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Abstract

Causal structure learning has long been the central task of inferring causal insights1

from data. Despite the abundance of real-world processes exhibiting higher-order2

mechanisms, however, an explicit treatment of interactions in causal discovery3

has received little attention. In this work, we focus on extending the causal4

additive model (CAM) to additive models with higher-order interaction. This5

second level of modularity we introduce to the structure learning problem is most6

easily represented by a directed acyclic hypergraph. We introduce the necessary7

definitions and theoretical tools to handle the novel structure we introduce and then8

provide identifiability results for the hyper DAG, extending the typical Markov9

equivalence classes. We next provide insights into why learning the more complex10

hypergraph structure may actually lead to better empirical results. In particular,11

more restrictive assumptions like CAM correspond to easier-to-learn hyper DAGs12

and better finite sample complexity. We finally develop an extension of the greedy13

CAM algorithm which can handle the more complex hyper DAG search space and14

demonstrate its empirical usefulness in synthetic experiments.15

1 Introduction16

Causal structure learning aims to infer the underlying causal relationships among given variables17

from observational or interventional data [Spirtes et al., 2001], which is crucial for understanding18

complex systems and has been widely applied in different fields, including biology [Sachs et al.,19

2005] and Earth system science [Runge et al., 2019]. Various approaches have been developed20

for causal discovery, including constraint-based, score-based, and functional causal model-based21

methods [Glymour et al., 2019].22

Constraint-based methods, such as the PC [Spirtes and Glymour, 1991] and FCI [Spirtes et al., 2001]23

algorithms, rely on conditional independence tests to identify the causal structure. Score-based24

methods, on the other hand, optimize a scoring function, such as the Bayesian Information Criterion25

(BIC) [Schwarz, 1978], to find the best causal structure [Chickering, 2002, Singh and Moore, 2005,26

Yuan et al., 2011, Bartlett and Cussens, 2017]. Both constraint-based and score-based approaches27

can only identify the underlying causal structure up to Markov equivalence [Spirtes et al., 2001],28

indicating that they cannot distinguish between different structures that encode the same set of29

conditional independence relationships.30

Functional causal model-based methods address this limitation by introducing proper functional31

assumptions on the causal relationships, thus enabling the identification of the whole DAG. Examples32

include the linear non-Gaussian model [Shimizu et al., 2006], additive noise model (ANM) [Hoyer33

et al., 2008], post-nonlinear causal model [Zhang and Hyvärinen, 2009], heteroscedastic noise model34

(HNM) [Xu et al., 2022, Immer et al., 2023], and causal additive model (CAM) [Bühlmann et al.,35

2014]. Among these, CAM assumes that the causal relationships are additive in the variables, which,36
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despite being more restrictive than the general ANM framework, has been shown to achieve superior37

performance in various empirical studies [Lachapelle et al., 2020, Zheng et al., 2020, Ng et al., 2022,38

Rolland et al., 2022], partly owing to its improved statistical power.39

In this work, we revisit the additive structural assumption of CAM by incorporating recent develop-40

ments in training higher-order additive models, extending the functional causal model to explicitly41

consider the higher-order interactions within the causal mechanisms. Higher-order mechanisms are42

known to exist in a variety of real-world processes and are believed to be critical into modeling and43

understanding a number of different scientific phenomena Battiston et al. [2020], Majhi et al. [2022].44

Nevertheless, previous approaches have taken an all-or-nothing approach, either (a) directly following45

CAM-like assumptions or (b) modeling all possible interactions between parents of a child node.46

Instead, we find that a directed hypergraph can succinctly represent the necessary structure to47

interpolate between the simplicity of CAM and the complexity of the full ANM. Specifically, our48

major contributions are as follows:49

1. We develop the theoretical extension from graphs to hypergraphs across three total settings50

(undirected graphical models, classical DAG models, and additive noise models), and prove51

the identifiability of the hypergraph structures we introduce.52

2. We develop an algorithm for learning the hyper DAG alongside its structural equations53

directly from data, extending the greedy algorithm for CAM, and showing improved per-54

formance over existing approaches on data specifically containing higher-order variable55

interactions.56

2 Hypergraph Methods57

In this work we will introduce three different generalizations to existing structure learning approaches58

which extends the existing graphical representations (Markov networks, Bayesian networks, etc.) to59

their corresponding hypergraphical representations:60

1. Undirected hypergraphical models61

2. Directed hypergraphical models for discrete variables (classical regime)62

3. Directed hypergraphical models for continuous variables (additive noise model)63

We will first introduce the ‘hyper Markov property’ which will be respected by distributions which64

are ‘Markov’ with respect to a given hypergraph, rather than Markov with respect to a given graph.65

We emphasize that since hypergraphs are a strict generalization of existing graphical models, we can66

see this hyper DAG or HDAG structure as an intermediate level of structure between the DAG and67

the SEM (structural equation model). In that sense, we write:68

DAGs ≼ HDAGs ≼ SEMs (1)

In what follows, we will demonstrate that this more fine-grained structure is not only identifiable69

directly from data, but also that this perspective allows for greater insights into the identifiability of70

different hypergraphs (and hence graphs) using finite observations rather than the population limit.71

2.1 Undirected Models72

Let us write X ∈ Rd for some number of dimensions d ∈ N. We will later choose to restrict to73

discrete, continuous, or mixed X as appropriate. We write an undirected graph as G′ = (V,E′) and74

undirected hypergraph as H′ = (V,H ′), where we take the vertices as V = [d] := {1, . . . , d}, the75

undirected edges as E′ ⊆ {(i, j) : i ̸= j ∈ V }, and the undirected hyperedges as H ′ ⊆ {S ⊆ V }.76

We will sometimes abuse notation and write (i, j) ∈ G′ to mean (i, j) ∈ E′ and similarly for H′.77

(Note that we are reserving the unprimed versions for the directed versions.)78

We will assume throughout this work that we are in the case of fully observed variables. Moreover,79

we will assume that the density is strictly positive to ensure (a) that there is no confusion caused by80

switching between the pairwise, local, and global properties; and (b) that the score-based definitions81

we introduce on the log-probability face no ambiguities in regions of zero density.82

2



Definition 1. Undirected Markov Property. Let us take N(i) to denote the neighbors of i ∈ V . We83

may say that some distribution pX(x) is (locally) Markov with respect to some undirected graph G′84

if it holds for any i that “Xi ⊥⊥ XV−N(i)−{i} | XN(i)”, where – denotes set minus. Preparing for85

our focus on additive models of the log probability, this can equally be required as:86

pX(x) = pN(i)(xN(i)) · pi(xi|xN(i)) · pV−N(i)−{i}(xV−N(i)−{i}|xN(i)) (2)

ξX(x) := log pX(x) = ξN(i)(xN(i)) + ξi(xi|xN(i)) + ξV−N(i)−{i}(xV−N(i)−{i}|xN(i)) (3)

where there exists some conditional probabilities pi and pV−N(i)−{i} or some conditional log87

probabilities ξi and ξV−N(i)−{i} such that these equations hold true. This can be additionally written88

in terms of the clique representation, when we write all cliques of the graph as Cl(G′) = {S ⊆ V :89

S is a clique in G′}, as follows:90

log pX(x) =: ξX(x) =
∑

S∈Cl(G′)

ξS(xS) (4)

Definition 2. Undirected Hyper-Markov Property. It is now straightforward to generalize this91

property to hypergraphs as follows:92

log pX(x) =: ξX(x) =
∑
S∈H′

ξS(xS) (5)

That is, we write the hypergraph edges as specifically representing the energy terms in the log-93

probability function. It is straightforward to verify that this is strictly more general than hypergraphs94

which can be created as a result of the maximal clique structure of a typical graph. Nonetheless, in95

what follows we hope to focus on the identifiability as well as the usefulness of this finer-grained96

structure for graphical models.97

2.2 Directed Classical Models98

We will write a directed graph as G = (V,E) and a directed hypergraph as H = (V,H) where99

the directed edges are E ⊆ {(k, j) : k ̸= j ∈ V } and the directed hyperedges are H ⊆ {(S, j) :100

j ∈ V, S ⊆ (V − j)}. That is, we are assuming that each hyperedge has only one "out arrow" and101

up to |S| "in arrows". It is hoped the purpose for this is relatively clear in the context of a causal102

diagram which must use several parents to generate a single child. We write the ‘parents of j in G’ as103

PaG(j) = {k ∈ [d] : (k, j) ∈ G} and the ‘hyperparents of j in H’ as HypPaH(j) = {S : (S, j) ∈ H},104

where the dependence on G and H will be dropped when obvious.105

Definition 3. Directed Markov Property. Here, we may once again recall the classical Markov106

property with respect to a DAG to be written as:107

log p(x) =

d∑
i=1

log p(xi|xPa(i)) =

d∑
i=1

θ(xi|xPa(i)) (6)

It is very easy to see that we may rewrite this using extraneous functions as:108

log p(x) =

d∑
i=1

∑
S⊆Pa(i)

θ(xi;xS)−Z(xPa(i)) (7)

where it is now the case that we do not have the θ energy terms explicitly representing a conditional109

distribution, but are instead arbitrary functions which are then set to the proper normalization via110

the Z function. It can be seen that the Z function does not explicitly depend on the value of xi, but111

normalizes to a distribution based on only the parents alone. The extraneous θ functions which are112

written as all subsets are useful for the next step generalizing to hypergraph structures.113

Definition 4. Directed Hyper-Markov Property. We follow the structure above from the typical114

DAG framework, but replace the fully-connected parent structure with the more nuanced hypergraph115

structure. In particular, the energy terms in each of the conditional distributions are replaced with a116

more specific additive model structure, rather than assuming there is a generic function:117

log p(x) =

d∑
i=1

∑
S∈HypPa(i)

θ(xi;xS)−Z(xPa(i)) (8)
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It is again straightforward to see that this strictly generalizes the cases which are representable by118

the typical DAG. In particular, taking the hyperparents to be all subsets of the parents recovers the119

previous functional form (Figure 1f). However, other structures mimicking CAM and LiNGAM type120

assumptions are also possible (Figure 1d). Further HDAGs beyond these two existing in the literature121

are also possible (Figure 1e). We will further assume ‘causal minimality’ of the HDAG meaning122

the hyperparent set is downwards closed w.r.t subsets and each maximal element has a nontrivial θ123

function. See the discussion and proofs in the appendix for further details.124

It is also relatively clear to see how this directed hyper-Markov property overlaps with the undirected125

hyper-Markov property, perhaps moreso than the typical Markov properties. Moreover, it becomes126

clear that the moralized graph corresponds to including the Z terms whereas the skeleton corresponds127

to including only the θ terms, see also Table 1. We will make this connection more clear in Section128

3.2, where we show identifiability of the HDAG up to its hyper Markov equivalence class (HMEC).129

2.3 Directed Additive Noise Models130

For continuous variables, we will generate data from the additive noise model (ANM), meaning that131

all variables are a deterministic function of their parent variables, plus an additive noise term.132

Definition 5. Additive Noise Model. This may be written as:133

Xj = fPa(j)→j(XPa(j)) + εj (9)

Each of the εj are taken to be independent, mean-zero random variables.134

Definition 6. Higher-Order Additive Noise Model. We may once again generalize to the higher-order135

additive model through the use of the structure encoded by the directed hypergraph.136

Xj =
( ∑

S∈HypPa(j)

fS→j

(
xS

))
+ εj (10)

Specifically, we endow the generating function fPa(j)→j with an additive model structure obeying137

the hyperparents of the HDAG. Models like CAM or LinGAM then correspond to using singleton138

hyperparents, whereas the most general ANM corresponds to using the entire block of parents as the139

largest hyperparent, as depicted in Figure 1. We will follow CAM Bühlmann et al. [2014] in assuming140

Gaussian noise for algorithmic purposes via the minimization of mean-squared error corresponding141

to maximizing the log-likelihood; however, surprisingly, we show in Theorem 4 that the our settings142

2 and 3 actually overlap in the case of additive Gaussian noise.143
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Figure 1: A depiction of the distinguishing power for hypergraphs corresponding to the same DAG.
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3 Structure Identifiability144

3.1 Undirected Models145

First recall that under our assumptions of fully observed variables and strictly positive density,146

meaning that the density function is identifiable directly from the observed distribution (under mild147

assumptions like continuity for the continuous variable case) Rosenblatt [1956].148

Importantly, then, one may only be concerned in measuring the hypergraph structure as described in149

Section 2.1; however, this proves to be equally straightforward. For the case of graphical models and150

mixed-type variables, Zheng et al. [2023] write the generalized precision matrix as:151

Ωi,j :=
∥∥∥ ∂2

∂i∂j
log p(x)

∥∥∥ :=
(
E
[∣∣∣∂2 log p(x)

∂i∂j

∣∣∣2]) 1
2

(11)

In the case of hypergraphical models and discrete variables, Enouen and Sugiyama [2024] similarly152

write the existence of ‘higher-order information’ for some subset T ⊆ [d] (where T ⊋ {i, j} is153

chosen to imply higher-order) if it is the case that:154

ΩT :=
∥∥∥ ∑

S⊇T

θS(xS)
∥∥∥ > 0 where log p(x) =

∑
S

θS(xS) (12)

A straightforward combination of these approaches are sufficient for recovery of the hyper Markov155

network or undirected hypergraph. Nonetheless, our experiments will instead focus on identification156

of the directed structure as in the following two sections. Thus, for our purposes it is sufficient to say157

that the density and log density functions are identifiable directly from the observed distribution.158

3.2 Directed Classical Models159

Before our main theorem of identifiability extending the result of Verma and Pearl [1990], we must160

first introduce the notion of multi-dependence to extend the typical notion of conditional independence161

which is the workhorse of causal structure learning. We will focus on discrete and finite variables as162

in the classical case[Verma, 1993, Pearl, 2009]; however, most results clearly extend to continuous or163

mixed variables under mild conditions, and we later discuss one such special case in Theorem 4.164

Definition 7. Conditional Multi-dependence. We write that Xi and Xj are dependent if the dis-165

tribution log p(xi, xj) must be written with a 2D energy term, θij(xi, xj), rather than the sum of166

two 1D energy terms, θi(xi) + θj(xj), (corresponding to the product when the log is removed). We167

will write that Xi, Xj , and Xk are tri-dependent (or generally multidependent), if the distribution168

log p(xi, xj , xk) must be written with a 3D energy term, rather than the sum of three 2D energy169

terms. It can be seen that this does not have a convenient product formulation like the classical case170

of dependence and independence because of the "mixing" or "torsion" between the three 2D terms.171

Nonetheless, we will attempt to prove the usefulness of such a definition in the following theorem.172

Generalization to conditional tests is straightforward.173

Theorem 1. The HDAG is identifiable up to the hyper Markov Equivalence classes (HMECs),174

consisting of all HDAGs with the same "body" and the same (unshielded) "multi-colliders", paralleling175

the existing result identifying DAGs up to their skeleton and (unshielded) colliders.176

Table 1: Notation for hypergraphs
DAG terms HDAG terms

G′, undirected graph H′, undirected hypergraph
G, directed acyclic graph (DAG) H, hyper DAG or HDAG

moralized graph of a DAG immoralized hypergraph of an HDAG
skeleton of a DAG body of an HDAG

(unshielded) collider (unshielded) multicollider

In the same sense that a condi-177

tional independence test can never178

eliminate a causal arrow between179

two variables, a conditional multi-180

independence test can never sepa-181

rate a higher-order causal relation-182

ship between a set of three or more183

variables. Removing the arrow-184

heads from the DAG returns the185

DAG’s skeleton; similarly, removing the arrowheads from the HDAG returns the HDAG’s body,186

see Table 1 and Figure 2. In some sense, this half of the theorem about the “body identifiability”187

immediately states that the structure we introduced is identifiable.188
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For multicolliders, recall that a collider occurs when there is a conditional dependence which is189

broken after marginalizing out the child, or equally a conditional independence which is broken when190

conditioning on the child. The multicollider of an HDAG will occur similarly via a multidependence191

which is broken after marginalizing out the child. Although collisions between two parents will192

already be covered, there are cases of three or more parents which are unshielded and can hence193

be identified from Theorem 1. In particular, there are cases which are not identified in the classical194

setting, see the RHS of Figure 2. This seeming anomaly is in part due to the historical conflation195

over time between what structure is recoverable from the conditional independence tests vs. what196

structure is recoverable from the observed distribution. Indeed, the MEC only describes what is197

distinguishable via the conditional independence conditions, making it unable to detect what can be198

seen via the conditional multi-independence test we introduce.199

Another key consequence of this different perspective will be a statistical one. In particular, for a200

K-dimensional energy term in the body of an HDAG, we know that it requires on the order of O(nK)201

samples to be appropriately learned. Consequently, without access to infinite samples, this places202

further restrictions on the HMEC classes (and hence MEC classes) of ‘distinguishability under finite203

samples’, whereas MECs are only able to easily represent ‘distinguishability under infinite samples’204

as in the asymptotic regime.205

432 HDAGs

24 DAGs 6 HDAGs

6 HDAGs24 DAGs

DAGs of an MEC

all HDAG 
extensions

HDAGs of an MEC HDAGs of an HMEC

by body

24 HDAGs
by multi- 
colliders

Figure 2: A gradual refinement of the DAGs within a Markov Equivalence Class (MEC) to a stronger
refinement of HDAGs based on Theorem 1 to a Hyper Markov Equivalence Class (HMEC). There are
d = 4 variables with a fully-connected DAG structure. The green triangle represents the third-degree
hyperedge in the body of an HDAG. Lack of arrows indicate multiple possible orientations for
different DAGs/ HDAGs of the same MEC/ HMEC.

3.3 Directed Additive Noise Models206

In this section, we establish identifiability results for recovering the hyper-DAG in the ANM case.207

For clearer exposition, we first reproduce the arguments of Hoyer et al. [2008] which shows that,208

in general position, the additive noise model (ANM) is identifiable. We extend their result to a209

multi-dimensional result which handles the case of multiple parents rather than only the case of one210

parent node and one child node (slightly different from the extension in Theorem 28 of Peters et al.211

[2014] because it will more easily generalize to the hypergraph result).212

Theorem 2. Let the joint probability densities of x and y be given by213

p(x1, . . . , xd, y) = pn(y − f(x)) · px(x1, . . . , xd) (13)

for some noise density pn, arbitrary density px, and function f . Assume further that all such functions214

are thrice continuously differentiable. If there is also a backwards model which treats xi as the child,215

p(x1, . . . , xd, y) = pñ(xi − g(x−i, y)) · px−i,y(x1, . . . , xi−1, xi+1, . . . , xd, y) (14)

for some alternate noise density pñ, arbitrary density px−i,y , and function g, then it must be case that216

for ν := log pn and ξ := log px, the following differential equation is obeyed217

ξ′′′ = ξ′′ ·
(
− ν′′′f ′

ν′′
+

f ′′

f ′

)
+
(
− 2ν′′f ′′f ′ + ν′f ′′′ +

ν′ν′′′f ′f ′′

ν′′
− ν′f ′′f ′′

f ′

)
(15)

where we use ξ′, ν′, f ′ as shorthand for ∂
∂xi

ξ(x1, . . . , xd), ν′(y − f(x)), ∂
∂xi

f(x1, . . . , xd).218
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Corollary 1. Assume further that ν′′′ = 0 and ∂3

∂x3
i
ξ = 0 for all i ∈ [d]. If a backwards model exists219

for a parent xi, then f is linear in the argument xi. Further, if a backwards model exists in all parents220

xi, then f is a multilinear function.221

Remark 1. First, this is a general position argument which says that in order to be reversible, the222

SEM must obey these particular constraints which usually do not occur. Although this means for223

an ‘arbitrary’ SEM model we have identifiability, this does not rule out well-known cases including224

linear+Gaussian where the existence of an equivalent backwards model is unavoidable.225

Remark 2. Second, this result is applied locally to a single child node, rather than the global SCM226

structure. Previous work has partially explored the global structure in the population limit, see227

Chickering [2002] and Peters et al. [2014]; however, a priori, the constrained solutions space may228

grow exponentially large, leading to practical limitations in the real-world setting with finite samples.229

We next provide the relevant extension to recover the hypergraphical structure as well. Indeed, if the230

DAG structure is identifiable (at least locally), then the hyper DAG structure is also identifiable (at231

least locally). This also implies that when the entire DAG structure is identifiable in the ANM case,232

the entire hyper DAG structure is also identifiable.233

Theorem 3. Suppose we have two forward models given by two alternate collections I ⊆ P([d])234

and J ⊆ P([d]), where P denotes the power set, with models:235

p(y|x1, . . . , xd) = pn(y −
∑
S∈I

fS(xS)) p(y|x1, . . . , xd) = pñ(y −
∑
T∈J

gT (xT )) (16)

Assume that in addition to the assumptions of Theorem 2, we also have that the functions fS and gT236

are differentiable up to order max{maxS∈I{|S|},maxT∈J {|T |}}, or more simply up to order d. It237

then follows that I = J and thus the hypergraph structures of the two models are exactly the same.238

Moreover, outside of trivial modifications to the f ’s and g’s, the two functional generating models239

are exactly the same.240

Finally, we restrict further to the case of Gaussian noise variables in the ANM to directly recover a241

global hypergraphical result, further relating Sections 2.2 and 2.3.242

Theorem 4. Suppose that all additive noise variables are drawn from a Gaussian distribution,243

implying that ν(ε) = −1
2σ2 ε

2 (or some general quadratic form) for all i ∈ [d]. Suppose also that we244

generate data according to the directed hypergraph H. The undirected, immoralized version of this245

hypergraph H′ is identifiable directly from the data in the sense that ξ(x1, . . . , xd) =
∑

S∈H′ ξS(xS)246

for some arbitrary functions ξS . In other words, the undirected hypergraph from setting 1 is directly247

identifiable from the distribution and thus settings 2 and 3 overlap for ANMs with Gaussian noise.248

All proofs may be found in the appendix.249

4 Algorithm250

Our method for hypergraph discovery and structural equation modeling heavily entwines the schema251

of CAM [Bühlmann et al., 2014] and the higher-order interaction techniques of SIAN [Enouen and252

Liu, 2022]. Accordingly, we review both algorithms in much greater detail in Appendix B. Here253

in the main body of the paper, we briefly review the three step procedure introduced by CAM and254

discuss our HCAM extension to their original approach. The first stage is a preselection phase which255

searches for good candidate parents for each potential child node. The second stage is the bulk of the256

algorithm, greedily constructing the DAG via including each directed edge one at a time based on the257

improvement to the log-likelihood. The third stage is a final pruning stage which does not change the258

topological order, but simply removes parents which are no longer thought to be relevant.259

4.1 Step 1: Candidate Search260

The first stage of CAM Bühlmann et al. [2014] finds candidate edges/ parents by training a GAM261

regression on each of the d variables. In their work, this was mainly necessary for them in the262

high-dimensional setting, where explicit consideration of so O(d2) edges when d is large poses a263

challenge. However, for HCAM, this stage becomes absolutely critical. That is because we not only264

need to look at all (d2 − d) candidate directed edges of CAM, but also all the 1
2 (d

3 − 3d2 + 2d)265
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candidate directed tri-edges, as well as higher-order hyperedges, etc. To consider all hyperedges266

directly without any heuristic would require considering an exponential number of hyperedges.267

Accordingly, we first use a deep neural network to ‘search’ for good hyperedges, following steps 1268

and 2 of SIAN [Enouen and Liu, 2022]. That is, for each of the d variables, we regress an MLP DNN269

to minimize the mean-squared error (Gaussian likelihood). We then use an XAI technique, called270

Archipelago [Tsang et al., 2020], to give an importance score for each of the feature interactions271

involving the other variables.272

4.2 Step 2: Greedy Selection273

The next phase consists of the bulk of the algorithm and can also be considered the most important274

part and yet most simplistic part. A greedy heuristic is taken to gradually build the DAG from the275

initialized empty set of vertices. For each of the possible edges (or potentially the subset selected276

in step 1), a new likelihood model is trained to simulate adding the edge to the DAG. Importantly,277

because of the independence of the ANM noise, this is simply measured as the drop in MSE with and278

without the additive term. Gradually, edges are added until some stopping point and the final phase of279

pruning begins.280

In our case, several small adjustments must be made to deal with the case of HDAGs. Importantly,281

unlike CAM, HCAM must keep track of both the HDAG and the induced partial-order matrix282

simultaneously. Generically, we follow the exact same procedure, training higher-order additive283

models with each candidate hyperedge to see the improvement in MSE. We start with 10 candidates284

for each of the d variables, based on the ranking provided in step 1, and we replenish the candidates if285

there are ever less than 5 viable hyperedges per a variable. This cutdown is able to reduce the number286

of higher-order SIAN additive models we train, which helps in improving the overall runtime.287

4.3 Step 3: Final Pruning288

Finally, the full model is trained end-to-end once more with all of the included edges from step 2.289

The final stage simply removes edges corresponding to additive terms which are too close to zero,290

and thus likely to be useless in the causal model. Our extensions prunes in the exact same way,291

with higher-order terms corresponding to higher-order edges, but there is no practical difficulty in292

doing this extension. The major difficulty of this part is choosing a threshold which corresponds293

with a nuisance parameter. The original CAM work uses a threshold of 0.001 for the p-values294

provided alongside the GAM models. We use neural networks which do not provide p-values and thus295

somewhat similarly threshold based on the MSE of the additive term, using a threshold of 1.0e–4.296

5 Experiments297

We compare across multiple synthetic datasets obeying the additive noise model (ANM) while varying298

the degree of the additive models. Following previous works, we generate the base DAG from an299

Erdos-Renyi random graph with an average of 4 edges per node. We generate 1D, 2D, and 3D300

additive models to distinguish different hypergraphical structures. For 1D models, we avoid the linear301

model to allow for identifiability and use a random Gaussian process to define the additive functions.302

For 2D and 3D models, we use multilinear terms, βjkxjxk, with coefficients drawn around ±1, then303

normalizing by the total coefficient weight for a parent set. We assume the additive noise terms are304

coming from a Gaussian distribution and draw random variances constrained to be close to 1.0. We305

set d = 30 (number of nodes) and n = 10000 (number of samples) in our experiments.306

We compare against baselines of PC [Spirtes and Glymour, 1991], GES [Chickering, 2002], BOSS307

[Andrews et al., 2023], RESIT [Peters et al., 2014], CAM [Bühlmann et al., 2014], and SCORE308

[Rolland et al., 2022]. We additionally compare against a baseline which assumes the empty graph,309

equivalent to assuming all of the observed variables are completely indepedent. We compare against310

the structural Hamming distance (SHD) and the structural interventional distance (SID) obtained by311

each method on different complexities of synthetic data. We additionally compare the Hamming312

distance on the hypergraph bodies, based on the assumption in Figure 1f, calling it the higher-order313

structural Hamming distance. Because the maximal error is on the order 230 ≈ one billion, in some314

cases, we do not compute exactly and report a lower bound in Table 4.315
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Table 2: Structural Hamming Distance for ER4 and N=10,000.
BOSS CAM GES PC SCORE RESIT zero HCAM

ER4 1D 189.67±20.24 42.67±4.50 206.67±11.90 159.67±21.17 69.33±20.24 494.67±3.30 128.67±8.38 67.67±13.82
ER4 2D 115.33± 1.70 134.67±2.49 116.00± 2.16 134.00± 4.32 126.00± 2.83 146.33±5.79 115.33±1.70 107.00± 0.82
ER4 3D 109.00± 4.24 120.33±1.89 106.67± 3.86 120.33± 3.86 117.00± 5.89 132.33±6.34 106.67±3.86 106.67± 3.86

Table 3: Structural Intervention Distance for ER4 and N=10,000.
BOSS CAM GES PC SCORE RESIT zero HCAM

ER4 1D 608.33±45.09 0.00± 0.00 646.67±54.97 748.33±66.04 105.33±47.12 646.67±54.97 726.00±64.19 525.33±64.25
ER4 2D 679.33±38.94 750.67± 7.93 687.33±39.67 713.67±60.18 745.67±16.11 734.67±21.64 679.33±38.94 661.00±31.03
ER4 3D 647.67±15.08 744.67±22.23 679.00±39.02 699.00±46.31 751.67±24.14 744.00±29.44 679.00±39.02 679.00±39.02

Table 4: Higher-Order Structural Hamming Distance for ER4 and N=10,000.
BOSS CAM GES PC SCORE RESIT zero HCAM

ER4 1D >10,000 42.67± 4.50 >10,000 >1,000 >10,000 >10,000 128.67± 8.38 48.33± 8.18
ER4 2D 157.33± 1.70 168.00± 5.35 158.00± 1.41 183.67±10.78 171.33± 2.05 602.33±603.66 157.33± 1.70 119.00± 5.35
ER4 3D 236.00±18.38 256.33±14.66 248.67±18.15 264.67±23.23 264.00±14.76 263.00± 13.44 248.67±18.15 248.67±18.15

5.1 Results316

Overall, we find that many methods are successful for the simpler 1D data obeying the CAM317

assumptions, especially the CAM and SCORE algorithms. HCAM does not achieve the same level of318

success as these algorithms but still achieves good performance on this dataset. Surprisingly, all other319

methods have rather great difficulty in identifying the causal structure.320

On our specifically higher-order datasets, however, we find that the story is quite different. In321

particular, the only algorithm which is able to defeat the baseline on the 2D data is our HCAM322

method specifically focusing on modeling the 2D interactions. In the 3D data, none of the algorithms323

we run are able to find empirical success over the zero baseline. That is to say, we should have just324

assumed the variables were independent and not run our algorithm at all.325

This lack of capability is despite the fact that we used a simple DGP (multilinear plus Gaussian)326

on a relatively low number of variables (d = 30) and provided a relatively standard number of327

observations (n = 10, 000). Aligning with our hypothesis that the statistical complexity increases in328

the presence of higher-order interactions, we strongly believe this points to some aspects of structure329

discovery research which have received less attention but remain highly influenced by the presence330

of interactions.331

6 Conclusion332

We have introduced a framework for considering the impact of higher-order interactions on causal333

structure. After introducing the relevant definitions, we further show the identifiability of the334

introduced structure across multiple cases of interest. Finally, we demonstrate the potential usefulness335

of the hypergraphical structure in empirical case using the additive noise model, along with providing336

a first algorithm for adequately handling the higher-order structure directly from observed data.337

This perspective additionally allowed us to identify a potential blindspot of many existing structure338

discovery approaches: their lack of focus on statistical power and lesser ability to handle higher-order339

interactions.340

We envision future work may continue to benefit from a perspective using higher-order interactions.341

Some directions of future exploration include improving on the algorithms and theoretical results342

presented herein, potentially solving increasingly challenging datasets constructed using the higher-343

order perspective on the generated variables. Extension to appropriately handling latent variables and344

latent confounding is a direction of serious interest. Hypergraphical structures being identifiable from345

the data distribution alone, extending existing MEC and identifiability results, point to the potential346

of hypergraphical structure across even more contexts and settings than the ones explored herein.347
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A Proofs of Theorems446

A.1 Proof of Theorem 1447

To begin, we remind that while the classical MEC formulation is concerned with mapping the448

conditional independencies of a distribution with the Markov conditions and structure of a DAG, we449

are here concerned with mapping the conditional multi-independencies of a distribution with the450

Markov conditions and structure of an HDAG. Accordingly, it is first worth noting that because the451

conditional multi-independencies of a distribution is a strictly larger set of conditions that the original452

set of conditions, hence, we get the existing result on the DAG corresponding to the HDAG, let’s call453

it the reduced DAG. This is done in the obvious way by taking the union of all a node’s hyperparents454

and defining them as the parent set.455

Thus, in addition to the skeletons and (unshielded) colliders of the DAG which are already identifiable456

from the typical conditions, we must investigate which HDAGs are further distinguishable via these457

conditions and which HDAGs are distinguishable via the new conditions.458

We will start with the easier point about the body of an HDAG. Once again, this is defined by459

removing all directed arrows from the directed hypergraph. In the same way that a pair of nodes i460

and j are ‘inseparable’ if they are not conditionally indepedent for any conditioning set, we can say461

that a triple of nodes i, j, and k are inseparable if they are not conditionally multi-independent for462

any conditioning set. In much the same way this indicates the existence of an edge in the DAG case,463

this will indicate the existence of a (three-dimensional) hyperedge in the HDAG case.464

It is thus straightforward to see that the existence of an inseparable triple shows the existence of465

a directed hyperedge (where one of the three vertices is the child). Further, this generalizes to all466

degrees in the exact same way. It is briefly reminded that the hierarchy constraint plays a role of467

convenience here in the sense that a higher-order edge is detected via a three-dimensional hyperedge468

even if, say, the generating equations do not make this explicit. This exactly parallels what happens469

in the 2D case with an inseparable pair of nodes, where the DAG edges are capturing everything470

’between i and j or higher’. To be explicit, the DAG edge i → j could have a second parent of j471

which interacts with i when generating j. Nonetheless, it is clear from these conditions that we may472

directly identify the body of the HDAG, and that the body of the HDAG is strictly more informative473

than the skeleton of the HDAG’s reduced DAG.474

Now let us move on to the discussion of colliders between parents. To prepare for our generalization475

of colliders, we first allude to the fact that in Equation 7, we can see directly that the normalizing Z476

score over the parent set is the cause of a collider. In particular, unlike the natural θ terms which cannot477

be destroyed via marginalization of variables, the Z terms are destructible under marginalization of478

the child. This naturally corresponds to the more typical conditions noting that there is some smaller479

set (not including the child) where conditioning provides independence but conditioning on the child480

additionally breaks the independence. Of course, not all sets without the child included is able to481

marginalize out the child, namely, conditioning on any descendant of the child is also problematic.482

Nonetheless, we may proceed by extending the definition in the same way. We say that a set of nodes483

i, j, k alongside a fourth node ℓ are a tricollider so long as there exists some conditioning set S under484

which the i, j, k are not conditionally tri-dependent; however, after additionally conditioning on the485

node ℓ (their joint child), the tri-independence breaks and i, j, k are conditionally tri-dependent when486

conditioning on (S + {ℓ}). Equally, it can be seen that i, j, k are the joint parents of ℓ whose Z487

normalization appears only when needing to condition on ℓ.488

In fact, it is now extremely straightforward to state our faithfulness condition directly. We say that a489

distribution observes a hypergraph structure faithfully so long as no natural theta term is destructible490

via marginalization; moreover, the joining of two theta terms via marginalization will lead to a new491

theta term with the maximal relative size (i.e. no higher-order terms magically cancel and zero out).492

Finally, because of this faithfulness condition, we can equally start with the log-probability score493

function which obeys the Hyper Markov property and construct all possible multi-dependence tests494

in the backwards direction. Accordingly, no θ term will cancel via marginalization and each Z495

will only cancel via marginalization of its respective child. As a reminder, conditioning on a set is496

easier via implicitly pulling out the variables value in the conditional distribution, and marginalizing497

has been made possible via the faithfulness distribution. Together, these allow us to describe all498
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of the energy terms of a new conditioned distribution and one can directly read off the conditional499

multi-dependence via the existence of or lack of the highest-order energy term.500

A.2 Proof of Theorem 2501

Proof. The arguments here closely follow the original arguments for Theorem 1 of Hoyer et al.502

[2008].503

First, recall that we will write504

π(x[d], y) = ν(y − f(x)) + ξ(x)

π(x[d], y) = ν̃(xi − g(x−i, y)) + η(x−i, y)

(17)

We may first proceed with some basic calculations505

∂

∂xi
π = ν′ · − ∂f

∂xi
+

∂ξ

∂xi

= ν̃′ · 1 + 0

∂

∂y
π = ν′ · 1 + 0

= ν̃′ · −∂g

∂y
+

∂η

∂y

And further506

∂2

∂x2
i

π = ν′′ · ∂f

∂xi
· ∂f

∂xi
− ν′ · ∂

2f

∂x2
i

+
∂2ξ

∂x2
i

= ν̃′′

∂2

∂xi∂y
π = ν′′ · − ∂f

∂xi

= ν̃′′ · 1 · −∂g

∂y
+ ν̃′ · 0 + 0 = −ν̃′′ · ∂g

∂y

So it follows from the ν̃ equation that507

∂2π
∂x2

i

∂2π
∂xi∂y

=
ν̃′′

−ν̃′′ · ∂g
∂y

=
−1
∂g
∂y

And further508

∂

∂xi

[ ∂2π
∂x2

i

∂2π
∂xi∂y

]
=

∂

∂xi

[−1
∂g
∂y

]
= 0

Plugging this back in to the equation with ν gives us509

∂

∂xi

[ν′′ · f ′ · f ′ − ν′f ′′ + ξ′′

−ν′′f ′

]
≡ 0

Application of repeated derivative rules and simplification gives the required510

ξ′′′ = ξ′′ ·
(
− ν′′′f ′

ν′′
+

f ′′

f ′

)
+(

− 2ν′′f ′′f ′ + ν′f ′′′ +
ν′ν′′′f ′f ′′

ν′′
− ν′f ′′f ′′

f ′

)
511
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A.3 Proof of Theorem 3512

Proof. Supposing that we have two different forward models given by513

p(x1, . . . , xd, y) = pn(y −
∑
S∈I

fS(xS)) · px(x1, . . . , xd) = pn(y − f(x)) · px(x1, . . . , xd)

514

p(x1, . . . , xd, y) = pñ(y −
∑
T∈J

gT (xT )) · px(x1, . . . , xd) = pñ(y − g(x)) · px(x1, . . . , xd)

We may take π as before and see that515

∂

∂y
π = ν′ = ν̃′

∂

∂xi
π = −ν′ ·

[∑
S∈I

∂fS
∂xi

(xS)1(i ∈ S)
]
= −ν̃′ ·

[ ∑
T∈J

∂gT
∂xi

(xT )1(i ∈ T )
]

It follows as before that we may write516

−
[ ∂

∂xi
π

∂
∂yπ

]
=

[∑
S∈I

∂fS
∂xi

(xS)1(i ∈ S)
]
=

[ ∑
T∈J

∂gT
∂xi

(xT )1(i ∈ T )
]

Further, we have that517

0 ≡ ∂

∂xR−i

[
0
]
=

∂

∂xR−i

[ ∂
∂xi

π
∂
∂yπ

−
∂

∂xi
π

∂
∂yπ

]
=

∂

∂xR−i

[
− ∂f

∂xi
+

∂g

∂xi

]
= − ∂f

∂xR
+

∂g

∂xR

= −
[∑
S∈I

∂fS
∂xR

(xS) · 1(R ⊆ S)
]
+

[ ∑
T∈J

∂gT
∂xR

(xT ) · 1(R ⊆ T )
]

(18)

Recall that we assumed that I and J are downwards closed or ‘hierarchical’ which means all S ∈ I518

have all its subsets S′ ⊆ S also inside of I. If we then take R /∈ I, it implies that R ̸⊆ S for519

all S ∈ I, otherwise such an S would not obey the downwards closed property. This means that520

1(R ⊆ S) = 0 and521

0 ≡ −0 +
[ ∑
T∈J

∂gT
∂xR

(xT ) · 1(R ⊆ T )
]

This means that for all T ∈ J ∩ up(R) where up(R) := {T : T ⊇ R} it must be the case that the522

R-th partial derivative is zero. We will focus on the case of T = R, but the same holds for all T as523

above.524

We may take a modification of the function gT such that it is instead represented by additive525

functions of a lower degree. This is equivalent to saying that gT ≡ 0 and hence T ∈ J was526

actually a contradiction. Let us see that ∂gR
∂xR

≡ 0, so then writing R = {r1, . . . , r|R|}, we have527

that
∫
xr1

∂gR
∂xR

= C1(xr2 , . . . , xr|R|) for some function C1 which is constant with respect to xr1 .528

Further
∫
xr2

∂gR
∂xR−r1

=
∫
xr2

C1(xr2 , . . . , xr|R|) = C1(xr2 , . . . , xr|R|) + C2(xr1 , xr3 , . . . , xr|R|)529

and continuing on, we may ultimately see that gR =
∑

R′⊊R gR′ which means by our assumption530

that J is a minimal representation with no zero additive models, that actually T /∈ J .531

The same arguments may be taken in reverse to show that for all R ̸∈ J , it must be the case R ̸∈ I.532

There is a mild difference in the way the contradiction is applied argument when reversing the533

arguments because we take the perspective that I is the ground truth generating process and J is a534

potential alternate model (i.e. the contradiction is on R not on S.) Nonetheless, this results in the535

fact I = J for any two forward models which are representing the same distribution, and that the536

functional representations are moreover the same. The latter part can be seen directly from ∂f
∂xi

= ∂g
∂xi

537

for all i ∈ [d] and similar arguments for removing trivial terms from the additive model. The final538

modification which may exist is up to a constant, which is resolved by the differences in the mean of539

the variable represented by ν and ν̃. This is solved by the ANM assumption that the additive noises540

are mean-centered.541
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Altogether, this is taken to mean that whenever the DAG is locally identifiable (and thus there are542

only valid forward models and no potential backwards model), then the hypergraph structure of the543

forward model is additionally identifiable. This additionally implies that if the entirety of the DAG is544

identifiable, then the entirity of the hyper DAG is also identifiable.545

A.4 Proof of Theorem 4546

Proof. Under the further assumption that εi ∼ N (0, σ2
i ), we have that ν(ε) = log p(ε) =547

log
(

1√
2πσ2

· exp(− ε2

2σ2 )
)

= − log(2πσ2) − 1
2σ2 ε

2. Further, we have that ν′(ε) = − 1
σ2 ε,548

ν′′(ε) = − 1
σ2 , and ν(k)(ε) = 0 for larger k. Accordingly, we may write the entire distribution549

as550

ξ(x1, . . . , xd) = log p(x1, . . . , xd) =
∑
i

log p(xi|xPa(i))

=
∑
i

νi(εi) =
∑
i

νi

(
xi −

∑
(S,i)∈H

fS→i(xS)
)

Let us write f→i to denote
∑

(S,i)∈H fS→i and Fi(x) = (xi − f→i(x)). It is straightforward to551

verify through repeated applications of the chain rule and product rule that552

∂n

∂x1, . . . , ∂xn
νi

(
Fi(x)

)
= νi ·

∂n

∂x1, . . . , ∂xn

(
Fi(x)

)
+ ν′i ·

∑
∅⊊A⊊[n]

∂|A|

∂xA

(
Fi(x)

)
· ∂n−|A|

∂x[n]−A

(
Fi(x)

)
It can further be seen that553

∂|A|

∂xA

(
Fi(x)

)
=

∂|A|

∂xA

(
xi − f→i(x)

)
(19)

is zero whenever A is not all i’s and A is not a subset of one of the S where (S, i) ∈ H. This means554

exactly that555 ∑
∅⊊A⊊[n]

ν′i ·
∂|A|

∂xA

(
Fi(x)

)
· ∂n−|A|

∂x[n]−A

(
Fi(x)

)
is barely nonzero whenever we take [n] equal to (S + i) for some (S, i) ∈ H. Note that this is556

equivalent to taking some (S + i) ∈ H′ where we recall H′ is the undirected version of the directed557

graph H. If we instead take some R /∈ H′, then it will be the case that this derivative is zero, because558

all A ⊆ R will have either ∂|A|

∂xA
≡ 0 or ∂n−|A|

∂x[n]−A
≡ 0. Moreover, it is the case that the first term is559

clearly zero ∂|R|

∂xR

(
Fi(x)

)
≡ 0.560

Since this is true for all i so long as we are taking R /∈ H′, we have that561

∂|R|

∂xR
ξ(x1, . . . , xd) =

∂|R|

∂xR

∑
i

νi

(
xi −

∑
(S,i)∈H

fS→i(xS)
)
≡ 0

Following the same approach as in the proof of Theorem 3, this means that we are able to write562

ξ(x1, . . . , xd) =
∑

S∈H′ ξS(xS) for some functions ξS .563

564

Note that the decomposition of the likelihood function’s structure does not contradict existing results565

saying that the directionality of the graphical model is not always identifiable from data. In particular,566

in the linear-Gaussian case, it may not be possible to distinguish which direction is the causal direction.567

Nonetheless, the graphical structure which is recovered in this purely Gaussian case corresponds to568

what is available in the precision matrix [Loh and Bühlmann, 2014], still identifying the undirected569

graphical structure underlying the distribution. Under the CAM-like assumptions of linear SEMs,570

the hypergraph structure is reduced to its simplest representation, which is isomorphic to a graphical571

representation.572

16



B Full Algorithm Details573

B.1 Causal Additive Model574

CAM (Causal Additive Model) uses a three step procedure to discover a set of additive structural575

equations according to Equation ??. First, a preliminary search is made over the directed edges using576

sparse regression to cut down on the search space. Second, a greedy algorithm gradually adds the best577

edges to the DAG so long as it does not create any cycles. Third, the final DAG structure’s additive578

models are trained once again with sparse regression to encourage the removal of extraneous edges.579

Step 1 First, a preliminary search is made over all possible edges via sparse regression. For each580

variable j ∈ [d], one fits an additive model based on all of the other possible directed edges (k, j)581

using sparse regression. This allows for a smaller subset of the quadratic number of edges to be582

considered, especially in the high-dimensional setting when d is large.583

The mean-squared error objective is minimized based on the assumption that the noise terms are584

Gaussian.585

log p(εj) = − log(2πσ2
j )−

1

2σ2
j

· ε2j (20)

586

σ̂2
j := ∥Xj − X̂j∥2 = ∥Xj −

∑
k

f̂k→j(Xk)∥2 (21)

Step 2 Second, the bulk of the algorithm centers around a greedy approach for gradually adding587

directed edges which do not disagree with the partial structure which has been built up so far. Every588

edge from the local neighborhood determined in step 1 is considered to be added, so long as it would589

not create a cycle in the DAG. Each edge is ranked by its ability to improve the log-likelihood of the590

overall model, by training an additive model with the selected edges.591

σ̂2
j (Nj) := ∥Xj −

∑
k∈Nj

f̂k→j(Xk)∥2 (22)

592

(k∗, j∗) = argmin
(k,j) acyclic

{
σ̂2
j (Nj ∪ {k})− σ̂2

j (Nj)} (23)

Importantly, for j ̸= j∗, it is not necessary to retrain the additive models to recompute the values of593

σ̂2
j (Nj), because they are not affected by the inclusion of edges in other parts of the graph (except594

that it may block an edge from being added due to the acyclicity constraint).595

Step 3 Lastly, the collection of directed edges which were selected in step 2 are used to train a final596

model end-to-end, with additional regularization designed to shrink unnecessary edges to become597

sparse. Additive terms f̂k→j which are deemed insignificant are removed from the model completely598

and the final set of edges define the final DAG.599

B.2 Sparse Interaction Additive Network600

SIAN (Sparse Interaction Additive Network) is an approach designed to train higher-order additive601

models using neural network techniques. This approach also consists of three main phases. In our602

case, we will follow CAM’s implicit Gaussian assumption by minimizing the mean-squared error603

objective which corresponds with the likelihood of independent Gaussian variables.604

In the first phase, a typical neural network fθ is trained to predict an output variable in terms of the605

input variables.606

σ̂2(θ) := ∥Y − Ŷ (θ)∥2 = ∥Y − f̂θ(X[d])∥2 (24)
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In the second phase, interpretability techniques are combined with a special feature interaction607

selection (FIS) algorithm which ensures a sufficient coverage of the complex space of interactions608

while avoiding the exponential blow up in complexity from exploring all higher-order interactions.609

The final result of the first two phases is a collection I ⊆ P([d]) which is some collection of all610

of the feature interactions S which are important to predicting the output variable. Finally, the set611

of collected higher-order interactions are then used to train a neural-network-based additive model612

which obeys the interaction structure determined in the selection algorithm.613

σ̂2
I(θ) := ∥Y − ŶI(θ)∥2 = ∥Y −

∑
S

f̂S,θS (XS)∥2 (25)

This final additive neural network has pleasant properties like being more interpretable as well as614

more robust than the original neural network. In our context, we will use these neural additive models615

as the major component of modeling the hypergraphical additive structure we assumed previously.616

B.3 Higher-order Causal Additive Model617

In our algorithm, we broadly follow the same steps as the original CAM algorithm, replacing all com-618

ponents which are limited to one-dimensional additive models with their higher-order counterparts.619

In the first step of our algorithm, we must reduce the number of candidate edges which will be620

considered in the downstream steps. Although CAM mentions this is only necessary in the high-621

dimensional setting for their additive assumption, ours is absolutely necessary except in extremely622

small cases (perhaps d ≤ 5). This is because instead of searching over all candidate directed edges,623

{(k, j) : k ̸= j, j ∈ [d]}, we must perform a search over the much larger space of all candidate624

directed hyperedges, {(S, j) : S ⊆ ([d] \ j), j ∈ [d]}.625

For this purpose, we employ the first two phases of SIAN to each of the variables. That is, for each626

j ∈ [d], we train a neural network to predict Xj from X−j and then run a feature interaction selection627

algorithm to find a neighborhood of important interactions which are useful for predicting Xj .628

σ̂2
j (θ) := ∥Xj − X̂j(θ)∥2 = ∥Xj − f̂j,θ(X[d]−k)∥2 (26)

629

Ij = FeatureInteractionSelection(f̂j,θ) (27)

These selected interactions are then taken as the candidate set of directed hyperedges to be used in630

the later parts of the algorithm.631

H̃ := {(S, j) : S ∈ Ij , j ∈ [d]} (28)

Note that these hyperedges are also given an importance score from the original FIS algorithm and632

may be sorted by their a priori importance.633

In the second step of our algorithm, we follow the greedy approach of including hyperedges based on634

the improvement to the log-likelihood. This requires training many different additive models obeying635

the interaction constraints imposed by the current hyper DAG. We use the additive models from the636

third phase of SIAN to minimize an MSE objective as before.637

In particular, we train multiple SIAN additive models to compare the different improvements in638

scores coming from adding all possible hyperedges (S, j) ∈ H̃. This improvement in score is again639

interpreted as the improvement in reducing the noise of the added Gaussian via reduction in MSE.640

σ̂2
j (N ′

j) := ∥Xj −
∑
S∈N ′

j

f̂S→j(XS)∥2 (29)

641

(S∗, j∗) = argmin
(S,j) acyclic

{
σ̂2
j (N ′

j ∪ S)− σ̂2
j (N ′

j)} (30)
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Because this requires training a large amount of additive models, we make multiple concessions to642

allow for a more rapid selection process during step 2 which can otherwise take a significant chunk643

of the overall algorithm time. Because of our higher-order neighborhood selection from step 1, it is at644

least feasible to search over higher-order interactions without facing an exponential blowup in the645

number of additive models which must be trained.646

However, in practice we further reduce the number of additive models we train to a maximum of 10647

interactions per each variable Xj . As tuples are selected from the candidate superset H̃ to be actually648

included into the model, additional candidate hyperedges are replenished to be explored in future649

iterations of the step 2 loop.650

Furthermore, instead of training these SIAN additive models until there is no further reduction in651

MSE, we only train each for five epochs in total. We find that this gives a strong enough measurement652

of the performances of the differnt additive models without cutting significantly into the overall time653

taken. Moreover, because the heuristic coming from the first two phases of SIAN used in step 1 of654

our algorithm is generally quite good, an approximate measure of the reduction in score from each655

hyperedge in step 2 seems to generally be sufficient.656

In the third step of our algorithm, we again follow the CAM setup and train an end-to-end SIAN model657

which obeys the structure which was greedily added in step two of the algorithm. L1 regularization658

terms are used on each of the shape functions in the additive model to encourage shrinkage in the659

unnecessary terms of the additive model. Similar to CAM, unimportant additive terms are thresholded660

away and removed from the final hyper DAG.661

L(θ) := (31)∑
j

∥Xj −
∑

(S,j)∈H

f̂S→j∥2 + λ1

∑
(S,j)∈H

|f̂S→j |

For comparison against other DAG-based methods, the hyper DAG is further projected onto its662

equivalent DAG formulation.663
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NeurIPS Paper Checklist664

The checklist is designed to encourage best practices for responsible machine learning research,665

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove666

the checklist: The papers not including the checklist will be desk rejected. The checklist should667

follow the references and follow the (optional) supplemental material. The checklist does NOT count668

towards the page limit.669

Please read the checklist guidelines carefully for information on how to answer these questions. For670

each question in the checklist:671

• You should answer [Yes] , [No] , or [NA] .672

• [NA] means either that the question is Not Applicable for that particular paper or the673

relevant information is Not Available.674

• Please provide a short (1â2 sentence) justification right after your answer (even for NA).675

The checklist answers are an integral part of your paper submission. They are visible to the676

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it677

(after eventual revisions) with the final version of your paper, and its final version will be published678

with the paper.679

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.680

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a681

proper justification is given (e.g., "error bars are not reported because it would be too computationally682

expensive" or "we were unable to find the license for the dataset we used"). In general, answering683

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we684

acknowledge that the true answer is often more nuanced, so please just use your best judgment and685

write a justification to elaborate. All supporting evidence can appear either in the main paper or the686

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification687

please point to the section(s) where related material for the question can be found.688

IMPORTANT, please:689

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",690

• Keep the checklist subsection headings, questions/answers and guidelines below.691

• Do not modify the questions and only use the provided macros for your answers.692

1. Claims693

Question: Do the main claims made in the abstract and introduction accurately reflect the694

paper’s contributions and scope?695

Answer: [Yes]696

Justification: The claims in the abstract and introduction accurately reflect the paper’s697

contributions, in our opinion.698

Guidelines:699

• The answer NA means that the abstract and introduction do not include the claims700

made in the paper.701

• The abstract and/or introduction should clearly state the claims made, including the702

contributions made in the paper and important assumptions and limitations. A No or703

NA answer to this question will not be perceived well by the reviewers.704

• The claims made should match theoretical and experimental results, and reflect how705

much the results can be expected to generalize to other settings.706

• It is fine to include aspirational goals as motivation as long as it is clear that these goals707

are not attained by the paper.708

2. Limitations709

Question: Does the paper discuss the limitations of the work performed by the authors?710

Answer: [Yes]711
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Justification: The limitations of the empirical evaluation and algorithm choices are discussed.712

Guidelines:713

• The answer NA means that the paper has no limitation while the answer No means that714

the paper has limitations, but those are not discussed in the paper.715

• The authors are encouraged to create a separate "Limitations" section in their paper.716

• The paper should point out any strong assumptions and how robust the results are to717

violations of these assumptions (e.g., independence assumptions, noiseless settings,718

model well-specification, asymptotic approximations only holding locally). The authors719

should reflect on how these assumptions might be violated in practice and what the720

implications would be.721

• The authors should reflect on the scope of the claims made, e.g., if the approach was722

only tested on a few datasets or with a few runs. In general, empirical results often723

depend on implicit assumptions, which should be articulated.724

• The authors should reflect on the factors that influence the performance of the approach.725

For example, a facial recognition algorithm may perform poorly when image resolution726

is low or images are taken in low lighting. Or a speech-to-text system might not be727

used reliably to provide closed captions for online lectures because it fails to handle728

technical jargon.729

• The authors should discuss the computational efficiency of the proposed algorithms730

and how they scale with dataset size.731

• If applicable, the authors should discuss possible limitations of their approach to732

address problems of privacy and fairness.733

• While the authors might fear that complete honesty about limitations might be used by734

reviewers as grounds for rejection, a worse outcome might be that reviewers discover735

limitations that aren’t acknowledged in the paper. The authors should use their best736

judgment and recognize that individual actions in favor of transparency play an impor-737

tant role in developing norms that preserve the integrity of the community. Reviewers738

will be specifically instructed to not penalize honesty concerning limitations.739

3. Theory assumptions and proofs740

Question: For each theoretical result, does the paper provide the full set of assumptions and741

a complete (and correct) proof?742

Answer: [Yes]743

Justification: Proofs are provided for all theorems and relevant references are additionally744

provided.745

Guidelines:746

• The answer NA means that the paper does not include theoretical results.747

• All the theorems, formulas, and proofs in the paper should be numbered and cross-748

referenced.749

• All assumptions should be clearly stated or referenced in the statement of any theorems.750

• The proofs can either appear in the main paper or the supplemental material, but if751

they appear in the supplemental material, the authors are encouraged to provide a short752

proof sketch to provide intuition.753

• Inversely, any informal proof provided in the core of the paper should be complemented754

by formal proofs provided in appendix or supplemental material.755

• Theorems and Lemmas that the proof relies upon should be properly referenced.756

4. Experimental result reproducibility757

Question: Does the paper fully disclose all the information needed to reproduce the main ex-758

perimental results of the paper to the extent that it affects the main claims and/or conclusions759

of the paper (regardless of whether the code and data are provided or not)?760

Answer: [Yes]761

Justification: The synthetic DGP is simple and described in detail. The algorithm is described762

in the appendix to sufficient detail. Additionally, code for the DGP and algorithm will be763

provided.764
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Guidelines:765

• The answer NA means that the paper does not include experiments.766

• If the paper includes experiments, a No answer to this question will not be perceived767

well by the reviewers: Making the paper reproducible is important, regardless of768

whether the code and data are provided or not.769

• If the contribution is a dataset and/or model, the authors should describe the steps taken770

to make their results reproducible or verifiable.771

• Depending on the contribution, reproducibility can be accomplished in various ways.772

For example, if the contribution is a novel architecture, describing the architecture fully773

might suffice, or if the contribution is a specific model and empirical evaluation, it may774

be necessary to either make it possible for others to replicate the model with the same775

dataset, or provide access to the model. In general. releasing code and data is often776

one good way to accomplish this, but reproducibility can also be provided via detailed777

instructions for how to replicate the results, access to a hosted model (e.g., in the case778

of a large language model), releasing of a model checkpoint, or other means that are779

appropriate to the research performed.780

• While NeurIPS does not require releasing code, the conference does require all submis-781

sions to provide some reasonable avenue for reproducibility, which may depend on the782

nature of the contribution. For example783

(a) If the contribution is primarily a new algorithm, the paper should make it clear how784

to reproduce that algorithm.785

(b) If the contribution is primarily a new model architecture, the paper should describe786

the architecture clearly and fully.787

(c) If the contribution is a new model (e.g., a large language model), then there should788

either be a way to access this model for reproducing the results or a way to reproduce789

the model (e.g., with an open-source dataset or instructions for how to construct790

the dataset).791

(d) We recognize that reproducibility may be tricky in some cases, in which case792

authors are welcome to describe the particular way they provide for reproducibility.793

In the case of closed-source models, it may be that access to the model is limited in794

some way (e.g., to registered users), but it should be possible for other researchers795

to have some path to reproducing or verifying the results.796

5. Open access to data and code797

Question: Does the paper provide open access to the data and code, with sufficient instruc-798

tions to faithfully reproduce the main experimental results, as described in supplemental799

material?800

Answer: [Yes]801

Justification: Experiment data and code will be released to enable reproducibility.802

Guidelines:803

• The answer NA means that paper does not include experiments requiring code.804

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/805

public/guides/CodeSubmissionPolicy) for more details.806

• While we encourage the release of code and data, we understand that this might not807

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not808

including code, unless this is central to the contribution (e.g., for a new open-source809

benchmark).810

• The instructions should contain the exact command and environment needed to run to811

reproduce the results. See the NeurIPS code and data submission guidelines (https:812

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.813

• The authors should provide instructions on data access and preparation, including how814

to access the raw data, preprocessed data, intermediate data, and generated data, etc.815

• The authors should provide scripts to reproduce all experimental results for the new816

proposed method and baselines. If only a subset of experiments are reproducible, they817

should state which ones are omitted from the script and why.818
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• At submission time, to preserve anonymity, the authors should release anonymized819

versions (if applicable).820

• Providing as much information as possible in supplemental material (appended to the821

paper) is recommended, but including URLs to data and code is permitted.822

6. Experimental setting/details823

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-824

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the825

results?826

Answer: [Yes]827

Justification: Experiment settings are simple and provided in full detail.828

Guidelines:829

• The answer NA means that the paper does not include experiments.830

• The experimental setting should be presented in the core of the paper to a level of detail831

that is necessary to appreciate the results and make sense of them.832

• The full details can be provided either with the code, in appendix, or as supplemental833

material.834

7. Experiment statistical significance835

Question: Does the paper report error bars suitably and correctly defined or other appropriate836

information about the statistical significance of the experiments?837

Answer: [Yes]838

Justification: Metrics are provided as mean and standard deviation across three runs.839

Guidelines:840

• The answer NA means that the paper does not include experiments.841

• The authors should answer "Yes" if the results are accompanied by error bars, confi-842

dence intervals, or statistical significance tests, at least for the experiments that support843

the main claims of the paper.844

• The factors of variability that the error bars are capturing should be clearly stated (for845

example, train/test split, initialization, random drawing of some parameter, or overall846

run with given experimental conditions).847

• The method for calculating the error bars should be explained (closed form formula,848

call to a library function, bootstrap, etc.)849

• The assumptions made should be given (e.g., Normally distributed errors).850

• It should be clear whether the error bar is the standard deviation or the standard error851

of the mean.852

• It is OK to report 1-sigma error bars, but one should state it. The authors should853

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis854

of Normality of errors is not verified.855

• For asymmetric distributions, the authors should be careful not to show in tables or856

figures symmetric error bars that would yield results that are out of range (e.g. negative857

error rates).858

• If error bars are reported in tables or plots, The authors should explain in the text how859

they were calculated and reference the corresponding figures or tables in the text.860

8. Experiments compute resources861

Question: For each experiment, does the paper provide sufficient information on the com-862

puter resources (type of compute workers, memory, time of execution) needed to reproduce863

the experiments?864

Answer: [No]865

Justification: Exact algorithm time was not computed. CAM and HCAM take on the order866

of several hours.867

Guidelines:868

• The answer NA means that the paper does not include experiments.869
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,870

or cloud provider, including relevant memory and storage.871

• The paper should provide the amount of compute required for each of the individual872

experimental runs as well as estimate the total compute.873

• The paper should disclose whether the full research project required more compute874

than the experiments reported in the paper (e.g., preliminary or failed experiments that875

didn’t make it into the paper).876

9. Code of ethics877

Question: Does the research conducted in the paper conform, in every respect, with the878

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?879

Answer: [Yes]880

Justification: The authors followed the NeurIPS Code of Ethics.881

Guidelines:882

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.883

• If the authors answer No, they should explain the special circumstances that require a884

deviation from the Code of Ethics.885

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-886

eration due to laws or regulations in their jurisdiction).887

10. Broader impacts888

Question: Does the paper discuss both potential positive societal impacts and negative889

societal impacts of the work performed?890

Answer: [No]891

Justification: No immediate societal impacts worth highlighting. Consists of mostly theoret-892

ical contributions.893

Guidelines:894

• The answer NA means that there is no societal impact of the work performed.895

• If the authors answer NA or No, they should explain why their work has no societal896

impact or why the paper does not address societal impact.897

• Examples of negative societal impacts include potential malicious or unintended uses898

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations899

(e.g., deployment of technologies that could make decisions that unfairly impact specific900

groups), privacy considerations, and security considerations.901

• The conference expects that many papers will be foundational research and not tied902

to particular applications, let alone deployments. However, if there is a direct path to903

any negative applications, the authors should point it out. For example, it is legitimate904

to point out that an improvement in the quality of generative models could be used to905

generate deepfakes for disinformation. On the other hand, it is not needed to point out906

that a generic algorithm for optimizing neural networks could enable people to train907

models that generate Deepfakes faster.908

• The authors should consider possible harms that could arise when the technology is909

being used as intended and functioning correctly, harms that could arise when the910

technology is being used as intended but gives incorrect results, and harms following911

from (intentional or unintentional) misuse of the technology.912

• If there are negative societal impacts, the authors could also discuss possible mitigation913

strategies (e.g., gated release of models, providing defenses in addition to attacks,914

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from915

feedback over time, improving the efficiency and accessibility of ML).916

11. Safeguards917

Question: Does the paper describe safeguards that have been put in place for responsible918

release of data or models that have a high risk for misuse (e.g., pretrained language models,919

image generators, or scraped datasets)?920

Answer: [NA]921
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Justification: Not relevant.922

Guidelines:923

• The answer NA means that the paper poses no such risks.924

• Released models that have a high risk for misuse or dual-use should be released with925

necessary safeguards to allow for controlled use of the model, for example by requiring926

that users adhere to usage guidelines or restrictions to access the model or implementing927

safety filters.928

• Datasets that have been scraped from the Internet could pose safety risks. The authors929

should describe how they avoided releasing unsafe images.930

• We recognize that providing effective safeguards is challenging, and many papers do931

not require this, but we encourage authors to take this into account and make a best932

faith effort.933

12. Licenses for existing assets934

Question: Are the creators or original owners of assets (e.g., code, data, models), used in935

the paper, properly credited and are the license and terms of use explicitly mentioned and936

properly respected?937

Answer: [Yes]938

Justification: Provided alongside paper and code.939

Guidelines:940

• The answer NA means that the paper does not use existing assets.941

• The authors should cite the original paper that produced the code package or dataset.942

• The authors should state which version of the asset is used and, if possible, include a943

URL.944

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.945

• For scraped data from a particular source (e.g., website), the copyright and terms of946

service of that source should be provided.947

• If assets are released, the license, copyright information, and terms of use in the948

package should be provided. For popular datasets, paperswithcode.com/datasets949

has curated licenses for some datasets. Their licensing guide can help determine the950

license of a dataset.951

• For existing datasets that are re-packaged, both the original license and the license of952

the derived asset (if it has changed) should be provided.953

• If this information is not available online, the authors are encouraged to reach out to954

the asset’s creators.955

13. New assets956

Question: Are new assets introduced in the paper well documented and is the documentation957

provided alongside the assets?958

Answer: [Yes]959

Justification: Code provided.960

Guidelines:961

• The answer NA means that the paper does not release new assets.962

• Researchers should communicate the details of the dataset/code/model as part of their963

submissions via structured templates. This includes details about training, license,964

limitations, etc.965

• The paper should discuss whether and how consent was obtained from people whose966

asset is used.967

• At submission time, remember to anonymize your assets (if applicable). You can either968

create an anonymized URL or include an anonymized zip file.969

14. Crowdsourcing and research with human subjects970

Question: For crowdsourcing experiments and research with human subjects, does the paper971

include the full text of instructions given to participants and screenshots, if applicable, as972

well as details about compensation (if any)?973
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Answer: [NA]974

Justification: Not applicable.975

Guidelines:976

• The answer NA means that the paper does not involve crowdsourcing nor research with977

human subjects.978

• Including this information in the supplemental material is fine, but if the main contribu-979

tion of the paper involves human subjects, then as much detail as possible should be980

included in the main paper.981

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,982

or other labor should be paid at least the minimum wage in the country of the data983

collector.984

15. Institutional review board (IRB) approvals or equivalent for research with human985

subjects986

Question: Does the paper describe potential risks incurred by study participants, whether987

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)988

approvals (or an equivalent approval/review based on the requirements of your country or989

institution) were obtained?990

Answer: [NA]991

Justification: Not applicable.992

Guidelines:993

• The answer NA means that the paper does not involve crowdsourcing nor research with994

human subjects.995

• Depending on the country in which research is conducted, IRB approval (or equivalent)996

may be required for any human subjects research. If you obtained IRB approval, you997

should clearly state this in the paper.998

• We recognize that the procedures for this may vary significantly between institutions999

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1000

guidelines for their institution.1001

• For initial submissions, do not include any information that would break anonymity (if1002

applicable), such as the institution conducting the review.1003

16. Declaration of LLM usage1004

Question: Does the paper describe the usage of LLMs if it is an important, original, or1005

non-standard component of the core methods in this research? Note that if the LLM is used1006

only for writing, editing, or formatting purposes and does not impact the core methodology,1007

scientific rigorousness, or originality of the research, declaration is not required.1008

Answer: [NA]1009

Justification: LLMs not used in non-standard ways.1010

Guidelines:1011

• The answer NA means that the core method development in this research does not1012

involve LLMs as any important, original, or non-standard components.1013

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1014

for what should or should not be described.1015
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