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ABSTRACT

Action spaces equipped with parameter sets are a common occurrence in reinforcement learning
applications. Solutions to problems of this class have been developed under different frameworks,
such as parametrized action Markov decision processes (PAMDP) or hierarchical reinforcement
learning (HRL). These approaches often require extensions or modifications to standard existing
algorithms developed on standard MDPs. For this reason they can be unwieldy and, particularly
in the case of HRL, computationally inefficient. We propose adopting a different parametrization
scheme for state–action value networks based on neural ordinary differential equations (NODEs)
as a scalable, plug–and–play approach for parametrized action spaces. NODEs value networks do
not require extensive modification to existing algorithms nor the adoption of HRL methods. Our
solution can directly be integrated into existing training algorithms and opens up new opportunities
in single–agent and multi–agent settings with tight precision constraints on the action parameters
such as robotics.

1 INTRODUCTION

Reinforcement learning (RL) has achieved great success in an array of challenging problems spanning settings with
discrete [1] and continuous [2; 3], action spaces. A different, important class of action spaces has been explored in
[4] where parametrized action MDPs (PAMDPs) are introduced as an extension to MDPs fashioning a discrete set
of actions equipped with sets of continuous parameters specifying their intensity or quantitative properties. Action
spaces that can be categorized in this way occur frequently across application areas, such as simulations and games
[5], navigation [6] and robotics [7]. A noteworthy advantage of parametrized actions is reducing the need for action
embedding or action space reduction techniques [8]. In multi–agent reinforcement learning (MARL) settings, they
offer a natural means to model intentional delay actions which are often required to construct optimal policies and
achieve consensus [9]. It can be noted that parametrized actions have also been discussed as a relaxation of hybrid ac-
tions [10] since the latter can be obtained by augmenting the action space of the former with a set of non–parametrized
actions or removing parameters from a subset of the actions. Due to the similarities between parametrized actions and
hierarchies of actions, alternative approaches to solving PAMDPs involve hierarchical reinforcement learning (HRL)
[11]. However, HRL methods [12] usually assume a hierarchy of arbitrary depth and are thus ill–suited for simple
two–level hierarchies of actions and parameters that comprise the majority of PAMDPs.

Parametrized action spaces can be approached with policy gradient algorithms [13]. On the other hand, value–based
methods for PAMDPs [10] rely on auxiliary neural networks to perform regression on optimal parameters given state or
observations and are therefore suboptimal for high precision applications with robustness requirements. Additionally,
such algorithms often require great engineering efforts [5] to ensure that the parameters stay within allowed interval
bounds. This drawback is particularly problematic since ad–hoc techniques such as gradient squashing or flipping are
often necessary to achieve satisfying performance.

With the aim of bridging this gap, we introduce a framework for solving PAMDP problems using Neural Ordinary
Differential Equations (NODEs) as state–value networks and aim to provide answers to some of the following ques-
tions:
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Figure 1: Schematic of NODE Q–value network as defined in (6).

• Is it possible to introduce parametrized actions into a given problem and apply out–of–the–box solutions
developed for standard MDPs or partially observed MDPs (POMDPs)?

• How can one obtain Q–values for high resolution parameter intervals, often necessary in settings with high
precision requirements such as robotics?

• Is it possible to use a single model for value networks in order to treat both continuous as well as discretized
parameter intervals?

2 RELATED WORK

Previous works on parametrized actions include Q–PAMDP [4] in which selection of discrete actions and continuous
parameters is learned in an alternating fashion. Recent developments [10; 14], utilize auxiliary function approximators
to compute optimal parameters given state or observation vectors. In multi–agent reinforcement learning (MARL),
mixture of actor–critic experts (MACE) has been applied to solve terrain–adaptive locomotion [6] with parametrized
actions.

Parametrized actions We loosely follow the notation of [4]. We define the action space by an ordered index set
Ad = {a1, a2, . . . , am} ,Ad ⊂ N specifying the actions. In this paper we assume each action a ∈ A to be equipped
with only one real parameters x ∈ R. The complete action space is given byA =

⋃
a∈A {(a, x) | x ∈ X} with X ⊂ R

being compact sets for all a ∈ Ad.

Neural ordinary differential equations Neural ordinary differential equations (NODE) [15] are a class of novel
deep learning models relying on the observation that intra–layer dynamics of neural networks with skip connections
and equal input and output dimensions:

h(x+ 1) = h(x) + f(h(x),θ(x)), x ∈ N (1)
resembles the explicit Euler discretization of an ordinary differential equation (ODE) described by continuous au-
tonomous dynamics:

ḣ(x) = f(h(x),θ(x)), x ∈ X (2)

being h ∈ Rz , θ ∈ Rp, f : Rz ×Rp → Rz and X a compact subset of R. Given an initial condition h(0) = h0 (i.e.
the input latent vector) and under mild assumptions on f , the ODE (2) admits an unique solution defined in the whole
compact X provided by:

h(x) = h0 +

∫
X
f(h(τ),θ(τ))dτ (3)

In this framework the depth variable x assumes real values bringing, in the limit, the continuous map
h0 7→ h(x)

to resemble a network with infinitely dense layers, i.e. NODEs are the deep limit of residual networks.

Although non-autonomous extensions to NODEs exist [16; 17], i.e. θ = θ(x), their computational burden increases
significantly. The following discussion will focus mostly on the autonomous variant.
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3 NODE VALUE NETWORKS

Let sk ∈ Rn be a tensor containing the state or observation representation at step k of the unrolled episode and
(a, x) ∈ A be a parametrized action. For the sake of clarity of notation, the concepts developed in the rest of this
section will be referring to a single action a. Additionally, let x be bounded, X := [xmin, xmax].

In this paper, we propose leveraging NODEs as an effective, scalable, plug–and–play approach for parametrization of
state–value maps

(sk, x) 7→ Qk

in settings with parametrized action spaces.

The proposed approach relies on two key components:

• Shallow embedding neural network g that given a state sk or observation vector ok at step k is tasked with
computing a latent vector hxmin

∈ Rz , in addition to state-action value Qxmin
= Q(sk, xmin):[

hxmin

Qxmin

]
= g(sk) (4)

• NODE solving for intermediate values of the embedding neural network outputs according to (3). More
specifically, the NODE value network is augmented with one additional dimension describing the dynamics
of Q: [

ḣ(x)

Q̇(x)

]
= f(h(x), Q(x),θ). (5)

Therefore, we define the NODE value model as

[
ḣ(x)

Q̇(x)

]
= f(h(x), Q(x),θ)[

h0

Q0

]
= g(sk)

Qk = Q(x)

(6)

Thus, for each tuple (sk, x), ODE (6) admits a unique solution in [xmin, x]. Hence, there is a mapping ϕ = (ϕh, ϕQ)
from Rn×X to the space of absolutely continuous functions X → Rz+1 such that (hk, Qk) := ϕ(sk, x) satisfies (6).
This, in turn, implies that the map

(sk, x) 7→ ϕQ(sk, x)

satisfies
Qk = ϕQ(sk, x) (7)

While the training of (6) is performed integrating on the wholeX , during the inference phase the system may be solved
for any arbitrary x ∈ X . The result in (7) allows for a selection of optimal parameter x = x∗ for action a via argmax:

π(sk) := x∗ = arg max
x∈X

Qk(sk, x) (8)

or any exploration–exploitation scheme. The process is repeated simultaneously for all parametrized actions at state
sk to obtain optimal parameters as πa(sk). Decision making is then carried out via argmax over the actions:

a∗ = arg max
a∈A

Qa
k(sk, πa(sk)) (9)

where Qa
k are the Q–value corresponding to action a, respectively.

Obtaining optimal parameter values The solution of the proposed continuous model (6) in the whole parameter
space X is given by the integration of the ODE, i.e.[

hk

Qk

]
=

∫
X
f(h(τ), Q(τ),θ)dτ + g(sk).

Two different paradigms to solve (8) are hereby proposed.

Lower resolution: Once (6) is solved numerically, we obtain a sequence of values {Qk}i (i = 1, . . . , p) with their
corresponding parameters {x}i, being p the number of integration steps. Therefore (8) is simply solved choosing the
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x∗1x∗2 x∗k

Q(s1, a, x) Q(s2, a, x) Q(sk, a, x)

xmin xmax

Figure 2: Evolution of Q(x) as defined in (6). Neural network g determines the initial value of the ODE as function
of state or observation vectors, launching trajectories from different points at different steps of the episode. Parameter
x enters NODE f exclusively as an integration bound.

Algorithm 1 Projected Gradient ascent
1: for t = 1→ convergence do
2: Input: sk, xt, 0 < η � 1

3:

[
h(xt)
Q(xt)

]
=

∫ xt

xmin

f(h(τ), Q(τ),θ)dτ + g(sk)

4: xt ← xt + ηfQ(h(xt), Q(xt),θ)
5: if xt 6∈ X then
6: xt = Π(xt)
7: stop
8: Output: xt

best parameter in the finite sequence. Indeed, this naive method does not guarantee true optimality in case of low
resolution in the integration phase. On the other hand, fine–grained integration can lead to high computation costs. A
balance is often obtained by relaxing absolute and relative ODE integration tolerances.

Higher resolution We propose the following optimization algorithm for situations with high accuracy restrictions on
the optimal parameter. Let us assume both the NODE vector field f and the shallow embedding network g to be
partitioned as follows:

f = [fh, fQ]>, g = [gh, gQ]>

The optimization problem (8) can be reformulated as

maximize
x∈X

∫ x

xmin

fQ(h(τ), Q(τ),θ)dτ + gQ(sk)

subject to h(x) =

∫ x

xmin

fh(h(τ), Q(τ),θ)dτ + gh(sk)

x ∈ X
The proposed method is to perform a projected gradient ascent. First, the gradient of the cost function with respect to
x is calculated via the Leibniz integral rule as,

∂

∂x
Qk(sk, x) =

∂

∂x

[∫ x

xmin

fQ(h(τ), Q(τ),θ)dτ + gQ(sk)

]
= fQ(h(x), Q(x),θ).

Moreover, we define a discontinuous projection function Π : R→ X as

Π(x) =

{
xmin x < xmin
xmax x > xmax

The gradient ascent optimization is then developed as in Algorithm 1. Note that the optimization can be carried out
in parallel for all the different actions a ∈ A. As any gradient descent/ascent algorithm, convergence rates suffer
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from the non–convexity/concavity of the cost function. Nevertheless, further analysis may allow to determine special
structures of the NODE imposing concavity of trajectories Q(x). This is left for future work.

4 DISCUSSION

Determining optimal values As is the case in standard value–based methods, parametrizing value networks with
NODEs allows for the selection of optimal action values a∗ via argmax operations. HRL or PAMDP approaches have
historically presented additional challenges since they require extensions to the MDP framework [12] or a rederivation
of theoretical convergence guarantees of standard algorithms. Reparametrizing the value network with NODEs does
not break common assumptions of modern reinforcement learning and can therefore be coupled with state–of–the–art
algorithms without additional overhead.

Robustness of learned representations Existing approaches for PAMDPs [10], [14] introduce auxiliary function
approximators tasked with performing regression on optimal parameters given state or observation vectors. These
approaches suffer from standard neural network drawbacks; they are brittle to noise or adversarial attacks [18] to their
inputs and cannot increase precision of their predictions at inference time. Additionally, large amounts of engineering
efforts are often expended to guarantee that the parameters lie in their allowed intervals [5]. Our approach guarantees
feasibility of the optimal parameter as a direct consequence of its interval bounds being utilized as ODE integration
bounds. NODEs have also been empirically shown to be more robust to adversarial attacks and noise [19].

Resolution invariance of NODE value networks A convenient advantage of the NODE framework is the possiblity
of trading amount of computation for precision by taking advantage of over a century of literature on ODE solvers [20].
NODE value networks can be used when the optimal discretization of the continuous parameter range [xmin, xmax] is
known a-priori by solving 3 with fixed-step ODE solvers such as Runge-Kutta 4 or Euler. On the other hand, NODEs
value networks excel over their discretized counterparts when no such information is available a-priori, since the
usage of adaptive solvers i.e. Dormand-Prince automatically adapts the step size in [xmin, xmax] such that the solution
is within a set of tolerances. At inference time any value Q(x), x ∈ [xmin, xmax] can be obtained, with no restriction on
the resolution of the interval.

Computational cost Assuming non-excessive stiffness of the learned ODEs [21], NODEs tend to be more parameter
efficient than their discretized neural network counterparts [15]. The computational burden of NODE value networks
is therefore comparable to that of value networks relying on discrete neural networks as function approximators.

5 CONCLUSION

We proposed a novel approach to Q-value parametrization in PAMDPs that relies on neural ordinary differential
equations (NODEs) as its main computation block. Our approach is advantageous in that it can be applied for a action
parameters both discrete or continuous by a selecting the appropriate class of ODE solvers. Compared to existing
solutions [10], [22] that utilize auxiliary network architectures to obtain optimal parameters as additional outputs,
NODEs are robust due to a learned representation that is intrinsically smooth with respect to action parameters. Finally,
NODEs value networks do not require an a-priori specification of the parameter interval resolution and can therefore
be utilized in applications with high precision requirements. Accurate and scalable solutions for parametrized actions
opens new avenues of research for multiagent settings where precise intentional delay actions are often necessary to
construct an optimal policy and to achieve consensus [9], particularly in the case of stochastic environments.
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