
Published in Transactions on Machine Learning Research (05/2023)

Proximal Curriculum for Reinforcement Learning Agents

Georgios Tzannetos gtzannet@mpi-sws.org
Max Planck Institute for Software Systems

Bárbara Gomes Ribeiro bgomesr@mpi-sws.org
Max Planck Institute for Software Systems

Parameswaran Kamalaruban kparameswaran@turing.ac.uk
The Alan Turing Institute

Adish Singla adishs@mpi-sws.org
Max Planck Institute for Software Systems

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8WUyeeMxMH

Abstract

We consider the problem of curriculum design for reinforcement learning (RL) agents in
contextual multi-task settings. Existing techniques on automatic curriculum design typically
require domain-specific hyperparameter tuning or have limited theoretical underpinnings.
To tackle these limitations, we design our curriculum strategy, ProCuRL, inspired by
the pedagogical concept of Zone of Proximal Development (ZPD). ProCuRL captures the
intuition that learning progress is maximized when picking tasks that are neither too hard
nor too easy for the learner. We mathematically derive ProCuRL by analyzing two simple
learning settings. We also present a practical variant of ProCuRL that can be directly
integrated with deep RL frameworks with minimal hyperparameter tuning. Experimental
results on a variety of domains demonstrate the effectiveness of our curriculum strategy over
state-of-the-art baselines in accelerating the training process of deep RL agents.

1 Introduction

Recent advances in deep reinforcement learning (RL) have demonstrated impressive performance in games,
continuous control, and robotics (Mnih et al., 2015; Lillicrap et al., 2015; Silver et al., 2017; Levine et al.,
2016). Despite these remarkable successes, a broader application of RL in real-world domains is often very
limited. For example, training RL agents in contextual multi-task settings and goal-based tasks with sparse
rewards still remains challenging (Hallak et al., 2015; Kirk et al., 2021; Andrychowicz et al., 2017; Florensa
et al., 2017; Riedmiller et al., 2018).

Inspired by the importance of curricula in pedagogical domains, there is a growing interest in leveraging
curriculum strategies when training machine learning models in challenging domains. In the supervised
learning setting, such as image classification, the impact of the order of presented training examples has
been studied both theoretically and empirically (Weinshall et al., 2018; Weinshall & Amir, 2018; Zhou &
Bilmes, 2018; Zhou et al., 2021; Elman, 1993; Bengio et al., 2009; Zaremba & Sutskever, 2014). Recent works
have also studied curriculum strategies for learners in sequential-decision-making settings, such as imitation
learning (where the agent learns from demonstrations) and RL (where the agent learns from rewards). In
the imitation learning setting, recent works have proposed greedy curriculum strategies for picking the next
training demonstration according to the agent’s learning progress (Kamalaruban et al., 2019; Yengera et al.,
2021). In the RL setting, several curriculum strategies have been proposed to improve sample efficiency, e.g.,
by choosing an appropriate next starting state or goal state for the task to train on (Wöhlke et al., 2020;
Florensa et al., 2017; 2018; Racanière et al., 2020; Riedmiller et al., 2018; Klink et al., 2020a;b; Eimer et al.,

1

https://openreview.net/forum?id=8WUyeeMxMH

Published in Transactions on Machine Learning Research (05/2023)

2021). Despite extensive research on curriculum design for the RL setting, existing techniques typically have
limited theoretical underpinnings or require domain-specific hyperparameter tuning.

In this paper, we are interested in developing a principled curriculum strategy for the RL setting that is
broadly applicable to many domains with minimal tuning of hyperparameters. To this end, we rely on the
Zone of Proximal Development (ZPD) concept from the educational psychology literature (Vygotsky &
Cole, 1978; Chaiklin, 2003). The ZPD concept, when applied in terms of learning progress, suggests that
progress is maximized when the learner is presented with tasks that lie in the proximal zone, i.e., tasks that
are neither too hard nor too easy. This idea of proximal zone can be captured using a notion of probability
of success score PoSπt

(s) w.r.t. the learner’s current policy πt for any given task s. Building on this idea,
we mathematically derive an intuitive curriculum strategy by analyzing two simple learning settings. Our
main results and contributions are as follows:

I. We propose a curriculum strategy, ProCuRL, inspired by the ZPD concept. ProCuRL formalizes
the idea of picking tasks that are neither too hard nor too easy for the learner in the form of selection
strategy arg maxs PoSπt

(s) ·
(
PoS∗(s) − PoSπt

(s)
)
, where PoS∗(s) corresponds to the probability of

success score w.r.t. an optimal policy (Section 3.1).

II. We derive ProCuRL under two specific learning settings where we analyze the effect of picking a task
on the agent’s learning progress (Section 3.2).

III. We present a practical variant of ProCuRL, namely ProCuRL-val, that can be easily integrated
with deep RL frameworks with minimal hyperparameter tuning (Section 3.3).

IV. We empirically demonstrate the effectiveness of ProCuRL-val over state-of-the-art baselines in
accelerating the training process of deep RL agents in a variety of environments (Section 4).1

1.1 Related Work

Curriculum strategies based on domain knowledge. Early works on curriculum design for the
supervised learning setting typically order the training examples in increasing difficulty (Elman, 1993;
Bengio et al., 2009; Schmidhuber, 2013; Zaremba & Sutskever, 2014). This easy-to-hard design principle
has been utilized in the hand-crafted curriculum approaches for the RL setting (Asada et al., 1996; Wu
& Tian, 2016). Moreover, there have been recent works on designing greedy curriculum strategies for the
imitation learning setting based on the iterative machine teaching framework (Liu et al., 2017; Yang et al.,
2018; Zhu et al., 2018; Kamalaruban et al., 2019; Yengera et al., 2021). However, these approaches require
domain-specific expert knowledge for designing difficulty measures.

Curriculum strategies based on ZPD concept. In the pedagogical setting, it has been realized that
effective teaching provides tasks that are neither too hard nor too easy for the human learner. This intuition
of providing tasks from a particular range of difficulties is conceptualized in the ZPD concept (Vygotsky
& Cole, 1978; Chaiklin, 2003; Oudeyer et al., 2007; Baranes & Oudeyer, 2013; Zou et al., 2019). In
the RL setting, several curriculum strategies that have been proposed are inherently based on the ZPD
concept (Florensa et al., 2017; 2018; Wöhlke et al., 2020). A common underlying theme in both Florensa
et al. (2017) and Florensa et al. (2018) is that they choose the next task (starting or goal state) for the
learner uniformly at random from the set {s : rmin ≤ PoSπt

(s) ≤ rmax}. Here, the threshold values rmin
and rmax require tuning according to the learner’s progress and specific to the domain. Wöhlke et al.
(2020) propose a unified framework for the learner’s performance-based starting state curricula in RL. In
particular, the starting state selection policy of Wöhlke et al. (2020), P

[
s

(0)
t = s

]
∝ G(PoSπt(s)) for some

function G, accommodates existing curriculum generation methods like Florensa et al. (2017); Graves et al.
(2017). Despite promising empirical results, theoretical analysis of the impact of the chosen curriculum on
the RL agent’s learning progress is still missing in the aforementioned works.

Curriculum strategies based on self-paced learning (SPL). In the supervised learning setting, the
curriculum strategies using the SPL concept optimize the trade-off between exposing the learner to all

1Github repo: https://github.com/machine-teaching-group/tmlr2023_proximal-curriculum-rl.

2

https://github.com/machine-teaching-group/tmlr2023_proximal-curriculum-rl

Published in Transactions on Machine Learning Research (05/2023)

available training examples and selecting examples in which it currently performs well (Kumar et al., 2010;
Jiang et al., 2015). In SPDL (Klink et al., 2020b;a; 2021; 2022) and SPaCE (Eimer et al., 2021), the
authors have adapted the concept of SPL to the RL setting by controlling the intermediate task distribution
with respect to the learner’s current training progress. However, SPDL and SPaCE differ in their mode
of operation and their objective. SPDL considers the procedural task generation framework where tasks
of appropriate difficult levels can be synthesized, as also considered in Florensa et al. (2017; 2018). In
contrast, SPaCE considers a pool-based curriculum framework for picking suitable tasks, as popular in the
supervised learning setting. Further, SPDL considers the objective of a targeted performance w.r.t. a target
distribution (e.g., concentrated distribution on hard tasks); in contrast, SPaCE considers the objective
of uniform performance across a given pool of tasks. Similar to SPaCE, in our work, we consider the
pool-based setting with uniform performance objective. Both SPDL and SPaCE serve as state-of-the-art
baselines in our experimental evaluation. In terms of curriculum strategy, SPDL operates by solving an
optimization problem at each step to pick a task (Klink et al., 2021); SPaCE uses a ranking induced by the
magnitude of differences in current/previous critic values at each step to pick a task (Eimer et al., 2021). In
the appendix, we have also provided some additional information on hyperparameters for SPDL and SPaCE.

Other automatic curriculum strategies. There are other approaches for automatic curriculum gen-
eration, including: (i) by formulating the curriculum design problem with the use of a meta-level Markov
Decision Process (Narvekar et al., 2017; Narvekar & Stone, 2019); (ii) by learning how to generate training
tasks similar to a teacher (Dendorfer et al., 2020; Such et al., 2020; Matiisen et al., 2019; Turchetta et al.,
2020); (iii) by leveraging self-play as a form of curriculum generation (Sukhbaatar et al., 2018); (iv) by using
the disagreement between different agents trained on the same tasks (Zhang et al., 2020); (v) by picking
the starting states based on a single demonstration (Salimans & Chen, 2018; Resnick et al., 2018); and
(vi) by providing agents with environment variations that are at the frontier of an agent’s capabilities, e.g.,
Unsupervised Environment Design methods (Dennis et al., 2020; Jiang et al., 2021a; Parker-Holder et al.,
2022). We refer the reader to recent surveys on curriculum design for the RL setting (Narvekar et al., 2020;
Portelas et al., 2021; Weng, 2020).

2 Formal Setup

In this section, we formalize our problem setting based on prior work on teacher-student curriculum learn-
ing (Matiisen et al., 2019).

MDP environment. We consider a learning environment defined as a Markov Decision Process (MDP)
M := (S,A, T , H, R,Sinit). Here, S and A denote the state and action spaces, T : S × S ×A → [0, 1] is the
transition dynamics, H is the maximum length of the episode, and R : S × A → R is the reward function.
The set of initial states Sinit ⊆ S specifies a fixed pool of tasks, i.e., each starting state s ∈ Sinit corresponds
to a unique task. Note that the above environment formalism is quite general enough to cover many practical
settings, including the contextual multi-task MDP setting (Hallak et al., 2015).2

RL agent and training process. We consider an RL agent acting in this environment via a policy
π : S × A → [0, 1] that is a mapping from a state to a probability distribution over actions.3 Given
a task with the corresponding starting state s ∈ Sinit, the agent attempts the task via a trajectory
rollout obtained by executing its policy π from s in the MDP M. The trajectory rollout is denoted
as ξ = {(s(τ), a(τ), R(s(τ), a(τ)))}τ=0,1,...,h with s(0) = s and for some h ≤ H. The agent’s performance
on task s is measured via the value function V π(s) := E

[∑h
τ=0 R(s(τ), a(τ))

∣∣π,M, s(0) = s
]
. Then, the

uniform performance of the agent over the pool of tasks Sinit is given by V π := Es∼Uniform(Sinit) [V π(s)].
The training process of the agent involves an interaction between two components: a student component
that is responsible for policy update and a teacher component that is responsible for task selection. The
interaction happens in discrete steps, indexed by t = 1, 2, . . ., and is formally described in Algorithm 1.

2In this setting, for a given set of contexts C, the pool of tasks is given by {Mc = (S, A, Tc, H, Rc, Sinit) : c ∈ C}. Our
environment formalism (MDP M) covers this setting as follows: S = S × C; Sinit = Sinit × C; T ((s̄′, c)|(s̄, c), a) = Tc(s̄′|s̄, a)
and R((s̄, c), a) = Rc(s̄, a), ∀s̄, s̄′ ∈ S, a ∈ A, c ∈ C.

3For general finite-horizon MDPs, including the time step as part of the state is important. However, to avoid complicating
the notation with additional indexing, we have assumed that the time step is implicitly included in the state.

3

Published in Transactions on Machine Learning Research (05/2023)

Let πend denote the agent’s final policy at the end of training. The training objective is to ensure that the
uniform performance of the policy πend is ϵ-near-optimal, i.e., (maxπ V π − V πend) ≤ ϵ. In the following two
paragraphs, we discuss the student and teacher components in detail.

Student component. We consider a parametric representation for the RL agent, whose current knowledge
is parameterized by θ ∈ Θ ⊆ Rd and each parameter θ is mapped to a policy πθ : S×A → [0, 1]. At step t, the
student component updates the knowledge parameter based on the following quantities: the current knowl-
edge parameter θt, the task picked by the teacher component, and the rollout ξt = {(s(τ)

t , a
(τ)
t , R(s(τ)

t , a
(τ)
t))}τ .

Then, the updated knowledge parameter θt+1 is mapped to the agent’s policy given by πt+1 := πθt+1 .
As a concrete example, the knowledge parameter of the Reinforce agent (Sutton et al., 1999) is up-
dated as θt+1 ← θt + ηt ·

∑h−1
τ=0 G

(τ)
t · g(τ)

t , where ηt is the learning rate, G
(τ)
t =

∑h
τ ′=τ R(s(τ ′)

t , a
(τ ′)
t), and

g
(τ)
t =

[
∇θ log πθ(a(τ)

t |s
(τ)
t)

]
θ=θt

.

Teacher component. At step t, the teacher component picks a task with the corresponding starting state
s

(0)
t for the student component to attempt via a trajectory rollout (see line 3 in Algorithm 1). The sequence

of tasks (curriculum) picked by the teacher component affects the performance improvement of the policy
πt. The main focus of this work is to develop a teacher component to achieve the training objective in both
a computational and a sample-efficient manner.

Algorithm 1 RL Agent Training as Interaction between Teacher-Student Components
1: Input: RL agent’s initial policy π1
2: for t = 1, 2, . . . do
3: Teacher component picks a task with the corresponding starting state s

(0)
t .

4: Student component attempts the task via a trajectory rollout ξt using the policy πt from s
(0)
t .

5: Student component updates the policy to πt+1.
6: Output: RL agent’s final policy πend ← πt+1.

3 Proximal Curriculum Strategy

In Section 3.1, we propose a curriculum strategy for the goal-based setting. In Section 3.2, we show that
the proposed curriculum strategy can be mathematically derived by analyzing simple learning settings. In
Section 3.3, we present our final curriculum strategy that is applicable in general settings.

3.1 Curriculum Strategy for the Goal-based Setting

Here, we introduce our curriculum strategy for the goal-based setting using the notion of probability of
success scores.

Goal-based setting. In this setting, the reward function R is goal-based, i.e., the agent gets a reward of 1
only at the goal states and 0 at other states; moreover, any action from a goal state also leads to termination.
For any task with the corresponding starting state s ∈ Sinit, we say that the attempted rollout ξ succeeds
in the task if the final state of ξ is a goal state. Formally, succ(ξ; s) is an indicator function whose value is
1 when the rollout ξ succeeds in task s, and 0 otherwise. Furthermore, for an agent with policy π, we have
that V π(s) := E

[
succ(ξ; s)

∣∣π,M
]

is equal to the total probability of reaching a goal state by executing the
policy π starting from s ∈ Sinit.

Probability of success. We begin by assigning a probability of success score for any task with the
corresponding starting state s ∈ Sinit w.r.t. any parameterized policy πθ in the MDP M.
Definition 1. For any given knowledge parameter θ ∈ Θ and any starting state s ∈ Sinit, we define the
probability of success score PoSθ(s) as the probability of successfully solving the task s by executing the policy
πθ in the MDP M. For the goal-based setting, we have PoSθ(s) = V πθ (s).

With the above definition, the probability of success score for any task s ∈ Sinit w.r.t. the agent’s current
policy πt is given by PoSt(s) := PoSθt(s). Further, we define PoS∗(s) := maxθ∈Θ PoSθ(s).

4

Published in Transactions on Machine Learning Research (05/2023)

Curriculum strategy. Based on the notion of probability of success scores that we defined above, we
propose the following curriculum strategy:

s
(0)
t ← arg max

s∈Sinit

(
PoSt(s) ·

(
PoS∗(s)− PoSt(s)

))
, (1)

i.e., at step t, the teacher component picks a task associated with the starting state s
(0)
t according to Eq. 1.

The term PoSt(s) · (PoS∗(s) − PoSt(s)) can be interpreted as the geometric mean of two quantities: the
learner’s probability of solving the task and the expected regret of the learner on this task. In the following
subsection, we show that the above curriculum strategy can be derived by considering simple learning
settings, such as contextual bandit problems with Reinforce agent; these derivations provide insights
about the design of the curriculum strategy.

3.2 Theoretical Justifications for the Curriculum Strategy

To derive our curriculum strategy for the goal-based setting, we additionally consider independent tasks
where any task s

(0)
t picked from the pool Sinit at step t only affects the agent’s knowledge component

corresponding to that task. Further, we assume that there exists a knowledge parameter θ∗ ∈ Θ such that
πθ∗ ∈ arg maxπ V π, and πθ∗ is referred to as the target policy. Then, based on the work of Weinshall et al.
(2018); Kamalaruban et al. (2019); Yengera et al. (2021), we investigate the effect of picking a task s

(0)
t at

step t on the convergence of the agent’s parameter θt towards the target parameter θ∗. Under a smoothness
condition on the value function of the form |V πθ − V πθ′ | ≤ L · ∥θ − θ′∥1 ,∀θ, θ′ ∈ Θ for some L > 0, we can
translate the parameter convergence (θt → θ∗) into the performance convergence (V πθt → V πθ∗). Thus, we
define the improvement in the training objective at step t as

∆t(θt+1
∣∣θt, s

(0)
t , ξt) := [∥θ∗ − θt∥1 − ∥θ

∗ − θt+1∥1]. (2)

In the above objective, we use the ℓ1-norm because our theoretical analysis considers the independent task
setting mentioned above. Further, we define the expected improvement in the training objective at step t

due to picking the task s
(0)
t as follows:

Ct(s(0)
t) := E

ξt|s(0)
t

[
∆t(θt+1|θt, s

(0)
t , ξt)

]
. (3)

Note that the above quantity is an approximation of the expected learning progress measure as defined
in Graves et al. (2017). In the following subsection, we justify our proposed curriculum strategy by analyzing
the above quantity for a specific agent model under the independent task setting. More concretely, for the
specific setting considered in Section 3.2.1, Theorem 1 implies that picking tasks based on the curriculum
strategy given in Eq. 1 maximizes the expected value of the objective in Eq. 2. In the appendix, we provide an
additional justification by considering an abstract agent model with a direct performance parameterization.

3.2.1 Reinforce Agent with Softmax Policy Parameterization

We consider the Reinforce agent model with the following softmax policy parameterization: for any
θ ∈ R|S|·|A|, we parameterize the policy as πθ(a|s) ∝ exp(θ[s, a]),∀s ∈ S, a ∈ A. In the following, we
consider a problem instance involving a pool of contextual bandit tasks (a special case of independent task
setting). Consider an MDP M with g ∈ S as the goal state for all tasks, Sinit = S \ {g}, A = {a1, a2}, and
H = 1. We define the reward function as follows: R(s, a) = 0,∀s ∈ S \ {g}, a ∈ A and R(g, a) = 1,∀a ∈ A.
For a given probability mapping prand : S → [0, 1], we define the transition dynamics as follows: T (g|s, a1) =
prand(s),∀s ∈ S; T (s|s, a1) = 1 − prand(s),∀s ∈ S; and T (s|s, a2) = 1,∀s ∈ S. Then, for the Reinforce
agent under the above setting, the following theorem quantifies the expected improvement in the training
objective at step t:
Theorem 1. Consider the Reinforce agent with softmax policy parameterization under the independent
task setting as described above. Let s

(0)
t be the task picked at step t with PoSθt

(s(0)
t) = p and PoSθ∗(s(0)

t) = p∗.
Then, we have: Ct(s(0)

t) = 2 · ηt · p ·
(

1− p
p∗

)
, where ηt is the learning of the Reinforce agent.

5

Published in Transactions on Machine Learning Research (05/2023)

For the above setting with prand(s) = 1,∀s ∈ S, maxs∈Sinit Ct(s) is equivalent to maxs∈Sinit PoSt(s) · (1 −
PoSt(s)). This means that for the case of PoS∗(s) = 1,∀s ∈ Sinit, the curriculum strategy given in Eq. 1 can
be seen as greedily optimizing the expected improvement in the training objective at step t given in Eq. 3.

3.3 Curriculum Strategy for General Settings

Next, we discuss various practical issues in directly applying the curriculum strategy in Eq. 1 for general
settings, and introduce several design choices to address these issues.

Softmax selection. When training deep RL agents, it is typically useful to allow some stochasticity in
the selected batch of tasks. Moreover, the arg max selection in Eq. 1 is brittle in the presence of any
approximation errors in computing PoS(·) values. To tackle this issue, we replace arg max selection in Eq. 1
with softmax selection and sample according to the following distribution:

P
[
s

(0)
t = s

]
∝ exp

(
β · PoSt(s) ·

(
PoS∗(s)− PoSt(s)

))
, (4)

where β is a hyperparameter. Here, PoSt(s) values are computed for each s ∈ Sinit using rollouts obtained
via executing the policy πt in M; PoS∗(s) values are assumed to be provided as input.

PoS∗(·) is not known. Since the target policy πθ∗ is unknown, it is not possible to compute the PoS∗(s)
values without additional domain knowledge. In our experiments, we resort to simply setting PoS∗(s) =
1,∀s ∈ Sinit in Eq. 4 – the rationale behind this choice is that we expect the ideal πθ∗ to succeed in all the
tasks in the pool.4 This brings us to the following curriculum strategy referred to as ProCuRL-env in our
experimental evaluation:

P
[
s

(0)
t = s

]
∝ exp

(
β · PoSt(s) ·

(
1− PoSt(s)

))
. (5)

Computing PoSt(·) is expensive. It is expensive (sample inefficient) to estimate PoSt(s) over the space
Sinit using rollouts of the policy πt. To tackle this issue, we replace PoSt(s) with values Vt(s) obtained
from the critic network of the RL agent. This brings us to the following curriculum strategy referred to as
ProCuRL-val in our experimental evaluation:

P
[
s

(0)
t = s

]
∝ exp

(
β · Vt(s) ·

(
1− Vt(s)

))
. (6)

Extension to non-binary or dense reward settings. The current forms of ProCuRL-val in Eq. 6 and
ProCuRL-env in Eq. 5 are not directly applicable for settings where the reward is non-binary or dense.
To deal with this issue in ProCuRL-val, we replace Vt(s) values from the critic in Eq. 6 with normalized
values given by V t(s) = Vt(s)−Vmin

Vmax−Vmin
clipped to the range [0, 1]. Here, Vmin and Vmax could be provided

as input based on the environment’s reward function; alternatively we can dynamically set Vmin and Vmax
during the training process by taking min-max values of the critic for states Sinit at step t. To deal with
this issue in ProCuRL-env, we replace PoSt(s) values from the rollouts in Eq. 5 with normalized values
V t(s) as above. Algorithm 2 in the appendix provides a complete pseudo-code for the RL agent training
with ProCuRL-val in this general setting.

4 Experimental Evaluation

In this section, we evaluate the effectiveness of our curriculum strategies on a variety of domains w.r.t. the
uniform performance of the trained RL agent over the training pool of tasks. Additionally, we consider
the following two metrics in our evaluation: (i) total number of environment steps incurred jointly by the
teacher and the student components at the end of the training process; (ii) total clock time required for the
training process. Throughout all the experiments, we use the PPO method from Stable-Baselines3 library
for policy optimization (Schulman et al., 2017; Raffin et al., 2021).

4This simple choice leads to competitive performance in a variety of environments used in our experiments. However, the
above choice could lead to a suboptimal strategy for specific scenarios, e.g., when all PoS∗(s) are below 0.5. It would be
interesting to investigate alternative strategies to estimate PoS∗(s) during the training process, e.g., using top K% rollouts
obtained by executing the current policy πt starting from s.

6

Published in Transactions on Machine Learning Research (05/2023)

Environment Reward Context State Action Pool size

PointMass-s binary R3 R4 R2 100
PointMass-d non-binary R3 R4 R2 100
BasicKarel binary 24000 {0, 1}88 6 24000

BallCatching non-binary R3 R21 R5 100
AntGoal non-binary R2 R29 R8 50

(a) Complexity of the environments (b) Illustration of the environments

Figure 1: (a) shows complexity of the environments w.r.t. the reward signals, context variation, state space,
action space, and the pool size of the tasks used for training. (b) shows illustration of the environments
(from left to right): PointMass, BasicKarel, BallCatching, and AntGoal. Details are provided in
Section 4.1.

4.1 Environments

We consider 5 different environments in our evaluation, as described in the following paragraphs. Figure 1
provides a summary and illustration of these environments.

PointMass-s and PointMass-d. Based on the work of Klink et al. (2020b), we consider a contextual
PointMass environment where an agent navigates a point mass through a gate of a given size towards a
goal in a two-dimensional space. More concretely, we consider two settings: (i) PointMass-s environment
corresponds to a goal-based (i.e., binary and sparse) reward setting where the agent receives a reward of 1
only if it successfully moves the point mass to the goal position; (ii) PointMass-d environment corresponds
to a dense reward setting as used by Klink et al. (2020b) where the reward values decay in a squared
exponential manner with increasing distance to the goal. Here, the contextual variable c ∈ R3 controls the
position of the gate (C-GatePosition), the width of the gate (C-GateWidth), and the friction coefficient of
the ground (C-Friction). We construct the training pool of tasks by uniformly sampling 100 tasks over the
space of possible tasks (here, each task corresponds to a different contextual variable).

BasicKarel. This environment is inspired by the Karel program synthesis domain Bunel et al.
(2018), where the goal of an agent is to transform an initial grid into a final grid configuration
by a sequence of commands. In our BasicKarel environment, we do not allow any programming
constructs such as conditionals or loops and limit the commands to the “basic” actions given by
A = {move, turnLeft, turnRight, pickMarker, putMarker, finish}. A task in this environment corre-
sponds to a pair of initial grid and final grid configurations; the environment is episodic with goal-based (i.e.,
binary and sparse) reward setting where the agent receives a reward of 1 only if it successfully transforms
the task’s initial grid into the task’s final grid. Here, the contextual variable is discrete, where each task
can be considered as a discrete context. We construct the training pool of tasks by sampling 24000 tasks;
additional details are provided in the appendix.

BallCatching. This environment is the same used in the work of Klink et al. (2020b); here, an agent needs
to direct a robot to catch a ball thrown towards it. The reward function is sparse and non-binary, only
rewarding the robot when it catches the ball and penalizing it for excessive movements. The contextual
vector c ∈ R3 captures the distance to the robot from which the ball is thrown and its goal position in a
plane that intersects the base of the robot. We construct the training pool of tasks by uniformly sampling
100 tasks over the space of possible tasks.

AntGoal. This environment is adapted from the original MuJoCo Ant environment (Todorov et al.,
2012). In our adaptation, we additionally have a goal on a flat 2D surface, and an agent is rewarded for
moving an ant robot towards the goal location. This goal-based reward term replaces the original reward
term of making the ant move forward; also, this reward term increases exponentially when the ant moves
closer to the goal location. We keep the other reward terms, such as control and contact costs, similar
to the original MuJoCo Ant environment. The environment is episodic with a length of 200 steps. The
goal location essentially serves as a contextual variable in R2. We construct the training pool of tasks by
uniformly sampling 50 goal locations from a circle around the ant.

7

Published in Transactions on Machine Learning Research (05/2023)

These environments are goal-based and have an implicit way of defining a successful trajectory. Typically,
success is defined as a reward signal to the agent for approaching the goal, as done by Klink et al. (2020b) for
PointMass, BallCatching, and AntGoal. As future work, it would also be interesting to investigate
the effect of our curriculum strategy on RL algorithms designed for the same goal-based setting but without
assuming that a goal proximity function is defined in the environment (Ding et al., 2019; Eysenbach et al.,
2022; Lin et al., 2019).

4.2 Curriculum Strategies Evaluated

Variants of our curriculum strategy. We consider the curriculum strategies ProCuRL-val and
ProCuRL-env from Section 3.3. Since ProCuRL-env uses policy rollouts to estimate PoSt(s) in Eq. 5,
it requires environment steps for selecting tasks in addition to environment steps for training. To compare
ProCuRL-val and ProCuRL-env in terms of trade-off between performance and sample efficiency, we
introduce a variant ProCuRL-envx where x controls the budget of the total number of steps used for
estimation and training. In Figure 3, variants with x ∈ {2, 4} refer to a total budget of about x million
environment steps when training comprises of 1 million steps.

State-of-the-art baselines. SPDL (Klink et al., 2020b) and SPaCE (Eimer et al., 2021) are state-of-the-
art curriculum strategies for contextual RL. We adapt the implementation of an improved version of SPDL,
presented in Klink et al. (2021), to work with a discrete pool of tasks. We also introduce a variant of SPaCE,
namely SPaCE-alt, by adapting the implementation of Eimer et al. (2021) to sample the next training
task as P

[
s

(0)
t = s

]
∝ exp

(
β ·

(
Vt(s)− Vt−1(s)

))
. PLR (Jiang et al., 2021b) is a state-of-the-art curriculum

strategy originally designed for procedurally generated content settings. We adapt the implementation of
PLR for the contextual RL setting operating on a fixed pool of tasks and include it as an additional baseline.

Prototypical baselines. IID strategy randomly samples the next task from the pool; note that IID
serves as a competitive baseline since we consider the uniform performance objective. We introduce two
additional variants of ProCuRL-env, namely Easy and Hard, to understand the importance of the two
terms PoSt(s) and

(
1 − PoSt(s)

)
in Eq. 5. Easy samples tasks as P

[
s

(0)
t = s

]
∝ exp

(
β · PoSt(s)

)
, and

Hard samples tasks as P
[
s

(0)
t = s

]
∝ exp

(
β ·

(
1− PoSt(s)

))
.

4.3 Results

Convergence behavior and curriculum plots. As shown in Figure 2, the RL agents trained using
the variants of our curriculum strategy, ProCuRL-env and ProCuRL-val, either match or outperform
the agents trained with state-of-the-art and prototypical baselines in all the environments. Figures 4 and 5
visualize the curriculums generated by ProCuRL-env, ProCuRL-val, and IID; the trends for ProCuRL-
val generally indicate a gradual shift towards harder tasks across different contexts. The increasing trend
in Figure 4a corresponds to a preference shift towards tasks with the gate positioned closer to the edges;
the decreasing trend in Figure 4b corresponds to a preference shift towards tasks with narrower gates. For
BasicKarel, the increasing trends in Figures 5a and 5b correspond to a preference towards tasks with longer
solution trajectories and tasks requiring a marker to be picked or put, respectively. In Figures 5c and 5d,
tasks with a distractor marker (C-DistractorMarker) and tasks with more walls (C-Walls) are increasingly
selected while training.

Metrics comparison. In Figure 3, we compare curriculum strategies considered in our experiments w.r.t.
different metrics. ProCuRL-val has similar sample complexity as state-of-the-art baselines since it does
not require additional environment steps for the teacher component. ProCuRL-val performs better com-
pared to SPDL, SPaCE and PLR in terms of computational complexity. The effect of that is more evident
as the pool size increases. The reason is that ProCuRL-val only requires forward-pass operation on the
critic-model to obtain value estimates for each task in the pool. SPDL and SPaCE not only require the
same forward-pass operations, but SPDL does an additional optimization step, and SPaCE requires a task
ordering step. As for PLR, it has an additional computational overhead for scoring the sampled tasks. In
terms of agent’s performance, our curriculum strategies exceed or match these baselines at different training
segments. Even though ProCuRL-env consistently surpasses all the other variants in terms of perfor-

8

Published in Transactions on Machine Learning Research (05/2023)

0.0 0.5 1.0
×106

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

or
m

an
ce

POINTMASS-S

PROCURL-ENV PROCURL-VAL IID SPDL PLR SPACE-ALT SPACE

0.0 0.5 1.0
×106

30

40

50

60

70
POINTMASS-D

0 1 2
Steps ×106

0.0

0.2

0.4

0.6

0.8

1.0 BASICKAREL

0 1 2 3 4 5
×106

30

40

50

60

70 BALLCATCHING

0 1 2 3 4 5
×106

0

100

200

300

400

500

600

700
ANTGOAL

Figure 2: Performance comparison of RL agents trained using different curriculum strategies described in
Section 4.2. The performance is measured as the mean reward (±1 standard error) on the training pool
of tasks. The results are averaged over 20 random seeds for PointMass-s and PointMass-d, 10 random
seeds for BasicKarel and BallCatching, and 5 random seeds for AntGoal. The plots are smoothed
across 5 evaluation snapshots happening at over 25000 training steps.

Method
Env

PointMass-s BasicKarel

Performance Steps Time Performance Steps Time
0.25M 0.5M 1M 1M 1M 0.25M 0.5M 1M 1M 1M

ProCuRL-env 0.60± 0.16 0.79± 0.13 0.84± 0.14 17.4± 1.7 156 0.10± 0.02 0.38± 0.03 0.76± 0.04 34.2± 0.9 191
ProCuRL-env4 0.50± 0.15 0.64± 0.15 0.71± 0.15 4.0± 0.0 43 0.10± 0.03 0.38± 0.04 0.75± 0.04 4.6± 0.1 53
ProCuRL-env2 0.36± 0.17 0.53± 0.16 0.60± 0.17 2.0± 0.0 25 0.10± 0.03 0.32± 0.05 0.73± 0.04 2.4± 0.1 44
ProCuRL-val 0.48± 0.15 0.64± 0.17 0.71± 0.18 1.0± 0.0 20 0.06± 0.03 0.30± 0.08 0.71± 0.05 1.0± 0.0 70

SPaCE 0.05± 0.06 0.17± 0.12 0.29± 0.15 1.0± 0.0 22 0.04± 0.02 0.11± 0.03 0.30± 0.04 1.0± 0.0 89
SPaCE-alt 0.22± 0.12 0.37± 0.15 0.46± 0.17 1.0± 0.0 21 0.05± 0.03 0.18± 0.06 0.50± 0.08 1.0± 0.0 69
SPDL 0.34± 0.16 0.45± 0.17 0.52± 0.17 1.0± 0.0 23 0.07± 0.02 0.29± 0.04 0.69± 0.05 1.0± 0.0 81
PLR 0.32± 0.12 0.47± 0.15 0.69± 0.13 1.0± 0.0 20 0.05± 0.03 0.23± 0.05 0.70± 0.04 1.0± 0.0 79

IID 0.27± 0.15 0.34± 0.17 0.36± 0.19 1.0± 0.0 20 0.03± 0.02 0.15± 0.06 0.64± 0.08 1.0± 0.0 34
Easy 0.37± 0.13 0.44± 0.12 0.50± 0.11 17.1± 2.3 154 0.04± 0.01 0.07± 0.02 0.11± 0.03 22.6± 0.9 126
Hard 0.01± 0.01 0.00± 0.00 0.01± 0.01 37.0± 0.7 332 0.01± 0.00 0.01± 0.00 0.01± 0.00 35.2± 3.9 197

Figure 3: Comparison of different curriculum strategies described in Section 4.2 under the following metrics:
(i) performance (mean reward ± t×standard error, where t is the value from the t-distribution table for
95% confidence (Beyer, 2019)) of the RL agent at 0.25, 0.5, and 1 million training steps; (ii) total number
of environment steps incurred at the end of 1 million training steps (this captures the sample efficiency of
a curriculum strategy); (iii) total clock time in minutes at the end of 1 million training steps (this captures
the computational efficiency of a curriculum strategy).

mance, its teacher component requires a lot of additional environment steps. Regarding the prototypical
baselines in Figure 3, we make the following observations: (a) IID is a strong baseline in terms of sample
and computational efficiency; however, its performance tends to be unstable in PointMass-s environment
because of high randomness; (b) Easy performs well in PointMass-s because of the presence of easy tasks
in the task space of this environment, but, performs quite poorly in BasicKarel; (c) Hard consistently
fails in both the environments.

Ablation and robustness experiments. We conduct additional experiments to evaluate the robustness of
ProCuRL-val w.r.t. different values of β and different ϵ-level noise in Vt(s) values. The results are reported
in the appendix. From the reported results, we note that picking a value for β somewhere between 10 to 30

9

Published in Transactions on Machine Learning Research (05/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

1.8

2.0

2.2

2.4

C
-G

at
eP

os
iti

on
PROCURL-ENV

PROCURL-VAL

IID

(a) C-GatePosition

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

3.5

3.8

4.1

4.4

4.7

5.0

5.3

C
-G

at
eW

id
th

PROCURL-ENV

PROCURL-VAL

IID

(b) C-GateWidth

0.0 0.2 0.4 0.6 0.8 1.0
Steps ×106

1.2

1.4

1.6

1.8

2.0

2.2

C
-F

ri
ct

io
n

PROCURL-ENV

PROCURL-VAL

IID

(c) C-Friction

(d) At 0.25M (e) At 0.5M (f) At 0.75M

Figure 4: (a-c) Curriculum visualization of ProCuRL-env, ProCuRL-val, and IID in the PointMass-s
environment; these plots show the moving average variation of the context variables of every 100 tasks picked
by curriculum strategies during the training process (a picked task involves multiple training steps shown
on the x-axis of plots). The increasing trend in (a) corresponds to a preference shift towards tasks with the
gate positioned closer to the edges; the decreasing trend in (b) corresponds to a shift towards tasks with
narrower gates. (d-f) Illustrative tasks used during the training process for ProCuRL-val (M is 106).

0.0 0.5 1.0 1.5 2.0
Steps ×106

4.4

4.6

4.8

5.0

5.2

5.4

C
-T

ra
jL

en
gt

h

PROCURL-ENV

PROCURL-VAL

IID

(a) C-TrajLength

0.0 0.5 1.0 1.5 2.0
Steps ×106

0.50

0.55

0.60

0.65

0.70

0.75

C
-M

ar
ke

rA
ct

io
n

PROCURL-ENV

PROCURL-VAL

IID

(b) C-MarkerAction

0.0 0.5 1.0 1.5 2.0
Steps ×106

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

C
-D

is
tr

ac
to

rM
ar

ke
r

PROCURL-ENV

PROCURL-VAL

IID

(c) C-DistractorMarker

0.0 0.5 1.0 1.5 2.0
Steps ×106

5.90

5.95

6.00

6.05

6.10

6.15

6.20

6.25

6.30

C
-W

al
ls

PROCURL-ENV

PROCURL-VAL

IID

(d) C-Walls

(e) At 0.1M (f) At 0.25M (g) At 0.5M (h) At 0.75M (i) At 1.5M

Figure 5: (a-d) Curriculum visualization of ProCuRL-env, ProCuRL-val, and IID in the BasicKarel
environment; these plots show the moving average variation of the context variables of every 500 tasks picked.
The increasing trends in (a-d) correspond to a preference towards tasks: (a) with longer trajectories, (b)
requiring a marker action, (c) with more distractor markers, and (d) with more walls. (e-i) Illustrative
tasks used during the training process at different steps for ProCuRL-val (M is 106).

leads to competitive performance, and ProCuRL-val is robust even for noise levels up to ϵ = 0.2. Further,
we conduct an ablation study on the form of our curriculum objective presented in Eq. 1. More specifically, we
consider the following generalized variant of Eq. 1 with parameters γ1 and γ2: s

(0)
t ← arg maxs∈Sinit

(
PoSt(s)·

(γ1 · PoS∗(s) − γ2 · PoSt(s))
)
. In our experiments, we consider the following range of γ2/γ1 ∈

{0.6, 0.8, 1.0, 1.2, 1.4}. The results are reported in the appendix. From the reported results, we note that
our default curriculum strategy in Eq. 1 (corresponding to γ2/γ1 = 1.0) leads to competitive performance.

5 Concluding Discussions

We proposed a novel curriculum strategy for deep RL agents inspired by the ZPD concept. We mathemati-
cally derived our strategy by analyzing simple learning settings and empirically demonstrated its effectiveness

10

Published in Transactions on Machine Learning Research (05/2023)

in a variety of complex domains. Here, we discuss a few limitations of our work and outline a plan on how
to address them in future work. First, our experimental results show that different variants of our pro-
posed curriculum provide an inherent trade-off between runtime and performance; it would be interesting
to systematically study these variants to obtain a more effective curriculum strategy across different met-
rics. Second, it would be interesting to extend our curriculum strategy to sparse reward environments with
high-dimensional context space; in particular, our curriculum strategy requires estimating the probability of
success of all tasks in the pool when sampling a new task which becomes challenging in these environments.
Third, extending the theoretical analysis of the curriculum strategy from independent task settings to cor-
related task settings would be an interesting avenue to explore; this could involve developing a generalized
version of ProCuRL curriculum strategy using a distance metric over the context space (Klink et al., 2022;
Huang et al., 2022).

Acknowledgments

Parameswaran Kamalaruban acknowledges support from The Alan Turing Institute. Funded/Co-funded
by the European Union (ERC, TOPS, 101039090). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them.

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,

Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. In NeurIPS, 2017.

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. Purposive Behavior Acquisition for
a Real Robot by Vision-based Reinforcement Learning. Machine learning, 23(2-3):279–303, 1996.

Adrien Baranes and Pierre-Yves Oudeyer. Active Learning of Inverse Models with Intrinsically Motivated
Goal Exploration in Robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum Learning. In ICML,
2009.

William H Beyer. Handbook of Tables for Probability and Statistics. CRC Press, 2019.

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
Grammar and Reinforcement Learning for Neural Program Synthesis. In ICLR, 2018.

Seth Chaiklin. The Zone of Proximal Development in Vygotsky’s Analysis of Learning and Instruction.
Vygotsky’s Educational Theory in Cultural Context, pp. 39, 2003.

Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. Goal-GAN: Multimodal Trajectory Prediction based
on Goal Position Estimation. In ACCV, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch, and
Sergey Levine. Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design. In
NeurIPS, 2020.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned Imitation Learning.
In NeurIPS, 2019.

Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius Lindauer. Self-Paced Context Evaluation for
Contextual Reinforcement Learning. In ICML, 2021.

Jeffrey L Elman. Learning and Development in Neural Networks: The Importance of Starting Small. Cog-
nition, 48(1):71–99, 1993.

11

Published in Transactions on Machine Learning Research (05/2023)

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive Learning as
Goal-conditioned Reinforcement Learning. In NeurIPS, 2022.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse Curriculum
Generation for Reinforcement Learning. In CORL, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic Goal Generation for Reinforce-
ment Learning Agents. In ICML, 2018.

Alex Graves, Marc G Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated Curricu-
lum Learning for Neural Networks. In ICML, 2017.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov Decision Processes. CoRR,
abs/1502.02259, 2015.

Peide Huang, Mengdi Xu, Jiacheng Zhu, Laixi Shi, Fei Fang, and Ding Zhao. Curriculum Reinforcement
Learning using Optimal Transport via Gradual Domain Adaptation. In NeurIPS, 2022.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-Paced Curriculum
Learning. In AAAI, 2015.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim Rock-
täschel. Replay-Guided Adversarial Environment Design. In NeurIPS, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized Level Replay. In ICML, 2021b.

Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive Teaching Algo-
rithms for Inverse Reinforcement Learning. In IJCAI, 2019.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A Survey of Generalisation in Deep
Reinforcement Learning. CoRR, abs/2111.09794, 2021.

Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-Paced Contextual Reinforcement
Learning. In CORL, 2020a.

Pascal Klink, Carlo D’Eramo, Jan R Peters, and Joni Pajarinen. Self-Paced Deep Reinforcement Learning.
In NeurIPS, 2020b.

Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. A
Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning. Journal
of Machine Learning Research, 22:182–1, 2021.

Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum Reinforcement
Learning via Constrained Optimal Transport. In ICML, 2022.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-Paced Learning for Latent Variable Models.
In NeurIPS, 2010.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end Training of Deep Visuomotor
Policies. Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Sil-
ver, and Daan Wierstra. Continuous Control with Deep Reinforcement Learning. CoRR, abs/1509.02971,
2015.

X. Lin, H. Baweja, and D. Held. Reinforcement Learning without Ground-Truth State. ICML’19 Workshop
on Multi-Task and Lifelong Reinforcement Learning, 2019.

Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M Rehg, and
Le Song. Iterative Machine Teaching. In ICML, 2017.

12

Published in Transactions on Machine Learning Research (05/2023)

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–Student Curriculum Learning.
IEEE Transactions on Neural Networks and Learning Systems, 31(9):3732–3740, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-Level Control Through
Deep Reinforcement Learning. Nature, 518(7540):529–533, 2015.

Sanmit Narvekar and Peter Stone. Learning Curriculum Policies for Reinforcement Learning. In AAMAS,
2019.

Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous Task Sequencing for Customized Curriculum
Design in Reinforcement Learning. In IJCAI, 2017.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone. Curriculum
Learning for Reinforcement Learning Domains: A Framework and Survey. Journal of Machine Learning
Research, 21:1–50, 2020.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic Motivation Systems for Autonomous
Mental Development. IEEE Transactions on Evolutionary Computation, 11(2):265–286, 2007.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward Grefenstette,
and Tim Rocktäschel. Evolving Curricula with Regret-Based Environment Design. CoRR, abs/2203.01302,
2022.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic Curriculum
Learning for Deep RL: A Short Survey. In IJCAI, 2021.

Sébastien Racanière, Andrew K Lampinen, Adam Santoro, David P Reichert, Vlad Firoiu, and Timothy P
Lillicrap. Automated Curricula Through Setter-Solver Interactions. In ICLR, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of Machine Learning Re-
search, 22(268):1–8, 2021.

Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alexander Peysakhovich, Kyunghyun Cho, and Joan
Bruna. Backplay:“ Man muss immer umkehren”. CoRR, abs/1807.06919, 2018.

Martin A Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by Playing Solving Sparse Reward
Tasks from Scratch. In ICML, 2018.

Tim Salimans and Richard Chen. Learning Montezuma’s Revenge from a Single Demonstration. CoRR,
abs/1812.03381, 2018.

Jürgen Schmidhuber. Powerplay: Training an Increasingly General Problem Solver by Continually Searching
for the Simplest Still Unsolvable Problem. Frontiers in Psychology, 4:313, 2013.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Opti-
mization Algorithms. CoRR, abs/1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the Game of Go Without Human
Knowledge. Nature, 550(7676):354–359, 2017.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeffrey Clune. Generative Teaching
Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data. In
ICML, 2020.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Robert Fergus.
Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play. In ICLR, 2018.

13

Published in Transactions on Machine Learning Research (05/2023)

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In NeurIPS, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A Physics Engine for Model-based Control. In
IROS, 2012.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe Reinforcement
Learning via Curriculum Induction. In NeurIPS, 2020.

Lev Semenovich Vygotsky and Michael Cole. Mind in Society: Development of Higher Psychological Pro-
cesses. Harvard University Press, 1978.

Daphna Weinshall and Dan Amir. Theory of Curriculum Learning with Convex Loss Functions. CoRR,
abs/1812.03472, 2018.

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum Learning by Transfer Learning: Theory and
Experiments with Deep Networks. In ICML, 2018.

Lilian Weng. Curriculum for Reinforcement Learning. lilianweng.github.io, 2020. URL https://
lilianweng.github.io/posts/2020-01-29-curriculum-rl/.

Jan Wöhlke, Felix Schmitt, and Herke van Hoof. A Performance-Based Start State Curriculum Framework
for Reinforcement Learning. In AAMAS, 2020.

Yuxin Wu and Yuandong Tian. Training Agent for First-Person Shooter Game with Actor-Critic Curriculum
Learning. In ICLR, 2016.

Scott Cheng-Hsin Yang, Yue Yu, arash Givchi, Pei Wang, Wai Keen Vong, and Patrick Shafto. Optimal
Cooperative Inference. In AISTATS, 2018.

Gaurav Raju Yengera, Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Curriculum Design
for Teaching via Demonstrations: Theory and Applications. In NeurIPS, 2021.

Wojciech Zaremba and Ilya Sutskever. Learning to Execute. CoRR, abs/1410.4615, 2014.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic Curriculum Learning Through Value Disagree-
ment. In NeurIPS, 2020.

Tianyi Zhou and Jeff Bilmes. Minimax Curriculum Learning: Machine Teaching with Desirable Difficulties
and Scheduled Diversity. In ICLR, 2018.

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Curriculum Learning by Optimizing Learning Dynamics. In
AISTATS, 2021.

Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. An Overview of Machine Teaching. CoRR,
abs/1801.05927, 2018.

Xiaotian Zou, Wei Ma, Zhenjun Ma, and Ryan S Baker. Towards Helping Teachers Select Optimal Content
for Students. In AIED, 2019.

14

https://lilianweng.github.io/posts/2020-01-29-curriculum-rl/
https://lilianweng.github.io/posts/2020-01-29-curriculum-rl/

Published in Transactions on Machine Learning Research (05/2023)

A Table of Contents

In this section, we give a brief description of the content provided in the appendices of the paper.

• Appendix B provides a proof for Theorem 1 and an additional theoretical justification for our curriculum
strategy. (Section 3.2)

• Appendix C provides additional details and results for experimental evaluation. (Section 4)

B Theoretical Justifications for the Curriculum Strategy – Proof and Additional
Justification (Section 3.2)

B.1 Proof of Theorem 1

Proof. For the contextual bandit setting described in Section 3.2.1, the Reinforce learner’s update rule
reduces to the following: θt+1 ← θt + ηt · 1{s(1)

t = g} ·
[
∇θ log πθ(a(0)

t |s
(0)
t)

]
θ=θt

. In particular, for s
(0)
t = s

and a
(0)
t = a1, we update:

θt+1[s, a1] ← θt[s, a1] + ηt · 1{s(1)
t = g} · (1− πθt

(a1|s))

θt+1[s, a2] ← θt[s, a2]− ηt · 1{s(1)
t = g} · (1− πθt

(a1|s))

and we set θt+1[s, ·]← θt[s, ·] when s
(0)
t ̸= s or a

(0)
t ̸= a1. Let s

(0)
t = s, and consider the following:

∆t(θt+1
∣∣θt, s, ξt)

= ∥θ∗ − θt∥1 − ∥θ
∗ − θt+1∥1

= ∥θ∗[s, ·]− θt[s, ·]∥1 − ∥θ
∗[s, ·]− θt+1[s, ·]∥1

= {θ∗[s, a1]− θt[s, a1] + θt[s, a2]− θ∗[s, a2]} − {θ∗[s, a1]− θt+1[s, a1] + θt+1[s, a2]− θ∗[s, a2]}
= θt+1[s, a1]− θt[s, a1] + θt[s, a2]− θt+1[s, a2]

= 2 · ηt · 1{a(0)
t = a1, s

(1)
t = g} · (1− πθt(a1|s)).

For the contextual bandit setting, the probability of success is given by PoSθ(s) = V πθ (s) = prand(s) ·
πθ(a1|s),∀s ∈ S. We assume that ∃ θ∗ such that πθ∗(a1|s) → 1; here, πθ∗ is the target policy. With the
above definition, the probability of success scores for any task associated with the starting state s ∈ Sinit
w.r.t. the target and agent’s current policies (at any step t) are respectively given by PoS∗(s) = PoSθ∗(s) =
prand(s) = p∗ and PoSt(s) = PoSθt

(s) = prand(s) · πθt
(a1|s) = p. Now, we consider the following:

Ct(s) = Eξt|s
[
∆t(θt+1

∣∣θt, s, ξt)
]

= Eξt|s

[
2 · ηt · 1{a(0)

t = a1, s
(1)
t = g} · (1− πθt

(a1|s))
]

= 2 · ηt · prand(s) · πθt
(a1|s) · (1− πθt

(a1|s))

= 2 · ηt · p ·
(

1− p

p∗

)
.

B.2 Abstract Agent with Direct performance Parameterization

We consider an abstract agent model with the following direct performance parameterization: for any θ ∈ Θ =
[0, 1]|Sinit|, we have PoSθ(s) = θ[s],∀s ∈ Sinit.5 Under this model, the agent’s current knowledge θt at step t is

5In this setting, we abstract out the policy πθ and directly map the “parameter” θ to a vector of “performance on tasks”
PoSθ. Then, we choose the parameter space as Θ = [0, 1]Sinit (where d = Sinit) and define PoSθ = θ. Thus, an update in the
“parameter” θ is equivalent to an update in the “performance on tasks” PoSθ.

15

Published in Transactions on Machine Learning Research (05/2023)

encoded directly by its probability of success scores {PoSθt
(s) | s ∈ Sinit}. The target knowledge parameter θ∗

is given by {PoSθ∗(s) | s ∈ Sinit}. Under the independent task setting, we design an update rule for the agent
to reflect the characteristics of the policy gradient style update. In particular, for s = s

(0)
t ∈ Sinit, we update

θt+1[s] ← θt[s] + α · succ(ξt; s) · (θ∗[s]− θt[s]) + β · (1− succ(ξt; s)) · (θ∗[s]− θt[s]),

where α, β ∈ [0, 1] and α > β. For s ∈ Sinit and s ̸= s
(0)
t , we maintain θt+1[s] ← θt[s]. Importantly, α > β

implies that the agent’s current knowledge for the picked task is updated more when the agent succeeds
in that task compared to the failure case. The update rule captures the following idea: when picking a
task that is “too easy”, the progress in θt towards θ∗ is minimal since (θ∗[s] − θt[s]) is low; similarly, when
picking a task that is “too hard”, the progress in θt towards θ∗ is minimal since β · (θ∗[s] − θt[s]) is low
for β ≪ 1. This idea aligns with the ZPD concept in terms of the learning progress (Vygotsky & Cole,
1978; Chaiklin, 2003). For the abstract agent under the above setting, the following theorem quantifies the
expected improvement in the training objective at step t:
Theorem 2. Consider the abstract agent with direct performance parameterization under the independent
task setting as described above. Let s

(0)
t be the task picked at step t with PoSθt

(s(0)
t) = p and PoSθ∗(s(0)

t) = p∗.
Then, we have: Ct(s(0)

t) = α · p · (p∗ − p) + β · (1− p) · (p∗ − p).

Proof. Let s
(0)
t = s ∈ Sinit, and consider the following:

∆t(θt+1
∣∣θt, s, ξt) = ∥θ∗ − θt∥1 − ∥θ

∗ − θt+1∥1
= θt+1[s]− θt[s]
= α · succ(ξt; s) · (θ∗[s]− θt[s]) + β · (1− succ(ξt; s)) · (θ∗[s]− θt[s]).

For the abstract learner model defined in Section B.2, we have PoSθ(s) = V πθ (s) = θ[s], for any s ∈ Sinit.
Then, the probability of success scores for any task s ∈ Sinit w.r.t. the target and agent’s current policies (at
any step t) are respectively given by PoS∗(s) = PoSθ∗(s) = θ∗[s] = p∗ and PoSt(s) = PoSθt

(s) = θt[s] = p.
Now, we consider the following:

Ct(s) = Eξt|s
[
∆t(θt+1

∣∣θt, s, ξt)
]

= Eξt|s [α · succ(ξt; s) · (θ∗[s]− θt[s]) + β · (1− succ(ξt; s)) · (θ∗[s]− θt[s])]
= α · θt[s] · (θ∗[s]− θt[s]) + β · (1− θt[s]) · (θ∗[s]− θt[s])
= α · p · (p∗ − p) + β · (1− p) · (p∗ − p).

For the above setting with α = 1 and β = 0, maxs∈Sinit Ct(s) is equivalent to maxs∈Sinit PoSt(s) · (PoS∗(s)−
PoSt(s)). This, in turn, implies that the curriculum strategy given in Eq. 1 can be seen as greedily optimizing
the expected improvement in the training objective at step t given in Eq. 3.

C Experimental Evaluation – Additional Details (Section 4)

C.1 Environments

BasicKarel. This environment is inspired by the Karel program synthesis domain Bunel et al. (2018),
where the goal of an agent is to transform an initial grid into a final grid configuration by a sequence
of commands. In the BasicKarel environment, we do not allow any programming constructs such
as conditionals or loops and limit the commands to the “basic” actions given by the action space
A = {move, turnLeft, turnRight, pickMarker, putMarker, finish}. A task in this environment corre-
sponds to a pair of initial grid and final grid configurations. It consists of an avatar, walls, markers, and
empty grid cells, and each element has a specific location in the grid. The avatar is characterized by its
current location and orientation. Its orientation can be any direction {North, East, South, West}, and
its location can be any grid cell, except from grid cells where a wall is located. The state space S of

16

Published in Transactions on Machine Learning Research (05/2023)

BasicKarel is any possible configuration of the avatar, walls, and markers in a pair of grids. The avatar
can move around the grid and is directed via the basic Karel commands, i.e., the action space A. While the
avatar moves, if it hits a wall or the grid boundary, it “crashes” and the episode terminates. If pickMarker is
selected when no marker is present, the avatar “crashes” and the program ends. Likewise, if the putMarker
action is taken and a marker is already present, the avatar “crashes” and the program terminates. The
finish action indicates the end of the sequence of actions, i.e., the episode ends after encountering this
action. To successfully solve a BasicKarel task, the sequence of actions must end with a finish, and
there should be no termination via “crashes”. Based on this environment, we created a multi-task dataset
that consists of 24000 training tasks and 2400 test tasks. All the generated tasks have a grid size of 4× 4.

C.2 Evaluation Setup

Hyperparameters of PPO method. We use the PPO method from Stable-Baselines3 library with a
basic MLP policy for all the conducted experiments (Schulman et al., 2017; Raffin et al., 2021). For the
PointMass-S, PointMass-D, and BallCatching environments, the MLP policy has a shared layer with
64 units and a second layer with separate 64 units for the policy and 64 units for the value function. For
the BasicKarel environment, we use two separate layers of size [512, 256] for the policy network and
two layers of size [256, 128] for the value function network. For the AntGoal environment, we use two
separate layers of size [512, 512] for the policy network and two layers of size [512, 512] for the value function
network. For all the experiments, ReLU is the chosen activation function. In Figure 6, we report the PPO
hyperparameters used in the experiments. For each environment, all the hyperparameters are consistent
across all the different curriculum strategies.

Hyperparameters PointMass-s PointMass-d BasicKarel BallCatching AntGoal

Nsteps 1024 1024 2048 5120 1024

γ 0.99 0.95 0.99 0.99 0.99

Nepochs 10 10 10 10 10

learning_rate 3e−4 3e−4 3e−4 3e−4 2e−5

batch_size 64 64 64 64 32

ent_coef 0 0 0 0 5e−7

clip_range 0.2 0.2 0.2 0.2 0.1

gae_lambda 0.95 0.95 0.95 0.95 0.8

max_grad_norm 0.5 0.5 0.5 0.5 0.6

vf_coef 0.5 0.5 0.5 0.5 0.7

Figure 6: Different hyperparameters of the PPO method used in the experiments for each environment.

Compute resources. All the experiments were conducted on a cluster of machines with CPUs of model
Intel Xeon Gold 6134M CPU @ 3.20GHz.

C.3 Curriculum Strategies Evaluated

Variants of the curriculum strategy. Algorithm 2 provides a complete pseudo-code for the RL agent
using PPO method when trained with ProCuRL-val in the general setting of non-binary or dense rewards
(see Section 3.3). In Eq. 1 and Algorithm 1, we defined t at an episodic level; however, in Algorithm 2,
t denotes an environment step (in the context of the PPO method). For ProCuRL-env, in line 24 of
Algorithm 2, we estimate the probability of success for all the tasks using the additional rollouts obtained
by executing the current policy in M.

To achieve the constrained budget of evaluation steps in ProCuRL-envx (with x ∈ {2, 4}), we reduce
the frequency of updating PoSt since this is the most expensive operation for ProCuRL-env requiring
additional rollouts for each task. On the other hand, ProCuRL-val updates PoSt by using the values

17

Published in Transactions on Machine Learning Research (05/2023)

obtained from forward-pass on the critic model – this update happens whenever the critic model is updated
(every 2048 training steps for BasicKarel). This higher frequency of updating PoSt in ProCuRL-val is
why it is slower than ProCuRL-envx (with x ∈ {2, 4}) for BasicKarel. Note that the relative frequency
of updates for PointMass is different in comparison to BasicKarel because of very different pool sizes.
Hence, the behavior in total clock times is different.

Algorithm 2 RL agent using PPO method when trained with ProCuRL-val in the general setting
1: Input: RL algorithm PPO, rollout buffer D
2: Hyperparameters: policy update frequency Nsteps, number of epochs Nepochs, number of minibatches

Nbatch, parameter β, Vmin, and Vmax
3: Initialization: randomly initialize policy π1 and critic V1; set normalized probability of success scores

V 1(s) = 0 and PoS∗(s) = 1, ∀s ∈ Sinit
4: for t = 1, . . . , T do
5: // add an environment step to the buffer
6: observe the state st, and select the action at ∼ πt(st)
7: execute the action at in the environment
8: observe reward rt, next state st+1, and done signal dt+1 to indicate whether st+1 is terminal
9: store (st, at, rt, st+1, dt+1) in the rollout buffer D

10: // choose new task when the current task/episode ends
11: if dt+1 = true then
12: reset the environment state
13: sample next task st+1 from P

[
st+1 = s

]
∝ exp

(
β · V t(s) · (1− V t(s))

)
14: // policy and V t(s) update
15: if t%Nsteps = 0 then
16: set π′ ← πt and V ′ ← Vt

17: for e = 1, . . . , Nepochs do
18: for b = 1, . . . , Nbatch do
19: sample b-th minibatch of Nsteps/Nbatch transitions B = {(s, a, r, s′, d)} from D
20: update policy and critic using PPO algorithm π′, V ′ ← PPO(π′, V ′, B)
21: set πt+1 ← π′ and Vt+1 ← V ′

22: empty the rollout buffer D
23: // normalization for the environments with non-binary or dense rewards
24: update V t+1(s)← Vt+1(s)−Vmin

Vmax−Vmin
, ∀s ∈ Sinit using forward passes on critic

25: else
26: maintain the previous values πt+1 ← πt, Vt+1 ← Vt, and V t+1 ← V t

27: Output: policy πT

Hyperparameters of curriculum strategies. In Figure 7, we report the hyperparameters of each
curriculum strategy used in the experiments (for each environment). Below, we provide a short description
of these hyperparameters:

1. β parameter controls the stochasticity of the softmax selection.
2. Npos parameter controls the frequency at which V t is updated. For ProCuRL-env, we set Npos higher

than Nsteps since obtaining rollouts to update V t(s) is expensive. For all the other curriculum strategies,
we set Npos = Nsteps. For SPaCE, Npos controls how frequently the current task dataset is updated based
on their curriculum. For SPDL, Npos controls how often we perform the optimization step to update the
distribution for selecting tasks.

3. crollouts determines the number of additional rollouts required to compute the probability of success score
for each task (only for ProCuRL-env).

4. {Vmin, Vmax} are used in the environments with non-binary or dense rewards to obtain the normalized
values V (s) (see Section 3.3). In Figure 7, {Vmin,t, Vmax,t} denote the min-max values of the critic for
states Sinit at step t.

18

Published in Transactions on Machine Learning Research (05/2023)

5. η and κ parameters as used in SPaCE (Eimer et al., 2021).
6. VLB performance threshold as used in SPDL (Klink et al., 2021).
7. ρ staleness coefficient and βPLR temperature parameter for score prioritization as used in PLR (Jiang

et al., 2021b).

Method Hyperparameters PointMass-s PointMass-d BasicKarel BallCatching AntGoal

ProCuRL-env
β 20 10 10 10 10

Npos 5120 5120 102400 20480 81920
crollouts 20 20 20 20 20

{Vmin, Vmax} n/a {Vmin,t, Vmax,t} n/a n/a {0, 300}

ProCuRL-val
β 20 10 10 10 10

Npos 1024 1024 2048 5120 1024
{Vmin, Vmax} n/a {Vmin,t, Vmax,t} n/a {0, 60} {0, 300}

SPaCE
η 0.1 0.1 0.5 0.1 0.1
κ 1 1 64 1 1

Npos 1024 1024 2048 5120 1024

SPaCE-alt
β 20 10 10 10 10

Npos 1024 1024 2048 5120 1024

SPDL
VLB 0.5 3.5 0.5 30 100

Npos 1024 1024 2048 5120 1024

PLR
ρ 0.5 0.9 0.9 0.7 0.3

βPLR 0.1 0.3 0.1 0.3 0.1

Figure 7: We present the hyperparameters of the different curriculum strategies for all five environments.
For SPDL, we choose the best performing VLB in the non-binary environments from the following sets: set
{1, 3.5, 10, 20, 30, 40} for PointMass-D; set {20, 25, 30, 35, 42.5} for BallCatching; set {50, 100, 200,
300, 400} for AntGoal. For PLR, we choose the best performing pair (βPLR, ρ) for each environment from
the set {0.1, 0.3, 0.5, 0.7, 0.9} × {0.1, 0.3, 0.5, 0.7, 0.9}.

C.4 Additional Results

Ablation and robustness experiments. We conduct additional experiments to evaluate the robustness of
ProCuRL-val w.r.t. different values of β and different ϵ-level noise in Vt(s) values. The results are reported
in Figure 8. Further, we conduct an ablation study on the form of our curriculum objective presented in
Eq. 1. More specifically, we consider the following generalized variant of Eq. 1 with parameters γ1 and γ2:

s
(0)
t ← arg max

s∈Sinit

(
PoSt(s) ·

(
γ1 · PoS∗(s)− γ2 · PoSt(s)

))
(7)

In our experiments, we consider the following range of γ2/γ1 ∈ {0.6, 0.8, 1.0, 1.2, 1.4}. Our default curriculum
strategy in Eq. 1 essentially corresponds to γ2/γ1 = 1.0. The results are reported in Figure 9.

Performance on test set. In Figure 10, we report the performance of the trained models in the training
set and a test set for comparison purposes. For PointMass-S, we constructed a separate test set of 100
tasks by uniformly picking tasks from the task space. For BasicKarel, we have a train and test dataset of
24000 and 2400 tasks, respectively.

Pool of harder tasks. We sought to assess the effectiveness of ProCuRL-val on tasks where IID does
not perform well. To demonstrate this, we construct a more challenging set of tasks for the PointMass-
s environment. We generate half of these tasks by uniformly sampling over the context space. The
remaining tasks are sampled from a bi-modal Gaussian distribution, where the means of the contexts
[C-GatePosition, C-GateWidth] are [−3, 1] and [3, 1] for the two modes, respectively. In Figure 11,
we present the results for ProCuRL-val and IID, and in Figure 12 the different distributions.

19

Published in Transactions on Machine Learning Research (05/2023)

Method
Env

PointMass-s BasicKarel

ProCuRL-val Performance Performance
0.25M 0.5M 1M 0.25M 0.5M 1M

β = 10 0.48± 0.17 0.58± 0.19 0.70± 0.18 0.06± 0.03 0.30± 0.08 0.71± 0.05
β = 15 0.42± 0.17 0.64± 0.17 0.74± 0.15 0.12± 0.04 0.38± 0.04 0.71± 0.05
β = 20 0.48± 0.15 0.64± 0.17 0.71± 0.18 0.18± 0.06 0.42± 0.06 0.75± 0.06
β = 25 0.45± 0.18 0.60± 0.19 0.65± 0.21 0.22± 0.03 0.38± 0.04 0.62± 0.05
β = 30 0.54± 0.18 0.64± 0.20 0.74± 0.19 0.20± 0.06 0.36± 0.07 0.67± 0.07

ϵ = 0.00 0.48± 0.15 0.64± 0.17 0.71± 0.18 0.06± 0.03 0.30± 0.08 0.71± 0.05
ϵ = 0.01 0.53± 0.18 0.62± 0.19 0.71± 0.20 0.06± 0.02 0.30± 0.06 0.69± 0.04
ϵ = 0.05 0.39± 0.16 0.60± 0.17 0.70± 0.20 0.06± 0.02 0.31± 0.06 0.72± 0.04
ϵ = 0.1 0.47± 0.17 0.59± 0.16 0.67± 0.18 0.06± 0.03 0.30± 0.07 0.69± 0.07
ϵ = 0.2 0.49± 0.16 0.61± 0.18 0.68± 0.18 0.04± 0.02 0.26± 0.08 0.74± 0.03

Figure 8: Robustness of ProCuRL-val w.r.t. different values of β and different ϵ-level noise in Vt(s) values.
We present the results for the PointMass-s environment and BasicKarel environment. We report the
mean reward (± t×standard error, where t is the value from the t-distribution table for 95% confidence) at
0.25, 0.5, and 1 million training steps averaged over 20 and 10 random seeds, respectively.

Method
Env

PointMass-s BasicKarel

ProCuRL-val Performance Performance
0.25M 0.5M 1M 0.25M 0.5M 1M

γ2/γ1 = 0.6 0.33± 0.14 0.50± 0.14 0.55± 0.13 0.08± 0.04 0.21± 0.07 0.41± 0.08
γ2/γ1 = 0.8 0.26± 0.15 0.43± 0.17 0.55± 0.20 0.11± 0.03 0.36± 0.05 0.64± 0.07
γ2/γ1 = 1.0 0.48± 0.15 0.64± 0.17 0.71± 0.18 0.06± 0.03 0.30± 0.08 0.71± 0.05
γ2/γ1 = 1.2 0.42± 0.19 0.55± 0.19 0.65± 0.17 0.07± 0.04 0.30± 0.11 0.72± 0.08
γ2/γ1 = 1.4 0.39± 0.16 0.59± 0.17 0.59± 0.15 0.04± 0.02 0.21± 0.08 0.71± 0.06

Figure 9: Performance comparison of the generalized form of our curriculum strategy presented in Eq. 7
w.r.t. different values of γ2/γ1. We present the results for the PointMass-s environment and BasicKarel
environment. We report the mean reward (± t×standard error, where t is the value from the t-distribution
table for 95% confidence) at 0.25, 0.5, and 1 million training steps averaged over 20 and 10 random seeds,
respectively.

20

Published in Transactions on Machine Learning Research (05/2023)

Method
Env

PointMass-s BasicKarel

Performance (1M) Performance (2M)
Train Set Test Set Train Set Test Set

ProCuRL-env 0.84 0.78 0.92 0.90
ProCuRL-val 0.71 0.65 0.91 0.90
SPaCE 0.34 0.28 0.65 0.64
SPaCE-alt 0.47 0.40 0.82 0.81
SPDL 0.55 0.48 0.88 0.87
PLR 0.69 0.60 0.88 0.88
IID 0.39 0.32 0.90 0.89

Figure 10: Performance of the curriculum strategies, discussed in Section 4.2, in the training set and a test
set. We report the performance, i.e., expected mean reward, of the best model obtained during training for
all the methods. The training steps to achieve this performance is shown in parenthesis for each environment
(M is 106 steps). We present the results for the PointMass-s environment and BasicKarel environment
and report the mean reward averaged over 20 and 10 random seeds, respectively.

Method
Env

PointMass-s

Performance
0.25M 0.5M 1M 1.5M 2M

ProCuRL-val 0.07± 0.07 0.19± 0.11 0.40± 0.15 0.46± 0.16 0.49± 0.16
IID 0.01± 0.01 0.03± 0.03 0.05± 0.06 0.04± 0.04 0.03± 0.03

Figure 11: Performance comparison of our curriculum strategy, ProCuRL-val, and IID in a pool of harder
tasks for the PointMass-s environment. We report the mean reward (± t×standard error, where t is
the value from the t-distribution table for 95% confidence) at 0.25, 0.5, 1, 1.5 and 2 million training steps
averaged over 20 random seeds.

-4 -2 0 2 4
C-GatePosition

0.5

2

3.5

5

6.5

8

C
-G

at
eW

id
th

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

(a) Distribution for uniform pool of tasks

-4 -2 0 2 4
C-GatePosition

0.5

2

3.5

5

6.5

8

C
-G

at
eW

id
th

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(b) Distribution for harder pool of tasks

Figure 12: (a) shows the distribution of context values used to generate the uniform pool of tasks for the
main experiments (b) the distribution of context values that is used to generate a harder pool of tasks.

21

	Introduction
	Related Work

	Formal Setup
	Proximal Curriculum Strategy
	Curriculum Strategy for the Goal-based Setting
	Theoretical Justifications for the Curriculum Strategy
	Reinforce Agent with Softmax Policy Parameterization

	Curriculum Strategy for General Settings

	Experimental Evaluation
	Environments
	Curriculum Strategies Evaluated
	Results

	Concluding Discussions
	Table of Contents
	Theoretical Justifications for the Curriculum Strategy – Proof and Additional Justification (Section 3.2)
	Proof of Theorem 1
	Abstract Agent with Direct performance Parameterization

	Experimental Evaluation – Additional Details (Section 4)
	Environments
	Evaluation Setup
	Curriculum Strategies Evaluated
	Additional Results

