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Abstract

The empirical emergence of neural collapse—a surprising symmetry in the fea-
ture representations of the training data in the penultimate layer of deep neural
networks—has spurred a line of theoretical research aimed at its understanding.
However, existing work focuses on data-agnostic models or, when data structure is
taken into account, it remains limited to multi-layer perceptrons. Our paper fills
both these gaps by analyzing modern architectures in a data-aware regime: we
prove that global optima of deep regularized transformers and residual networks
(ResNets) with LayerNorm trained with cross entropy or mean squared error loss
are approximately collapsed, and the approximation gets tighter as the depth grows.
More generally, we formally reduce any end-to-end large-depth ResNet or trans-
former training into an equivalent unconstrained features model, thus justifying its
wide use in the literature even beyond data-agnostic settings. Our theoretical results
are supported by experiments on computer vision and language datasets showing
that, as the depth grows, neural collapse indeed becomes more prominent.

1 Introduction

In 2020, Papyan et al. [43] discovered a surprising geometric structure in learned representations
of deep neural networks (DNNs) at convergence. This structure—dubbed “neural collapse” (NC)—
was present in various architectures trained on many computer vision datasets, and it concerns the
representations of the training samples in the last layer of the network: the feature vectors of the
samples from the same class converge to the respective class-mean (NC1); the class-means form a
simplex equiangular tight frame (ETF), maximizing the pairwise angles (NC2); finally, the class-
means align with the rows of the weight matrix of the last layer (NC3). Similar structures were
also subsequently discovered for class-imbalanced classification [51], regression [1] and language
modeling [62], demonstrating that neural collapse is ubiquitous when training deep models.

The NC phenomenon raised significant interest in the machine learning community from both
theoreticians and practitioners, due to its high relevance in both areas. Theoreticians use it to improve
generalization understanding [64, 12, 59] both in-distribution and in transfer learning, OOD detection
[15], imbalanced learning understanding [67], theory of feature learning [28, 40], robustness [47], as
well as representation learning itself [41, 2, 5, 11, 56]. In practice, neural collapse has implications on
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transfer learning [32, 55, 6], OOD detection [65, 63, 37], compression [26], performance improvement
[55, 9] and other aspects [70, 33, 35].

In accordance with the high relevance of NC, a plethora of works aimed at understanding its origins
in DNN training. To this goal, Mixon et al. [42] introduced a simplified mathematical framework,
called the “unconstrained features model” (UFM). In the UFM, one assumes the features of the
last layer to be free variables and optimizes over them together with the weight matrix of the last
layer. Using the UFM, the optimality of the NC has been proven, as well as its emergence during
gradient descent training in various settings, see Section 2 for details. However, the UFM has since
been criticized [23] for being too simplistic: the gradient dynamics in the UFM are inconsistent
with those in the entire DNN trained end-to-end, and the global optima might be misaligned due
to the difference between plain Frobenius norm regularization and the representation cost of the
features, influenced by the training data. This led to attempts of proving NC in end-to-end training.
However, the results so far cover shallow (up to three layer) networks [27, 19, 61] or come with strong
assumptions [64, 44, 46, 58, 3, 23] (see Section 2). Moreover, with the exception of [58], all works
only focus on multi-layer perceptrons (MLPs). However, NC is equally present and important in
modern architectures, such as ResNets ([18]) or transformers ([54]) [58, 62]. The addition of modern
DNN components, such as residual connections, layer normalization or attention layers, makes the
loss landscape significantly different and thus it is unlikely that the theoretical tools developed so far
will be easily adjustable to these newer architectures.

In this work, we fill both mentioned gaps at once. First, we analyze ResNets with LayerNorm and
transformers. We are the first to theoretically analyze NC in transformer architectures, while also
significantly extending the knowledge on ResNets. Second, our results prove end-to-end approximate
optimality of NC in training with weight regularization. This has only ever been done for MLPs with
deep linear heads in [23]. To be more precise, our contributions are summarized below.

• For ResNets and transformers with one linear layer per MLP block and constant regularization
strength, we prove that NC is the asymptotically optimal solution as the number of blocks goes to
infinity. Moreover, all global optima in deep-enough networks must be approximately collapsed
and the distance from perfect collapse is non-asymptotically upper-bounded in terms of the depth.
These results hold for both cross entropy (CE) and mean squared error (MSE) loss, under minimal
assumptions on the data.

• We prove the same set of results for ResNets and transformers with two linear layers per MLP
block and vanishing regularization strength.

• We support these findings by experiments on computer vision datasets with both ResNets and
vision transformers, which show that the amount of collapse increases with the depth of the
architecture, as predicted by our theory.

• More generally, we provide a formal connection between deep ResNets/transformers and uncon-
strained features models: we prove that, as these architectures become deeper, their global optima
converge to those of an equivalent UFM. This result holds for a wide class of continuous losses.

Let us highlight the conceptual relevance of the last contribution, which reduces trained DNNs to
an equivalent UFM. As a consequence, if one can solve the underlying UFM and identify its global
optima (which we do for CE and MSE loss), these optima will be provably approached by globally
optimal ResNets and transformers trained end-to-end, as long as they are deep enough. This provides
a theoretical justification for the use of UFM in the analysis of these architectures and, in fact, it is
the first such justification with a theoretical backing appearing in the literature.

2 Related work

Unconstrained features model (UFM). First introduced in [42, 10], the UFM has been widely
analyzed in the literature. The optimality of NC in the UFM has been proved for CE loss [60, 39, 30],
MSE loss [68] and other losses [69]. A line of work [10, 51, 20, 7] has focused on the class-
imbalanced setting, formulating a generalized NC geometry and proving its optimality. The loss
landscape of the UFM was shown to be benign in [71, 24, 68], and the emergence of NC in the
UFM through gradient descent training was proved in [42, 16, 24, 57]. Several extensions of the
UFM to non-standard settings have been considered, including GNNs [28], large number of classes
[25], unconstrained features regressed to the input data [53] and regression [1]. Recently, the UFM
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has been used to describe a form of NC in language modeling, where each context (sample) can be
followed by multiple continuations, making the labels effectively stochastic [50, 66]. NC has been
considered also for more layers following empirical observations [17, 45, 22, 11] and accordingly,
UFM was generalized to multiple linear layers in [8, 14, 36], two non-linear layers in [52] and
multiple non-linear layers in [48, 49, 13].

Beyond UFM. Going towards the analysis of neural networks trained end-to-end, conditions on data
that make NC feasible in the shallow case are identified in [19]. Two-layer networks are considered
in [27], which uses NTK theory and other kernel methods to conclude that NC in this regime is rather
restricted. To the contrary, in the mean-field regime, positive results about NC1 are given in [61]
for certain three-layer networks. In the deep case, convergence to NC is studied in [46, 44, 64, 23].
However, a block-structured empirical NTK is assumed in [46], and symmetric quasi-interpolation is
required in [44, 64]. The former does not justify this assumption, while the latter requires an unusual
weight regularization and interpolators with a given norm. Wide networks are considered in [23],
which proves the emergence of NC1 requiring at least the last two layers to be linear (and even deeper
linear heads for NC2 and NC3).

Closer to the scope of the current work, NC is studied in ResNets in [58]. Two main claims are
proved: the monotonicity of NC1-NC2 metrics across layers of ResNets, and a negative result about
collapse in a variant of UFM similar to the one considered in [53]. However, the monotonicity is
proved under the strong assumption that the data evolves across layers on a geodesic, which is not
possible in general since one can construct configurations where samples from different classes would
collide. Moreover, the UFM taken into account is based on a heuristic derivation (a link between
representation cost and transport cost of the features) that does not hold exactly in practice.

3 Preliminaries

Notation. We study two different data formats and architectures. For ResNets, the input data and
one-hot labels are X0 ∈ Rd0×N and Y ∈ RK×N , where d0 is the input dimension, N the number
of samples and K the number of classes. For transformers, the input data and one-hot labels are
X0 ∈ RN×V×C and Y ∈ RN×K×C , where C is the context length (number of tokens in the prompt)
and V the vocabulary size (number of distinct tokens). We take C = 1 when the third dimension of
X0, Y is not used. If we index a matrix with three abstract indices, the last one is implicitly equal to
1. We assume a class-balanced setting, i.e., NC = Kn, where n is the number of samples per class.
Unless stated otherwise, we use xki to indicate the i-th sample of the k-th class. For transformers, a
sample corresponds to the position of each individual token and, thus, xki corresponds to a token
position labeled as class k, with samples ordered arbitrarily. For additional notation regarding vision
transformers, see Appendix B.

ResNets and transformers. Let σ denote the ReLU function. Denote by LN(·) the output of a
normalization layer that first subtracts the mean of each column of the input from itself and then
divides each column by its standard deviation (if the input is a vector, it returns the normalized vector;
if the input is a matrix or tensor, it returns the matrix or tensor with centered and normalized columns
of the inner-most dimension matrices). Define also id(·) as the identity mapping.

Definition 3.1. An L-block ResNet with LayerNorm and one linear layer per block (later referred to
as L-RN1) is defined as

fθ = linL ◦LN ◦(id+σ◦ linL−1)◦LN ◦(id+σ◦ linL−2)◦· · ·◦LN ◦(id+σ◦ lin1)◦LN ◦ lin0, (1)

where linl(x) = Wlx + bl for all l ∈ {0, . . . , L − 1} and for l = L we remove the bias term.
θ is the collection of all learnable parameters. We denote as X1 = LN(W0X0 + b0), Xl+1 =
LN(Xl + σ(WlXl + bl)) (l ∈ {1, . . . , L − 1}), fθ(X0) = XL+1 := WLXL the intermediate
representations of the training data stored in a matrix form. We assume that all intermediate
representations Xl (l ∈ {1, . . . , L}) are of dimension d. Analogously, L-RN2 denotes a ResNet with
two linear layers per block defined as

fθ = linL ◦LN ◦(id+ linL−1,2 ◦σ ◦ linL−1,1) ◦ · · · ◦ LN ◦(id+ lin1,2 ◦σ ◦ lin1,1) ◦ LN ◦ lin0, (2)

with X1 = LN(W0X0 + b0), Xl+1 = LN(Xl +Wl,2σ(Wl,1Xl + bl,1) + bl,2) (l ∈ {1, . . . , L− 1})
and fθ(X0) = XL+1 := WLXL.
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Definition 3.2. An L-block transformer with one or two linear layers in the attention sub-block and
one or two layers in the MLP sub-block (later referred to as L-T11, L-T12, L-T21, L-T22 based on
the number of linear layers in attention and MLP sub-blocks, respectively) is defined as

fθ(Z) = linL+1 ◦LNL+1 ◦BL ◦ · · · ◦ B1 ◦Embed(Z). (3)

Here, linL+1(Z) = WL+1Z is the last layer; Embed(Z) = WeZ +Wp is the embedding layer with
We being the token embedding and Wp (having the same shape as WeZ) the positional embedding;
and the l-th block is given by

Bl = MLPl ◦LNl,2 ◦ATTNl ◦LNl,1 . (4)

Such block consists of the normalization layers LNl,1,LNl,2, the MLP

MLPl(Z) = Z + σ(WlZ + bl), or MLPl(Z) = Z +Wl,2σ(Wl,1Z + bl,1) + bl,2, (5)

respectively for the architecture L-Tx1 and L-Tx2, and the single-head attention

ATTNl(Z) = Z +WV OZAl(Z), Al(Z) = softmax(M + ZTWQKZ/
√
d),

or ATTNl(Z) = Z +WOWV ZAl(Z), Al(Z) = softmax(M + ZTWT
KWQZ/

√
d),

(6)

respectively for the architecture L-T1x and L-T2x. The matrix M is the masking matrix whose entries
are −∞ on the lower triangle and 0 on the upper triangle and the diagonal.
Remark 3.3. Both of the above definitions consider the post-LN versions of ResNets and transformers,
where the LayerNorm acts in between residual connections. We work with this version here because
the arguments are cleaner, but the results do not qualitatively change if we used pre-norm ResNets or
transformers instead. We discuss pre-LN architectures and their proof in Appendix B.

Neural collapse metrics and generalized unconstrained features model (GUFM). Regardless of
the model, let hθ(·) be the output of the corresponding architecture before the last layer, i.e., the feature
on which neural collapse is defined. We denote by xl

ki the i-th sample of the k-th class in the l-th layer.
We define µl

k := 1
n

∑n
i=1 x

l
ki as the class-means in the l-th layer and µl

G := 1
K

∑K
k=1 µ

l
k as the global

mean. Let Σl
W := 1

N

∑K,n
k,i=1(x

l
k,i − µl

k)(x
l
k,i − µl

k)
T and Σl

B := 1
K

∑K
k=1(µ

l
k − µl

G)(µ
l
k − µl

G)
T

be the within- and between-class variability matrices in the l-th layer, and M l be the matrix of
class-means stacked column-wise. Let EK = IK − 1K1T

K be the un-rotated ETF matrix. We define
below neural collapse and its metrics for generic matrices.
Definition 3.4. Any pair (W,X) of matrices s.t. W has at least as many columns as rows, X has
N = Kn columns and they can multiply as WX has the following NC metrics:

• NC1(W,X) = tr(ΣW )
tr(ΣB) , i.e., the ratio of within- and between-class variability.

• NC2A(W,X) =
min
c≥0

∥WWT−cEK∥
F

∥WWT ∥F
, i.e. the distance of WWT from the closest (scaled) ETF.

• NC2B(W,X) =
min
c≥0

∥WWT−cIK∥
F

∥WWT ∥F
, i.e. the distance of WWT from the closest (scaled) identity.

• NC3(W,X) = 1 − 1
N

∑K,n
k,i=1 cos(xki,Wk:), i.e., one minus the average cosine similarity

between the samples and the corresponding row of W.

A model is said to exhibit NC if all metrics are 0 and approximate NC if all metrics are close to zero.
NC2A is defined for CE loss or MSE loss with unregularized bias in the last layer, and NC2B is
defined for MSE loss with bias-free last layer.

We consider the following optimization problem:

min
θ

L(fθ(X), Y ) +
λ

2

∥∥θ̄∥∥2 , (7)

where λ > 0, θ̄ is the subset of parameters that excludes biases and the parameters in embedding
layers (We,Wp,W0), and L is a continuous, non-negative loss. Let LCE,LMSE be CE and MSE loss,
and LL,m(θ) be the loss of the L-RNm, L-T1m, or L-T2m architecture with parameters θ (it will
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be clear from the context whether this refers to a ResNet or a transformer). We denote by L∗
L,m the

optimal such loss value and by ML,m
ϵ := {θ : LL,m(θ) ≤ L∗

L,m+ ϵ} the set of parameters ϵ-close to
the optimum. We denote by M̃L the set of all pairs (WL, hθ(X)) s.t. θ (including WL) is in ML,1

0 .
In our theoretical analysis, we will reduce the end-to-end problem (7) into a simpler unconstrained
features model, which we define below.

Definition 3.5. Given a continuous loss L ≥ 0 and an equivalence relation R on {1, . . . , N}, the
generalized unconstrained features model (GUFM) refers to the following optimization problem:

min
W,X

L(WX,Y ) +
λ

2
∥W∥2F , (8)

s.t. ∥xi∥ =
√
d, xT

i 1d = 0, for i ∈ {1, . . . , N},
xi = xj , for i, j ∈ {1, . . . , N}, i ∼R j,

where W ∈ RK×d, X = [x1, . . . , xN ] ∈ Rd×N and Y ∈ RK×N . Let LGUFM(W,X) be the loss of
the feasible pair (W,X) under this model, L∗

GUFM the optimal such loss and MGUFM
ϵ := {(W,X) ∈

M : LGUFM(W,X) ≤ L∗
GUFM + ϵ}, with M the set of feasible solutions.

The mean-zero constraint xT
i 1d = 0 comes from the application of this model to ResNets and

transformers having LayerNorm before the last layer, which allows the model to represent only
zero-mean solutions. We note that this is without loss of generality for CE/MSE loss, since for those
losses the optimum is zero-mean. The equivalence relation constraints are introduced to account for
potential hard constraints from the input data where we may have identical samples or contexts that
may or may not be in the same class. Again, for CE/MSE loss this is without loss of generality, given
that all identical contexts are always labeled with the same class (see Assumption 4.4).

4 Main results

4.1 Analysis of the generalized unconstrained features model

We start with a lemma showing that nearly-optimal solutions of the GUFM problem above must
necessarily be close to the global optima.

Lemma 4.1. Denote as distmax(A,B) = sup
x∈A

dist(x,B) for any sets A,B. Then, we have

lim sup
ϵ−→0

distmax(MGUFM
ϵ \MGUFM

0 ,MGUFM
0 ) = 0. (9)

Proof. Assume by contradiction there exists a sequence (Xn,Wn)
∞
n=1 of points such that

lim
n−→∞

LGUFM(Wn, Xn) = L∗
GUFM but lim sup

n−→∞
dist((Wn, Xn),MGUFM

0 ) = c > 0. Then, since

the feasible set of GUFM is compact (for W, take a large-enough ball around 0 that must contain
the global optimum), we can choose a subsequence (Xnk

,Wnk
)∞k=1 having an accumulation point

(W̄ , X̄) in the feasible set and s.t. dist((W̄ , X̄),MGUFM
0 ) > 0 (first picking a subsequence for which

the limsup above is realized and only choosing a subsequence with accumulation point from this
subsequence; then using the continuity of the distance to conclude). From the continuity of the loss
function, it must follow LGUFM(W̄ , X̄) = L∗

GUFM, which also implies (W̄ , X̄) ∈ MGUFM
0 . However,

this is a contradiction because the distance of this point from MGUFM
0 is both 0 and bigger than 0.

Next, we focus on CE and MSE loss, showing that the optima of the corresponding GUFMs (denoted
by UFM-CE and UFM-MSE) exhibit NC.

Lemma 4.2. Assume that only the samples within the same class are in relation R. Then,
the global optima MUFM-CE

0 and MUFM-MSE
0 are all perfectly collapsed, i.e., for all (W,X) ∈

MUFM-CE
0 , NC1(W,X) = NC2A(W,X) = NC3(W,X) = 0 and for all (W,X) ∈ MUFM-MSE

0 ,
NC1(W,X) = NC2B(W,X) = NC3(W,X) = 0. Conversely, for any feasible pair (W,X) s.t.
NC1(W,X) = NC2A(W,X) = NC3(W,X) = 0, there exists a unique scalar c s.t. (cW,X) ∈
MUFM-CE

0 ; and for any feasible pair (W,X) s.t. NC1(W,X) = NC2B(W,X) = NC3(W,X) = 0,
there exists a unique scalar c s.t. (cW,X) ∈ MUFM-MSE

0 .
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The proof is deferred to Appendix A. For the CE loss, it is based on an adaptation of the results
in [71]. For the MSE loss, we compute the global optima by lower-bounding the loss, solving the
problem for the lower-bound and showing that the loss and its lower-bound agree at these optima.

4.2 Deep single-layer architectures are collapsed at the global optimum

We first consider ResNets/transformers with one linear layer per MLP block.
Theorem 4.3. Let the architecture be L-RN1 or L-Tx1 for x ∈ {1, 2}. Assume the inner dimension of
the L-Tx1 is at least 2V +2 and the inner dimension of L-RN1 is at least 4. Consider the optimization
problem (7) with λ independent of the number of layers. Consider also its corresponding GUFM (8)
with the same loss L and the equivalence relation defined by pairs of samples in X that coincide (for
transformers, these correspond to a pair of identical contexts). If L∗

GUFM > 0, then

lim sup
L−→∞

distmax(M̃L\MGUFM
0 ,MGUFM

0 ) = 0. (10)

The result above provides a reduction of the end-to-end training objective of a deep-enough archi-
tecture to a GUFM using the same loss. This has two important implications. First, it shows that
optimal deep ResNets and transformers can represent the optimal solution of the corresponding
GUFM problem. As formalized in Corollary 4.5, this gives a precise characterization of the structure
of feature representations in the last layer at the global optimum – the first result of this sort for
modern architectures beyond MLPs. Second, it provides a theoretical justification for using the UFM
to explain the emergence of NC, showing that the UFM does not oversimplify the problem even when
dealing with ResNets and transformers. We note that the lower bound of 2V + 2 on the dimension
of transformers is for technical convenience, and it can be loosened to a lower bound that does not
depend on V . We now give a proof sketch deferring the complete argument to Appendix A.

Proof sketch. We start with the sketch for the L-RN1 model. Notice that LL,1(θ) =

LGUFM(WL, XL) +
λ
2

∑L−1
l=1 ∥Wl∥2F . The goal is to show L∗

GUFM = lim
L−→∞

L∗
L,1, which implies

that LGUFM(WL, XL) for (WL, XL) ∈ M̃L converges to L∗
GUFM. Thus, (WL, XL) ∈ M̃L must also

belong to MGUFM
ϵ for ϵ small enough, which by Lemma 4.1 guarantees the convergence as in (10).

Note that we can represent a one-block-deeper ResNet that perfectly copies the original ResNet
by simply adding an identity block with zero weight matrices/biases and residual connection left
untouched. Thus, L∗

L,1 is non-increasing in L and it suffices to prove the limit for any sequence of L’s
going to infinity. We will prove it by explicitly constructing a sequence of L-RN1 ResNets s.t. their
losses converge to L∗

GUFM as L → ∞. This crucially relies on the fact that it is possible to almost
perfectly fit the training data X0 with ResNets so that the sum of Frobenius norms of all their layers
converges to 0. This is a special property of residual networks that qualitatively differs from MLPs.

To build the intuition on why this is possible, consider a 1D example where we want to fit the label
exp(a) when the input is 1 with a 1D ResNet. Let x be a shared weight across all layers. Then, we
need exp(a) = (1+x)L, which can be asymptotically achieved by setting x = a/L. Importantly, the
sum of Frobenius norms

∑L
l=1

(
a
L

)2
= a2

L vanishes as L → ∞. In other words, by “splitting” the
mapping done by a single ResNet layer into L layers with smaller weights, the total cost is smaller. A
similar intuition was also used in [4].

For a multi-dimensional ResNet and general data, the idea of the construction is to split the blocks of
the ResNet into N groups, with each group moving only a single sample (for simplicity we assume all
samples are distinct in this proof sketch). In this way, it is possible to split the layers within one group
into several layers implementing the same mapping with a smaller Frobenius norm. Each sample has
a predefined smooth trajectory from its initial position to the near-optimal position under the GUFM,
and the group of blocks responsible for moving this sample approximates a smooth movement along
this trajectory. As the depth increases, the total cost of these layers decreases, since each of them gets
smaller with rate 1/L, as in the 1D computation above, thus giving the desired result.

Next, let us consider the L-Tx1 model. The key observation is that transformers are basically a strict
extension of ResNets, with attention layers being the only extra component. However, setting the
attention layers to 0 and directly applying the result above for the L-RN1 model does not immediately
work. In fact, for each token, we need attention layers to acquire information from previous tokens,
which may be useful to fit the label. At the same time, if we want the sum of Frobenius norms of all
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the layers to converge to zero, so must all the key and query matrices, which makes attention scores
in all layers necessarily converge to uniform across the entire past.

The solution is to design the embedding layer and the first transformer block so that distinct contexts
of X0 remain distinct and their distances do not converge to 0 too fast (this would disrupt our
construction for ResNets which implicitly assumes that the initial distances between samples are
constant w.r.t. L). The embedding layer and first attention layer encode the contexts so that the j-th
entry contains the history (encoded in binary) of all the tokens belonging to the j-th class from the
past. At this point, a slight adjustment of the construction for ResNets finishes the proof.

Note that the uniform attention which we use in the proof, although asymptotically optimal, is
not expected to be optimal for any moderate number of layers and we only use it in finite-layer
constructions for mathematical convenience and consistency with the asymptotic case. We highlight
that Theorem 4.3 holds for any continuous loss. By considering CE or MSE for which the global
optima of the corresponding GUFMs are collapsed by Lemma 4.2, the emergence of collapse in
ResNets and transformers is readily obtained, assuming the following about training data:
Assumption 4.4. For the ResNet architecture, we assume all training samples in X to be unique.
For the transformer architecture, we assume the labels Y to be uniquely determined by the context,
i.e., two identical contexts in two different input sequences will be assigned the same label.

Corollary 4.5. Let the architecture be L-RN1 or L-Tx1 for x ∈ {1, 2}. Assume the training data
(X,Y ) satisfies Assumption 4.4 and all the assumptions of Theorem 4.3. Using CE or MSE loss, all
global optima of the optimization problem (7) exhibit approximate neural collapse which gets tighter
as L increases.

We make several remarks about this result.

Rate of convergence. While the results are stated asymptotically for simplicity, one can readily
recover a convergence rate of the global optimum to NC from the argument. In particular, since the
total regularization of the layers scales as L−1, the global optima can only be suboptimal w.r.t. the
GUFM objective with the same scaling. Then, assuming a differentiable loss (e.g., CE or MSE), the
distance from the optima scales as the inverse of the power in the Taylor approximation of the loss at
the global optima in the flattest direction, up to logarithmic factors that come from making a finer
approximation. Now, for the CE loss, the leading term is quadratic: by using the chain rule, the slope
of CE at the optimum is non-zero, and the sum of exponentials of dot-products between X,W is
quadratic as we approach the ETF. Thus, the convergence in distance is Õ(L−1/2), where Õ omits
logarithmic factors. For the MSE loss we compute by error analysis in the proof of Lemma 4.2 that
the convergence rate is also Õ(L−1/2).

Language modeling. When considering the transformer architecture, we require the labels to be
unique given a specific context. While this is a realistic assumption in vision or language classification
tasks (e.g., sentiment analysis, harmful content classification, spam detection), it does not apply to
language pretraining, where a single context may have many different continuations. In fact, in the
setting of non-unique continuations, neural collapse is not to be expected, and the optimal structure
was discussed [50, 66] by using a form of UFM. We remark that Theorem 4.3 shows that the optimal
solutions identified in these works are exhibited by transformers, as long as they satisfy the conditions
in (8). This is the case, for instance, in some symmetric settings, see Proposition 2 in [66] with
a slight modification in the underlying UFM (the authors consider weight decay instead of norm
constraints on the features), where the optimal limiting solution is indeed collapse. In non-symmetric
cases, while NC is not expected to be optimal (as in the case with class imbalance [51]), transformers
still represent the optimal zero-mean solution of the underlying UFM, whatever that is. This allows
future work to focus on solving the application-relevant UFM in the corresponding setting and then
use Theorem 4.3 to conclude that the solutions are globally optimal end-to-end.

Deep neural collapse. Although our theory focuses on last-layer geometry, the analysis sheds some
light on the collapse in the earlier layers as well. In particular, one can readily obtain that any finite
number of layers at the end of the network converges to neural collapse (with the exception of NC3
which has a different formulation for multi-layer collapse). Note that adding a residual connection
(as in ResNets and transformers) resolves the inconsistency of deep UFMs pointed out in [49], where
it is shown that the global optima of the deep UFM in the multi-class setting do not exhibit neural
collapse. In fact, the optimal solution of a deep UFM with residual connections is obtained by simply
copying the shallow UFM in the first layer and setting all remaining layers to 0. We also remark
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that, from the argument of Theorem 4.3, it follows that the global optima of the last L̃ layers of the
network (L̃ being a constant independent of L) converge to the global optima of the corresponding
deep GUFM with residual connections and depth L̃.

In contrast, understanding the emergence of neural collapse for a small, but constant fraction of the
final layers of the network appears to require a different approach. Intuitively, if the network starts
processing all samples at once from some layer onwards (which is expected to improve the loss w.r.t.
our construction), then the collapse is progressive and occurs to some extent already in a constant
fraction of the final layers, see also the discussion in [58].

4.3 Deep double-layer architectures are collapsed at the global optimum with vanishing
regularization

Let us now consider ResNets with two linear layers per block and transformers with two linear layers
per MLP sub-block (the number of matrices in the attention sub-block does not affect the result).
Then, we show that neural collapse is globally optimal, provided that the regularization strength in all
layers except the last one decreases with the depth L.
Theorem 4.6. Let the architecture be L-RN2 or L-Tx2 for x ∈ {1, 2}. Assume the inner dimension of
the L-Tx1 is at least 2V +2 and the inner dimension of L-RN1 is at least 4. Consider the optimization
problem

min
θ

L(fθ(X), Y ) +
λL

2
∥WL∥2F +

λ(L)

2

∥∥θ̄∥∥2 , (11)

where λL is a regularization on the weight matrix of the last layer that does not depend on L and
λ(L) is a depth-dependent regularization s.t. λ(L) = o(log(L)−1). Consider the corresponding
GUFM with regularization λL. If L∗

GUFM > 0, then

lim sup
L−→∞

distmax(M̃L\MGUFM
0 ,MGUFM

0 ) = 0. (12)

The reason why the regularization is required to be vanishing can be already seen from the 1D
example mentioned in the proof sketch of Theorem 4.3: in order to ensure that (1 + x2)L converges
to exp(a) as L → ∞, one needs to pick x =

√
a√
L

, which implies that the sum of squares
∑L

l=1

(√
a√
L

)2
is of constant order w.r.t. L. In fact, the requirement on vanishing regularization is necessary for the
statement to be true, and the result also cannot hold if both λ(L) and λL are vanishing. An additional
discussion on this point, together with a concrete dataset for which collapse cannot be reached, are
provided in Appendix C. Understanding the structure of the optimal representations for double-layer
architectures in the regime of constant regularization represents an exciting future direction.

The proof of Theorem 4.6 is similar to that of Theorem 4.3. In particular, the first layers of the
blocks are defined in the same way, and the second layers are set to act as a projection matrix on the
space spanned by the output of the first layer, which has rank 1. Furthermore, the scalings of these
layers are split in identical square roots of the scaling of the original layer. Thus, the sum over the
squared Frobenius norms is constant w.r.t. L, which requires λ(L) to vanish in L. The detailed proof
is deferred to Appendix A. We conclude the section by stating the approximate optimality of NC in
the global optima of double-layer architectures under CE or MSE loss.
Corollary 4.7. Let the architecture be L-RN2 or L-Tx2 for x ∈ {1, 2}. Assume the training data
(X,Y ) satisfies Assumption 4.4 and the assumptions of Theorem 4.6. Using CE or MSE loss, all
global optima of the optimization problem (11) exhibit approximate neural collapse which gets tighter
as L increases.

5 Experimental results

Our theoretical results suggest an improvement of the NC metrics at the global optima as the depth
increases. To empirically verify whether this effect is already present at moderate depths and for
solutions found by gradient descent, we train ResNets and transformers on MNIST [29], CIFAR10
[31] and IMDB [21] with increasing depths in {2, 3, 5, 8, 13, 21, 34}. The hidden dimension is 64,
the learning rate 0.005 for vision and 0.001 for language and the (constant) regularization 0.005 for
architectures having one linear layer per block and 0.005/L for architectures having two linear layers
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Figure 1: log10 of NC1, NC2 and NC3 metrics respectively in the left, middle and right column,
as a function of the number of blocks L. First row: L-RN1 on CIFAR10; second row: L-T11 on
CIFAR10; third row: pre-LN L-T11 on IMDB; Fourth row: L-RN2 on MNIST with λ ∝ L−1.

per block. Each setting is trained for 5 different random seeds for 5000 epochs on CE loss, the results
are averaged, and the error bars at one standard deviation are reported. We use pre-LN transformers
for language experiments and, due to training instabilities, only report the runs which converged by
the end of the training. See Appendix D for additional experimental results.

Figure 1 shows the three NC metrics at convergence, as a function of the depth of the architecture.
The results are in agreement with the theory developed in Section 4: across different datasets and
architectures, NC metrics improve with depth, even when the solutions are obtained via gradient
descent. Furthermore, for large enough depth, the plots roughly follow a log-linear trend with an
average slope of around −0.335, especially for ResNets. This suggests a polynomial dependence
between NC metrics and depth L, which is also consistent with our theory, see the remark on the rate
of convergence in Section 4.2, including the quantitative estimate of the slope being between −1/2
and −1/4. The metrics are generally a bit larger (meaning less strong collapse) than the ones usually
measured in MLPs [48], but this is because collapse in ResNets is approached more slowly due to
different loss landscape. Finally, we remark that [17, 45] consider the effect of depth, but instead
focus on the progression of NC metrics across layers, rather than evaluating such metrics in the last
layer as a function of the overall depth.
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6 Conclusion

This work provides global optimality guarantees for neural collapse in two modern architectures:
ResNets and transformers. Besides [23] for simplified MLPs, this is the first end-to-end global
optimality result for NC in deep networks. Our approach involves a reduction to a general form of
unconstrained features model that holds for any continuous loss. This provides a formal justification
for the validity of the UFM as a modeling principle and it motivates future work on it in new settings,
such as language modeling [50, 66]. Experimental results confirm our theoretical predictions on
standard datasets trained via gradient descent, thus providing a simple recipe for practitioners thriving
to achieve a strong collapse in applications [34, 38]: just increase the depth.

Although the analysis covers a wide range of models, the behavior of global optima for architectures
with two linear layers per block and constant regularization remains open. While we know that
NC is not asymptotically reached for all datasets, studying the tradeoff between representation cost
and fit loss (and, thus, the extent of NC in global optima) is an important open problem. Beyond
that, our work suggests several interesting future directions. First, by improving the constructions
used to prove Theorems 4.3 and 4.6, one could obtain more refined bounds on the convergence rate
in terms of the depth L, leading to sharp NC guarantees already for a moderate number of layers.
Second, it would be very exciting to adjust our results to describe deep neural collapse and quantify
the evolution of NC metrics across depth, thereby refining the results in [58].
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not find it necessary to release the code. Our experiments concern the
training of rather standard architectures and they can be readily reproduced without needing
to upload the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the necessary details. All the other hyperparameters are irrelevant
to the claims made in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report confidence intervals in all our numerical experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our experiments require only modest computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and conform to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theory-oriented and no potential societal impact is foreseen.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This is not relevant to our paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Deferred proofs

Lemma 4.2. Assume that only the samples within the same class are in relation R. Then,
the global optima MUFM-CE

0 and MUFM-MSE
0 are all perfectly collapsed, i.e., for all (W,X) ∈

MUFM-CE
0 , NC1(W,X) = NC2A(W,X) = NC3(W,X) = 0 and for all (W,X) ∈ MUFM-MSE

0 ,
NC1(W,X) = NC2B(W,X) = NC3(W,X) = 0. Conversely, for any feasible pair (W,X) s.t.
NC1(W,X) = NC2A(W,X) = NC3(W,X) = 0, there exists a unique scalar c s.t. (cW,X) ∈
MUFM-CE

0 ; and for any feasible pair (W,X) s.t. NC1(W,X) = NC2B(W,X) = NC3(W,X) = 0,
there exists a unique scalar c s.t. (cW,X) ∈ MUFM-MSE

0 .

Proof. For both losses, we will relax the problem and ignore the constraints coming from the
equivalence relation R. Then, we prove that NC1 holds in all of these cases, which grants equivalence
between the relaxed and original problem.

For the CE loss, we apply Theorem 3.1 of [71]. In particular, from this theorem it follows that the
optimal solutions of the regularized UFM-CE (not a-priori equivalent to (8) because of the feature
constraint) exhibit neural collapse. From their proof, it is also clear that not only does the ratio
between the sizes of the optimal wk and xki only depend on the ratio of the regularization terms, but
also that the absolute size of these vectors is an increasing function of the regularization strength,
with the limit as λ −→ ∞ being infinity. Therefore, let us pick λW from the paper to be λ in (8), while
we find λH s.t. the optimal solutions of the problem in [71] have norm

√
d. Then, the global optima

of the regularized UFM-CE are exactly those of the UFM-CE we consider in (8).

To see the last statement, assume by contradiction that there is a global optimum of the problem in (8)
which is not a global optimum of the regularized UFM-CE. Then, we can plug this solution into the
regularized UFM-CE. Since it is not a global optimum, there exists a solution with strictly lower loss,
and this optimum is guaranteed to have unit norm features. By plugging this optimum into (8), we
must obtain a loss that is better than the optimal one, since the objectives are equivalent in this case.
This leads to a contradiction. Similar arguments give that there cannot exist a global optimum of the
regularized UFM-CE which is not a global optimum of (8), thus proving the desired equivalence.

For the MSE loss, we perform a direct computation which includes a perturbation analysis. To
simplify the loss landscape, we start by defining a lower bound on the UFM-MSE loss, which we
will analyze first. Denote

LUFM-MSE :=
1

2N

K,n∑
k,i=1

(wT
k xki − 1)2 +

λ

2
∥W∥2F (13)

and MUFM-MSE
ϵ the corresponding near-optimal set. Note that (13) is separable in the index k, thus

we are facing K identical, independent optimization problems. We will now do a series of partial
conditional optimizations and comment on the cost of deviating from these conditional optima.
First, conditioning on any wk (corresponding to the k-th row of W ), we can almost exactly specify
the optimal values of xki for any i. In particular, if ∥wk∥ ≤ d−

1
2 , then the optimal solution is

xki =
√
d · wk/ ∥wk∥ . If ∥wk∥ > d−

1
2 , then the optimal solution is any vector on a hypersphere

such that wT
k xki = 1. In the former case, for each xki, a deviation from the optimal value of the

dot-product wT
k xki =

√
d ∥wk∥ results in a quadratic increase in the loss around the optimal point

(the cosine function has zero linear term in the Taylor expansion and non-zero quadratic term) or
quartic if ∥wk∥ = d−

1
2 (because the loss at optimum would be 0 and being itself a quadratic function,

the effects would multiply). In the case ∥wk∥ > d−
1
2 , the loss increase around the optimum is again

quadratic. Therefore, in all cases the maximum allowed deviation from the optimum given an extra
loss of ϵ is at most O(ϵ1/4) and, thus, goes to 0 as ϵ goes to zero.

Now, denote z ≡ ∥wk∥ . The loss of the k-th group only depends on z and xki, but plugging-in the
optimal value after solving for xki we arrive at a single-dimensional objective that only depends on z:

1

2K
(1− z

√
d)max(1− z

√
d, 0) +

λ

2
z2.

From the form of this optimization problem, it is clear that the unique global optimum is reached on
(0, d−

1
2 ). The solution is simply 1√

d(1+λK)
. First, we note that, for fixed λ,K, this solution is strictly
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smaller than d−
1
2 with non-zero margin. Second, any deviation from this optimal solution will result

in a quadratic increase in the loss function, therefore for a fixed extra loss of ϵ, the maximum allowed
deviation of ∥zk∥ from its optimal value is O(ϵ1/2), which also goes to 0 with ϵ going to 0. Moreover,
since its optimal value (and also maximum allowed deviation for ϵ small-enough) is strictly smaller
than d−

1
2 , we know that the optimal value of the xki is indeed

√
d · wk/ ∥wk∥ and the maximum

allowed deviation is also O(ϵ1/2).

The function value in (13) cannot be optimized any further, thus we know what MUFM-MSE
0 is. In

particular, the solutions in MUFM-MSE
0 must satisfy the NC1 and NC3 properties. Now, if the global

optima of (8) with MSE loss and (13) are equal, then MUFM-MSE
0 ⊂ MUFM-MSE

0 and thus the optimal
solutions of (8) with MSE loss must also satisfy the NC1 and NC3 criteria from the lemma statement.

To show that the global optima are equal and to argue about NC2, we turn back to the original
problem (8) with MSE loss. Since we know that the optimal solutions agree, we can focus directly on
MUFM-MSE

0 . After plugging any optimal solution of (13) into LUFM-MSE, we see that the regularization
part is constant, so we are left with optimizing the fit part. Analyzing the loss incurred by xki on
position l ̸= k we see that it is (wT

l xki)
2 = (wT

l wk)
2d(1 + λK)2. Summing this over all indices

and samples (using the symmetries) we see that the total loss is proportional to the Frobenius norm of
the off-diagonal elements of WWT . Therefore, a lower-bound on the loss is 0, which is achievable
provided W has at least as many columns as rows, as assumed in the lemma. Let us simply choose
W to be a scaled orthogonal matrix, and note that the loss cannot be optimized any further. Thus, we
see that L∗

UFM-MSE = L∗
UFM-MSE and the solutions of (8) with MSE must satisfy NC2. Any deviation

of W from an orthogonal matrix will result in an increase in the loss which is at least quartic: given a
fixed extra loss of ϵ, the solution in MUFM-MSE

ϵ must be O(ϵ1/4) close to an orthogonal matrix.

Finally, the converse statements also readily follow from the above computations.

Theorem 4.3. Let the architecture be L-RN1 or L-Tx1 for x ∈ {1, 2}. Assume the inner dimension of
the L-Tx1 is at least 2V +2 and the inner dimension of L-RN1 is at least 4. Consider the optimization
problem (7) with λ independent of the number of layers. Consider also its corresponding GUFM (8)
with the same loss L and the equivalence relation defined by pairs of samples in X that coincide (for
transformers, these correspond to a pair of identical contexts). If L∗

GUFM > 0, then

lim sup
L−→∞

distmax(M̃L\MGUFM
0 ,MGUFM

0 ) = 0. (10)

Proof. We first discuss how to deal with the equivalence relation R. The argument is identical
whether we take individual samples if all samples are distinct, or we treat the equivalence classes as
individual samples. Thus, for simplicity of notation we assume, without loss of generality, that the
samples are all distinct.

We start with the proof for the L-RN1 model. Notice that LL,1(θ) = LGUFM(WL, XL) +
λ
2

∑L−1
l=1 ∥Wl∥2F . The goal is to show L∗

GUFM = lim
L−→∞

L∗
L,1. In that case, LGUFM(WL, XL) must

converge to L∗
GUFM. Therefore, (WL, XL) induced by θ ∈ ML,1

0 must also belong to MGUFM
ϵ for ϵ

arbitrarily small, which evoking Lemma 4.1 guarantees the convergence as defined in (10).

Note that we can represent a one-block-deeper ResNet that perfectly copies the original ResNet
by simply adding an identity block with zero weight matrices/biases and residual connection left
untouched. Thus, L∗

L,1 is non-increasing in L and it suffices to prove the limit for any sequence of
L’s going to infinity. We will prove it by explicitly constructing a sequence of L-RN1 ResNets s.t.
their losses converge to L∗

GUFM as L → ∞.

Pick any (WL, XL) ∈ MGUFM
0 and relabel H := XL. Thus, hki is the feature representation of the

sample ki in the penultimate layer. Define H̄ as the matrix of unique points hki, and let us index
them with a single index as h̄j . Denote the number of these unique points as K̄. If we write j(ki)
we mean the index j such that h̄j = hki. Before starting the construction, we need to define a key
data-dependent quantity. First, take X1 = LN(W0X0+b0) for b0 and W0 sampled from a continuous
distribution. Since points in X0 are all disjoint, this property holds also for X1 with probability 1.
Moreover, with probability zero, any sample in X1 is identical to hki for any of the vectors in H .
For simplicity, we will refer to X1 and its samples as X and drop the index. Fix an ordering of the
points xki as the lexicographical ordering of (k, i). For each (k, i) find a smooth oriented curve Gki
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connecting xki with hki on the set of feasible points (
√
d norm hypersphere with zero-sum entries)

such that all of the following holds:

1. The curvature of Gki defined as the Lipschitz constant of the unit-norm oriented tangent
function Tki is bounded by B.

2. For all (l, j) > (k, i), max
x∈Gki

xT
ljx ≤ d(1−m) for some m > 0, i.e., all the subsequent points

xlj are far enough from the curve Gki.

3. There is precisely one point x̄ki ∈ Gki such that x̄T
kihki = d(1 − cm), where c > 1 is

chosen large enough. Denote Ḡki as the set of points on Gki between xki and x̄ki. Then, we
assume that, for all (l, j) < (k, i), max

x∈Ḡk,i,y∈Gl,j\Ḡl,j

xT y ≤ d(1−m).

4. The length of Gki is no more than 2π
√
d.

5. m is chosen small enough s.t. 10cm ≤ (d− max
j(ki)̸=j(lp)

h̄T
j(ki)h̄j(lp))/d.

It is clear that a construction satisfying these properties exists, since the constants B, c,m are chosen
with respect to X,H and the number of points we consider is finite. We also note that this requires
the inner dimension of the representations to be at least 4 since this would not be possible on a 2D
circle.

The idea of the construction is as follows. Take L large enough and divide the layers into N + K̄ + 1
blocks. The first N blocks are of the same number of layers L1, and the depth of the last one will be
specified later. Each of the first N blocks of layers will focus on a single sample, while not changing
the representation of the other samples at all. The goal of the ki-th block is to only move the ki-th
sample on its curve towards hki, until it hits x̄ki. Then, the K̄ next blocks of depth L2 will move all
the samples corresponding to the same j(ki) at once, ever closer to their respective h̄j(ki) vectors.
Finally, the very last block which consists of the very last layer will simply be chosen as the optimal
WL corresponding to H.

We will now construct explicitly all the layers. Denote by W l
ki, b

l
ki the parameters of the l-th layer of

the ki-th block and define xl
ki to be the feature representation of the ki-th sample as an input to that

layer. Consider a sphere with center xl
ki and radius αl

kim
√
d

2
√

d+m2/4
, where αl

ki is a small-enough number

whose role will be clear soon. Since this sphere is small enough and Gki has bounded curvature, there
exists exactly one point x̃l+1

ki on the intersection between Gki and the considered sphere which is

closer to hki as xl
ki. Denote dlki =

x̃l+1
ki −xl

ki

∥x̃l+1
ki −xl

ki∥
=

x̃l+1
ki −xl

ki

αl
ki

m
√

d

2
√

d+m2/4

. The weights are constructed as follows:

W l
ki = αl

ki

1+ m
2 d

l
ki√

d+m2/4

(xl
ki)

T

√
d

, (14)

blki = −
(
1− m

2

) αl
ki

√
d√

d+m2/4
1,

if (xl
ki)

Thki ≤ d(1 − cm), otherwise W l
ki = 0; blki = 0. The αl

ki is an optimizable parameter
and since the form above is also W ’s SVD, it is its singular value. Thus, σ(W l

kix
l
ki + blki) =

αl
kim

√
d

2
√

d+m2/4
(1 + dlki), while σ(W l

kix
l
st + blki) = 0 for any (s, t) ̸= (k, i) thanks to our margin

definition. Therefore, before xki hits its final destination, we have

xl+1
ki = LN

(
xl
ki +

αl
kim

√
d

2
√
d+m2/4

(1+ dlki)

)
=

√
d

(
xl
ki +

αl
kim

√
d

2
√

d+m2/4
dlki

)
∥∥∥∥xl

ki +
αl

kim
√
d

2
√

d+m2/4
dlki

∥∥∥∥ = x̃l+1
ki .

From this, it is clear that xki is moving along and on the curve, while the other samples stay stationary.
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It remains to compute how fast xki travels along the geodesic with this construction. To this end,
denote βl

ki := ∢(xl
ki, x̄ki) as the spherical angle between xl

ki and x̄ki. Let ∆βl
ik := βl+1

ki − βl
ki, i.e.,

the angle shift of xl
ki in the l-th layer of the ki-th block. Using simple trigonometry we can compute:

∆βl
ik = 2arcsin

(
αl
kim

2
√
d+m2/4

)
≥ m

4
√
d
αl
ki,

where the inequality holds for αl
ki small enough.

Therefore, it suffices to choose L and L1 large enough and set αl
ki =

4
√
dβl

ki

L1m
if (xl

ki)
Thki ≤ d(1−cm)

and 0 otherwise. In this way, the total regularization cost of the layers in the first N blocks can be
upper bounded as

λ

2

K,n,L1∑
k,i,l

∥∥W l
ki

∥∥2
F
≤ 32dπ2λN

L1m2
.

We see that this cost goes to 0 as L1 goes to infinity.

After N blocks, all the samples now lie within the c-multiple of margin ((xL1

ki )
Thki ≥ d(1− cm)) of

their respective optimal hki features. The goal of each of the K̄ blocks is to move the corresponding
samples in the j-th group all together ever closer to these final vectors. Since this time the construction
will be equivalent for all the samples within one group, we will refer to these samples simply as a
single j-th sample in the l-th layer of the respective block, using the notation xl

j . We define all layers
in the j-th block as follows:

W l
j = αl

j

1+ cmh̄j∥∥1+ cmh̄j

∥∥ h̄T
j√
d
,

blj = − (1− 2cm)
αl
j

√
d∥∥1+ cmh̄j

∥∥1,
where again αl

j is an optimizable parameter. By similar computations as above, the above construction

makes sure that σ(W l
jx

l
j + blj) =

αl
j

∥1+cmh̄j∥ ((h̄
T
j x

l
j − d+ 2cmd)1+ cmh̄T

j x
l
j h̄j) while σ(W l

jx
l
i +

blj) = 0 for i ̸= j. After subtracting the mean in the layer norm we are adding
αl

jcmh̄T
j xl

j

∥1+mh̄j∥ h̄j , which is

at least a
αl

jcm

2
√
d

multiple of h̄j . Denote βl
j = ∢(xl

j , h̄j) and ∆βl
j = βl+1

j − βl
j .

Using trigonometry again, we get:

∆βl
j ≥ arctan

(
αl
jcm sin(βl

j)

2
√
d(1 + αl

jcm cos(βl
j)/(2

√
d))

)
≥

αl
jcm sin(βl

j)

4
√
d(1 + αl

jcm cos(βl
j)/(2

√
d))

≥
αl
jcmβl

j

16
√
d

,

where all inequalities hold from basic properties of trigonometric functions for small-enough angles.

Thus, the angular shift is lower bounded as follows: ∆βl
r ≥ αl

jcmβl
j

16
√
d
. If we choose αj = αl

j constant

across layers, we get βL2
j ≤

(
1− αjcm

16
√
d

)L2

β0
j .

We will choose αj = 16
√
d log(L2)
cmL2

. Then, the total regularization of the layers in the penultimate
blocks is upper bounded as follows:

λ

2

L2,K̄∑
l,j=1

∥∥W l
j

∥∥2
F
≤ 27Ndλ log(L2)

2

m2L2
.

This goes to zero linearly up to poly-log factors as L2 goes to infinity. Finally, we have that the
final positions xL2

ki of the samples converge fast to their optimal counterparts hki with L. To see this,

plugging our choice of αj into βL2
j ≤

(
1− αjcm

16
√
d

)L2

β0
j we get βL2

j ≤
(
1− log(L2)

L2

)L2

β0
j ≤ 2β0

r

L2
,

so the samples converge linearly to their optimal positions as L1, L2 −→ ∞. From the continuity of
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the fit part of the loss, we see that the total loss of this construction indeed converges to L∗
GUFM of the

corresponding GUFM problem. Therefore, our upper bound on the loss of globally optimal solutions
converges to L∗

GUFM and evoking Lemma 4.1 we know that a (WL, XL) optimal for (7) is nearly
optimal for (8) and thus exhibits the required convergence.

Next, we continue with the proof for L-Tx1. Notice that, if we can ensure after the end of the first
block that all the different contexts have different representations and that two representations of
different contexts don’t lie on a line with some of the final positions hki, then by setting all the
weights in attention layers of the subsequent blocks to 0, the rest of the transformer becomes a ResNet
with LayerNorm and we can apply an identical construction as in the L-RN1 part to conclude. The
only caveat (except making sure that the margin is positive) is that, since the total regularization
loss of the construction for L-RN1 goes to 0 with L going to infinity, we must make sure that the
same is true for the first block. However, as we will see, this will make the margin m a function
of L that slowly goes to 0. To compensate for this, we will need to set the layers in the subsequent
blocks accordingly bigger, and we will make sure that the margin goes to 0 slowly enough so that this
adjustment will not qualitatively change the results. Another issue we have to deal with is that if the
norm of the WQK matrix has to go to 0, the attention weights must necessarily converge to uniform.
Thus, our construction must withstand this burden.

We will start with the construction of the embedding matrices. The embedding matrix We ∈ Rd×d0

will just lift the dimension to the inner-dimension of the transformer dl ≥ 2V + 2, i.e., the v-th
column of We is ev in dl-dimensional space. Then, the (C − i)-th column of Wp ∈ Rd×C will
be a · e2V+1 + b · e2V+2, where a, b > 0 are the unique solutions of the following two equations:
a+ b = −1 and a2 + b2 = 22(i+1) − 1. Thus, after the embedding layer, the sum of the entries of the
entire embedding is 0 and after the first normalization layer, the j-th token at the (C − i)-th position
will have

√
d2−(i+1) on its j-th entry and the only other non-zero entries will be at positions 2V + 1

and 2V + 2.

Let us construct the first block. Here, all MLP layers will be set to 0 so that they have zero effect.
Moreover, due to the constraints discussed above, attention matrices WK ,WQ or WQK will also
be set to zero. Finally, the value and output matrices will be set as WV = WO =

√
γ(L)A or

WV O = γ(L)A, where A shifts all entries from the range 1, . . . , V to the range V + 1, . . . , 2V, and
γ(L) is a decreasing function converging to 0 at infinity that will be defined later. This ensures that
the representations before and after attention are summed in the residual connection on different
positions, which will be technically convenient later. Since the attention matrices are identically zero,
the attention weights corresponding to the c-th token will just be uniform 1/c for all the tokens up
to this one. Therefore, the representation of the c-th token after the attention layer and before the
residual connection is the γ(L)-multiple of the average of all the representations of the previous
tokens and itself from an input to the first block shifted by V positions.

We now show that two different contexts must necessarily have different representations, which
gives that the margin after block 1 is non-zero. If we compare two samples (contexts) with different
context lengths, then they will necessarily have different numbers of distinguishable summands
(i.e. various negative powers of 2, divided by the sample’s context length) present in the entries
between (V + 1)-th and 2V -th. Since there is a different number of summands, there must exist at
least one entry where the number of summands disagree, and the numbers in this entry must have
different numbers of ones in their binary representation, which guarantees that samples with different
context lengths must have different representations. Furthermore, two samples with the same context
length but different contexts will be divided by the same averaging number, but then they can be
distinguished since the map from contexts to representations (without dividing by the context length)
is injective due to the uniqueness of the binary representation of the summands.

Therefore, all non-identical contexts have different representations and, in addition, the previous
argument also shows that every pair of representations of two different contexts is linearly independent.
This remains true after the residual connection. If we choose γ(L) small enough for all L, then
the original encodings of the current token will not mix up with the much smaller summands from
the attention layer. The relative size of all the summands stays the same also after normalization
and the MLP block has no effect, so all different contexts have different representations after the
first layer. The only issue we could face is that the representations end up coinciding with one of
the hki’s. To avoid this, WO or WV O can implement a tiny rotation. Since the number of tiny
rotations is uncountably infinite, there is at least one for which there is no intersection. Let

√
dm̃
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be the minimal distance between representations of any two samples after the attention mixing,
before the multiplication by value and output matrices and before the residual connection. Note that
m̃ is positive and independent of X,Y, L, because the different contexts are all pairwise linearly
independent. Then, after the multiplication by the value and output matrices, such distance will be
γ(L)

√
dm̃. For small enough γ(L), the worst-case addition in the residual connection corresponds

to the case in which the two samples with the same latest token also realize the margin minimum.
However, if γ(L) ≤ 0.1, then the difference of the samples after the residual connection and after the
normalization is at least equal to the distance between the representations on positions V + 1 to 2V,
which is at least γ(L)

√
dm̃. Thus, this is the minimum pairwise distance of the data after the first

attention block.

Next, we can apply the construction for L-RN1 if we set all the remaining attention layers to zeros,
since then the remainder of the network will be functionally equivalent to L-RN1. The only remaining
issue is that the margin after the first layer is a function γ(L) of the total number of layers. To choose
a good scaling of γ(L), we need to consider the elements of the construction for L-RN1 that depend
on the margin, which is the sum of the Frobenius norms of the layers in the first N+K̄ blocks. This is
upper-bounded by 32π2λNd

L1m2 + 128Ndλ log(L2)
2

m2L2
. Therefore, if we choose γ(L) = Θ(L

1/4
1 ) = Θ(L

1/4
2 ),

then both the sum of Frobenius norms of the layers in first N layer blocks, as well as the Frobenius
norms of WV ,WO or WV O in the first block of the transformer will go to 0 as L1, L2 −→ ∞. This
concludes the proof.

Corollary 4.5. Let the architecture be L-RN1 or L-Tx1 for x ∈ {1, 2}. Assume the training data
(X,Y ) satisfies Assumption 4.4 and all the assumptions of Theorem 4.3. Using CE or MSE loss, all
global optima of the optimization problem (7) exhibit approximate neural collapse which gets tighter
as L increases.

Proof. This is a straightforward combination of Lemma 4.2 and Theorem 4.3 once we use that
identical contexts for transformers are only labeled by one class, which allows to directly apply the
lemma.

Theorem 4.6. Let the architecture be L-RN2 or L-Tx2 for x ∈ {1, 2}. Assume the inner dimension of
the L-Tx1 is at least 2V +2 and the inner dimension of L-RN1 is at least 4. Consider the optimization
problem

min
θ

L(fθ(X), Y ) +
λL

2
∥WL∥2F +

λ(L)

2

∥∥θ̄∥∥2 , (11)

where λL is a regularization on the weight matrix of the last layer that does not depend on L and
λ(L) is a depth-dependent regularization s.t. λ(L) = o(log(L)−1). Consider the corresponding
GUFM with regularization λL. If L∗

GUFM > 0, then

lim sup
L−→∞

distmax(M̃L\MGUFM
0 ,MGUFM

0 ) = 0. (12)

Proof. The proof follows that of Theorem 4.3. The only difference is that the construction of the

weight matrices changes so that W l,1
ki and bl,1ki have

√
αl
ki in place of αl

ki. The second layers’ weight

matrices W l,2
ki are defined as

√
αl
ki-multiples of the projection matrix on the span of the output

of the first sub-layer on sample xl
ki, so that the total mapping will be identical to the single-layer

construction. Using analogous computations as above, we get:

λ(L)

2

K,n,L1∑
k,i,l

∥∥∥W l,1
ki

∥∥∥2
F
+
∥∥∥W l,2

ki

∥∥∥2
F
≤ 16

√
dπλ(L)N

m
,

and for the second part of the blocks we get:

λ

2

L2,K̄∑
l,j=1

∥∥∥W l,1
j

∥∥∥2
F
+
∥∥∥W l,2

j

∥∥∥2
F
≤ 16N

√
d log(L2)λ(L)

m
.

In order for the sum of these two components to go to zero, we need λ(L) = o(log(L2)
−1) and we

can choose L1 = Θ(L2). The rest of the proof is identical to that of Theorem 4.3.
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Corollary 4.7. Let the architecture be L-RN2 or L-Tx2 for x ∈ {1, 2}. Assume the training data
(X,Y ) satisfies Assumption 4.4 and the assumptions of Theorem 4.6. Using CE or MSE loss, all
global optima of the optimization problem (11) exhibit approximate neural collapse which gets tighter
as L increases.

Proof. This is a straightforward combination of Lemma 4.2 and Theorem 4.6 once we use that
identical contexts for transformers are only labeled by one class, which allows to directly apply the
lemma.

B Alternative architectures

B.1 Vision transformers

For vision transformers, the data is tensor-like X0 ∈ RN×d0×C , where C now denotes the number
of patches and d0 is the dimension of the patch. However, the labels remain two-dimensional
Y ∈ RN×K . What is considered as a sample depends on how labels are produced in the transformer.
The simplest option (w.r.t. the rest of our paper) is to generate the prediction on the last patch of the
sequence, keeping the causal mask. This will, however, change the definition of “samples” and the
NC metrics, since we only need to focus on the last patch. Therefore, samples will only be considered
as the last patch, and the NC metrics will only be defined over the representations of the last patches.
Similarly, the equivalent DUFM will also correspond to the last patches.

Theorem 4.3 and 4.6 and, thus, also Corollary 4.5 and 4.7 hold for vision transformers too, as long as
we do the following changes to the proof of Theorem 4.3 (the other statements are adjustable trivially
once this is established).

Necessary adjustments to the proof. Together with the uniqueness of the labeling function, we
will also assume that the samples are taken from a continuous distribution (which is reasonable
in the vision domain). This guarantees that the feature representations of the final patches are
unique also after the first transformer block, as the event that averages over patches of two different
samples coincide has zero probability. The rest of the proof is similar to that of Theorem 4.3, but
the subsequent MLP layers only focus on the movement of the last patches’ representations and the
movement of the other patches is irrelevant.

B.2 Pre-LN ResNets and transformers

Unlike the post-LN ResNets (Definition 3.1) and transformers (Definition 3.2), the pre-LN archi-
tectures apply the LayerNorm directly before the attention and/or linear layers, but only within
the residual connection, leaving the main residual stream untouched. While this potentially makes
the features at initialization grow linearly with depth, it makes for more stable gradients thanks to
the direct residual path, avoiding LayerNorms that can serve as error propagation channels. This
significantly simplifies the training dynamics and therefore the pre-LN transformers are currently
being predominantly used. For this reason, we fully define the pre-LN architectures here and then
discuss in sufficient amount of detail how to adjust the proof for this setting, since the results are
qualitatively the same.
Definition B.1. An L-block pre-LN ResNet with LayerNorm and one linear layer per block (later
referred to as pre-L-RN1) is defined as

fθ = linL ◦LN ◦(id+σ◦linL−1 ◦LN)◦(id+σ◦linL−2 ◦LN)◦· · ·◦(id+σ◦lin1 ◦LN)◦LN ◦ lin0,
(15)

where linl(x) = Wlx+ bl for all l ∈ {0, . . . , L} and θ is the collection of all learnable parameters.
We denote as X1 = LN(W0X0 + b0), Xl+1 = Xl + σ(Wl LN(Xl) + bl) (l ∈ {1, . . . , L − 1}),
fθ(X0) = XL+1 := WL LN(XL) the intermediate representations of the training data stored in a
matrix form. We assume that all intermediate representations Xl (l ∈ {1, . . . , L}) are of dimension
d. Analogously, L-RN2 denotes a ResNet with two linear layers per block defined as

fθ = linL ◦LN ◦(id+ linL−1,2 ◦σ ◦ linL−1,1 ◦LN) ◦ · · · ◦ (id+ lin1,2 ◦σ ◦ lin1,1 ◦LN) ◦LN ◦ lin0,
(16)

with X1 = LN(W0X0 + b0), Xl+1 = Xl +Wl,2σ(Wl,1 LN(Xl) + bl,1) + bl,2 (l ∈ {1, . . . , L− 1})
and fθ(X0) = XL+1 := WL LN(XL).
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Definition B.2. An L-block pre-LN transformer with one or two linear layers in the attention
sub-block and one or two layers in the MLP sub-block (later referred to as pre-L-T11, pre-L-T12, pre-
L-T21, pre-L-T22 based on the number of linear layers in attention and MLP sub-blocks, respectively)
is defined as

fθ(Z) = linL+1 ◦LNL+1 ◦BL ◦ · · · ◦ B1 ◦LN0 ◦Embed(Z). (17)
Here, linL+1(Z) = WL+1Z + bL+1 is the last layer (bL+1 is a matrix with the same number of
columns as Z that are all identical); Embed(Z) = WeZ + Wp is the embedding layer with We

being the token embedding and Wp (having the same shape as WeZ) the positional embedding; and
the l-th block is given by

Bl = (id+MLPl ◦LNl,2) ◦ (id+ATTNl ◦LNl,1). (18)

Such block consists of the normalization layers LNl,1,LNl,2, the MLP

MLPl(Z) = σ(WlZ + bl), or MLPl(Z) = Wl,2σ(Wl,1Z + bl,1) + bl,2, (19)

respectively for the architecture pre-L-Tx1 and pre-L-Tx2, and the single-head attention

ATTNl(Z) = WV OZAl(Z), Al(Z) = softmax(M + ZTWQKZ/
√
d),

or ATTNl(Z) = WOWV ZAl(Z), Al(Z) = softmax(M + ZTWT
KWQZ/

√
d),

(20)

respectively for the architecture pre-L-T1x and pre-L-T2x. The matrix M is the masking matrix
whose entries are −∞ on the lower triangle and 0 on the upper triangle and the diagonal.

We note that the first LayerNorm right after the embedding layer, which might not be used in
practice often, is introduced for technical convenience but does not change the results qualitatively.
Theorem 4.3 and 4.6 and, thus, also Corollary 4.5 and 4.7 hold for pre-LN architectures too, as long
as we do the following changes to the proof of Theorem 4.3 (the other statements are adjustable
trivially once this is established).

Necessary adaptations to the proof. This architecture has the disadvantage that it does not
immediately absorb deviations from the zero-sum sphere and therefore, technically, the single linear
layer architectures can only add non-negative changes to the residual stream. However, we argue that
an almost identical construction to the one in proof of Theorem 4.3 works here as well. Note that the
construction from this proof, see (14):

W l
ki = αl

ki

1+ m
2 d

l
ki√

d+m2/4

(xl
ki)

T

√
d

,

blki = −
(
1− m

2

) αl
ki

√
d√

d+m2/4
1,

will result in a shift in xki that can be written as αl
kim

√
d

2
√

d+m2/4
(1+ dlki) and the 1 will not get absorbed

in the residual stream, but is orthogonal to the zero-sum component of the movement of xki and it
will get absorbed in the next LayerNorm within the next residual stream. This allows us to copy the
entire first part of the post-LN proof by mimicking the trajectories of the unit ball, while adding the
constant amount of αl

kim
√
d

2
√

d+m2/4
−multiple of all-ones vector in each round. Therefore, after the first

N blocks, the projections of all the samples on the zero-sum hyperplane are identical to those in the
post-LN proof. Each sample, however, has a different component in the direction of the all-one vector.
This will, however, be absorbed by the last LayerNorm. Moreover, by triangle inequality, the margin
of the trajectories in this extended space is at least as big as the margin of the trajectories on the
zero-mean ball. The construction for the next K̃ blocks works by the same reasoning as well. Thus,
after these layers, the projections of the samples on the zero-sum ball are identical to the post-LN
proof and the last LayerNorm will absorb the component along the all-ones vector.

As for the transformers, although after the first block the samples are not centered and do not all
have norm

√
d, after applying the LayerNorm in the first subsequent MLP block, they will all be

distinct (except the ones with identical contexts). Therefore, we define the same trajectories as in the
ResNet construction with the centered and normalized features, but we will perform an equivalent
movement on the zero-mean ball with the radius equal to the norm of the projection of the particular
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sample onto the zero-mean hyperplane, while ignoring the all-ones component completely. As a
result, each sample moves on its own cylinder, a projection to the zero-mean hyperplane following the
trajectories on the normalized zero-mean ball, while moving arbitrarily along the all-ones direction.
As before, a triangle inequality guarantees that the margin defined on the zero-mean normalized ball
is not violated in the wider space during this process. The only caveat is that, if the norm of the ball
along which a sample is traveling is larger than that of the

√
d-normed ball, we need to upscale αl

ki
by that ratio. Note that the size of the vector after the first block is upper bounded independently of
the number of layers, therefore such an upscaling will only multiply the cost of weight matrices by a
constant. The rest of the argument follows that of the adaptation for pre-LN ResNets.

C Two linear layers per block with non-vanishing or uniform weight decay

Here, we intuitively describe why the NC metrics in general do not approach the perfect NC in
architectures with two linear layers per residual block as the depth goes to infinity, if the regularization
is non-vanishing or vanishes uniformly across all layers. The key is the simple inequality ∥AB∥F ≤
∥A∥F ∥B∥F . We can interpret these matrices as features, weight matrices and the change on the
features added to the residual. In particular, in a ResNet with a single linear layer per block we have
∥∆Xl∥F ≤ ∥Wl∥F ∥Xl∥F (∆Xl is the outcome of the residual branch added back to the residual
stream) and, importantly, this inequality can be made equality in some cases. Even if the inequality
does not hold as an equality, we still have that, for fixed Wl, Xl, if ∆Xl = σ(WlXl) ̸= 0, then due
to homogeneity c∆Xl = (cWl)Xl. This makes the total change Wl makes to Xl scale linearly with
c, but its cost is quadratic. Therefore, if the directional derivative of the loss w.r.t. ∆Xl at layer l is
strictly positive, then there exists c > 0 for which cWl will make an improvement against Wl = 0.
However, if two linear layers are involved, we have

∥∆Xl∥F ≤ ∥Wl,2σ(Wl,1Xl)∥F ≤
√
N/4

(
∥Wl,1∥2F + ∥Wl,2∥2F

)
.

Therefore, any change to the features will scale linearly with the regularization cost of the matrices
that were responsible for this change. In this case, the opposite to the previous statement holds: if the
directional derivative of the loss w.r.t. ∆Xl is small enough, then for small c, the c-scaling of weight
matrices will necessarily worsen the loss compared to doing nothing.

As we have seen in the proof of Lemma 4.2 for the MSE loss (but this also holds for the CE loss), an
O(ϵ)-sized perturbation around the global optimum of neural collapse causes only an O(ϵ2) increase
in the loss. Furthermore, the derivative is zero at NC and locally Lipschitz around that point, which
implies that the size of the derivative is O(ϵ). For any input dataset X that is not yet collapsed, if
the points WL, XL in the set of global optima M̃L,2 did approach NC in the limit, we could, by
contradiction, take an optimum that is ϵ-close to NC (for a sufficiently small ϵ) and zero-out all the
last layers that were responsible for moving the samples by a total amount of Θ(ϵ) shift (this would
need care in a rigorous proof because of the possible discontinuity of the layer-to-feature mapping).
The change in the fit part of the loss would be O(ϵ2), but thanks to the above inequality, the total
regularization cost saved by this would be Ω(ϵ), so the loss would improve and we would arrive at a
contradiction.

The above argument holds for constant regularization λ. However, even if the regularization was
vanishing, but it was the same for WL and for the rest of the network, the NC would still not be
approached. To see this for MSE loss, consider a perturbed perfect scenario where the input data is
X = IK ⊗ 1T

n +E and E is a perturbation matrix of size Θ(ϵ). X is already ϵ-close to NC. To move
X Θ(ϵ) closer to NC, we need Θ(λLϵ) cost in terms of the weight matrices. Let us now compute the
improvement in the corresponding GUFM objective that results from doing so. The DUFM objective
with MSE is 1

2N ∥WXL − Y ∥2F + λL

2 ∥W∥2F . If we simplify the problem to just fitting a single row
of W (the optimization problem is separable, so this is w.l.o.g.), we have a simple ridge regression
solution for w. In particular

w∗ = (nIK + λLIK +O(ϵ))−1(IK ⊗ 1T
n +O(ϵ))y.

Therefore, the distance from the unperturbed fit (nIK + λLIK)−1(IK ⊗ 1T
n )y is itself O(ϵ) and

plugging this in the loss, we see that the change in the loss function is O(λLϵ
2) which, for sufficiently

small ϵ, is less than the price in terms of weight regularization.
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Figure 2: MNIST training. log10 of NC1, NC2 and NC3 metrics respectively in the upper, middle and
bottom row, as a function of the number of blocks L. The architectures are L-RN1 with λ = 0.005,
L-T11 with λ = 0.005, and L-RN2 with λ = 0.0025.

D Additional experimental results

In Figure 2, we provide additional experimental results which complement Figure 1 with MNIST
training of both ResNets and transformers with one linear layer per MLP block. The results and the
message are consistent with those of Section 5. Furthermore, we consider a ResNet with two linear
layers per block trained on MNIST, but with constant weight decay of 0.0025. As we can see, the NC
metrics are almost constant across multiple depths, which is consistent with our claim that NC is not
approached in this regime.

Additionally, in Figure 3 we show the sum of Frobenius norms of all the weight matrices of ResNets
trained on MNIST. We can see that as the number of layers increases, the total norm of the weights
decreases. We note that this is the same phenomenon leading to neural collapse in our theory. Similar
results hold for the other training scenarios as well.
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Figure 3: log10 of total regularization loss of ResNet trained on MNIST as a function of the depth of
the network.
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