
Under review as a conference paper at ICLR 2024

EWOK: TACKLING ROBUST MARKOV DECISION PRO-
CESSES VIA ESTIMATING WORST KERNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust Markov Decision Processes (RMDPs) provide a framework for sequential
decision-making that is robust to perturbations on the transition kernel. How-
ever, current RMDP methods are often limited to small-scale problems, hindering
their use in high-dimensional domains. To bridge this gap, we present EWoK,
a novel approach for the online RMDP setting that Estimates the Worst transi-
tion Kernel to learn robust policies. Unlike previous works that regularize the
policy or value updates, EWoK achieves robustness by simulating the worst sce-
narios for the agent while retaining complete flexibility in the learning process.
Notably, EWoK can be applied on top of any off-the-shelf non-robust RL al-
gorithm, enabling easy scaling to high-dimensional domains. Our experiments,
spanning from simple Cartpole to high-dimensional MinAtar and DeepMind Con-
trol Suite environments, demonstrate the effectiveness and applicability of the
EWoK paradigm as a practical method for learning robust policies.

1 INTRODUCTION

In reinforcement learning (RL), we are concerned with learning good policies for sequential
decision-making problems modeled as Markov Decision Processes (MDPs) (Puterman, 1994; Sut-
ton & Barto, 2018). MDPs assume that the transition model of the environment is fixed across
training and testing, but this is often violated in practical applications. For example, when deploy-
ing a simulator-trained robot in reality, a notable challenge is the substantial disparity between the
simulated environment and the intricate complexities of the real world, leading to potential subpar
performance upon deployment. Such a mismatch may significantly degrade the performance of the
trained policy in testing. To deal with this issue, the robust MDP (RMDP) framework has been
introduced in (Iyengar, 2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013), aiming to learn
policies that are robust to perturbation of the transition model within an uncertainty set.

Existing works on learning robust policies in RMDPs often suffer from poor scalability to high-
dimensional domains. Specifically, model-based methods that solve RMDPs (Wiesemann et al.,
2013; Ho et al., 2020; Behzadian et al., 2021; Derman et al., 2021; Grand-Clément & Kroer, 2021;
Kumar et al., 2022b) require access to the nominal transition probability, making it difficult to scale
beyond tabular settings. While some recent works (Wang et al., 2022; Wang & Zou, 2022b; Kumar
et al., 2022b; 2023) introduce model-free methods that add regularization to the learning process,
the effectiveness of their methods is not validated in high-dimensional environments. In addition,
these methods are based on particular RL algorithms (e.g., policy gradient, Q learning), limiting
their general applicability. We defer a more detailed discussion on related works to Section 5.

In this work, we tackle the problem of learning robust policies in RMDPs from an alternative di-
rection. As shown in Figure 1, unlike previous works that explicitly regularize the learning process,
we propose to approximately sample next states from an estimated worst transition kernel (EWoK)
while leaving the RL part untouched. In RMDPs, a worst transition kernel is one within the uncer-
tainty set that leads to the minimal possible return (see Definition 3.1). Intuitively, EWoK aims to
situate the agent in the worst scenarios for learning policies robust to perturbations. It can be applied
on top of any (deep) RL algorithm, offering good scalability to high-dimensional domains.

Specifically, EWoK is built upon our theoretical insights into the relationship between a worst tran-
sition kernel and the nominal one. For the KL-regularized uncertainty set considered in our work, a

1

Under review as a conference paper at ICLR 2024

Figure 1: The agent-environment interaction loop during training. Left: Existing methods typically
regularize how an agent updates its policy to improve robustness. Right: Our work approximates a
worst transition kernel, so the agent essentially learns its policy under the worst scenarios and can
use any non-robust RL algorithm.

worst kernel essentially modifies the next-state transition probability of the nominal kernel, discour-
aging the transitions to states with higher values while encouraging transitions to lower-value states.
Using this connection, we are able to sample the next states such that they are approximately dis-
tributed according to the worst transition probability. We establish the convergence of the estimated
worst kernel to the true worst kernel and present a practical algorithm suitable for high-dimensional
domains.

To verify the effectiveness of our method, we conduct experiments on multiple environments ranging
from small-scale classic control tasks to high-dimensional MinAtar games (Young & Tian, 2019)
and DeepMind Control tasks (Tunyasuvunakool et al., 2020). The agent is trained in the nominal
environment and tested in environments with perturbed transitions. Since our method is agnostic to
the underlying RL algorithm, we can easily plug it into a Double-DQN (van Hasselt et al., 2016)
agent for discrete-action environments or a SAC (Haarnoja et al., 2018a) agent for continuous-action
environments. Experiment results demonstrate that with our method, the learned policy suffers from
less performance degradation when the transition kernel is perturbed.

In summary, our paper makes the following contributions:

• To learn robust policies in RMDPs, we propose to approximately simulate the “worst” transition
kernel, rather than regularizing the learning process. This opens up a new paradigm for learning
robust policies in RMDPs.

• We theoretically characterize the “worst” kernel under the KL uncertainty set, which is amenable
to approximate simulation for environments with large state spaces.

• Our method is not tied to a particular RL algorithm and can be easily integrated with any deep
RL method. This flexibility translates to the good scalability of our method in complex high-
dimensional domains such as MinAtar and DeepMind Control. To the best of our knowledge,
our work is the first that enjoys such flexibility among related works in RMDPs.

2 PRELIMINARIES

Notations. For a finite set Z , we write the probability simplex over it as ∆Z . Given two real
functions f, g : Z → R, their inner product is ⟨f, g⟩ =

∑
z∈Z f(z)g(z). For distributions P,Q, we

denote the Kullback–Leibler (KL) divergence of P from Q by DKL(P ∥Q).

2.1 MARKOV DECISION PROCESSES

A Markov decision process (MDP) (Sutton & Barto, 2018; Puterman, 1994) is a tuple
(S,A, P,R, γ, µ), where S and A are the state space and the action space respectively, P : S ×A →
∆S is the transition kernel, R : S ×A → R is the reward function, γ ∈ [0, 1) is the discount factor,
and µ ∈ ∆S is the initial state distribution. A stationary policy π : S → ∆A maps a state to a
probability distribution over A. We use P (·|s, a) ∈ ∆S to denote the probabilities of transiting to

2

Under review as a conference paper at ICLR 2024

the next state when the agent takes action a at state s. For a policy π, we denote the expected reward
and transition by:

Rπ(s) =
∑
a

π(a|s)R(s, a), Pπ(s′|s) =
∑
a

π(a|s)P (s′|s, a). (1)

The value function vπ : S → R maps a state to the expected cumulative reward when the agent
starts from that state and follows policy π, i.e.,

vπ(s) = E

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, at ∼ π(·|st), st+1 ∼ P (·|st, at)

]
. (2)

It is known that vπ is the unique fixed point of the Bellman operator Tπ : Tπv = Rπ + γPπv (Put-
erman, 2014). The agent’s objective is to obtain a policy π∗ that maximizes the discounted return

Jπ = E

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|st, at)

]
= ⟨µ, vπ⟩. (3)

2.2 ROBUST MARKOV DECISION PROCESSES

In MDPs, the system dynamic P is usually assumed to be constant over time. However, in real-
life scenarios, it is subject to perturbations, which may significantly impact the performance in
deployment (Mannor et al., 2007). Robust MDPs (RMDPs) provide a theoretical framework for
taking such uncertainty into consideration, by taking P as not fixed but chosen adversarially from
an uncertainty set P (Iyengar, 2005; Nilim & El Ghaoui, 2005). Since we may consider different
dynamics P in the RMDPs context, in the following, we will use subscript P to make the dependency
explicit. The objective in RMDPs is to obtain a policy π∗

P that maximizes the robust return

Jπ
P = min

P∈P
Jπ
P . (4)

However, solving RMDPs for general uncertainty sets is NP-hard while an optimal policy can be
non-stationary (Wiesemann et al., 2013). To make RMDPs tractable, we need to make some as-
sumptions about the uncertainty set.

2.3 RECTANGULAR UNCERTAINTY SET

One commonly used assumption to enable tractability for RMDPs is rectangularity. Specifically, we
assume that the uncertainty set P can be factorized over states-actions:

P = ×
(s,a)∈(S ×A)

Psa, (sa-rectangularity)

where Psa ⊆ ∆S . In other words, the uncertainty in one state-action pair is independent of that in
another state-action pair.

Under this assumption, RMDPs will admit a deterministic optimal policy as in the standard
MDPs (Iyengar, 2005; Nilim & El Ghaoui, 2005). The rectangularity assumption also allows the
robust value function to be well-defined:

vπP = min
P∈P

vπP , and v∗P = max
π

vπP . (5)

In addition, vπP and v∗P are the unique fixed points of the robust Bellman operator Tπ
P and the optimal

robust Bellman operator T ∗
P respectively, which are defined as

Tπ
Pv(s) = min

P∈P
Tπ
P v(s) and T ∗

Pv(s) = max
π

Tπ
Pv(s). (6)

To model perturbations on the environment dynamics, the rectangular uncertainty set is often con-
structed to be centered around a nominal kernel P̄ . Since we want to measure the divergence be-
tween probability distributions, it is natural to use KL divergence (Panaganti & Kalathil, 2022; Xu
et al., 2023; Shi & Chi, 2022), i.e.,

Psa = {Psa | DKL(Psa ∥ P̄sa) ≤ βsa}. (KL uncertainty set)

Here Psa is a shorthand for P (·|s, a) and βsa is the uncertainty radius that controls the level of
perturbation.

3

Under review as a conference paper at ICLR 2024

Figure 2: An illustration of how next states are sampled in the approximated worst kernel.

3 METHOD

As introduced earlier, our work proposes to learn robust policies by approximately simulating the
worst transition kernel, which is defined as the one within the uncertainty set that achieves minimal
robust return:
Definition 3.1. For an uncertainty set P , a worst kernel for a policy π is defined as

Pπ
P ∈ argmin

P∈P
Jπ
P . (7)

Training policies under this worst kernel will give us a robust policy with respect to the uncertainty
set. Note that Pπ

P itself is nothing more than a regular transition kernel. Learning a policy under
Pπ
P is no different from the standard MDP setting and we can adopt any non-robust RL algorithms

to solve it. The challenge is how to approximately simulate this worst kernel Pπ
P . For a general

uncertainty set P , it requires an additional minimization process to find a worst kernel and it is also
unclear how we can parameterize and learn Pπ

P effectively.

To tackle this challenge, we characterize the connection between the nominal transition kernel and
a worst one. With such a connection, we are able to obtain the next states that are approximately
distributed according to Pπ

P(·|s, a), by properly resampling the next states from the nominal kernel
(Figure 2). Formally, the following theorem describes this connection. All proofs are deferred to the
appendix.
Theorem 3.2. For a KL uncertainty set P , a worst kernel is related to the nominal kernel through:

Pπ
P(s

′|s, a) = P̄π(s′|s, a)e−δπ(s′), (8)

where δπ is of the form

δπ(s′) =
vπP(s

′)− ωsa

κsa
, (9)

and satisfies ∑
s′

P̄π(s′|s, a)e−δπ(s′) = 1,
∑
s′

P̄π(s′|s, a)e−δπ(s′)(−δπ(s′)) = βsa. (10)

Here, ωsa and κsa are implicitly defined by Eqn. (10). While they do not have closed forms, we
can view ωsa as a threshold, which encourages transitions to states with robust values lower than
ωsa (i.e., δπ(s′) < 0) and discouraging transitions to states with higher robust values. κsa works
as a temperature parameter to control how much we discourage/encourage transitions to states with
high/low robust values. More specifically, we have the following proposition for the relationship
between ωsa and κsa and the uncertainty radius βsa.
Proposition 3.3. ωsa, κsa and βsa satisfy

ωsa = ⟨Pπ
P(·|s, a), vπP⟩+ βsaκsa, (11)

4

Under review as a conference paper at ICLR 2024

Algorithm 1 EWoK - Learning robust policy by Estimating Worst Kernel
Input: sample size N , robustness parameter κ
Initialize: initial state s0, policy π and value function v, data buffer

1: for t = 0, 1, 2, · · · do
2: Play action at ∼ π(·|st).
3: Simulate next state si ∼ P̄ (·|st, at), i = 1, · · · , N , with the nominal environment dynamic.

4: Choose st+1 = si with probability proportional to e−
v(si)− 1

N

∑N
i=1 v(si)

κ .
5: Add (st, at, st+1) to the data buffer.
6: Train π and v with data from the buffer using any non-robust RL method.
7: end for

Output: a robust policy π

Based on theoretical results, we arrive at a method to approximately simulate a worst kernel. As
illustrated in Figure 2, we first draw a batch of states from the nominal kernel P̄ (·|s, a) and then
resample the next state with probability proportional to e−δπ(s′). In this way, the next states will
be approximately distributed according to Pπ

P(·|s, a). In practical implementations, we approximate
δπ(s′) by

δ̂π(s′) =
v(s′)− 1

N

∑N
i=1 v(s

i)

κ
, (12)

where v is the robust value function approximated with neural networks, and κ is a hyperparame-
ter controlling the robustness level. We implement the threshold ω as the average value, a choice
supported by the following proposition.
Proposition 3.4. ωsa can be bounded as follows,

⟨Pπ
P(·|s, a), vπP⟩ ≤ ωsa ≤ ⟨P̄π(·|s, a), vπP⟩. (13)

As the N next states are sampled from the nominal kernels, we are essentially approximating the
upper bound of ωsa and use it as a proxy to compute δ̂π(s′). Putting it together, we summarize our
method in Algorithm 1.

Convergence. The core of our method is the estimation of a worst transition kernel. In practice,
however, we do not have the true robust value function as in Eqn. (9). We start with a randomly
initialized value function and expect it to gradually converge to the robust value over training. Here,
we give some theoretical analysis on the convergence of this process. Let Pn denote the estimated
worst transition kernel at iteration n and vπPn

denote the (non-robust) value function for the transition
kernel Pn. We are interested in the convergence of the following updates:

Pn+1(s
′|s, a) = P̄ (s′|s, a)e−

vπ
Pn

(s′)−ωn

κn . (14)

ωn and κn are associated with the worst case transition kernel when the target function is vπPn
. For

clarity, we omit their subscript sa, even though they depend on βsa. The following theorem shows
that the value converges to the robust value and the estimated kernel converges to a worst kernel Pπ

P .

Theorem 3.5. For the updating process in Eqn. (14), we have

∥vπPn
− vπP∥∞ ≤ γn∥vπP̄ − vπP∥∞. (15)

Now using the robust value function, a worst kernel Pπ
P can be computed as Pπ(·|s, a) =

P̄P(·|s, a)e−
vπ
P−ωsa
κsa as in Theorem 3.2.

4 EXPERIMENTS

In this section, we first introduce our experimental setting in Section 4.1. Next, we evaluate
our method in experiments with perturbed transition dynamics, including noise perturbation (Sec-
tion 4.2) and environment parameter perturbation (Section 4.3). Finally, we conduct ablation exper-
iments for the hyperparameter τ in Section 4.4.

5

Under review as a conference paper at ICLR 2024

Figure 3: Evaluation results on Cartpole with perturbations

Figure 4: Evaluation results on MinAtar environments with noise perturbations.

4.1 SETTING

To evaluate the effectiveness of our method in learning robust policies, we conduct experiments that
train the agent online under nominal dynamics and test its performance under perturbed dynam-
ics. We consider three high-dimensional domains including both discrete and continuous control
tasks, to demonstrate our algorithm can be “plugged and played” with any RL method. Specifically,
we experiment on Cartpole - a classic control environment from OpenAI Gym (Brockman et al.,
2016), 5 video games from the MinAtar benchmark (Young & Tian, 2019), and 4 continuous control
tasks from DeepMind Control Suite (Tunyasuvunakool et al., 2020). For the baseline RL algorithm,
we use Double DQN (van Hasselt et al., 2016) for classic control and MinAtar environments, and
SAC (Haarnoja et al., 2018a) for continuous control environments.

As most existing methods in RMDPs literature do not scale well (see discussions in Section 5), we
do not have “apple-to-apple” comparisons to those methods. So we consider another commonly-
used robust RL approach as a reference: domain randomization (Tobin et al., 2017), and conduct
the same set of experiments. Domain randomization trains the agent under diverse scenarios by
perturbing the parameter of interest during training, such that the trained agent can be robust to
similar perturbations during testing. It is worth noting that domain randomization has an edge on
our method, since it has access to different perturbed parameters during training, while our method
is completely oblivious to those parameters during training.

To obtain stable results, we run each experiment with multiple random seeds, and report the in-
terquartile mean (IQM) and 95% stratified bootstrap confidence intervals (CIs) as recommended
by (Agarwal et al., 2021). More details about environments, implementations, training and evalua-
tion can be found in the appendix.

4.2 NOISE PERTURBATION

In this subsection, we evaluate our method in scenarios where the perturbations on the transition dy-
namic are implemented as noise perturbations. Specifically, we consider stochastic nominal kernels
in which the stochasticity is controlled by some (observation or action) noises. The agent is trained
under a fixed noise (i.e., the nominal kernel) and tested with varying noises (i.e., perturbed kernels).

On Cartpole, we implement the stochasticity by adding Gaussian noise to the state after applying
the original deterministic dynamics of the environments, i.e., s̃t+1 = st+1 + ϵ where ϵ ∼ N (0, σ).
Then s̃t+1 is considered as the next state output from the stochastic nominal kernel. The noise scale
σ is fixed during training and varied during testing. The agent’s test performance across different

6

Under review as a conference paper at ICLR 2024

Figure 5: Evaluation results on DeepMind Control environments with noise perturbations.

perturbed values is depicted in the rightmost plot in Figure 3. When the noise scale deviates from
the nominal value, EWoK achieves better performance than the baseline DDQN.

Apart from the classic control tasks, we evaluate the performance of our method in discrete control
on the more challenging MinAtar environments. Here we take advantage of the existing sticky action
and use it as the source of stochasticity. The sticky action probability is fixed at some value during
training and perturbed during testing. As the results in Figure 4 show that EWoK yields better
performance than the baseline. Sometimes the agent’s performance does not follow a decreasing
trend when the perturbation parameter deviates from the nominal value in one direction. This might
be because the perturbation parameter has an asymmetric effect on the learning.

Next, we evaluate our method on the continuous control tasks in the DeepMind Control Suite. The
stochasticity is implemented by adding Gaussian noise to the action since directly adding noise
to the state might lead to an invalid physical state. During testing, we perturb the mean of the
Gaussian noise. Figure 5 shows the agent’s performance across different perturbed values. We
can see that EWoK suffers less performance degradation as the noise mean deviates from zero (the
nominal value), clearly outperforming the baseline SAC. In the walker-run task, EWoK achieves
lower reward under the nominal dynamic but performs better under perturbed ones, which indicates
a trade-off between the performance under the nominal kernel and robustness under perturbations.

4.3 PERTURBING ENVIRONMENT PARAMETERS

To further validate the effectiveness of our method, we consider a more realistic scenario where
some physical/logical parameters in the environment (e.g., pole length in Cartpole) are perturbed.
Similarly, the agent is trained with a fixed parameter, and tested under perturbed parameters.

For Cartpole, we perturb cart mass, pole mass, pole length, and gravity. Figure 3 summarizes the
testing results of the agents trained under the nominal dynamics. Again, EWoK achieves better
performance than the baseline DDQN when the environment parameters deviate from the nominal
value.

For DeepMind control tasks, we implement the perturbations on the environment parameters using
the Real-World Reinforcement Learning Suite (Dulac-Arnold et al., 2020). Specifically, we perturb
joint damping, thigh length, and torso length in walker tasks, and perturb joint damping, shin length,
and torso density for quadruped tasks. As shown in Figure 6, EWoK generally works better than
the baseline under model mismatch, improving the robustness of the learned policy. Similar to our
observations in the previous section, the walker-run task emphasizes the inherent trade-off of solving
RMDPs: optimizing the worst-case scenario can lead to suboptimal performance under the nominal
model. While the performance improvement is less obvious in the quadruped-walk task, the results
of our method have lower variance than the baseline.

4.4 ABLATION STUDIES

In this subsection, we conduct ablation experiments to investigate the effects of our hyperparameters
on the performance. Recall that κ controls the skewness of the distribution for resampling, while N
controls the number of next-state samples. Intuitively, when we decrease κ, we are essentially con-

7

Under review as a conference paper at ICLR 2024

Figure 6: Evaluation results on DeepMind Control tasks with perturbed environment parameters.

sidering a higher level of robustness. If κ is very small, then with a high probability the environment
dynamic will transit to the “worst” state (i.e., one with the lowest value). In addition, by increasing
N we effectively improve our empirical estimation of the nominal kernel’s next state distribution,
which should improve the worst kernel estimation.

We experiment on the DeepMind Control tasks under noise perturbation setting, using different κ
and N when we train the agent. For clarity, we plot the performance difference between our method
and the baseline instead of the absolute performance and defer the original results with CIs (shaded
areas) to the appendix. Figure 7 shows the results of changing the values of κ. In the walker domain,
decreasing κ makes our algorithm perform better in perturbed environments, which aligns with our
expectations. Figure 8 shows the results of changing the values of N . We can see that a small
sample size will result in limited performance gain compared to the baseline, but increasing the
sample size may not bring monotonic improvements. In addition, more samples will incur longer
simulation time in each environment step. In our experiments, we observed minimal impact on
walk-clock time, due to fast simulation. In practical scenarios where sampling next states could be
slow, however, we need to take this factor into consideration. Nonetheless, we believe should not
significantly increase simulation time to a prohibitive extent.

It is worth mentioning that the influence of κ has a dependency on the environment. Decreasing it
too much can lead to too conservative policies and may not always work well. For example, on the
quadruped domain, using a small κ does not yield the best performance. In addition, we observe
the robustness-performance trade-off in the walker-run task once again. While large κ achieves high
performance under the nominal kernel, it significantly underperforms when the kernel is perturbed.

5 RELATED WORKS

Early works in RMDPs lay the theoretical foundations for solving RMDPs with robust dynamic pro-
gramming (Wiesemann et al., 2013; Iyengar, 2005; Nilim & El Ghaoui, 2005; Kaufman & Schaefer,
2013; Bagnell et al., 2001). Recent works attempt to reduce the time complexity for certain uncer-
tainty sets, such as L1 uncertainty (Ho et al., 2018; 2021) and KL uncertainty (Grand-Clément &
Kroer, 2021). However, they all require full knowledge of the nominal model.

8

Under review as a conference paper at ICLR 2024

Figure 7: Evaluation results on DeepMind Control tasks with noise perturbations for different κ.

Figure 8: Evaluation results on DeepMind Control tasks with noise perturbations for different N .

One line of work aims to design methods that can be applied in the online robust RL setting where
we do not have full knowledge about the transition model. Derman et al. (2021) define new reg-
ularized robust Bellman operators that suggest a possible online sample-based method. However,
the contraction of the Bellman operators implicitly assumes that the state space can not be very
large. On regularizing the learning process, Kumar et al. (2022a; 2023) introduce Q-learning and
policy gradient methods for Lp uncertainty sets, but do not experimentally evaluate their methods
with experiments. Another type of uncertainty is the R-contamination, for which previous works
have derived a robust Q-learning algorithm (Wang & Zou, 2021) and a regularized policy gradient
algorithm (Wang & Zou, 2022a). R-contamination uncertainty assumes that the adversary can take
the agent to any state, which is too conservative in practice. In addition, all of those methods are tied
to a particular type of RL algorithm. Our work, however, aims to tackle the problem from a different
perspective by approximating a worst kernel and can adopt any non-robust RL algorithm to learn
an optimal robust policy. A recent work (Wang et al., 2023) has shown that the worst kernel can be
computed using gradient descent, but their method takes more iterations to converge (O(S3A

(1−γ)6ϵ2))
compared to ours (O(log 1

ϵ)).

Our work is also closely related to (Kumar et al., 2023), which characterizes the worst kernel for Lp

uncertainty set. Different from their work, we propose to approximately simulate this worst kernel,
opening a new paradigm for learning robust policies in RMDPs. In addition, our work focuses on
the KL-regularized uncertainty, a setting more realistic than the Lp case. Under Lp uncertainty,
we essentially consider perturbations that might take the agent to any state but real perturbations
are often local. In comparison, perturbations under KL-regularized uncertainty only focus on states
where the nominal kernel has a non-zero transition probability.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we introduce an approach that tackles the RMDPs problem from a new perspective,
by approximately simulating a worst transition kernel while leaving the RL part untouched. The
highlight of our method is that it can be applied on top of existing non-robust deep RL algorithms to
learn robust policies, exhibiting attractive scalability to high-dimensional domains. We believe this
new perspective will offer some insights for future works on RMDPs. One limitation of our work is
that we require the ability to sample next states from the transition model multiple times. In future
works, we will study how to combine our method with a learned transition model where sampling
the next states would not be a problem.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

J. Andrew Bagnell, Andrew Y. Ng, and Jeff G. Schneider. Solving Uncertain Markov
Decision Processes. Technical Report, 1 2001. doi: 10.1184/R1/6560927.v1. URL
https://kilthub.cmu.edu/articles/journal_contribution/Solving_
Uncertain_Markov_Decision_Processes/6560927.

Bahram Behzadian, Marek Petrik, and Chin Pang Ho. Fast algorithms for l∞-constrained s-
rectangular robust MDPs. Advances in Neural Information Processing Systems, 34:25982–25992,
2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. ArXiv preprint, abs/1606.01540, 2016. URL https:
//arxiv.org/abs/1606.01540.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized mdps and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34:
22274–22287, 2021.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learn-
ing. CoRR, abs/2003.11881, 2020. URL https://arxiv.org/abs/2003.11881.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp.
12086–12094. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/AAAI/
article/view/17435.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018a. URL http://proceedings.
mlr.press/v80/haarnoja18b.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 1856–1865. PMLR, 2018b. URL http://proceedings.
mlr.press/v80/haarnoja18b.html.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast bellman updates for robust mdps.
In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 1984–1993. PMLR, 2018. URL
http://proceedings.mlr.press/v80/ho18a.html.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for l1-robust markov
decision processes. ArXiv preprint, abs/2006.09484, 2020. URL https://arxiv.org/abs/
2006.09484.

10

https://kilthub.cmu.edu/articles/journal_contribution/Solving_Uncertain_Markov_Decision_Processes/6560927
https://kilthub.cmu.edu/articles/journal_contribution/Solving_Uncertain_Markov_Decision_Processes/6560927
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2003.11881
https://ojs.aaai.org/index.php/AAAI/article/view/17435
https://ojs.aaai.org/index.php/AAAI/article/view/17435
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/ho18a.html
https://arxiv.org/abs/2006.09484
https://arxiv.org/abs/2006.09484

Under review as a conference paper at ICLR 2024

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for l1-robust markov
decision processes. The Journal of Machine Learning Research, 22(1):12612–12657, 2021.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

David L. Kaufman and Andrew J. Schaefer. Robust modified policy iteration. INFORMS J. Comput.,
25:396–410, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
markov decision processes via regularization. ArXiv preprint, abs/2205.14327, 2022a. URL
https://arxiv.org/abs/2205.14327.

Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
Markov decision processes via regularization. ArXiv preprint, abs/2205.14327, 2022b. URL
https://arxiv.org/abs/2205.14327.

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Levy, and Shie Mannor. Policy gradient for
s-rectangular robust markov decision processes. ArXiv preprint, abs/2301.13589, 2023. URL
https://arxiv.org/abs/2301.13589.

Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance approximation
in value function estimates. Management Science, 53(2):308–322, 2007.

Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with a
generative model. In International Conference on Artificial Intelligence and Statistics, pp. 9582–
9602. PMLR, 2022.

Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. In
Wiley Series in Probability and Statistics, 1994.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity. arXiv preprint arXiv:2208.05767, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2205.14327
https://arxiv.org/abs/2205.14327
https://arxiv.org/abs/2301.13589
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Under review as a conference paper at ICLR 2024

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and
tasks for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi:
https://doi.org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/
science/article/pii/S2665963820300099.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp.
2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12389.

Qiuhao Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global con-
vergence guarantee. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 35763–35797. PMLR, 2023. URL https://proceedings.mlr.press/
v202/wang23i.html.

Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. ArXiv
preprint, abs/2109.14523, 2021. URL https://arxiv.org/abs/2109.14523.

Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning, 2022a.

Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. Interna-
tional Conference on Machine Learning, 162:23484–23526, 2022b.

Yue Wang, Fei Miao, and Shaofeng Zou. Robust constrained reinforcement learning. ArXiv preprint,
abs/2209.06866, 2022. URL https://arxiv.org/abs/2209.06866.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153–183, 2013.

Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distri-
butionally robust reinforcement learning. In International Conference on Artificial Intelligence
and Statistics, pp. 9728–9754. PMLR, 2023.

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://
github.com/denisyarats/pytorch_sac, 2020.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

12

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://proceedings.mlr.press/v202/wang23i.html
https://proceedings.mlr.press/v202/wang23i.html
https://arxiv.org/abs/2109.14523
https://arxiv.org/abs/2209.06866
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

Under review as a conference paper at ICLR 2024

A PROOF

A.1 PROOF OF THEOREM 3.2

Recall that the worst values are defined as

Pπ
P ∈ argmin

P∈P
Jπ
P

for any general uncertainty set P . Further, for sa-rectangular uncertainty set P = ×s∈S,a∈APsa,
the robust value function exists, that is, the following is well defined (Nilim & El Ghaoui, 2005;
Iyengar, 2005)

vπP = min
P∈P

vπP .

This implies,

vπP =
(
I − γ(Pπ

P)
π
)−1

Rπ

is the fixed point of robust Bellman operator T π
P (Nilim & El Ghaoui, 2005; Iyengar, 2005), defined

as
T π
P v := min

P∈P
T π
P v.

Proposition A.1. The worst values can be computed from the robust value function. That is

argmin
P∈P

T π
P vπP ⊆ argmin

P∈P
vπP ⊆ argmin

P∈P
Jπ
P .

Proof. Let
P ∗ ∈ argmin

P∈P
T π
P vπP .

Now, from the fixed point of robust Bellman operator, we have

vπP =T π
P vπP = min

P∈P
T π
P vπP ,

= T π
P∗vπP , (by construction),

= Rπ + γ(P ∗)πvπP , (by definition).

The above implies,

vπP =
(
I − γ(P ∗)π

)−1

Rπ.

This implies,
P ∗ ∈ argmin

P∈P
vπP .

The last inclusion is trivial, that is, every minimizer of value function is a minimizer of robust
return.

Theorem 3.2. For a KL uncertainty set P , a worst kernel is related to the nominal kernel through:

Pπ
P(s

′|s, a) = P̄π(s′|s, a)e−δπ(s′), (8)

where δπ is of the form

δπ(s′) =
vπP(s

′)− ωsa

κsa
, (9)

and satisfies ∑
s′

P̄π(s′|s, a)e−δπ(s′) = 1,
∑
s′

P̄π(s′|s, a)e−δπ(s′)(−δπ(s′)) = βsa. (10)

13

Under review as a conference paper at ICLR 2024

Proof. Recall Definition 3.1
Pπ
P ∈ argmin

P∈P
Jπ
P . (16)

From Proposition A.1, for sa-rectangular uncertainty set P , a worst kernel can be computed using
robust value function as

Pπ
P ∈ argmin

P∈P
T π
P vπP .

Recall, our KL-constrained uncertainty P is defined as

P := {P | P ∈ (∆S)
S ×A, DKL(P̄s,a, Psa) ≤ βsa,∀s, a}.

where DKL is KL norm that is defined as

DKL(P,Q) =
∑
s

P (s) log

(
P (s)

Q(s)

)
.

Using Proposition A.1 and definition of uncertainty set P , the worst kernel can be extracted as

Pπ
P(·|s, a) ∈ argmin

DKL(p,P0(·|s,a))≤βsa,
∑

s p(s)=1,p⪰0

⟨p, vπU ⟩.

Using the Lemma A.2, we get the desired solution.

Lemma A.2. For q ∈ ∆S , v ∈ RS , β ≥ 0, a solution to

min
p ln(p

q)≤β,1T p=1,p⪰0
⟨p, v⟩.

is given by
p = qe−

v−ω
λ ,

where
p log(

p

q
) =

〈
qe−

v−ω
λ ,

v − ω

λ

〉
= −β

and ∑
s

q(s)e−
v(s)−ω

λ = 1.

Proof. We have the following optimization problem,

min
p ln(p

q)≤β,1T p=1,p⪰0
⟨p, v⟩. (17)

We ignore the constraint p ⪰ 0 for the moment (as we see later, this constrained is automatically
satisfied), and focus on

min
p ln(p

q)≤β,1T p=1
⟨p, v⟩. (18)

We define Lagrange multiplier as

L(p, λ, µ) = ⟨p, v⟩+ λ
(
p ln(

p

q
)− β

)
+µ

(
1T p− 1

)
.

We now put the stationarity condition:

∂L

∂p
= v + λ

(
ln(

p

q
) + 1

)
+µ1 = 0

=⇒ p = qe−1e−
v+µ
λ .

With appropriate change of variable µ → ω, we have

p = qe−
v−ω
λ .

14

Under review as a conference paper at ICLR 2024

We have to find the constants ω and λ, using the constraints

p log(
p

q
) =

〈
qe−

v−ω
λ ,

v − ω

λ

〉
= −β

and ∑
s

p(s) =
∑
s

q(s)e−
v(s)−ω

λ = 1.

We further note that the constraint 1 ≥ p(s) ≥ 0 is automatically satisfied as

p(s) = q(s)e−
v(s)−ω

λ ≥ 0

and
∑

s p(s) = 1, ensures p(s) ≤ 1 ∀s.

A.2 PROOF OF PROPOSITION 3.3 AND 3.4

Proposition A.3. ωsa can be upper-bounded as follows,

ωsa ≤ ⟨P̄ (·|s, a), vπP⟩, ∀s ∈ S, a ∈ A .

Proof. From the constraint in Theorem 3.2, we have∑
s′

P̄ (s′|s, a)e−
vπ
P (s′)−ωsa

κsa = 1 (19)

=⇒ e−
∑

s′ P̄ (s′|s,a) vπ
P (s′)−ωsa

κsa ≤ 1 (using Jenson’s inequality) (20)

=⇒ e−
∑

s′ P̄ (s′|s,a) vπ
P (s′)
κsa e

ωsa
κsa ≤ 1 (21)

=⇒ ωsa

κsa
≤

∑
s′

P̄ (s′|s, a)v
π
P(s

′)

κsa
(22)

=⇒ ωsa ≤
∑
s′

P̄ (s′|s, a)vπP(s′).

Proposition 3.3. ωsa, κsa and βsa satisfy

ωsa = ⟨Pπ
P(·|s, a), vπP⟩+ βsaκsa, (11)

Proof. From the constraint in Theorem 3.2, we have∑
s′

P̄π(s′|s, a)e−δπ(s′)(−δπ(s′)) = βsa (23)

=⇒
∑
s′

Pπ
P(s

′|s, a)v
π
P(s

′)− ωsa

κsa
= βsa (24)

=⇒
∑
s′

Pπ
P(s

′|s, a)vπP(s′) = −βsaκsa + ωsa.

Proposition 3.4. ωsa can be bounded as follows,

⟨Pπ
P(·|s, a), vπP⟩ ≤ ωsa ≤ ⟨P̄π(·|s, a), vπP⟩. (13)

Proof. The lower bound is direct from Proposition 3.3, as β and κ are positive quantities by defini-
tion. The upper bound comes from Proposition A.3.

A.3 PROOF OF THEOREM 3.5

Given a policy π, let Pn+1 be the updated kernel:

Pn+1 = argmin
P∈P

Tπ
P v

π
Pn

. (25)

We continue to prove the following lemmas.

15

Under review as a conference paper at ICLR 2024

Lemma A.4. The kernel update process produces monotonically decreasing value functions:

vπPn
⪰ vπPn+1

, ∀n = 1, 2, · · · . (26)

Proof. Recall that vπPn
= Tπ

Pn
vπPn

= Rπ + γPπ
n v

π
Pn

. Since we have

Pn+1 = argmin
P∈P

[Rπ + γPπvπPn
], (27)

we can obtain

Rπ + γPπ
n v

π
Pn

≥ min
P∈P

[Rπ + γPπvπPn
]

⇒ vπPn
≥ Rπ + γPπ

n+1v
π
Pn

⇒ (I − γPπ
n+1)v

π
Pn

≥ Rπ

⇒ vπPn
≥ (I − γPπ

n+1)
−1Rπ = vπPn+1

.

Lemma A.5. The robust bellman operators are monotonic functions, that is:

v ≤ u =⇒ Tπ
Pv ≤ Tπ

Pu

Proof. Since v ≤ u, and the fact that P has only non-negative entries, we know that:

Rπ + γPπv ≤ Rπ + γPπu, ∀P ∈ P
⇒ min

P∈P
(Rπ + γPπv) ≤ min

P∈P
(Rπ + γPπu)

⇒ Tπ
Pv ≤ Tπ

Pu

Theorem 3.5. For the updating process in Eqn. (14), we have

∥vπPn
− vπP∥∞ ≤ γn∥vπP̄ − vπP∥∞. (15)

Proof. We prove it by showing that:

∥vπPn+1
− vπP∥∞ ≤ γ∥vπPn

− vπP∥∞, ∀n. (28)

First, by optimality, we have
vπPn+1

− vπP ≥ 0. (29)

Now we can focus only on the upper bound:

vπPn+1
− vπP = Tπ

Pn+1
vπPn+1

− Tπ
Pv

π
P

≤ Tπ
Pn+1

vπPn
− Tπ

Pv
π
P (Lemma A.4 and A.5)

= min
P∈P

Tπ
P v

π
Pn

− Tπ
Pv

π
P

= Tπ
Pv

π
Pn

− Tπ
Pv

π
P

≤ γ∥vπPn
− vπP∥∞ (Tπ

P is a γ-contraction operator).

Putting it together, we have

∥vπPn+1
− vπP∥∞ ≤ γ∥vπPn

− vπP∥∞.

The desired result is proved by applying the above result iteratively.

16

Under review as a conference paper at ICLR 2024

B EXPERIMENT DETAILS

B.1 ENVIRONMENTS

B.1.1 CLASSIC CONTROL TASKS

Cartpole 1 is one of the classic control tasks in OpenAI Gym (Brockman et al., 2016). The task is to
balance a pendulum on a moving cart, by moving the cart either left or right. The state consists of
the location and velocity of the cart, as well as the angle and angular velocity of the pendulum. To
make the transition dynamic stochastic, we add Gaussian noises to the cart position or the pole angle.
The detailed configurations for the nominal values and the perturbation ranges are summarized in
Table 1.

Table 1: Perturbation configurations for Cartpole environment.

PARAMETER NOMINAL VALUE PERTURBATION RANGE

NOISE
PERTUBRATION

Cart position noise (std) 0.01 [0, 0.1]
Pole angle noise (std) 0.01 [0, 0.05]

ENV. PARAM.
PERTUBRATION

Pole mass 0.1 [0.15, 3.0]
Pole length 0.5 [0.25, 5.0]
Cart mass 1 [0.25, 5.0]
Gravity 9.8 [0.1, 30]

B.1.2 MINATAR

The MinAtar benchmark2 is a simplification of the widely-used Atari benchmark (Bellemare
et al., 2013), which eliminates the representation complexity while preserving the game mech-
anism. MinAtar consists of 5 games: Asterix, Breakout, Freeway, Seaquest and
SpaceInvaders. The observation is a 10×10×n grid image, where each channel corresponds to
a game-specific object. We use the minimal action space for each game. As mentioned in the main
text, the stochasticity of the transition dynamic comes from sticky actions. That is, at each step, the
agent would repeat the previous action with some probability instead of executing the chosen action.
The nominal value for sticky action probability is 0.1 and the perturbation range is [0.0, 0.2].

B.1.3 DEEPMIND CONTROL SUITE

The DeepMind Control Suite (Tunyasuvunakool et al., 2020) is a set of continuous control tasks
powered by the MuJoCo physics engine (Todorov et al., 2012). It is widely used to bench-
mark reinforcement learning agents. As mentioned in the main text, we consider 4 tasks in our
paper: walker-stand, walker-walk, walker-run, quadruped-walk. For walker
tasks, the observations are 24-dimensional vectors and the actions are 6-dimensional vectors. For
quadruped, the observations are 78-dimensional vectors and the actions are 12-dimensional vec-
tors. For noise perturbation, we fix the standard deviation of the Gaussian noise to 0.2 for walker
and 0.1 for quadruped. The nominal value and the perturbation range are summarized in Table 2
and Table 3.

B.2 TRAINING AND EVALUATION

For both our method and the baseline, we first train the agent under the nominal environment,
and then for each perturbed environment during testing, we calculate the average reward from 30
episodes. We repeat this process with 40 random seeds in the classic control environments and
10 seeds in MinAtar and DeepMind Control environments. Following the recommended practice
in (Agarwal et al., 2021), we report the Interquartile Mean (IQM) and the 95% stratified bootstrap
confidence intervals (CIs), using The IQM metric is measured by discarding the top and bottom 25%

1https://gymnasium.farama.org/environments/classic_control/cart_pole/
2https://github.com/kenjyoung/MinAtar

17

https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://github.com/kenjyoung/MinAtar

Under review as a conference paper at ICLR 2024

Table 2: Perturbation configurations for walker tasks.

PARAMETER NOMINAL VALUE PERTURBATION RANGE

NOISE
PERTUBRATION

action noise (mean) 0.0 [−0.3, 0.3]

ENV. PARAM.
PERTUBRATION

thigh length 0.225 [0.1, 0.5]
torso length 0.3 [0.1, 0.7]

joint damping 0.1 [0.1, 10]
contact friction 0.7 [0.01, 0.7]

Table 3: Perturbation configurations for quadruped tasks.

PARAMETER NOMINAL VALUE PERTURBATION RANGE

NOISE
PERTUBRATION

action noise (mean) 0.0 [−0.5, 0.5]

ENV. PARAM.
PERTUBRATION

shin length 0.25 [0.1, 0.4]
torso density 1000 [500, 6000]
joint damping 30 [10, 120]
contact friction 1.5 [0.1, 2.5]

of the results, and averaging across the remaining middle 50%. IQM has the benefit of being more
robust to outliers than a regular mean, and being a better estimator of the overall performance than
the median. We use the rliable library3 to calculate IQM and CIs.

As mentioned earlier, we use Double-DQN (van Hasselt et al., 2016) as the vanilla non-robust RL
algorithm for environments with discrete action spaces. Specifically, we follow the implementation
in Stable-Baselines3 (Raffin et al., 2021). For the classic control environments, we use the DDQN’s
hyperparameters suggested in RL Baselines3 Zoo (Raffin, 2020), and for the MinAtar environments,
we use the hyperparameters described by (Young & Tian, 2019). For the Cartpole environment, we
use a two-layer MLP neural network with 256 hidden units per layer. For the MinAtar environ-
ments, we use a CNN consisting of a single convolutional layer (16 output channels, 3 × 3 kernel,
stride= 1, and padding= 0) and another fully connected layer with 128 hidden units. The detailed
configurations are summarized in Table 4.

Table 4: Hyperparameters for DDQN used in the experiments.

PARAMETER CARTPOLE MINATAR

batch size 64 32
buffer size 100000 100000

exploration final epsilon 0.04 0.01
exploration fraction 0.16 0.1

gamma 0.99 0.99
gradient steps 128 1
learning rate 0.0023 0.00025

learning starts 1000 5000
target update interval 10 1000

train frequency 256 4
total time-steps 50000 5000000

For environments with continuous action spaces, we choose the SAC algorithm (Haarnoja et al.,
2018b) as the vanilla non-robust RL algorithm, and follow the implementations and hyperparameter

3https://github.com/google-research/rliable

18

https://github.com/google-research/rliable

Under review as a conference paper at ICLR 2024

choices in (Yarats & Kostrikov, 2020). Both the actor and critic use a two-layer MLP neural network
with 1024 hidden units per layer. Table 5 lists the hyperparameters.

Table 5: Hyperparameters for SAC used in the experiments.

PARAMETER VALUE

Total steps 1e6
Warmup steps 5000

Replay size 1e6
Batch size 1024

Discount factor γ 0.99
Optimizer Adam (Kingma & Ba, 2015)

Learning rate 1e-4
Target smoothing coefficient 0.005

Target update interval 2
Initial temperature 0.1

Learnable temperature Yes

The configurations for the sample size N and the robustness parameter κ used in our experiments
are summarized in Table 6.

Table 6: Hyperparameters specific to our method used in the experiments.

ENVIRONMENT SAMPLE SIZE N ROBUSTNESS PARAMETER κ

CLASSIC CONTROL Cartpole 15 1

MINATAR

Asterix 5 5
Breakout 50 5
Freeway 5 1
Seaquest 10 10

SpaceInvaders 5 0.5

DEEPMIND
CONTROL

SUITE

walker-stand 10 0.2
walker-walk 10 0.2
walker-run 10 0.2

quadruped-walk 40 0.5

19

Under review as a conference paper at ICLR 2024

B.3 COMPUTATIONAL RESOURCES AND COSTS

We used the following resources in our experiments:

• CPU: AMD EPYC 7742 64-Core Processor
• GPU: NVIDIA GeForce RTX 2080 Ti

Table 7 lists the training time.

Table 7: Training time per run of our experiments on a single GPU.

ENVIRONMENT BASELINE OURS

CLASSIC CONTROL Cartpole ∼ 4 minutes ∼ 5 minutes

MINATAR

Asterix ∼ 4 hours ∼ 5 hours
Breakout ∼ 3 hours ∼ 4 hours
Freeway ∼ 9.5 hours ∼ 12 hours
Seaquest ∼ 8 hours ∼ 4.5 hours

SpaceInvaders ∼ 4 hours ∼ 6 hours

DEEPMIND
CONTROL

SUITE
all tasks ∼ 5 hours ∼ 6 hours

C ADDITIONAL RESULTS

Even though we used SAC in our main results, to further exert our claim that EWoK can be applied
on any off-the-shelf non-robust RL algorithm, we repeated the continuous control tasks experiments
with the TD3 (Fujimoto et al., 2018) algorithm as a baseline. The results are depicted in Figures 9
and 10.

Figure 9: Evaluation results on DeepMind Control environments with noise perturbations.

In section 4.4, we show the relative performance for the ablation study on parameter κ. Here we
include the absolute results in Figures 11 and 12.

20

Under review as a conference paper at ICLR 2024

Figure 10: Evaluation results on DeepMind Control tasks with perturbed environment parameters.

Figure 11: Evaluation results on DeepMind Control tasks with noise perturbations for different κ.

Figure 12: Evaluation results on DeepMind Control tasks with noise perturbations for different N .

21

Under review as a conference paper at ICLR 2024

Figure 13: Training curves of experiments on DeepMind Control tasks.

22

	Introduction
	Preliminaries
	Markov Decision Processes
	Robust Markov Decision Processes
	Rectangular uncertainty set

	Method
	Experiments
	Setting
	Noise perturbation
	Perturbing environment parameters
	Ablation studies

	Related works
	Conclusions and discussions
	Proof
	Proof of Theorem 3.2
	Proof of Proposition 3.3 and 3.4
	Proof of Theorem 3.5

	Experiment details
	Environments
	Classic control tasks
	MinAtar
	DeepMind Control Suite

	Training and evaluation
	Computational resources and costs

	Additional results

