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Abstract

Causal structure learning has long been the central task of inferring causal insights
from data. Despite the abundance of real-world processes exhibiting higher-order
mechanisms, however, an explicit treatment of interactions in causal discovery
has received little attention. In this work, we focus on extending the causal
additive model (CAM) to additive models with higher-order interaction. This
second level of modularity we introduce to the structure learning problem is most
easily represented by a directed acyclic hypergraph. We introduce the necessary
definitions and theoretical tools to handle the novel structure we introduce and then
provide identifiability results for the hyper DAG, extending the typical Markov
equivalence classes. We next provide insights into why learning the more complex
hypergraph structure may actually lead to better empirical results. In particular,
more restrictive assumptions like CAM correspond to easier-to-learn hyper DAGs
and better finite sample complexity. We finally develop an extension of the greedy
CAM algorithm which can handle the more complex hyper DAG search space and
demonstrate its empirical usefulness in synthetic experiments.

1 Introduction

Causal structure learning aims to infer the underlying causal relationships among given variables
from observational or interventional data [Spirtes et al., 2001]], which is crucial for understanding
complex systems and has been widely applied in different fields, including biology [Sachs et al.|
2005]] and Earth system science [Runge et al., [2019]]. Various approaches have been developed
for causal discovery, including constraint-based, score-based, and functional causal model-based
methods [Glymour et al.| 2019].

Constraint-based methods, such as the PC [Spirtes and Glymour, |1991]] and FCI [Spirtes et al., | 2001]]
algorithms, rely on conditional independence tests to identify the causal structure. Score-based
methods, on the other hand, optimize a scoring function, such as the Bayesian Information Criterion
(BIC) [Schwarz,|1978]], to find the best causal structure [Chickering| [2002| |Singh and Moore, [2005,
Yuan et al., 2011} Bartlett and Cussens, [2017]]. Both constraint-based and score-based approaches
can only identify the underlying causal structure up to Markov equivalence [Spirtes et al., [2001]],
indicating that they cannot distinguish between different structures that encode the same set of
conditional independence relationships.

Functional causal model-based methods address this limitation by introducing proper functional
assumptions on the causal relationships, thus enabling the identification of the whole DAG. Examples
include the linear non-Gaussian model [[Shimizu et al.| 2006, additive noise model (ANM) [Hoyer
et al.| 2008]], post-nonlinear causal model [Zhang and Hyvirinen, [2009], heteroscedastic noise model
(HNM) [Xu et al.| 2022, Immer et al.| 2023, and causal additive model (CAM) [Biihlmann et al.,
2014]. Among these, CAM assumes that the causal relationships are additive in the variables, which,
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despite being more restrictive than the general ANM framework, has been shown to achieve superior
performance in various empirical studies [Lachapelle et al.l 2020, |[Zheng et al.| 2020, |[Ng et al., [2022]
Rolland et al.| 2022]], partly owing to its improved statistical power.

In this work, we revisit the additive structural assumption of CAM by incorporating recent develop-
ments in training higher-order additive models, extending the functional causal model to explicitly
consider the higher-order interactions within the causal mechanisms. Higher-order mechanisms are
known to exist in a variety of real-world processes and are believed to be critical into modeling and
understanding a number of different scientific phenomena Battiston et al.| [2020], [Majhi et al.| [2022].
Nevertheless, previous approaches have taken an all-or-nothing approach, either (a) directly following
CAM-like assumptions or (b) modeling all possible interactions between parents of a child node.

Instead, we find that a directed hypergraph can succinctly represent the necessary structure to
interpolate between the simplicity of CAM and the complexity of the full ANM. Specifically, our
major contributions are as follows:

1. We develop the theoretical extension from graphs to hypergraphs across three total settings
(undirected graphical models, classical DAG models, and additive noise models), and prove
the identifiability of the hypergraph structures we introduce.

2. We develop an algorithm for learning the hyper DAG alongside its structural equations
directly from data, extending the greedy algorithm for CAM, and showing improved per-
formance over existing approaches on data specifically containing higher-order variable
interactions.

2 Hypergraph Methods

In this work we will introduce three different generalizations to existing structure learning approaches
which extends the existing graphical representations (Markov networks, Bayesian networks, etc.) to
their corresponding hypergraphical representations:

1. Undirected hypergraphical models
2. Directed hypergraphical models for discrete variables (classical regime)

3. Directed hypergraphical models for continuous variables (additive noise model)

We will first introduce the ‘hyper Markov property’ which will be respected by distributions which
are ‘Markov’ with respect to a given hypergraph, rather than Markov with respect to a given graph.
We emphasize that since hypergraphs are a strict generalization of existing graphical models, we can
see this hyper DAG or HDAG structure as an intermediate level of structure between the DAG and
the SEM (structural equation model). In that sense, we write:

DAGs < HDAGs < SEMs (1)

In what follows, we will demonstrate that this more fine-grained structure is not only identifiable
directly from data, but also that this perspective allows for greater insights into the identifiability of
different hypergraphs (and hence graphs) using finite observations rather than the population limit.

2.1 Undirected Models

Let us write X € R? for some number of dimensions d € N. We will later choose to restrict to
discrete, continuous, or mixed X as appropriate. We write an undirected graph as G’ = (V, E’) and
undirected hypergraph as H' = (V, H'), where we take the vertices as V = [d] := {1,...,d}, the
undirected edges as E' C {(4,7) : i # j € V'}, and the undirected hyperedges as H' C {S C V'}.
We will sometimes abuse notation and write (4, j) € G’ to mean (i,j) € E’ and similarly for H'.
(Note that we are reserving the unprimed versions for the directed versions.)

We will assume throughout this work that we are in the case of fully observed variables. Moreover,
we will assume that the density is strictly positive to ensure (a) that there is no confusion caused by
switching between the pairwise, local, and global properties; and (b) that the score-based definitions
we introduce on the log-probability face no ambiguities in regions of zero density.
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Definition 1. Undirected Markov Property. Let us take N (4) to denote the neighbors of ¢ € V. We
may say that some distribution px () is (locally) Markov with respect to some undirected graph G’
if it holds for any 4 that “X; 1L Xv_ n@)—{i} | XN ()", where — denotes set minus. Preparing for
our focus on additive models of the log probability, this can equally be required as:

px(®) = pney (Ene) - Pi(TileNG) - Pv—NE)—{i} (@Bv—N@) -} TNG) (2
Ex(x) == logpx (x) = Envay(®ny) +E&i(milenay) +Ev_ni) -y (®v N - ENG))  B)

where there exists some conditional probabilities p; and py_ n(;)—{s; or some conditional log
probabilities &; and &y n(;)— {4} such that these equations hold true. This can be additionally written
in terms of the clique representation, when we write all cliques of the graph as CI1(G') = {S C V :
S isaclique in G'}, as follows:

log px (z) = Z 55 zs) “

SeCl(g

Definition 2. Undirected Hyper-Markov Property. It is now straightforward to generalize this
property to hypergraphs as follows:

logpx (x) =: Ex(@) = Y &s(as) &)

SeH’

That is, we write the hypergraph edges as specifically representing the energy terms in the log-
probability function. It is straightforward to verify that this is strictly more general than hypergraphs
which can be created as a result of the maximal clique structure of a typical graph. Nonetheless, in
what follows we hope to focus on the identifiability as well as the usefulness of this finer-grained
structure for graphical models.

2.2 Directed Classical Models

We will write a directed graph as G = (V, F) and a directed hypergraph as H = (V, H) where
the directed edges are E C {(k,j) : k # j € V} and the directed hyperedges are H C {(S,j) :
j eV, S C(V —j)} Thatis, we are assuming that each hyperedge has only one "out arrow" and
up to |S| "in arrows". It is hoped the purpose for this is relatively clear in the context of a causal
diagram which must use several parents to generate a single child. We write the ‘parents of j in G’ as
Pag(j) = {k € [d] : (k, j) € G} and the ‘hyperparents of j in 1’ as HypPay, (j) = {S : (S,j) € H},
where the dependence on G and ‘H will be dropped when obvious.

Definition 3. Directed Markov Property. Here, we may once again recall the classical Markov
property with respect to a DAG to be written as:

d
log p(x Zlogp (zi|T pa(i)) = Zﬂ(xﬂmpa(i)) (6)
i=1

i=1

It is very easy to see that we may rewrite this using extraneous functions as:

log p( Z > Oasws) — Z(wpa) (7

i=1 SCPa(i)

where it is now the case that we do not have the 6 energy terms explicitly representing a conditional
distribution, but are instead arbitrary functions which are then set to the proper normalization via
the Z function. It can be seen that the Z function does not explicitly depend on the value of x;, but
normalizes to a distribution based on only the parents alone. The extraneous 6 functions which are
written as all subsets are useful for the next step generalizing to hypergraph structures.

Definition 4. Directed Hyper-Markov Property. We follow the structure above from the typical
DAG framework, but replace the fully-connected parent structure with the more nuanced hypergraph
structure. In particular, the energy terms in each of the conditional distributions are replaced with a
more specific additive model structure, rather than assuming there is a generic function:

log p( Z > 0@ ms) — (@) ®)

i=1  S€&HypPa(i)
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It is again straightforward to see that this strictly generalizes the cases which are representable by
the typical DAG. In particular, taking the hyperparents to be all subsets of the parents recovers the
previous functional form (Figure [Tff). However, other structures mimicking CAM and LINGAM type
assumptions are also possible (Figure [Id). Further HDAGs beyond these two existing in the literature
are also possible (Figure [I). We will further assume ‘causal minimality’ of the HDAG meaning
the hyperparent set is downwards closed w.r.t subsets and each maximal element has a nontrivial ¢
function. See the discussion and proofs in the appendix for further details.

It is also relatively clear to see how this directed hyper-Markov property overlaps with the undirected
hyper-Markov property, perhaps moreso than the typical Markov properties. Moreover, it becomes
clear that the moralized graph corresponds to including the Z terms whereas the skeleton corresponds
to including only the 6 terms, see also Table [T} We will make this connection more clear in Section
[3.2] where we show identifiability of the HDAG up to its hyper Markov equivalence class (HMEC).

2.3 Directed Additive Noise Models

For continuous variables, we will generate data from the additive noise model (ANM), meaning that
all variables are a deterministic function of their parent variables, plus an additive noise term.
Definition 5. Additive Noise Model. This may be written as:

Xj = fra()—i (Xpaj) + ®)
Each of the ¢; are taken to be independent, mean-zero random variables.

Definition 6. Higher-Order Additive Noise Model. We may once again generalize to the higher-order
additive model through the use of the structure encoded by the directed hypergraph.

Xi=( Y soilas)) +e (10)

SeHypPa(j)

Specifically, we endow the generating function fp,(;)—,; with an additive model structure obeying
the hyperparents of the HDAG. Models like CAM or LinGAM then correspond to using singleton
hyperparents, whereas the most general ANM corresponds to using the entire block of parents as the
largest hyperparent, as depicted in Figure[I] We will follow CAM [Biihmann et al[[2014] in assuming
Gaussian noise for algorithmic purposes via the minimization of mean-squared error corresponding
to maximizing the log-likelihood; however, surprisingly, we show in Theorem 4] that the our settings
2 and 3 actually overlap in the case of additive Gaussian noise.

CAM/ LINGAM Higher-order CAM ANM
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Figure 1: A depiction of the distinguishing power for hypergraphs corresponding to the same DAG.
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3 Structure Identifiability

3.1 Undirected Models

First recall that under our assumptions of fully observed variables and strictly positive density,
meaning that the density function is identifiable directly from the observed distribution (under mild
assumptions like continuity for the continuous variable case) [Rosenblatt [[1956].

Importantly, then, one may only be concerned in measuring the hypergraph structure as described in
Section 2.1} however, this proves to be equally straightforward. For the case of graphical models and
mixed-type variables,|Zheng et al.|[2023] write the generalized precision matrix as:

o=y e = G552 )

In the case of hypergraphical models and discrete variables, Enouen and Sugiyamal[2024]] similarly
write the existence of ‘higher-order information’ for some subset T C [d] (where T 2 {i,j} is
chosen to imply higher-order) if it is the case that:

Qp = H Z GS(xS)H >0 where logp(z) = Z@S(xs) (12)
s

SDOT

A straightforward combination of these approaches are sufficient for recovery of the hyper Markov
network or undirected hypergraph. Nonetheless, our experiments will instead focus on identification
of the directed structure as in the following two sections. Thus, for our purposes it is sufficient to say
that the density and log density functions are identifiable directly from the observed distribution.

3.2 Directed Classical Models

Before our main theorem of identifiability extending the result of [Verma and Pearl|[1990], we must
first introduce the notion of multi-dependence to extend the typical notion of conditional independence
which is the workhorse of causal structure learning. We will focus on discrete and finite variables as
in the classical case[[Verma, |1993| |Pearl, 2009]; however, most results clearly extend to continuous or
mixed variables under mild conditions, and we later discuss one such special case in TheoremE}

Definition 7. Conditional Multi-dependence. We write that X; and X; are dependent if the dis-
tribution log p(x;, x;) must be written with a 2D energy term, 6;;(x;, z;), rather than the sum of
two 1D energy terms, 6;(x;) + 0;(z;), (corresponding to the product when the log is removed). We
will write that X;, X;, and X, are tri-dependent (or generally multidependent), if the distribution
log p(z;,;, x;) must be written with a 3D energy term, rather than the sum of three 2D energy
terms. It can be seen that this does not have a convenient product formulation like the classical case
of dependence and independence because of the "mixing" or "torsion" between the three 2D terms.
Nonetheless, we will attempt to prove the usefulness of such a definition in the following theorem.
Generalization to conditional tests is straightforward.

Theorem 1. The HDAG is identifiable up to the hyper Markov Equivalence classes (HMECs),
consisting of all HDAGs with the same "body" and the same (unshielded) "multi-colliders", paralleling
the existing result identifying DAGs up to their skeleton and (unshielded) colliders.

In the same sense that a condi-
tional independence test can never

eliminate a causal arrow between Table 1: Notation for hypergraphs
. " . DAG terms HDAG terms
FWO variables, a conditional multi- G’, undirected graph H’, undirected hypergraph
independence test can never sepa- G, directed acyclic graph (DAG) ‘H, hyper DAG or HDAG
rate a higher_order causal relation- moralized graph of a DAG immoralized hypergraph of an HDAG
. skeleton of a DAG body of an HDAG
ship between a set of three or more (unshielded) collider (unshielded) multicollider

variables. Removing the arrow-
heads from the DAG returns the
DAG’s skeleton; similarly, removing the arrowheads from the HDAG returns the HDAG’s body,
see Table [T]and Figure[2] In some sense, this half of the theorem about the “body identifiability”
immediately states that the structure we introduced is identifiable.
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For multicolliders, recall that a collider occurs when there is a conditional dependence which is
broken after marginalizing out the child, or equally a conditional independence which is broken when
conditioning on the child. The multicollider of an HDAG will occur similarly via a multidependence
which is broken after marginalizing out the child. Although collisions between two parents will
already be covered, there are cases of three or more parents which are unshielded and can hence
be identified from Theoremm In particular, there are cases which are not identified in the classical
setting, see the RHS of Figure [2] This seeming anomaly is in part due to the historical conflation
over time between what structure is recoverable from the conditional independence tests vs. what
structure is recoverable from the observed distribution. Indeed, the MEC only describes what is
distinguishable via the conditional independence conditions, making it unable to detect what can be
seen via the conditional multi-independence test we introduce.

Another key consequence of this different perspective will be a statistical one. In particular, for a
K -dimensional energy term in the body of an HDAG, we know that it requires on the order of O(n*)
samples to be appropriately learned. Consequently, without access to infinite samples, this places
further restrictions on the HMEC classes (and hence MEC classes) of ‘distinguishability under finite
samples’, whereas MECs are only able to easily represent ‘distinguishability under infinite samples’
as in the asymptotic regime.

DAGs of an MEC HDAGs of an MEC HDAGs of an HMEC

24 DAGs 432 HDAGS/]\ 24 HDAGS/I 6 HDAGs
all HDAG by multi-
: by body S

24 DAGs 6 HDAGs

000

000
000

Figure 2: A gradual refinement of the DAGs within a Markov Equivalence Class (MEC) to a stronger
refinement of HDAGs based on Theorem|I|to a Hyper Markov Equivalence Class (HMEC). There are
d = 4 variables with a fully-connected DAG structure. The green triangle represents the third-degree
hyperedge in the body of an HDAG. Lack of arrows indicate multiple possible orientations for
different DAGs/ HDAGs of the same MEC/ HMEC.

3.3 Directed Additive Noise Models

In this section, we establish identifiability results for recovering the hyper-DAG in the ANM case.
For clearer exposition, we first reproduce the arguments of [Hoyer et al.| [2008]] which shows that,
in general position, the additive noise model (ANM) is identifiable. We extend their result to a
multi-dimensional result which handles the case of multiple parents rather than only the case of one
parent node and one child node (slightly different from the extension in Theorem 28 of Peters et al.
[2014] because it will more easily generalize to the hypergraph result).

Theorem 2. Let the joint probability densities of « and y be given by
p($17 e axday) = pn(y - f((l:)) . pw(xla sy xd) (13)

for some noise density p,,, arbitrary density p,., and function f. Assume further that all such functions
are thrice continuously differentiable. If there is also a backwards model which treats x; as the child,

p(xlv <oy Td, y) = pﬁ(z7 - g(x—’uy)) : px,i,y(zla vy Li—15, L1y - - - ,Id7y) (14)

for some alternate noise density p;, arbitrary density p,._, ,, and function g, then it must be case that
for v := log p,, and £ := log p,, the following differential equation is obeyed

¢ — g (_ ”:f + *jc/,/) + (— W'V V/V/:,J,Hf” - V/J;ifﬂ) (15)

Whereweusef’,z/,f’asshorthandfor%5(1:1,...@@7 Vi(y — f(x)), a%f(xl,...,zd).

i
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Corollary 1. Assume further that """ =0 and C%;g =0 for all ¢ € [d]. If a backwards model exists

for a parent x;, then f is linear in the argument x;. Further, if a backwards model exists in all parents
x;, then f is a multilinear function.

Remark 1. First, this is a general position argument which says that in order to be reversible, the
SEM must obey these particular constraints which usually do not occur. Although this means for
an ‘arbitrary’ SEM model we have identifiability, this does not rule out well-known cases including
linear+Gaussian where the existence of an equivalent backwards model is unavoidable.

Remark 2. Second, this result is applied locally to a single child node, rather than the global SCM
structure. Previous work has partially explored the global structure in the population limit, see
Chickering|[2002] and Peters et al.| [2014]]; however, a priori, the constrained solutions space may
grow exponentially large, leading to practical limitations in the real-world setting with finite samples.

We next provide the relevant extension to recover the hypergraphical structure as well. Indeed, if the
DAG structure is identifiable (at least locally), then the hyper DAG structure is also identifiable (at
least locally). This also implies that when the entire DAG structure is identifiable in the ANM case,
the entire hyper DAG structure is also identifiable.

Theorem 3. Suppose we have two forward models given by two alternate collections Z C P([d])
and J C P([d]), where P denotes the power set, with models:

pyle,. - xa) = paly — Y fs(xs)) Pyl xa) =paly— Y gr(zr))  (16)

Sel TeJg

Assume that in addition to the assumptions of Theorem 2} we also have that the functions fg and gr
are differentiable up to order max{maxgez{|S|}, maxre7{|T|}}, or more simply up to order d. It
then follows that Z = 7 and thus the hypergraph structures of the two models are exactly the same.
Moreover, outside of trivial modifications to the f’s and g’s, the two functional generating models
are exactly the same.

Finally, we restrict further to the case of Gaussian noise variables in the ANM to directly recover a
global hypergraphical result, further relating Sections [2.2]and 2.3]

Theorem 4. Suppose that all additive noise variables are drawn from a Gaussian distribution,
implying that v(g) = %82 (or some general quadratic form) for all ¢ € [d]. Suppose also that we
generate data according to the directed hypergraph H. The undirected, immoralized version of this
hypergraph ' is identifiable directly from the data in the sense that {(x1,...,za) = > gcqy &s(2s)
for some arbitrary functions £g. In other words, the undirected hypergraph from setting 1 is directly

identifiable from the distribution and thus settings 2 and 3 overlap for ANMs with Gaussian noise.

All proofs may be found in the appendix.

4 Algorithm

Our method for hypergraph discovery and structural equation modeling heavily entwines the schema
of CAM [Biihlmann et al., [2014] and the higher-order interaction techniques of SIAN [Enouen and
Liul [2022]]. Accordingly, we review both algorithms in much greater detail in Appendix Bl Here
in the main body of the paper, we briefly review the three step procedure introduced by CAM and
discuss our HCAM extension to their original approach. The first stage is a preselection phase which
searches for good candidate parents for each potential child node. The second stage is the bulk of the
algorithm, greedily constructing the DAG via including each directed edge one at a time based on the
improvement to the log-likelihood. The third stage is a final pruning stage which does not change the
topological order, but simply removes parents which are no longer thought to be relevant.

4.1 Step 1: Candidate Search

The first stage of CAM Bithlmann et al.[[2014] finds candidate edges/ parents by training a GAM
regression on each of the d variables. In their work, this was mainly necessary for them in the
high-dimensional setting, where explicit consideration of so O(d?) edges when d is large poses a
challenge. However, for HCAM, this stage becomes absolutely critical. That is because we not only
need to look at all (d? — d) candidate directed edges of CAM, but also all the 1 (d® — 3d? + 2d)
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candidate directed tri-edges, as well as higher-order hyperedges, etc. To consider all hyperedges
directly without any heuristic would require considering an exponential number of hyperedges.

Accordingly, we first use a deep neural network to ‘search’ for good hyperedges, following steps 1
and 2 of STAN [Enouen and Liu} 2022]. That is, for each of the d variables, we regress an MLP DNN
to minimize the mean-squared error (Gaussian likelihood). We then use an XAl technique, called
Archipelago [Tsang et al., |2020], to give an importance score for each of the feature interactions
involving the other variables.

4.2 Step 2: Greedy Selection

The next phase consists of the bulk of the algorithm and can also be considered the most important
part and yet most simplistic part. A greedy heuristic is taken to gradually build the DAG from the
initialized empty set of vertices. For each of the possible edges (or potentially the subset selected
in step 1), a new likelihood model is trained to simulate adding the edge to the DAG. Importantly,
because of the independence of the ANM noise, this is simply measured as the drop in MSE with and
without the additive term. Gradually, edges are added until some stopping point and the final phase of
pruning begins.

In our case, several small adjustments must be made to deal with the case of HDAGs. Importantly,
unlike CAM, HCAM must keep track of both the HDAG and the induced partial-order matrix
simultaneously. Generically, we follow the exact same procedure, training higher-order additive
models with each candidate hyperedge to see the improvement in MSE. We start with 10 candidates
for each of the d variables, based on the ranking provided in step 1, and we replenish the candidates if
there are ever less than 5 viable hyperedges per a variable. This cutdown is able to reduce the number
of higher-order STAN additive models we train, which helps in improving the overall runtime.

4.3 Step 3: Final Pruning

Finally, the full model is trained end-to-end once more with all of the included edges from step 2.
The final stage simply removes edges corresponding to additive terms which are too close to zero,
and thus likely to be useless in the causal model. Our extensions prunes in the exact same way,
with higher-order terms corresponding to higher-order edges, but there is no practical difficulty in
doing this extension. The major difficulty of this part is choosing a threshold which corresponds
with a nuisance parameter. The original CAM work uses a threshold of 0.001 for the p-values
provided alongside the GAM models. We use neural networks which do not provide p-values and thus
somewhat similarly threshold based on the MSE of the additive term, using a threshold of 1.0e—4.

S Experiments

We compare across multiple synthetic datasets obeying the additive noise model (ANM) while varying
the degree of the additive models. Following previous works, we generate the base DAG from an
Erdos-Renyi random graph with an average of 4 edges per node. We generate 1D, 2D, and 3D
additive models to distinguish different hypergraphical structures. For 1D models, we avoid the linear
model to allow for identifiability and use a random Gaussian process to define the additive functions.
For 2D and 3D models, we use multilinear terms, 3,22, with coefficients drawn around %1, then
normalizing by the total coefficient weight for a parent set. We assume the additive noise terms are
coming from a Gaussian distribution and draw random variances constrained to be close to 1.0. We
set d = 30 (number of nodes) and n = 10000 (number of samples) in our experiments.

‘We compare against baselines of PC [Spirtes and Glymour, |1991]], GES [Chickering, 2002], BOSS
[[Andrews et al., 2023|], RESIT [Peters et al., 2014]], CAM [Biihlmann et al., 2014]], and SCORE
[Rolland et al., [2022]]. We additionally compare against a baseline which assumes the empty graph,
equivalent to assuming all of the observed variables are completely indepedent. We compare against
the structural Hamming distance (SHD) and the structural interventional distance (SID) obtained by
each method on different complexities of synthetic data. We additionally compare the Hamming
distance on the hypergraph bodies, based on the assumptlon in Figure[Tf, calling it the hlgher-order
structural Hamming distance. Because the maximal error is on the order 23° ~ one billion, in some
cases, we do not compute exactly and report a lower bound in Table {]
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Table 2: Structural Hamming Distance for ER4 and N=10,000.

BOSS CAM GES PC SCORE RESIT zero HCAM
ER4 1D 189.674+20.24  42.67+4.50 206.67+11.90 159.674+21.17  69.33+20.24  494.67+3.30 128.67+8.38  67.67+13.82
ER42D 11533+ 1.70 134.67£2.49 116.00+ 2.16 134.00+ 4.32 126.00+ 2.83  146.33+£5.79 115.33+1.70 107.00+ 0.82
ER43D 109.00+ 4.24 120.33+£1.89 106.67+ 3.86 12033+ 3.86 117.00+ 5.89 132.33+£6.34 106.67+3.86 106.67+ 3.86

Table 3: Structural Intervention Distance for ER4 and N=10,000.

BOSS CAM GES PC SCORE RESIT zero HCAM
ER4 1D 608.33+45.09 0.00+ 0.00 646.674+54.97 748.33+66.04 105.33+47.12 646.67+£54.97 726.00+£64.19 525.33+64.25
ER42D 679.33+38.94 750.67+ 7.93 687.33+£39.67 713.67+£60.18 745.67+16.11 734.674+21.64 679.33+38.94 661.00+31.03
ER43D 647.67+15.08 744.67+£22.23 679.00£39.02 699.00+46.31 751.674+24.14 744.004+29.44  679.00+39.02 679.00+39.02

Table 4: Higher-Order Structural Hamming Distance for ER4 and N=10,000.

BOSS CAM GES PC SCORE RESIT zero HCAM
ER4 1D  >10,000 42.67+ 450 >10,000 >1,000 >10,000 >10,000 128.67+ 8.38  48.33+ 8.18
ER42D 15733+ 1.70 168.00+ 5.35 158.00+ 1.41 183.67£10.78 171.33+ 2.05 602.33+£603.66 157.33+ 1.70 119.00+ 5.35
ER43D 236.00+£18.38 256.33+£14.66 248.67+18.15 264.67+£23.23 264.00+14.76 263.00+ 13.44 248.67+18.15 248.67£18.15

5.1 Results

Overall, we find that many methods are successful for the simpler 1D data obeying the CAM
assumptions, especially the CAM and SCORE algorithms. HCAM does not achieve the same level of
success as these algorithms but still achieves good performance on this dataset. Surprisingly, all other
methods have rather great difficulty in identifying the causal structure.

On our specifically higher-order datasets, however, we find that the story is quite different. In
particular, the only algorithm which is able to defeat the baseline on the 2D data is our HCAM
method specifically focusing on modeling the 2D interactions. In the 3D data, none of the algorithms
we run are able to find empirical success over the zero baseline. That is to say, we should have just
assumed the variables were independent and not run our algorithm at all.

This lack of capability is despite the fact that we used a simple DGP (multilinear plus Gaussian)
on a relatively low number of variables (d = 30) and provided a relatively standard number of
observations (n = 10, 000). Aligning with our hypothesis that the statistical complexity increases in
the presence of higher-order interactions, we strongly believe this points to some aspects of structure
discovery research which have received less attention but remain highly influenced by the presence
of interactions.

6 Conclusion

We have introduced a framework for considering the impact of higher-order interactions on causal
structure. After introducing the relevant definitions, we further show the identifiability of the
introduced structure across multiple cases of interest. Finally, we demonstrate the potential usefulness
of the hypergraphical structure in empirical case using the additive noise model, along with providing
a first algorithm for adequately handling the higher-order structure directly from observed data.
This perspective additionally allowed us to identify a potential blindspot of many existing structure
discovery approaches: their lack of focus on statistical power and lesser ability to handle higher-order
interactions.

We envision future work may continue to benefit from a perspective using higher-order interactions.
Some directions of future exploration include improving on the algorithms and theoretical results
presented herein, potentially solving increasingly challenging datasets constructed using the higher-
order perspective on the generated variables. Extension to appropriately handling latent variables and
latent confounding is a direction of serious interest. Hypergraphical structures being identifiable from
the data distribution alone, extending existing MEC and identifiability results, point to the potential
of hypergraphical structure across even more contexts and settings than the ones explored herein.
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A Proofs of Theorems

A.1 Proof of Theorem

To begin, we remind that while the classical MEC formulation is concerned with mapping the
conditional independencies of a distribution with the Markov conditions and structure of a DAG, we
are here concerned with mapping the conditional multi-independencies of a distribution with the
Markov conditions and structure of an HDAG. Accordingly, it is first worth noting that because the
conditional multi-independencies of a distribution is a strictly larger set of conditions that the original
set of conditions, hence, we get the existing result on the DAG corresponding to the HDAG, let’s call
it the reduced DAG. This is done in the obvious way by taking the union of all a node’s hyperparents
and defining them as the parent set.

Thus, in addition to the skeletons and (unshielded) colliders of the DAG which are already identifiable
from the typical conditions, we must investigate which HDAGs are further distinguishable via these
conditions and which HDAGs are distinguishable via the new conditions.

We will start with the easier point about the body of an HDAG. Once again, this is defined by
removing all directed arrows from the directed hypergraph. In the same way that a pair of nodes ¢
and 7 are ‘inseparable’ if they are not conditionally indepedent for any conditioning set, we can say
that a triple of nodes i, j, and k are inseparable if they are not conditionally multi-independent for
any conditioning set. In much the same way this indicates the existence of an edge in the DAG case,
this will indicate the existence of a (three-dimensional) hyperedge in the HDAG case.

It is thus straightforward to see that the existence of an inseparable triple shows the existence of
a directed hyperedge (where one of the three vertices is the child). Further, this generalizes to all
degrees in the exact same way. It is briefly reminded that the hierarchy constraint plays a role of
convenience here in the sense that a higher-order edge is detected via a three-dimensional hyperedge
even if, say, the generating equations do not make this explicit. This exactly parallels what happens
in the 2D case with an inseparable pair of nodes, where the DAG edges are capturing everything
’between ¢ and j or higher’. To be explicit, the DAG edge ¢« — j could have a second parent of j
which interacts with ¢ when generating j. Nonetheless, it is clear from these conditions that we may
directly identify the body of the HDAG, and that the body of the HDAG is strictly more informative
than the skeleton of the HDAG’s reduced DAG.

Now let us move on to the discussion of colliders between parents. To prepare for our generalization
of colliders, we first allude to the fact that in Equation |7} we can see directly that the normalizing Z
score over the parent set is the cause of a collider. In particular, unlike the natural § terms which cannot
be destroyed via marginalization of variables, the Z terms are destructible under marginalization of
the child. This naturally corresponds to the more typical conditions noting that there is some smaller
set (not including the child) where conditioning provides independence but conditioning on the child
additionally breaks the independence. Of course, not all sets without the child included is able to
marginalize out the child, namely, conditioning on any descendant of the child is also problematic.

Nonetheless, we may proceed by extending the definition in the same way. We say that a set of nodes
1, 7, k alongside a fourth node ¢ are a tricollider so long as there exists some conditioning set S under
which the ¢, j, k are not conditionally tri-dependent; however, after additionally conditioning on the
node / (their joint child), the tri-independence breaks and i, j, k are conditionally tri-dependent when
conditioning on (S + {¢}). Equally, it can be seen that i, j, k are the joint parents of ¢ whose Z
normalization appears only when needing to condition on ¢.

In fact, it is now extremely straightforward to state our faithfulness condition directly. We say that a
distribution observes a hypergraph structure faithfully so long as no natural theta term is destructible
via marginalization; moreover, the joining of two theta terms via marginalization will lead to a new
theta term with the maximal relative size (i.e. no higher-order terms magically cancel and zero out).

Finally, because of this faithfulness condition, we can equally start with the log-probability score
function which obeys the Hyper Markov property and construct all possible multi-dependence tests
in the backwards direction. Accordingly, no 6 term will cancel via marginalization and each Z
will only cancel via marginalization of its respective child. As a reminder, conditioning on a set is
easier via implicitly pulling out the variables value in the conditional distribution, and marginalizing
has been made possible via the faithfulness distribution. Together, these allow us to describe all
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of the energy terms of a new conditioned distribution and one can directly read off the conditional
multi-dependence via the existence of or lack of the highest-order energy term.

A.2 Proof of Theorem

Proof. The arguments here closely follow the original arguments for Theorem 1 of [Hoyer et al.
[2008].

First, recall that we will write

(), y) = v(y — f(z)) +&(2)
(2, y) = V(xs — 9(x_s,y)) + (4, y)

a7
We may first proceed with some basic calculations
9 ;. Of 98
T=v .-
Bazi (91‘z Bazi
=0 -1+0
0
8—y7r = l// -1 + 0
=7 ,@ @
dy Oy
And further
s s Of of , 9f 9%
727'( =y - . — v - 3 3
ox; Ox; Ox; Ox; Oz
— l';//
82 1 af
™= —
0x;0y ox;
- g | . ~n 0g
.. 22 040 = —p". 22
3 + + Dy
So it follows from the 7 equation that
fots
oz? 74 . -1
&x_ sy, 09~ 99
Oz, 0y Jy oy
And further
&*r
0 [ sl } 0 rl} 0
9z, L 2x | ~— gp Log |
o0x; om0y o0x; FZ
Plugging this back in to the equation with v gives us
) /A T Ve ] "
[V [ =vii+¢ } —0
0x; —u! !
Application of repeated derivative rules and simplification gives the required
y///f/ f//
6/// — 5// . (_ VH + F)_'_
V’V”l el l// " el
(7 2V//f//f/ + V/f/// + l//{‘ f _ ];‘/f )
O
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A.3 Proof of Theorem[3]
Proof. Supposing that we have two different forward models given by

p($17-~-axd>y) :pn(y_ Zfs(fﬁs)) 'pw(xla"wxd) :pn(y_ f(l‘)) 'px(xlv""md)

Sez
pa1,. . za,y) =paly — Y gr(@r)) - pal@r, ... 2a) = paly — g(x)) - pa(a1,. .., 24)
TeJ
We may take 7 as before and see that
0
aiyﬂ- — l// = Dl
0 / afS . ~/ agT .
ox;it > aa; (8L € = X oa; L€ 7]
Sez TeJg

It follows as before that we may write

B [ %eoies]- [X Penen)

Jy Sez 7t Teg

Further, we have that

o= gl = a5~ ) = e ] =

89:R_i 8583_1' % é% 813_2- al’l 5‘11 8xR 8xR

0 0

= 7[ afs( 9 URCH]+[ D a;%(:w%l(RgT) (18)
TeJg

Recall that we assumed that 7 and 7 are downwards closed or ‘hierarchical’ which means all S € Z

have all its subsets S’ C S also inside of Z. If we then take R ¢ Z, it implies that R € S for

all S € Z, otherwise such an S would not obey the downwards closed property. This means that

1(RCS)=0and

agT

:_0+[ 8JJR

1(RCT)

This means that for all T € J Nup(R) where up(R) := {T : T O R} it must be the case that the
R-th partial derivative is zero. We will focus on the case of 7' = R, but the same holds for all 7" as
above.

We may take a modification of the function gp such that it is instead represented by additive
functions of a lower degree. This is equivalent to saying that g = 0 and hence T' € J was

actually a contradiction. Let us see that agR = 0, so then writing R = {ry,...,r| R|}, we have

that f 695’ = C1(Xpy, ... s T, Rl) for some function C; which is constant with respect to x,, .
1
)
Further fmw 78305?}1 = fg% Ci(@rys ooy Trypy) = Cr(@ryseo s @) + CoTry, Trgy ooy Ty
and continuing on, we may ultimately see that gr = ) 5/  gr~ Which means by our assumption
that 7 is a minimal representation with no zero additive models, that actually T ¢ 7.

The same arguments may be taken in reverse to show that for all R ¢ 7, it must be the case R ¢ 7.
There is a mild difference in the way the contradiction is applied argument when reversing the
arguments because we take the perspective that 7 is the ground truth generating process and 7 is a
potential alternate model (i.e. the contradiction is on R not on S.) Nonetheless, this results in the
fact Z = J for any two forward models which are representing the same distribution, and that the

functional representations are moreover the same. The latter part can be seen directly from 88 L= aa <

for all ¢ € [d] and similar arguments for removing trivial terms from the additive model. The final
modification which may exist is up to a constant, which is resolved by the differences in the mean of
the variable represented by v and 7. This is solved by the ANM assumption that the additive noises
are mean-centered. O
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Altogether, this is taken to mean that whenever the DAG is locally identifiable (and thus there are
only valid forward models and no potential backwards model), then the hypergraph structure of the
forward model is additionally identifiable. This additionally implies that if the entirety of the DAG is
identifiable, then the entirity of the hyper DAG is also identifiable.

A.4 Proof of Theoremd

Proof. Under the further assumption that ¢; ~ N'(0,02), we have that v(¢) = logp(e) =

log (ﬁ - exp(— 7)) = —log(2m0?) — zi¢2. Further, we have that /() = — e,
V'(e) = —2, and v*)(g) = 0 for larger k. Accordingly, we may write the entire distribution
as

§(w1,. .., mq) = logp(wy,...,7q) = Zlogp(xi|xpa(i))
= Z Vi(fi) = Z v; (l‘l - Z fS—)i(xS)>
i % (S,i)eH

Let us write f_,; to denote Z(S,i)e?—[ fs—iand Fi(z) = (z; — fi(x)). It is straightforward to
verify through repeated applications of the chain rule and product rule that

a" o 9lAl on—14l
oo (A0) = g () ok 3 G () - (i)
It can further be seen that

gl; (Fitx)) = 2;1(% ~ foile)) (19)

is zero whenever A is not all i’s and A is not a subset of one of the S where (.5,¢) € H. This means

exactly that
94l on—IAl
V)C;C:[n] " Ora (Fi(x)) 0wy —a (Fi(x))

is barely nonzero whenever we take [n] equal to (S + ¢) for some (S,7) € H. Note that this is
equivalent to taking some (S + i) € H' where we recall H' is the undirected version of the directed

graph . If we instead take some R ¢ H’, then it will be the case that this derivative is zero, because
. . 1A n—|Al .. .
all A C R will have either ?MTA =0or (96;1:[ T = (0. Moreover, it is the case that the first term is

clearly zero % (Fz(m)) =0.

Since this is true for all ¢ so long as we are taking R ¢ H’, we have that

|R| |R|
gxiRg(xlw .- ’xd) = gl‘iR ZW(CUZ - Z fS—)i(xS)) =0

i (S,i)eH

Following the same approach as in the proof of Theorem [3] this means that we are able to write
§(w1,...,mq) = D geq Es(ws) for some functions Es.

O

Note that the decomposition of the likelihood function’s structure does not contradict existing results
saying that the directionality of the graphical model is not always identifiable from data. In particular,
in the linear-Gaussian case, it may not be possible to distinguish which direction is the causal direction.
Nonetheless, the graphical structure which is recovered in this purely Gaussian case corresponds to
what is available in the precision matrix [Loh and Bithlmann, 2014], still identifying the undirected
graphical structure underlying the distribution. Under the CAM-like assumptions of linear SEMs,
the hypergraph structure is reduced to its simplest representation, which is isomorphic to a graphical
representation.
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B Full Algorithm Details

B.1 Causal Additive Model

CAM (Causal Additive Model) uses a three step procedure to discover a set of additive structural
equations according to Equation ??. First, a preliminary search is made over the directed edges using
sparse regression to cut down on the search space. Second, a greedy algorithm gradually adds the best
edges to the DAG so long as it does not create any cycles. Third, the final DAG structure’s additive
models are trained once again with sparse regression to encourage the removal of extraneous edges.

Step 1 First, a preliminary search is made over all possible edges via sparse regression. For each
variable j € [d], one fits an additive model based on all of the other possible directed edges (k, j)
using sparse regression. This allows for a smaller subset of the quadratic number of edges to be
considered, especially in the high-dimensional setting when d is large.

The mean-squared error objective is minimized based on the assumption that the noise terms are
Gaussian.

1
logp(e;) = — log(27rcrj2-) 552 ~€? (20)
J

A]2- = ||Xj — Xj||2 = ||Xj - ka%](Xk)”2 (21)
k

Step 2 Second, the bulk of the algorithm centers around a greedy approach for gradually adding
directed edges which do not disagree with the partial structure which has been built up so far. Every
edge from the local neighborhood determined in step 1 is considered to be added, so long as it would
not create a cycle in the DAG. Each edge is ranked by its ability to improve the log-likelihood of the
overall model, by training an additive model with the selected edges.

GTNG) = 1% = > fems (X)) 22)
kENj
(kx,j*x) = argmin {67(N; U {k}) — 62 (N;)} (23)
(k,7) acyclic

Importantly, for j # j, it is not necessary to retrain the additive models to recompute the values of
632- (), because they are not affected by the inclusion of edges in other parts of the graph (except
that it may block an edge from being added due to the acyclicity constraint).

Step 3  Lastly, the collection of directed edges which were selected in step 2 are used to train a final
model end-to-end, with additional regularization designed to shrink unnecessary edges to become

sparse. Additive terms fk_, 4 which are deemed insignificant are removed from the model completely
and the final set of edges define the final DAG.

B.2 Sparse Interaction Additive Network

SIAN (Sparse Interaction Additive Network) is an approach designed to train higher-order additive
models using neural network techniques. This approach also consists of three main phases. In our
case, we will follow CAM’s implicit Gaussian assumption by minimizing the mean-squared error
objective which corresponds with the likelihood of independent Gaussian variables.

In the first phase, a typical neural network fy is trained to predict an output variable in terms of the
input variables.

G2(0) = [y =Y (0)|> = IY — fo(Xia)|I? (24)
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In the second phase, interpretability techniques are combined with a special feature interaction
selection (FIS) algorithm which ensures a sufficient coverage of the complex space of interactions
while avoiding the exponential blow up in complexity from exploring all higher-order interactions.
The final result of the first two phases is a collection Z C P([d]) which is some collection of all
of the feature interactions S which are important to predicting the output variable. Finally, the set
of collected higher-order interactions are then used to train a neural-network-based additive model
which obeys the interaction structure determined in the selection algorithm.

67(6) =Y =Yz(O)|> = Y = > fs0: (Xs)II” (25)
S

This final additive neural network has pleasant properties like being more interpretable as well as
more robust than the original neural network. In our context, we will use these neural additive models
as the major component of modeling the hypergraphical additive structure we assumed previously.

B.3 Higher-order Causal Additive Model

In our algorithm, we broadly follow the same steps as the original CAM algorithm, replacing all com-
ponents which are limited to one-dimensional additive models with their higher-order counterparts.

In the first step of our algorithm, we must reduce the number of candidate edges which will be
considered in the downstream steps. Although CAM mentions this is only necessary in the high-
dimensional setting for their additive assumption, ours is absolutely necessary except in extremely
small cases (perhaps d < 5). This is because instead of searching over all candidate directed edges,
{(k,j) : k # j,j € [d]}, we must perform a search over the much larger space of all candidate
directed hyperedges, {(S,7) : S C ([d] \ 7),7 € [d]}.

For this purpose, we employ the first two phases of SIAN to each of the variables. That is, for each
Jj € [d], we train a neural network to predict X; from X _; and then run a feature interaction selection
algorithm to find a neighborhood of important interactions which are useful for predicting X;.

520) = |1 X; — X;0)* = 11X; — fro(Xig-n)lI? (26)

Z; = FeaturelnteractionSelection fjvg) (27)

These selected interactions are then taken as the candidate set of directed hyperedges to be used in
the later parts of the algorithm.

H={(S,j): S€I,jeld} (28)

Note that these hyperedges are also given an importance score from the original FIS algorithm and
may be sorted by their a priori importance.

In the second step of our algorithm, we follow the greedy approach of including hyperedges based on
the improvement to the log-likelihood. This requires training many different additive models obeying
the interaction constraints imposed by the current hyper DAG. We use the additive models from the
third phase of STAN to minimize an MSE objective as before.

In particular, we train multiple STAN additive models to compare the different improvements in

scores coming from adding all possible hyperedges (.5, j) € #. This improvement in score is again
interpreted as the improvement in reducing the noise of the added Gaussian via reduction in MSE.

GTND) = 11X = D fsoy(Xs)IP (29)
SEN]
(Sx,j%) = argmin {67(N]US) —67(N))} (30)

(S,4) acyclic
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Because this requires training a large amount of additive models, we make multiple concessions to
allow for a more rapid selection process during step 2 which can otherwise take a significant chunk
of the overall algorithm time. Because of our higher-order neighborhood selection from step 1, it is at
least feasible to search over higher-order interactions without facing an exponential blowup in the
number of additive models which must be trained.

However, in practice we further reduce the number of additive models we train to a maximum of 10
interactions per each variable X ;. As tuples are selected from the candidate superset H to be actually
included into the model, additional candidate hyperedges are replenished to be explored in future
iterations of the step 2 loop.

Furthermore, instead of training these STAN additive models until there is no further reduction in
MSE, we only train each for five epochs in total. We find that this gives a strong enough measurement
of the performances of the differnt additive models without cutting significantly into the overall time
taken. Moreover, because the heuristic coming from the first two phases of SIAN used in step 1 of
our algorithm is generally quite good, an approximate measure of the reduction in score from each
hyperedge in step 2 seems to generally be sufficient.

In the third step of our algorithm, we again follow the CAM setup and train an end-to-end SIAN model
which obeys the structure which was greedily added in step two of the algorithm. L1 regularization
terms are used on each of the shape functions in the additive model to encourage shrinkage in the
unnecessary terms of the additive model. Similar to CAM, unimportant additive terms are thresholded
away and removed from the final hyper DAG.

L(6) =

ZHXJ‘* Z Fooill® + X Z | fs—4

J (S.5)eH (S.g)eH

€1V

For comparison against other DAG-based methods, the hyper DAG is further projected onto its
equivalent DAG formulation.
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71

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (142 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions, in our opinion.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations of the empirical evaluation and algorithm choices are discussed.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs are provided for all theorems and relevant references are additionally
provided.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The synthetic DGP is simple and described in detail. The algorithm is described
in the appendix to sufficient detail. Additionally, code for the DGP and algorithm will be
provided.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Experiment data and code will be released to enable reproducibility.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment settings are simple and provided in full detail.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Metrics are provided as mean and standard deviation across three runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Exact algorithm time was not computed. CAM and HCAM take on the order
of several hours.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors followed the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: No immediate societal impacts worth highlighting. Consists of mostly theoret-
ical contributions.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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12.

13.

14.

Justification: Not relevant.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Provided alongside paper and code.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Code provided.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs not used in non-standard ways.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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