.1% FPR
Quantile (Single Models) 99.998% 99.998% 99.92% 99.85%

Marginal Baseline 8% 0.32% 5.78% 0.55%
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A Diffusion Models

Before describing our attack, it is helpful to briefly describe how diffusion models work at a high
level, following the notation of [9]. For a real image, a diffusion model provides a stochastic path
from the image to noise. A diffusion model consists of two processes: (i) a T -step diffusion process
(denoted as q below) that iteratively adds Gaussian noise to an image, and (ii) a denoising process
(denoted as p below) that gradually reconstructs the image from noise.

Let z0 be the real image without noise and zT be the noisy image with the largest amount of noise.
The transitions of diffusion and denoising are mathematically described as:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI) (5)
pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) (6)

where qzt|zt−1
is the probability distribution of the diffused image zt given the previous image zt−1,

pθ(zt−1|zt) is the probability distribution of the denoised image zt−1 given the noisy image zt, µθ(·)
and Σθ(·) are the mean and covariance of the denoised image, respectively, as parameterized by
the model parameters θ, βt is a noise schedule that controls the amount of noise added at each step.
Moreover, the marginal distribution at any time step t given the example z0 can be written as

q(zt | z0) = N (zt;
√
αtz0, (1− αt)I), (7)

where αt = 1− βt and αt =
∏t

s=1 αs. We work with the following re-parameterization of µθ with

µθ(zt, t) =
1

√
αt

(
zt −

βt
1− αt

ϵθ(zt, t)

)
(8)

where ϵθ is a predictor (given by θ) that predicts the noise component given zt.
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Figure 1: The distrbutions of the (negative) log transformation of the t-error on the private set and
the public set of the dataset. It is clear that on each dataset, members and nonmembers have slightly
different marginal score distributions, however, they are not drastically different from each other,
which explains why the marginal baselines are not optimal, and also motivates our approach that
conditions the score prediction on the input sample.

Many MI attacks proceed by identifying a loss function, and make membership inference by compar-
ing the loss on the target example with a threshold. Intuitively, if the loss is unusually low, then there
is evidence that the example was part of the training set. For supervised learning models, MI attacks
typically leverage the classification loss (e.g., the cross-entropy loss). For diffusion models, existing
work has proposed candidates of loss functions that measure the reconstruction error at different time
steps of the diffusion process [4, 6]. We leveraged the t-error function defined in [6], which has the
compelling advantage that it is deterministic and avoids repeated sampling from the diffusion process.
Consider the following deterministic approximation of the diffusion and denoising processes:

zt+1 = ϕθ(zt, t) =
√
αt+1fθ(zt, t) +

√
1− αt+1ϵθ(zt, t) (9)

zt−1 = ψθ(zt, t) =
√
αt−1fθ(zt, t) +

√
1− αt−1ϵθ(zt, t) (10)

where fθ(zt, t) = zt−
√
1−αtϵθ(zt,t)√

αt
is the estimate of z0 given the zt and the prediction ϵθ(zt, t).

Then we could also define the deterministic reverse result as

Φ(z0, t) = ϕθ(· · ·ϕθ(ϕθ(z0, 0), 1) . . . , t− 1) (11)
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