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Abstract

Traditional instrumental variable (IV) estimators
face a fundamental constraint: they can only ac-
commodate as many endogenous treatment vari-
ables as available instruments. This limitation be-
comes particularly challenging in settings where
the treatment is presented in a high-dimensional
and unstructured manner (e.g. descriptions of pa-
tient treatment pathways in a hospital). In such
settings, researchers typically resort to applying
unsupervised dimension reduction techniques to
learn a low-dimensional treatment representation
prior to implementing I'V regression analysis. We
show that such methods can suffer from substan-
tial omitted variable bias due to implicit regular-
ization in the representation learning step. We
propose a novel approach to construct treatment
representations by explicitly incorporating instru-
mental variables during the representation learn-
ing process. Our approach provides a framework
for handling high-dimensional endogenous vari-
ables with limited instruments. We demonstrate
both theoretically and empirically that fitting [V
models on these instrument-informed represen-
tations ensures identification of directions that
optimize outcome prediction. Our experiments
show that our proposed methodology improves
upon the conventional two-stage approaches that
perform dimension reduction without incorporat-
ing instrument information.
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1. Introduction

Instrumental-variable (IV) methods are among the most
widely used tools for recovering causal effects in the pres-
ence of unmeasured confounding. Unfortunately, classical
IV estimators scale poorly when the treatment variable X
is itself high-dimensional, unstructured, or both. In mod-
ern applications—where the treatment might be provided
in the form of clinical treatment pathways encoded as free-
text, purchase histories, or genome-wide expression pro-
files—the number of potentially endogenous coordinates
of X can dwarf the number of available instruments Z (e.g.
variables related to capacity constraints in a hospital set-
ting, see, e.g., (Dong et al., 2019; Dong et al.; Qin et al.,
2023)). A common workaround is to compress X to a low-
dimensional summary D with unsupervised techniques (e.g.
PCA, auto-encoders) and then run a standard two-stage least
squares (2SLS) on D. Because the dimension reduction step
ignores Z, however, the resulting regression can suffer from
severe omitted-variable bias: directions of X that matter for
the first-stage relationship between Z and X may be dis-
carded, violating the exclusion restriction and invalidating
the causal inference step.

We propose Instrument-Guided Representation Learning
(IGRL), a methodology for learning low-dimensional treat-
ment representations that preserve the validity of down-
stream IV analysis. IGRL folds the instruments directly
into the representation learner so that the learned features D
capture the variation in X that is driven by Z. The proce-
dure can be viewed as a regularization of the unsupervised
learner toward directions that satisfy the exclusion restric-
tion, thereby eliminating the spurious back-door paths that
plague two-step approaches. The resulting representation
can then be used in an IV analysis, to learn directions of
intervention in the representation space that will improve the
target outcome and can be translated back to interventions
in the original treatment space.

Our work aligns closely to the recent contributions by Vafa
et al. and Du et al., which also highlights the omitted vari-
able bias problem in learned representations in the con-
text where representation learning is used for a set of high-
dimensional observed confounders of a treatment and de-
signs representation learning techniques to alleviate it. In
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that setting, the learned representation can implicitly omit
important parts of the observed confounders, causing bias
in the final causal estimate due to implicit unobserved con-
founding. Our goal is inherently different as we want to
learn a latent representation of a highly confounded, high-
dimensional treatment, as opposed to learning a latent rep-
resentation of a high-dimensional confounder.

2. Problem Statement: Learning Interventions
via Representations

We consider a setting where we are given data that con-
tain samples of variables (Z, X,Y’), where X is a high-
dimensional “treatment” variable, Y is a scalar outcome of
interest and Z is a low-dimensional vector of instruments.
The treatment X is heavily confounded via unobserved con-
founding variables U that have a causal influence on the
value of X and alsoon Y.

Our goal is to learn a latent representation of the highly
confounded, high-dimensional treatment, so as to perform
instrumental variable analysis on this learned representation
and identify an outcome-improving direction of intervention
in representation space and hence subsequently also in the
original treatment space. Naive representation learning ap-
proaches for the treatment run the risk of an omitted variable
problem that can invalidate the downstream causal analysis
based on instrumental variables. For more discussion, see
Appendix B.

Structural Equation Model. To formalize our problem
we will consider the following data generating process
(structural causal model) for our observed random variables:

D=A-Z+U, Ul Z
X = f(D,V), Vi z o))
Y =h(D)+n(U,V,e), el Z

where the random variables U, V, D, ¢ are latent and A
is an r X k matrix that captures the effect of the instru-
ments Z € RF on a vector of latent decisions D € R".
For convenience of notation, we will assume that E[U] =
E[V] = E[n(U,V,e€)] = 0.1 U represents the unobserved
confounder that drives the elements of the treatment that
are also driven by the instrument. e represents an outcome
noise variable and is allowed to be correlated with U, V. D
represents the aspects of the treatment X that are affected
by the instrument and V' represents the remaining aspects
that describe the treatment X, but are independent of the
instrument. In particular, we assume that the encoding/de-
coding between the latent representations and the observed
treatment is invertible:

! Appropriate intercept constants need to be added to the equa-
tions in the absence of this convention.

Assumption 2.1 (Invertible Encoding). The function f
is invertible, and write the encoding function e(X) =
f71(X) = (D,V), ie. there is a one-to-one correspon-
dence between the high-dimensional treatment X and the
characteristics (D, V') that describe the treatment.

From this perspective, (D, V') can be thought as a non-
linear decomposition of the treatment into the instrument-
dependent and the instrument-independent components. We
will further denote with ep(X) = D and ey (X) = V for
the encodings of the treatment that return the corresponding
components. Moreover, we assume that the transformation
between the instrument to the latent representation D is full
rank.

Assumption 2.2 (Full-Rank Latents). Assume that the ma-
trix A has full row-rank and E[ZZ "] = 0.

Note that the full rank assumption on E[ZZ "] can always
be satisfied by a preprocessing step that applies a PCA
transformation to the instruments and removes co-linear or
almost co-linear instruments.

Learning Good Interventions via Representations.
Given data containing observations (Z, X,Y) stemming
from such a structural equation model, our goal is to learn
a soft intervention mapping ¢(X), such that the average in-
tervened outcome is larger than the original outcome. We
will denote with Y (X*%) the random outcome from the
intervention where we fix the value of X to be x. Thus we
are searching for a soft intervention ¢(X') such that:

E [Y(XH<X>>] > E[Y] )

Note that due to the one-to-one correspondence of X with
its decomposition, any such interventional outcome can
equivalently be thought as an intervention on the latent
components of the treatment, i.e. Y (P en(@)Veev ()
Given the structural Equation (1), the expected outcome

under a soft intervention ¢(X') can be written as:

E [y<XH<X>>} = E[h(ep (t(X))) + n(U, ev (H(X)), €)]

We will identify such an intervention via the means of in-
tervention on a learned representation. In particular, given
observations, we will learn an encoding ép (X) = D that
respects the properties in Equation (1) (potentially together
with a learned encoding éy (X) = V) and a corresponding
decoder f (b) (potentially also taking as input V) that maps
the learned encoding back into a high-dimensional treatment.
Subsequently, we will estimate an outcome improving direc-
tion u in the learned representation space via instrumental
variable analysis, viewing D as the “treatment” and Z as
the instrument. We will apply the direction u to the learned
representations, i.e. D+ au, for some scalar intervention
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amount «.. For ease of notation, we denote with (+) ., to be
the corresponding random variable (-) after this intervention.
Then decode back to the high-dimensional treatment space
Xou = f(D + au) (potentially X, = f(D + au,V) if
an encoding of V' was also learned). This process (depicted
also visually in Figure ?? and described algorithmically in
Algorithm 1) defines our soft-intervention mapping, for-
mally defined as:

t(X) = f(ép(X) + au,éy (X)), 3)

with the second input of f omitted if an encoding €y is not
learned.

3. Instrument Guided Representation
Learning: The Linear Setting

To make matters more concrete, we will start this analysis
with the case where the SEM that is associated with the
causal graph in Figure 1c contains only linear relationships:

D=A-Z+U, Ul Z
X=B-D+ B, -V, V iz 4)
Y =0"D+nUV,e), el Z

where B is an m X r dimensional matrix that maps the k
instrument-driven latent decisions D to the observed high-
dimensional treatments X € R™ and is assumed to be
Sfull column rank. B, is a matrix whose column space is
orthogonal to the column space of B and is also assumed to
be full column rank. U corresponds to a random vector of
latent unobserved confounders that also affect decisions and
outcomes. f is an r dimension vector capturing the direct
effects of the latent decisions on the outcome.

We will show that in this setting it is feasible to identify
improving interventions, and we can always identify a rep-
resentation D, such that D is an invertible linear transfor-
mation of D. Algorithm 2 formalizes this Linear Instrument
Regularized Representation (LIRR) procedure and the fol-
lowing theorem formalizes these arguments and provides
the outcome improvement guarantee for this intervention.

Theorem 3.1. Under the linear structural equation model
in Equation (4) and assuming B, B, have full column
rank and Assumption 2.2 holds, then the representation
and intervention produced by the LIRR algorithm satisfy:
D= PD, for the invertible matrix P 2 BTB. Moreover;
0 = (P~')70 and the interventional outcome satisfies the
guaranteed improvement property:

E[Yau] = E[Y] + of|(P7) 79|

4. Instrument Guided Representation
Learning: The Non-Linear Setting

We will now investigate the general setting introduced in
Equation (1). In this non-linear setting, we will require
some further assumptions on the latent factors. In particular,
we will be assuming that the latent components D are inde-
pendent of the orthogonal components V' that constitute X
that are not driven by the instrument. In particular, we will
assume the slightly stronger property of joint independence
of Z,U, V, which implies that D Il V.

Assumption 4.1. Z 1l U 1l V (jointly independent).

Assumption 4.2. f is a differentiable function with uni-
formly bounded derivatives.

Assumption 4.3. h is twice differentiable with a bounded
second derivative. Moreover, outcome noise is fully exoge-
neous, i.e. € 1L {Z,U,V}

Assumption 4.4. E[Z] = 0 and the support of Z, Z, is an
open subset of R¥.

Assumption 4.5 (Bounded Completeness). D is bounded
complete for Z, that is, for all bounded real functions h, we
have that:

E[R(D)|Z]=0 as. = h(D)=0 as.

We discuss sufficient conditions for the bounded complete-
ness assumption in the Appendix (Lemma E.7). In particular,
it involves characteristic function assumptions that have also
been typical in the identifiable latent factor literature (Lu
et al., 2021).

Theorem 4.6. Suppose that the data generating process
follows the SEM described in Equation 1, and satisfies As-
sumptions 2.1 & 2.2 & 4.1 & 4.2 & 4.3 & 4.4 & 4.5. Let
(D,V) := (ép(X),eév(X)) = &X) denote the learned
representations. Consider encoder-decoder pairs, €, f, with
perfect reconstruction, i.e. X = f oé(X), and full row rank
matrix A that minimizes the objective function

Ellén(X) - AZ|?] (5)
subject to the following constraints:

* ¢ is a differentiable function with uniformly bounded
derivatives.

* D=AZ+ U withE[U] = 0.

* ¢ is an invertible function when restricted to inputs in
the image of f and f o é(x) = x for all x € Im(f).

L]

ULVZ (joint Independence)

DUV
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s = 0/110], in Algorithm 1, with § =
E[V sh(D)] and h the solution to the conditional moment
restriction problem E[Y — h(D) | Z] = 0, we have that:

Y] =a| (P~ E[Vph(D)]| +O(a?)

Then setting u =

E[Yau —

Hence, for small enough step size «, the identified interven-
tion will achieve a positive improvement on the outcome
(assuming that E[V ph(D)] # 0).

Instrument Regularized Auto-Encoder To achieve the
positive improvement as described in Theorem 4.6, then we
need to incorporate loss components that are minimized only
when i) e, f reconstruct the input X, ii) e p(X) is predicted
linearly by Z with a full rank matrix A, iii) the residual of
this regression D — AZ — ¢, which approximates U, needs
to be independent of Z, iv) Z needs to be independent of
ev(X) and v) ep(X) needs to be independent of ey (X).
While we do not explicitly enforce A to be full row rank,
we expect this to be satisfied due to the reconstruction loss
and the condition that D 1L V. Moreover, note that instead
of joint independence of Z, U,V we only enforce pairwise
independence of Z, V and D,V for computational reasons.
The latter is implied by joint independence of Z, U, V but
is not an if and only if property.

We introduce the instrument-regularized auto-encoder loss,
which incorporates all these elements:

min E[JX - 0 e(0)|[?] + AE [Jlen(X) - AZ]

+mR(ep(X) = AZ, Z) + poR(Z, ev (X))
+ 3R (ep(X), ev (X))
(IRAE)

R(A, B), denotes any regularizer that can be evaluated on a
set of n samples and which takes small values the more inde-
pendent the random variable A is from B. Many examples
of such independence-regularizers have been introduced in
the literature. Our methodology is agnostic to the exact reg-
ularizer used. In our experiments, we used a kernel-based
independence test statistic (Gretton et al., 2007).

In experiments, for the purposes of ablation analysis, we
will denote with IRAE[O] the variant that contains only the
regularization parts that are multiplied by A, with IRAE[1]
the variant that contains the parts that are multiplied by
A, w1, with IRAE[2] the variant that contains the parts mul-
tiplied by A, u1, p2 and IRAE the variant that contains all
regularizers.

5. Experimental Evaluation

For linear SEMs, we bench-marked our proposed method
against the naive approach of applying PCA on X to recover
the latent representations using the top r principal compo-
nents. Results for the linear experiments are in Appendix

Table 1. Average Test Improvement Comparison of 4 Methods on
MNIST Data (Mean =+ Std)
Reconstructed  Treated(aw = 0.2) Treated(aw = 0.1)

Vanilla AE —0.47 £0.02 —0.46 £0.03 —0.39 £ 0.06
IRAE[1] —0.72 £0.05 0.15+£0.33 0.26 = 0.35
IRAE[2] —0.23+0.05 1.03+£0.48 1.12+0.48
IRAE —0.25 £ 0.06 1.04 +0.52 1.19+£0.5

F.1. Beyond linear SEMs, we also examined the perfor-
mance of the IRAE models under non-linear SEMs. We
include experimental results for quadratic encoding function
f in Appendix F.2. Below we present the results on MNIST
experiments.

MNIST experiment We examine a case where the out-
come is determined by the color of MNIST digits. In this
experiment, we independently generated instrumental vari-
ables Z and confounders U. The color features D are rep-
resented as 3-dimensional RGB values determined by both
Z and U. The outcome variable is calculated as the sum
of R, G, and B values. The observed data X consists of
MNIST digit pixels. All except IRAE[2] and IRAE has
bottleneck size same as dimension Z and the IRAE[2] and
IRAE methods had a bottleneck of size 10. Performance
improvement results across 30 seeds are reported in Table 6.
Additional visualizations are available in the appendix.

Our experiments reveal important insights about latent space
representation and instrumental variables. The vanilla AE,
with no specialized latent regularization, produces recon-
structed digits that closely resemble the originals, indicating
the latent space primarily focuses on digit reconstruction.
When IV regression is applied to this representation, no
meaningful directional information can be extracted, result-
ing in no improvement. When we introduce instrument
regularization while maintaining the same dimensionality
as Z in IRAE[1], the representation is forced to capture
more color information at the expense of digit reconstruc-
tion. Ideally, we could increase the prediction error weight
to infinity to enforce full capture of Z information, but in
practice, some digit information remains in the representa-
tion. By expanding the latent dimension, we achieve both
better digit reconstruction and color information preserva-
tion. The larger dimensional space accommodates more
digit morphology without needing to compete space with
color information, bringing reconstruction error closer to
zero while enabling instrumental variables to recover the
target direction. The improvement in IRAE[2] is less pro-
nounced than in IRAE due to information leakage between
components D and V/, resulting in acceptable reconstruction
and prediction error but less identifiable direction when IVs
are applied solely to the D component. By adding a de-
pendence penalty between D and V, IRAE achieves better
improvement.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Further Related Work

In this section we provide a more discussion on related work that is not covered in the main text.

Identifying Representations for Intervention Extrapolation Similar to our work, Saengkyongam et al. proposed the
Rep4Ex approach which tries to solve the task of interventional outcome prediction by identifying the SCM. Importantly,
although they work with a similar SCM as we do (Equation 1), the level of intervention differs - our work considers
interventions on the latent treatment space (D), while Saengkyongam et al. considers intervening on Z (using notations in
Equation 1). Moreover, our work is motivated by the presence of unobserved confounding between the latent representation
of the treatment and the outcome, whereas their work is motivated by the need to extrapolate to unseen interventions, while the
treatment that they consider is fully exogenous. Like our approach, they employ autoencoders to learn latent representations
from potentially high-dimensional observed features, but use maximum moment restriction (MMR) regularization (Muandet
et al., 2020) to enforce the constraint Elep(X) — AZ|Z] = 0. This can be achieved when Efep(X) — AZ] = 0 and
ep(X) — AZ 1L Z, corresponding to our A and p; term in Equation (IRAE). Additionally, while Rep4Ex assumes a
deterministic mixing function from the latent representation to the observables X, our method explicitly handles noisy
observations of X through ey (X ), which allows for broader generalization.

Representation Learning with Instrumental Variables Prior work on that combines elements of representation learning
with elements of instrumental variable analysis is limited and confined to linear methods. Rao and Sabatier et al. described
a procedure of performing principal component analysis (PCA) of a response variable with respect to its instruments.
Y Takane studied constrained principal component analysis, which takes external information into consideration during
dimensional reduction (Y Takane, 2001). More recently, Kelly et al. and Wang incorporates instrumental variables in
estimating factor models that improves rate of convergence and avoid overfiting for high-dimensional data (Kelly et al.,
2020),(Wang, 2024). The desiderata in all of these works are very different from identifying dimensions of variation that
align with the instruments so that causal effects can be identified by downstream IV analysis.

Dimensionality Reduction for High Dimensional Treatments When learning a representation for the treatment, it
is important for the learned representation to capture all causal factors so that the causal relationship is preserved for
downstream estimation tasks like treatment effect estimation. Nabi et al.utilize semi-parametric inference theory for
structural models to provide a generalized the sufficient dimension reduction approach for learning lower-dimensional
representation for treatment, while capturing the relationship between the treatment and the mean counterfactual outcome.
Andreu et al. employed a contrastive approach to learn a representation of the high-dimensional treatments. These works
studied settings that did not involve the presence of unobserved confounders of the treatment, while we focus on heavily
confounded high dimensional structured treatments. Moreover, in these works, the selection of causally relevant factors
are guided by the outcome, where as we take an inherently different approach that learns the latent representations using
auxiliary information from instrumental variables instead of the treatment.

Causal Represenation Learning Our work is also related to the literature on learning non-linear disentangled representations
and causal representation learning (Hyvirinen & Oja, 2000; Hyvérinen, 2013; Khemakhem et al., 2020; Hidlvd & Hyvarinen,
2020; Monti et al., 2020; Scholkopf et al., 2021a; Ahuja et al., 2022; Hyvérinen et al., 2023; Jin & Syrgkanis, 2023;
Hyvirinen et al., 2024; Hilvi et al., 2024). However, the focus of this line of work has primarily been on discovering
causal structure in data (Scholkopf et al., 2021b), rather than constructing representations for downstream causal tasks. Our
work is closely related to the identifiable VAE (iVAE) (Khemakhem et al., 2020). The instrument can be viewed as the
auxiliary information that can guide non-linear latent factor analysis. However, a crucial difference of our work is that we
view the instrument Z as only privileged information that is available only when estimating the causal effects and not when
performing interventions. Hence, crucially we want our encoder to only take as input the treatment X and not the instrument
Z. Moreover, our desiderata is not the discovery of the true latent factors, but solely the discovery of valid decompositions
of the treatment for downstream IV analysis. This allows us to relax many of the assumptions that are prevalent in this line
of work.

Independence Conditions In our work, we show that independence between certain variables (for more details, see Theorem
E.1) is desirable for identification. We enforce the independence condition by incorporating a Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2007) regularizer. This approach has also been adopted in prior research: for instance,
Lopez et al. employed HSIC regularization to mitigate bias in observational datasets for applications in counterfactual policy
optimization, while Harada & Kashima use it to learn a representations of the treatment that is independent with the target
individual in order to mitigate selection bias.
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B. Discussion on Valid Treatment Representations

We consider a setting where we are given data that contain samples of variables (Z, X, Y'), where X is a high-dimensional
“treatment” variable, Y is a scalar outcome of interest and Z is a low-dimensional vector of instruments. The treatment X is
heavily confounded via unobserved confounding variables U that have a causal influence on the value of X and alsoon Y,
as depicted in Figure la.

Our goal is to learn a latent representation of the highly confounded, high-dimensional treatment, so as to perform
instrumental variable analysis on this learned representation and identify an outcome-improving direction of intervention in
representation space and hence subsequently also in the original treatment space. Naive representation learning approaches
for the treatment run the risk of an omitted variable problem that can invalidate the downstream causal analysis based on
instrumental variables.

Causal analysis using instrumental variables crucially assumes that the instrument Z, the treatment X, and the outcome Y’
respect the causal graph depicted in Figure 1a. In particular, the instrument Z is assumed to only affect outcome Y through
its effect on treatment X. When the high-dimensional treatment X is replaced by a learned representation D, we run the
risk that the part of X that is not represented in D contains elements that are correlated with both the instrument Z and
the outcome Y. As a result, D no longer absorbs the entire effect of the instrumental variable Z on the outcome Y. This
creates causal pathways from the instrument Z to the outcome Y that do not flow through the representation D, as shown in
Figure 1b. Therefore, we need to regularize the representation learning process to ensure that the causal influence through
these omitted paths is minimal.

(a) Instrumental variable causal graph, with ~ (b) Causal graph when high-dimensional  (c) Causal graph that an ideal representa-
instruments Z, high-dimensional treatment  treatment X is replaced by learned repre- tion D of the high-dimensional treatment
X, outcome Y, unobserved confounders  sentation D. X would satisfy.

U.

Figure 1. Omitted variable bias in instrumental variable analysis with learned treatment representations.

An ideal latent representation D should satisfy the causal graph depicted in Figure lc. In particular, the instrument 2
should not have a causal effect on X that is not absorbed by the latent representation D. If the representation encodes all
outcome-relevant information, then a direct edge from X to Y should not exist. However, the existence of such an edge
does not invalidate the downstream instrumental variable analysis, and hence, it is not essential to exclude it.

C. Algorithms

In the section we present the algorithms of the proposed methods in the paper.

8
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C.1. General Algorithm

Algorithm 1 Intervention in Latent Representation Space and evaluation

1:
2:

Autoencoder fitting. Learn encoder ¢ and decoder f of X and using observed data (Z, X,Y).

IV analysis. Identify causal model /(D) using IV regression analysis with instrument Z, treatment D £ ¢ép(X) and

outcome Y. Calculate average causal derivative u = E[Vp h(D)]. ~
Encode. Transform X into latent representation D using learned encoder D = ép(X)

Perturb. Apply perturbation in the latent space: D, = D + au where « is a scalar factor controlling perturbation

magnitude.

Decode. Map perturbed latent representation D, back to input space: X, = f (f)w) (or Xow = f ([)au, ey (X)) if

the learned encoder also learns a representation of V).

Evaluate. Apply the true decomposition e(X ) = (Dau, Vae) and evaluate outcome under intervention: Y, =

h(Dow) + n(U, Vau, €)-
Compare average original outcome Y to average perturbed outcome Y, .

C.2. Algorithm for the Linear SEM

Algorithm 2 Linear Instrument Regularized Representation (LIRR) and Intervention

A AN SR ey

Input: magnitude of intervention «

Run linear regression of X on Z € R, to estimate a coefficient matrix C

Calculate the thin SVD decomposition of C' = UX VT, keeping only the top k singular values
Define B=Uand A=%V T and D = ép(X) = BT X

Run linear IV regression solving moment E[Z (Y — 6TD) =0

Let u = 6/||0|| and perform intervention on learned representation space Dy, = D + au
Encode back to X-space intervention of X, = X + aBTu

D. Identification Under Linear SEM

Before proving the main theorem, we first present some useful lemma.

Lemma D.1. Suppose A is an X k matrix with full row rank (k > n), and B is a m x n matrix, with full column rank
(m > n). Then the columns of C = BA spans the same space as the columns of B.

Proof of Lemma D.1. Let R(-) denote the column space of a matrix.

For any € R(B), there exist vector y such that x = By. Since A is full row rank, we know that AA* = I,,, and
x = By = BAATy = C(A"y). Therefore z € R(C), so R(B) C R(C).

Similarly, for any z € R(C'), there exist vector y such that v = BAy = B(Ay). Sox € R(B), and we have R(C) C R(B).

Together, we have R(C) = R(B).

Now we proceed to prove Theorem 3.1.

Proof of Theorem 3.1. From the linear SEM 4, we have that:

X =BAZ+ B,V +BU

O
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Then taking the conditional expectation over Z, we have:

E[X|Z] = BAZ + E[B,V + BU]
= BAZ + E[B.LE[V|Z]] + E[BE[U|Z]]
= BAZ + B, E[V] + BE[U] (Since V Il Zand U 1l Z)
= BAZ

Thus C := BA can be uniquely identified as the solution to the linear regression problem, regressing X on Z. Consider
the SVD decomposition of C' = U V. LetB=U , and A =VT. Then by Lemma D.1, we have that the columns of
B spans the same space as the columns of B. In other words, there exist an invertible change of basis matrix P such that
B = BP. Since B is orthonormal (by construction of SVD), we have that BTG = I.,and P = BTB. Asa result, we also
have:

D=B*X=(BTB)"'BTX
= (PT"BT"BP)"'PTBTX
= (PTP)"'PTBTX
=P 'BTX =P7'D

Next, we show that § = (P~1)7. The LIRR algorithm solves for § from the following moment equation:

0=E[Z
—E[Z

=E[Z(6TD — 6T PD)] (Since U, V, e 1L Z and E[n(U, v, €)] = 0)

E[ZDT)(6 — PT)

=E[

E[

Y —607D))

(
(07D +n(V,U,€) — 6T PD))

Z(ZT AT + UT))(6 — PT)
27T AT (0 — PT0)

Since the instruments are not co-linear, we have that E[ZZ7] = 0, i.e. E[ZZ"] is invertible. Thus E[ZZ”] AT (6~ PT0) = 0
if and only if AT (6 — PT0) = 0. Since AT has full column rank, then by the Rank-Nullity theorem, the null space of
AT = 0. Together, this shows that § = (P~1)70 is the unique solution to the moment condition.

Lastly, we show that the intervened outcome is guaranteed improvement in expectation. Consider an intervention in the
direction of w = 6/||| in the D space, this maps to an intervention in the D space as:

ep(t(X)) = BTt(X) = D+ aBTBf
) pyapt BT

0
=D+aP ' — —_—
1] I(P=1) 7ol

Since, we intervene only in D, ey (¢(X)) = V. Then, we can compute the intervened outcome:
[0Tep (t(X)))] (ev (t(X)) =V, and E[n(U, v,¢€)] = 0)

_ T ap-1 (P~H)To
‘E[‘) <D+ = WM
—E[67D + o (P~1)T6]] = E[Y] + al|(P~1) 6]

10
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E. Non-linear Identification

Theorem E.1. Suppose that the data generating process follows the SEM described in Equation 1, and satisfies Assump-
tions 2.1 & 2.2 & 4.1 & 4.2 & 4.4 & 4.5. Let (D,V) := (ép(X), ey (X)) = é(X) denote the learned representations.

Consider encoder-decoder pairs with perfect reconstruction, i.e. X = f o é(X). Then, for the solution €, f and full row
rank matrix A that minimizes the objective function

E[llép(X) — AZ|?] (6)

subject to the following constraints:

* ¢ is a differentiable function with uniformly bounded derivatives.
o A has full row rank.
e D=AZ+UwithU 1L Z and E[U] = 0.

we have that, with probability 1, D =PDandU = PU, for P = AA*. Moreover, the matrix P is invertible.

Lemma E.2. Suppose the assumptions of Theorem E.I hold, and additionally impose the following constraints on the
learned functions é, f, A that minimize the objective in Equation 6:

« DUV
* & is an invertible function when restricted to inputs in the image of f and f o &(x) = x for all x € Im(f).

Then, it must also hold with probability 1 that:

o V=q(D,V) = (Eo f)a(D,V)? with the property that for all d,d’' € D:

Law(q2(d, V) = Law(ga(d’, V).

« V=g¢,(D,V) = (eo f)o(D, V) with the property that for all d,d’ € D:
Law(gy 1(d, V) = Law(qy *(d', V).

Remark E.3. Note that the assumptions that E[Z] = 0 and E[ZZ’] = 0 are without loss of generality as we can always
pre-process Z by centering it and removing co-linear instruments. Moreover, in practice the assumption that D = AZ + U,
with U 1l Z and E[U] = 0 can be achieved by minimizing a square loss with an intercept, i.e.

E[llep(X) — AZ — c||?]

min
e, f,A,c:e, finvertible,eo f =identity
and then defining D = ép(X) £ ep(X) —c, f = f +c.

Subsequently, we identify an intervention as described in Algorithm 1. In particular, we will run an IV analysis, with Z as
the instrument, D as the treatment, and Y as the outcome, to estimate a causal model in representation space by finding a
solution to the conditional moment restrictions:

E[Y —h(D)| Z] =0 (M
Note that since D = PD and since E[Y | Z] = E[h(D) | Z], we have by the completeness assumption that:
E[h(D) — h(PD) | Z] = 0 = h(D) = h(PD) as. = h(P~'D) = h(D) as.

If for instance, h is assumed to be linear, then h is also a linear function and it suffices to run a linear instrumental variable
analysis (e.g. two-stage-least-squares). If & is non-linear, then we calculate the average derivative of A, i.e.

6 = E[V 5h(D)] = (P~)TE[V ph(D)]

2With (& o f)2 we denote the V' component of the output of the function & o fo.

11
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and perform the intervention

u=0/|19|

as described in Algorithm 1. In finite samples, recently introduced doubly robust methods for estimation of average
derivatives of solutions to non-parametric IV problems can be used (Bennett et al., 2022; 2023).

Theorem E.4. Assume that:
Y =nD)+nU,Vye), el {Z,UV}

and that h is twice differentiable with a bounded second derivative. Let €, f , A be an optimal solution as prescribed in
Lemma E.2 with the extra constraint that:

ULvViz (joint independence)

and assume that the assumptions of Lemma E.2 are satisfied. Then setting u = 0/||0|, in Algorithm 1, with 6 = E[V h(D)]
and h the solution to the conditional moment restriction problem in Equation (7), we have that:

E[Yau — Y] = a(P7) TE[Vph(D)]| + O(a?)

Hence, for small enough step size «, the identified intervention will achieve a positive improvement on the outcome
(assuming that E[V ph(D)] # 0).

E.1. Proof of Non-linear Identification
Proof of Theorem E.I. By definition of (D, V), we have:
(D,V)=¢(X)=¢éo f(D,V) =:q(D,V)
Denote with ¢, (D, V') the D component of the output of ¢ and ¢» the 1% component.
Since we have that D = AZ + U, with U 1l Z and IE[U] = 0, we can write:
ED|Z=2=EAZ+U|Z=2z=Az
Moreover:

E[D|Z =2 =E[u(D,V)|Z =]
=E[g(Az+U,V) | Z = 2]
=E[

0 (Az + U, V)] Z 1L {U, V)
=Ey[Ev(q1(Az + U, V)| U 1LV)
=Evu[q1(Az + U)] (@1(d) £ Ev g (d,V))])
=E[q1(Az + U)]

Thus we can conclude that:
Az =E[D| Z = 2] = E[G1(Az + U)]
Since this holds for all z € Z and since Z is an open set, we can take the derivative with respect to z, to derive:
Vze Z:A=0.E[G(Az+U)]

Since ¢ is continuously differentiable, the same holds for ¢; and therefore we can exchange the order of differentiation and
expectation:

12
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1)

Letting ¢; * denote the gradient of the function ¢ (d), we can write by the chain rule:

Elg" (A2 + U)A]
=E[g" (42 + U)]4
—E[i"(Az+U) | Z =2]A
—E[i"(AZ+U)| Z = 2]A
=E[g]"(D) | Z = 2]A
Since A is full row rank, we have that AA™ is invertible. Thus we can write:
A4t =E[gV (D) | Z =]

or equivalently:

Vze Z:E[@(D) - AAT | Z=2]=0

By the bounded completeness assumption and since both AA™ and q( )

VdeD: g (d) = AAt
or equivalently that:
Gi(d) = AATd + 0

for some constant vector v. Moreover,

E[D] = E[G:(D)]
= AAYE[D] + v
= AATAE[Z] + AATE[U] +
=v
But we also have E[D] = AE[Z] + E[U] = 0. Hence, we have that # = 0. Thus:

VdeD:q(d) = AATd

Next, we argue that AA™ is an invertible matrix. Note that:

E[DZ] =E[(AZ +U)Z]

= AE[ZZT]
Moreover:
E[DZ"] =E[q:(D,V)Z"]

(1 (AZ +U,V)Z ]
[Elg1(AZ +U,V) | Z,U)Z]
(g
[
[

E
=E
E
=E[G(AZ+U)ZT)
(D)Z']
AATD)ZT)
AYE[DZT]
AAYE[(AZ +U)ZT]
AATAE[ZZT]

q1

|
H H

Q
(

[
s

13

(Z1ULU)

are bounded, the latter implies that:

(Z LU V)

(Z 1L U, E[U] = 0)
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Thus we have concluded that:
AE[ZZT) =E[DZ"] = AATAE[ZZ ]
Since E[ZZ "] is assumed to be invertible, the latter implies that:
A=AATA

By Lemma E.5, since A and A have full row rank, the row span of A is equal to the row span of A and the matrix AA™ is
invertible.

‘We have thus concluded that:
VdeD:q(d) = AATd
and AA™T is invertible.

Consider any solution with perfect encoder-decoder pair (€, f ), and A that satisfies the conditions of the theorem and
minimizes the objective function:

E(llep (X) — AZ|P) = E[||D — AZ|P
For any feasible solution, we can decompose this objective into two components by centering around
pi(d) £ AA*Td
ie.:
E[|D — AZ|*) = E[|D — pi(D) + pi(D) — AZ|P]
=E[|D — pz(D)|* + |pz(D) = AZ|*] + 2E[(D — p15(D)) " (u (D) — AZ)]
Consider the inner product term. Since we have that:

E[D — p (D) | D, Z] =E[q:(D,V) = (D) | D, Z]
=E[q(D,V) | D, Z] — (D)
:E[ql(va) | sz] _E[ql(va) | D}

Since Z 1L U 1l V, we have by LemmaE.6that Z 1L V | 1{AZ + U = d}:
Elg1(D,V) | D =d, Z] =E[q:(d, V) | D = d, Z] = Elg:(d, V) | D = d] = E[g: (D, V) | D = d]
Thus:

E[D — ns(D) | D, 2] =0

From this we conclude that for any feasible solution €, f , A, we have that the objective can be decomposed as:
Efllep(X) — AZ|*] = E[|D — p5(D)|1?] + Elllnz(D) — AZ|?]
=E[llq:(D, V) = p5(D)|I*) + E[|ln (D) — AZ||?)
Suppose that with positive probability, we have that ¢, (D, V) # p;(D) = AA™D. Then we have that:
Elllgi(D,V) = pz(D)]*] > 0

In this case, we will provide an alternative feasible solution, which achieves smaller objective than e f A. Consider the
solution:

é(x) = (AA p(z),ev(x))
f'(d,v) = f((AAY) " d,v)
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Note that we used the fact that for any feasible solution, we have already shown that AA™ is invertible. Moreover, note that
for this solution we have that, &, f’ is invertible, since e, f is invertible and AA™ is invertible. Finally,

frod() =a
&(f(d,v)) = (AA*ep(f(d.v)).ev (f(d ) = (AATd,v)
Thus:
D=¢&y(X)=¢&y(f(D,V))=AATD = AATAZ + AATU = AZ + AATU
Where we used the fact that we have already shown (in the proof of Theorem E.1) that AA+A = A. Thus, we also have that:
D=AZ+U
where U = AATU and satisfies U 1L Z and E[U] = 0.

Therefore, this new solution is a feasible solution. Moreover, since under this solution we have that D = AATD = i(D),
the first part of the objective vanishes and the objective takes the value:

Efllnz(D) — AZ|*] <E[llqu(D, V) — p5(D)|I*] + Elllpz(D) — AZ|?
contradicting the optimality of the original solution.

Thus we have derived that for any optimal feasible solution, it must hold that with probability 1:
D=q(D,V)=puz(D)=AATD ®)

with AA™ an invertible matrix. Moreover, this implies that U = D — AZ = AATU. O

Proof of Lemma E.2. In this proof, we argue about the properties of the second part of the function g. Note that since
D 1L V and since D = PD, for some invertible P, with probability 1, we have that V 1L D. Thus:

@D, V)=V 1L D
Since, D 1L V, this implies that Law(g2(d, V')) = Law(g2(d’,V)) forall d,d’ € D.

Since € is a bijection when restricted to inputs that are outputs of f and since f is an injection, we have that € o f is an
injection. Thus there exists a well-defined inverse function g ' =eo f,suchthat D,V = ¢ (D, V). Let ¢, ! be the V
component of its output. Since D L. V and D = PD, we have that:

V=g¢"(D,V)ID
Since D 1L V, this implies that Law(q; ' (d, V)) = Law(q, *(d’,V)) for all d,d’ € D O

E.2. Proof of Positive Improvement

Proof of Theorem E.4. In this proof, we show that intervention in the direction of average derivatives of h guarantees
positive improvement for sufficiently small «v, assuming that h is twice differentiable. If we perform the intervention D + cu,
then we have by Lemma E.2 that:

Do, Vou = (D + aP ™ u, qz_l([) + au, f/))
However, note also that:
Law(g; ' (d, V)) = Law(g; ' (d + au, V)

for any d € D. By Theorem E.1, we have that, with probability 1, D = PD and U = PU. Moreover, by assumption, we
have that V I U 1L Z, which implies

V UL {AZ+U,P'U} = V 1L {D,U},
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we also have that:
Law(gy *(d,V) | D = d,U) = Law(gy '(d + au, V) | D = d,U)
— Law(q, '(D,V) | D,U) = Law(q; "(D + au, V) | D,U)
which by the definition of V" and V, is equivalent to:

Law(V | D,U) = Law(V,y | D,U) = Law(V | U) = Law(V,, | U)

By the outcome structural equation
Y = h(D)+n(U,V,e)
we have that:
You = h(D + aP ) 4+ g(Vau) + (U, ey)
and that:
E[Yau — Y] = E[W(D 4+ aP ™ u) — h(D)] + E[n(U, Vau, €) — n(U, V, €)]

Since € 1L {Z,U, V'} and since V,,,, is a measurable function of these random variables, we have that e 1L {V,,,,V,U}.
Letting 77(u, v) = Ec[n(u, v, €)], we can write:

E[Yau - Y} = E[h(D + O“D_lu) - h(D)] + E['F](Ua Vau) - ﬁ(Ua V)]
=E[A(D + aP~"u) = i(D)] + E[E[(U, Vaw) = (U, V) | U]
=E[h(D + aP~ u) — h(D)] (Law(V | U) = Law(V,, | U))
By a first-order Taylor expansion and since h is twice differentiable with bounded first and second derivatives:

E[Yau — Y] = E[aVph(D)" P~'u] + O(a?) = ol (P™1) "E[Vph(D)]|| + O(c?)

E.3. Auxiliary Lemmas

Lemma E.5. Suppose A and B are v x k matrices with full row rank. If A = AB™T B, then rowspan(A) = rowspan(B)
and AB™ is invertible.

Proof. Consider the short SVDs of B = UgYp VBT and A = UAEAVAT. Then
BYB = VX' ULUpSpVy = VpVy
is the projection onto the row space of B. Then, we have:

A=AB'B & AVpVg =A )

First, we prove by contradiction that rowspan(A) = rowspan(B). Suppose x € rowspan(A) = span(Vy), but = ¢
rowspan(B) = span(V3). Let V3 denote an orthogonal completion of Vz, then

¢ span(Vp) = =VeVaa+ Vg (Vi) 'z
where Vg (Vi) T@ # 0, which implies (V) T2 # 0 as V5 is orthogonal. Hence, we have the following:

|z* = 2T =2 VeVg o+ Vi (Vi) o = Vg «|* + I(Vs) "2]* > V5 «||?
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However, we also have that AVzV, x — Az = 0, which implies u £ VgV x — = € null-space(A) = span(V{"). Thus, it
should be orthogonal with z € span(Vy).

0=z"u=a"(VpVgz —a)= V|~ |z #0

This yields a contradiction! Thus, rowspan(A) C rowspan(B). Since, both matrices have full row rank, then A and B have
the same row space.

Now we show that AB™ is invertible:
ABT = UaX AV, VBE5'UL

Since A, B are full row rank, U4, Upg, X 4, X g are r X r invertible matrices. So it suffices to show that VAT Vg is invertible.
Since span(V,4) = span(Vp), there exists an invertible change-of-basis matrix P such that

Vg =VaP=V]V=V,/VyP=1I.P=P= ABT is invertible.

O
LemmaE.6. [fU 1LV 1L Z (jointly independent), then V. 1L Z | f(Z,U), for any measurable function U.
Let W = f(Z,U). Then:
p(v|w,z) = /pv|wzu p(u | w, z)du
:/pv|zu (u | w, z)du
z/p p(u | w,z)du WV UL Z 1 0)

() [ ot w. )i

p(v)

Lemma E.7 (Sufficient Conditions for Bounded Completeness). Consider D = A-Z +U, U 1 Z. D is bounded
complete for Z if the following holds:

<

e The measure of AZ is continuous and is supported on R".
* The density of U is continuous.

 The characteristic function of the distribution of U is infinitely often differentiable and does not vanish on the real line.

Proof of Lemma E.7. This result follows as a Corollary of Theorem 2.1 in D’Haultfoeuille, where we consider the special
case of linear mappings from Z to D. O

F. Further Details on Experimental Evaluation
F.1. Linear

We benchmark LIRR against PCA under the setting of linear data generating process. As a baseline, we consider using
PCA to extract the top » = k = 4 principal components of X as the learned latent representation. After the representation is
generated, we run 2SLS with representation D as “treatment”, outcome Y, and instruments Z to identify the direction of
perturbation. We apply steps 4-6 in Algorithm 1 with a = 1 to compute the improvement E[Y,,,, — Y.

We tested our method across three distinct noise cases: 1) independent Gaussian distributions for both U and V, 2) correlated
Uniform distribution for U, independent Gaussian distribution for V, 3) correlated Uniform distribution for U, correlated

17
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Table 2. Average Test Improvement Comparison on Linear Data: LIRR vs. PCA (Mean =+ Std). DGP 1 corresponds to independent U and
V, DGP 2 corresponds to correlated U and independent V, and lastly DGP 3 corresponds to correlated U and V.

Size m Method DGP 1 DGP 2 DGP 3
50 LIRR 3.7283 £ 2.7360 5.4706 +4.1242 5.4944 + 4.0596
PCA 3.1035 £3.6229  3.1717£4.0468 2.5171 £ 4.8519

100 LIRR 2.4189 +2.0164 4.0806 + 3.5969 3.8931 + 3.3116
PCA 2.1249 +£2.7203  2.4044 £3.5741  2.5713 £3.7491

500 LIRR 1.0355 +£0.9698 1.6996 £ 1.5957 1.5934 + 1.7305
PCA 1.0098 £1.0786  0.9005 £1.3995 1.1716 + 1.6904

Gaussian distribution for V. Each experiment was repeated 100 times with different random seeds, each containing a sample
size of 10000 with 80-20 train-test split. We also varied the dimensionality of X, m, to examine the dimension effects.

To determine the true outcome after perturbation, We used the formula

You = 0T (BT X 0u).

The results are included in Table 2 and Figure 2.

We note that when noise follows independent Gaussian distributions across coordinates of U and V', PCA method performs
comparably to LIRR. However, PCA fails to generalize effectively under non-independent noise conditions. The average
improvement of our proposed method exceeds that of SVD in case 2 and 3, and being more than 1 standard deviation from
zero. We can also observe that the test improvements of LIRR are shifted to the right compared to the baseline PCA method
in Figure 2.

More details on data generating process is included below.

Linear DGP 1 Independent Gaussian U and V

Draw DGP parameters
A~ {N(0,0.1%)}* B~ {N(0, 1)} 0 ~{N(0, 1)}

Then generate n samples as:

Z; ~ N(0, I) (instrument)
U; ~ N(0,20% - 1) (confounder 1)
Vi ~ N(0,10% - I,,,) (confounder 2)
n:(U;, Vi) = Z Uij +02-g;, & ~N(0,1) (confounder 3)
j=1
D; =AZ, +U; (latent representation)
X, =BD;+YV, (observed representation)

Y =0"D+n,(U;, Vi)

With dimensions n = 10000, r = k = 4, where ¢ € {1,2,...,n} indexes the samples.

18
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Linear DGP 2 Correlated Uniform U and Independent Gaussian V

Draw DGP parameters

A~ {N(0,0.1%)}7 B~ {N(0,1)}"*" 0 ~{N(0,1)}""
E~ {N(O’ 1)}h><7‘

Then generate n samples as:

Z; ~ N(0, 1) (instrument)
Ui ~ E - {Unif(—1,—1)}" (correlated Uniform confounder 1)
Vi ~ N(0,10% - 1,,,) (confounder 2)
(U, Vi) = Z Uj+02-g;, & ~N(0,1) (confounder 3)
j=1
D, =AZ,+U; (latent representation)
X, =BD;+V,; (observed representation)

Y = 0" D; +n;(U;, Vi)

With dimensions n = 10000, r = k = 4,h = 3, where i € {1,2,...,n} indexes the samples.

Linear DGP 3 Correlated Uniform U and Correlated Gaussian V

Draw DGP parameters

A~ {N(0,0.1%)}7F B~ {N(0,1)}"*" 0 ~{N(0,1)}"
E ~{N(0,1)}mxr F ~{N(0,1)}r2xr

Then generate n samples as:

Z; ~ N(0, 1) (instrument)
U ~ E - {Unif(—1, —1)}" (correlated Uniform confounder 1)
Vi~ F-N(0,5% I,) (correlated Gaussian confounder 2)
ni(U;, Vi) = Z Uj+02-g, & ~N(0,1) (confounder 3)
j=1
D;=AZ, + U, (latent representation)
X, =BD;+V; (observed representation)

Y =0"D; +n;(U;, Vi)

With dimensions n = 10000, r = k = 4, h; = 3, ho = 5, where ¢ € {1,2,...,n} indexes the samples.
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Table 3. Average Test Improvement Comparison of 9 Methods on Quadratic Data (Mean 4 Std). DGP 1 corresponds to independent U
and V, DGP 2 corresponds to correlated U and independent V, and lastly DGP 3 corresponds to correlated U and V.

Method Case 1 Case 2 Case 3
PCA 0.1322 + 0.3216 0.0545 4 0.2994 0.0848 4+ 0.2382
LIRR 3.5086 + 2.0455 3.4711 4+ 1.9683 3.5682 4+ 2.1296
Vanilla AE 0.4138 £ 2.2000 0.8418 4 1.1560 0.7801 +1.7335
IRAEJO] 6.1055 4+ 7.1634 2.2898 4+ 6.9957 4.8993 + 6.3310
IRAE[1] 6.4174 + 5.2602 4.6175 £ 5.0479 5.8023 £ 7.1041
IRAE|2] 5.5471 4 4.6573 4.5554 4+ 4.0707 5.2145 4+ 4.4358
IRAE 5.7740 & 4.7664 6.5253 +6.0132 4.9113 + 4.0009
Vanilla VAE 0.3651 4 0.4629 0.2725 + 0.5071 0.2055 4+ 0.3394
iVAE 0.2709 & 0.3672 0.1192 4 0.2503 0.1652 4 0.2929

To determine the true outcome after perturbation, We used the formula

You = 07 (BT X 00).

In addition to the summary statistics, we also plotted the distribution of average test improvements across seeds in Figure 2.
We can observe that the test improvements of LIRR are shifted more to the right compared to the baseline PCA method.

F.2. Quadratic

We also consider a non-linear data generating process, where the data is generated by Equation (1) where f is quadratic and
h is linear. The U, V' follow the same 3 cases as the linear setting.

We benchmark LIRR and IRAE against PCA and vanilla Autoencoder (vanilla AE), variational autoencoder (VAE), and
iVAE. Here, vanilla AE refers to autoencoder with only reconstruction loss. VAE refers variational autoencoder that
maximizes the likelihood p(X) with Gaussian latent representation. iVAE (Khemakhem et al., 2020) utilizes both Z
and X in encoding and decoding, maximizing the conditional likelihood of py 4(X|Z) as information of Z is available in
simulations. For LIRR, PCA, IRAE[1], vanilla AE, VAE, iVAE the bottleneck is of the same dimension as the instrument,
i.e. k = 4, so that downstream 2SLS will not be ill-posed, whereas the bottleneck size of IRAE[2] and IRAE was 10.
Algorithm 1 is then applied to evaluate the average improvement in outcome, when each of the aforementioned representation
learning methods is used. For probabilistic autoencoder VAE and iVAE, we sampled 10 representations for each observation
X and compared them to the original outcome. In particular, to determine the true outcome after perturbation, we used the
formula

You = 0T (BT Xo0)[: 1)),

where [: 7] index into the first order terms (excluding the quadratic and cross terms) of D.

All encoder architectures incorporate a Random Fourier Feature layer, followed by three feedforward layers and a final
linear projection. Decoders consist of three feedforward layers and a final linear projection layer. The hyperparameters used
in the training procedure are described in Table 4.

We repeated the experiment 30 times across different random seeds, each containing a sample size of 10000 with 70-10-20
train-val-test split. Results on average improvement are depicted in Table 3. Our findings reveal that dimension reduction
methods which operate without Z information (PCA, vanilla AE, vanilla VAE) yield minimal outcome improvement.
In contrast, methods that incorporate Z consistently demonstrate positive mean improvements. The most substantial
improvement is achieved by our IRAE[1] and IRAE method, with IRAE having performance gains at more than one standard
deviation above zero.

The data are generated using the following 3 cases.
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Figure 2. Distribution of Average Improvement for Linear Experiment
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Quadratic DGP 1 Independent Gaussian U, V

Draw DGP parameters

A~ {N(O,l)}er B ~ {N(O,1)}m><(2*r+r*(r71)/2) 0 ~ {N(O,l)}TXI

Then generate samples as:

Z; ~ N(0, I) (instrument)
U; ~ N(0,0.22 - I,,) (confounder 1)
Vi ~N(0,0.22 - I,,,) (confounder 2)
T
ni(Us, Vi) =Y Ui +02-¢;, & ~N(0,1) (confounder 3)
j=1
D;=AZ, + U, (latent representation)
X; = B-[Dj1,Dia,...,Dy1 D, ..D2] +V; (observed representation)

Y; = 0" D+ (Ui, V;)

With dimensions n = 10000, r = k = 4, where ¢ € {1,2,...,n} indexes the samples.

Quadratic DGP 2 Correlated Uniform U and Independent Gaussian V

Draw DGP parameters

A~ {N(O, 1)}r><k B ~ {N(O, 1)}mx(2*r+r*(r—1)/2) 0 ~ {N(07 1)}r><1
B~ {N(0, )}

Then generate samples as:

Z; ~ N(0,1I}) (instrument)
U; ~ E - {Unif(-0.2, —0.2)}" (correlated Uniform confounder 1)
Vi ~N(0,0.2% - I1,,,) (confounder 2)
s
ni(Us, Vi) =Y Ui +02-&;, & ~N(0,1) (confounder 3)
j=1
D, =AZ,+U; (latent representation)
X; = B-[Dj1, D3, ...,Di1 Dy, ..D3] + V; (observed representation)

Y; = 0" D; +n:(Us, Vi)

With dimensions n = 10000, r = k = 4,h = 3, where ¢ € {1,2,...,n} indexes the samples.
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Quadratic DGP 3 Correlated Uniform U and Correlated Gaussian V

Draw DGP parameters

A~ {]\7(07 1)}r><k B~ {N(O, 1)}m><(2*r+r*(r—1)/2) 0 ~ {N(07 1)}r><1
B~ {N(0, 1)} F o~ AN(0, 1)}

Then generate samples as:

Z; ~ N(0, 1) (instrument)
Ui ~ E - {Unif(—0.2, —0.2)}" (correlated Uniform confounder 1)
V; ~ F-N(0,0.05% - I,,) (correlated Gaussian confounder 2)
n:;(U;, Vi) = Z Uij +02-g;, ¢ ~N(0,1) (confounder 3)
j=1
D, =AZ, +U; (latent representation)
X; = B-[D;1,Dia,...,Dy1 D, ..D2] +V; (observed representation)

Y; =07 D; +n;(U;, Vi)

With dimensions n = 10000, r = k = 4, h; = 3, ho = 5, where ¢ € {1,2,...,n} indexes the samples.

All encoder architectures incorporate a Random Fourier Feature layer, followed by three feedforward layers and a final linear
projection. Decoders consist of three feedforward layers and a final linear projection layer. For our IRAE[2] and IRAE
models, we set the bottleneck dimension to 10, larger than the instrumental variable dimension » = k& = 4. By construction,
Vanilla and IRAE[1] has bottleneck equal to k£ = 4. To determine the true outcome after perturbation, we used the formula

You = 0" (B"Xau)[: 7)),

where [: r] index into the first order terms (excluding the quadratic and cross terms) of D.
The hyperparameters used in the training procedure are described in Table 4.

Additional plots corresponding to Table 4 are included in Figure 3.

F.3. MNIST Experiment 1

This section provides details of the MNIST experiments briefly described in Section 5 of the main paper. Here we included
detailed data generating equations, model hyperparameter, and plots for IRAE[0], IRAE[1], IRAE[2] that were not included
in the main paper.

The data for MNIST experiment is generated using Case I DGP.
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Table 4. Training Parameters for Quadratic Simulations
| Vanilla AE IRAE[0] IRAE[1] IRAE[2] IRAE VAE iVAE

Architecture
Encoder dimensions 100 — 50 — 20
Decoder dimensions 20 — 50 — 100
RFF bandwidth o 20
Bottleneck dimension 4 4 4 10 10 4 4
Optimization
Optimizer RMSprop
Learning rate 5x107* 1x107* 5x107*
Alpha 0.9
Epsilon 1x1078
Weight decay 1x10°°
Momentum None
Regularization Parameters
A 0 1 1 1 1 NA NA
%3 0 0 1 1 1 NA NA
2 0 0 0 1 1 NA NA
us 0 0 0 0 1 NA NA
weight for kl term NA NA NA NA NA 3 3
Training Protocol (with early stopping of patience 20)

‘ 1000 epcohs

Case 1 DGP

Draw DGP parameters o, 8 ~ Unif(0.1,0.7). Then generate samples as:

G; €[0,1]28x28 (grayscale MNIST image)
Z;, Uy ~ N (0, Ig), Z; 1L U; (instrument & confounder)
r; = clip(0.5 + a Zj1 + BUs, 0, 1) (red channel)
gi = clip(0.5 4+ aZis+ BU;p, 0, 1) (green channel)
b, = clip(0.5 + M, 0, 1) (blue channel)
c€{R,G, B},

Xi(k,l,c) = Gi(k, £) - (ri, i, bi)e, (colour image)

(k,0) € {1,...,28)?
Y, =17 +g; + b (outcome, details below)

Returns the tuples (Z;, X;,Y;).

All encoders consist of three Conv2D layers, followed by additional feedforward layers, and conclude with a linear projection.
Decoders mirror this architecture in reverse order. For our IRAE[2] and IRAE models, we set the bottleneck dimension
to 10 which is larger than k = 2. For vanilla and IRAE[0], IRAE[1], the bottle neck is 2. The autoencoder with multiple
HSIC regularization terms presents greater training challenges due to the complexity of term. To address this, we initialized
IRAE[2] and IRAE with weights from the simpler IRAE[1] model. All of models are trained with 60k training samples and
evaluated on 10k test set. More training details can be found in Table 5.
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Table 6. Average Test Improvement Comparison of 5 Methods on MNIST Data (Mean + Std)
Vanilla AE IRAEJ[0] IRAE[1] IRAE|2] IRAE

sample size image

1000 reconstructed —0.57 +0.03—0.64 £0.17 —0.6 £0.15 —0.63 £0.09 —0.6 +0.12
intervened(0.2) —0.56 = 0.04 —0.444+0.14 —0.54+0.14 —0.52+0.16 —0.43 +0.24
intervened(1.0) —0.51 £0.05 —0.39 £0.15 —0.42+0.15 —0.34£0.2 —0.22+0.36

10000 reconstructed —0.51 +0.03 —0.73 +£0.04 —0.73 £0.04 —0.33 £0.05 —0.32 = 0.04
intervened(0.2) —0.5£0.03 —0.07£0.15 0.07+0.26 0.72+0.48 0.76 +0.36
intervened(1.0) —0.47+0.04 0.04+£0.2 0.15+0.29 0.924+0.47 0.95+0.43

30000 reconstructed —0.51 +0.03 —0.74 4+ 0.04 —0.73 £0.04 —0.33 + 0.05—0.34 + 0.04
intervened(0.2) —0.49 +0.03 —0.11 £0.08 —0.17£0.11 0.38+0.4 0.33+£0.4
intervened(1.0) —0.44 £0.05 —0.06 £0.12 —0.13+£0.2 0.78 £0.43 0.74 +£0.47

60000 reconstructed —0.47 +0.02 —0.71 £0.05 —0.71 £0.04 —0.25 + 0.05—0.25 £ 0.06
intervened(0.2) —0.46 £0.03 —0.06 £0.26 0.144+0.3 0.98+0.42 0.99 +0.48
intervened(1.0) —0.41 +0.06 0.05+0.29 0.26+0.36 1.134+0.44 1.12+0.43

Table 5. Training Parameters for MNIST Simulations

Parameter \ Vanilla AE IRAE[0] IRAEJ[1] IRAE|2] IRAE
Architecture
Kernel Size 3
Encoder channels 16 —» 32 — 64
Decoder channels 64 — 32— 16
Bottleneck dimension 2 2 2 10 10
Optimization
Optimizer Adam (default parameters in torch)
Learning rate 1x1073
Weight initialization None None None From IRAE[1] From IRAE[1]
Loss Weights
A 0 10 10 10 10
|51 0 0 10 10 10
w2 0 0 0 10 10
03 0 0 0 0 10
Training Epochs (with early stopping of patience 5)

\ 50 50 50 50% 50%

* Additional epochs after initializing with weights from IRAE[1]

Remark F.1 (Calculation of Outcome from Image). To calculate expected Y,,,,, we first perform 2-mean clustering on the
image pixels and extract the red, green, blue values from the center of the colored cluster. Then, we take the sum of these
values as Y. Note that is this similar to taking the average colors over the gray scale mask so the colors would be slightly
smaller than the original colors. We tested the methods on the original image and the result is 0.2 smaller on average.
Remark F.2 (Calculation of Outcome Improvement). When calculating the outcome improvement of the intervention, take
the difference between the kmeans calculation described in the previous paragraph applied to the image produced by the
intervention and we subtract the outcome of the kmeans calculation when applied to the original image.

Remark F.3. We use a linear kernel for HSIC in order to perform benchmarking at a large scale in fast speed, which may not
capture all nonlinear dependencies in this complex image representation setting. More complex independence statistics
based on domain knowledge, could perhaps lead to more disentanglement, albeit they might also be harder to train. In
subsequent section experiments we also examine a pairwise RBF Kernel based HSIC and we find that it does not lead to
improved performance as compared to the linear kernel.

Remark F.4. We observe that this example does not perfectly align with the formulation in Equation (1). Here, the number
of instruments is 2, which is fewer than the natural representation of D of 3 colors. We may be able to interpret the learned
representation as a 2-dimensional subspace of the 3-dimensional color representation, but the mapping from Z to D is
still not immediately invertible as assumed in the theory. Additionally, while our theoretical analysis assumes a mapping
from color D to outcome directly, our calculation employs k-means clustering on X instead. Nevertheless, this example
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Figure 4. Original gray, original color, reconstructed, treated(ow = 0.2) and treated(av = 1.0) for the IRAE[2] trained model (Case 1 DGP).
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Figure 5. Original gray, original color, reconstructed, treated(oc = 0.2) and treated(cv = 1.0) for the IRAE[1] trained model (Case 1 DGP).

demonstrates that our method performs robustly even in settings beyond those covered by our theoretical guarantees, and
offers potential future directions of theoretical investigation.

F.4. MNIST Experiment 2

Building on the results from our MNIST experiments in Section 5, we conducted a more comprehensive evaluation by
exploring additional hyperparameter configurations and data generating processes. Given that independence test statistics
are often complex and challenging to train, we systematically investigated various model architectures, independence
test statistics calculation, and initialization strategies to identify optimal configurations. To align with the full row-rank
assumption on A, we evaluated our approach on a supplementary dataset with three instruments, denoted as Case 2 DGP.

Our findings reveal that simpler dense architectures perform at least as well as, and often better than, more complex
convolutional neural networks for this task. Furthermore, we observed that larger bottleneck dimensions in IRAE[2] and
IRAE models better preserve the original digit morphology in treated images — a potentially valuable property when
morphological features is confounded the outcome variable.

The full set of hyperparameters explored are included in Table 7. All of models are trained with 60k training samples and
evaluated on 10k test set, for 40 random seeds. Regularization weights are O or 1. All models are trained with 50 epochs
after initialization with early stopping of patience 5.
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Figure 6. Original gray, original color, reconstructed, treated(oc = 0.2) and treated(av = 1.0) for the IRAE[0] trained model (Case 1 DGP).
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Figure 7. IRAE[2] on Case 1 DGP for one random seed (random seed 22), with a Conv AutoEncoder, linear HSIC as independence
criterion, latent dimension 10, regularization weights A = 1 = p2 = 10 and training for 50 epochs with early stopping (patience 5
epochs) warm start from IRAEL.
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Figure 8. IRAE[1] on Case 1 DGP for one random seed (random seed 22), with a Conv AutoEncoder, linear HSIC as independence
criterion, latent dimension 2, regularization weights A = p1 = 10 and training for 50 epochs with early stopping (patience 5 epochs)
from scratch
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Figure 9. IRAE[0] on Case 1 DGP for one random seed (random seed 22), with a Conv AutoEncoder, linear HSIC as independence
criterion, latent dimension 2, regularization weights A = ;1 = 10 and training for 50 epochs with early stopping (patience 5 epochs)
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Table 7. Summary of parameters explored in MNIST Experiment 2

Setting . o

Category Options Description

Data DGP2 Three Instruments

Generating Process

Dense Encoder: Dense layer 3 x 28 x 28 — 512, followed

Autoencoder by linear projection to latent dimension

Architecture Decoder: Linear layer from latent dimension to 512,
followed by dense layer 512 — 3 x 28 x 28

Convolution Encoder: Three Conv2D layers with channel 16 —

32 — 64 of kernel size 3, followed by a dense layer of
size 256 and linear projection to latent dimension
Decoder: Linear layer from latent dimension to size
256, followed by dense layer and three Conv2D layers
with channel 64 — 32 — 16 of kernel size 3

Latent 10 Used for IRAE[2] and IRAE models

Dimension 32 Used for IRAE[2] and IRAE models

IRAE[2] and IRAE

Regularization Linear HSIC Applied as independence measure on the entire vector

Type Pairwise HSIC Applied between pairwise coordinates

Weight Without warmstart Training from randomly initialized weights for 50

Initialization epochs

IRAE[2] and IRAE

With warmstart

Initializing with weights transferred from a pre-trained
IRAE[1] model, and training for additional 50 epochs
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Case 2 DGP

Draw DGP parameters «, 8 ~ Unif(0.1,0.7). Then generate samples as:

G; €[0,1]28x28 (grayscale MNIST image)
Zi, Ui ~ N(0,13), Z, 1L U; (instrument & confounder)
r; = clip(0.5 +aZiy+ BUjn, 0, 1) (red channel)
gi = clip(0.5 +aZis+ U, 0, 1) (green channel)
b; = clip(0.5 +aZiz+ BUs, 0, 1) (blue channel)
c €{R,G, B},

Xi(k,€,c) = Gi(k, £) - (1, 9i,bi)c, (colour image)

(k,0) € {1,...,28}>
Yi=ri+gi+bi. (outcome)

Returns the tuples (Zi7 X, Yi).

We highlight some findings from our exploration of the performance of our proposed methods across various hyperparameter
dimensions:

Architecture: We found that simple dense layers can achieve better performance than convolutional architectures for this
task, suggesting that Conv2D layers may be unnecessarily complex for this particular example.

Data Generating Process: Our experimental results demonstrate that the relative performance of our methods remains
consistent across both DGP1 and DGP2.

Latent Dimension: When using larger latent dimensions (32), both the reconstructed and treated images preserved more of
the original digit morphology although the improvement is smaller (c.f. Figures 11 to 16). This may be a desired property in
some cases, especially in the case that the digit morphology is a confounder (not tested in our experiment) and has a direct
effect on the outcome.

Regularization Type: While pairwise HSIC may theoretically capture more nonlinear dependencies, we found that it was
often more difficult to train in practice. Linear HSIC consistently yielded better performance with greater training stability.

Weight Initialization: Dense architectures performed well without warm start initialization, while convolutional archi-
tectures benefited significantly from weight transfer. This difference likely stems from the higher complexity and larger
parameter space of convolutional networks.

Overall, the best improvement model stems from the IRAE method with all regularizers, a Dense architecture, latent = 10,
linear HSIC with no warm start.
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Vanilla AE IRAE[0] IRAE[1] IRAE[2] IRAE
Arch. Latent Dim Reg Type Warm Start image
dense 10 linear False reconstructed -0.46 (0.02) -0.67 (0.02) -0.67 (0.02) -0.27 (0.01) -0.27 (0.01)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.1) 1.39 (0.15) 1.35 (0.16)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.54 (0.09) 1.57 (0.12) 1.58 (0.08)
True reconstructed -0.46 (0.02) -0.67 (0.02) -0.67 (0.02) -0.36 (0.14) -0.43(0.2)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.1) 1.17 (0.53) 0.92 (0.64)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.54 (0.09) 1.32(0.5) 1.09 (0.58)
pairwise False reconstructed -0.46 (0.02) -0.67 (0.02) -0.68 (0.01) -0.3(0.03) -0.34 (0.02)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.14) -0.09 (0.37) 0.17 (0.59)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.53(0.13) 0.09 (0.57) 0.46 (0.69)
True reconstructed -0.46 (0.02) -0.67 (0.02) -0.68 (0.01) -0.33 (0.1) -0.63 (0.25)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.14) 1.31(0.24) 0.6 (0.92)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.53 (0.13) 1.49 (0.15) 0.86 (0.79)
32 Tinear False reconstructed -0.46 (0.02) -0.67 (0.02) -0.67 (0.02) -0.14 (0.02) -0.13 (0.01)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.1) 0.74 (0.34) 0.63 (0.35)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.54 (0.09) 1.43 (0.31) 1.34 (0.35)
True reconstructed -0.46 (0.02) -0.67 (0.02) -0.67 (0.02) -0.26 (0.12) -0.33(0.25)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.1) 1.08 (0.36) 0.8 (0.7)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.54 (0.09) 1.29 (0.42) 1.05 (0.68)
pairwise False reconstructed -0.46 (0.02) -0.67 (0.02) -0.68 (0.01) -0.13 (0.01) -0.19 (0.02)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.14) -0.15 (0.05) -0.21 (0.1)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.53 (0.13) -0.2 (0.18) -0.22 (0.28)
True reconstructed -0.46 (0.02) -0.67 (0.02) -0.68 (0.01) -0.19 (0.05) -0.34 (0.2)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.14) 0.07 (0.41) 0.13 (0.53)
intervened(1.0) -0.37 (0.02) 1.54 (0.11) 1.53 (0.13) 0.42 (0.65) 0.5 (0.67)
conv 10 linear False reconstructed -0.37 (0.02) -0.6 (0.06) -0.6 (0.05) -0.21 (0.03) -0.23 (0.03)
intervened(0.2) -0.36 (0.03) 0.21 (0.34) 0.4 (0.4) 0.98 (0.23) 0.8 (0.39)
intervened(1.0) -0.31 (0.07) 0.4 (0.56) 0.69 (0.58) 1.25 (0.55) 1.12 (0.65)
True reconstructed -0.37 (0.02) -0.6 (0.06) -0.6 (0.05) -0.2 (0.04) -0.2 (0.04)
intervened(0.2) -0.36 (0.03) 0.21 (0.34) 0.4 (0.4) 1.0 (0.45) 0.9 (0.57)
intervened(1.0) -0.31 (0.07) 0.4 (0.56) 0.69 (0.58) 0.89 (0.75) 0.73 (0.77)
pairwise False reconstructed -0.37(0.02) -0.6 (0.06) -0.6 (0.05) -0.22 (0.05) -0.26 (0.06)

intervened(0.2)  -0.36(0.03) 021 (0.34)  0.04(045) 047 (0.42)  0.45(045)
intervened(1.0)  -0.31(0.07) 0.4 (0.56) 0.12(057)  0.86(047)  0.8(0.63)
True reconstructed 037(0.02) 0.6 (0.06) 0.6 (0.05) 1026 (0.07) 027 (0.1)
intervened(0.2)  -0.36(0.03) 021 (0.34)  0.04(045)  0.82(0.47) 0.7 (0.48)
intervened(1.0)  -0.31 (0.07) 0.4 (0.56) 0.12(057)  108(0.55 0.9 (0.56)

32 linear False reconstructed -0.37(0.02) -0.6 (0.06) -0.6 (0.05) -0.1(0.03) -0.11 (0.03)
intervened(0.2) -0.36 (0.03) 0.21 (0.34) 0.4 (0.4) 0.7 (0.33) 0.62 (0.38)
intervened(1.0) -0.31 (0.07) 0.4 (0.56) 0.69 (0.58) 1.26 (0.39) 1.04 (0.52)
True reconstructed -0.37 (0.02) -0.6 (0.06) -0.6 (0.05) -0.1 (0.03) -0.1(0.02)
intervened(0.2) -0.36 (0.03) 0.21 (0.34) 0.4 (0.4) 1.05 (0.49) 1.15 (0.51)
intervened(1.0) -0.31 (0.07) 0.4 (0.56) 0.69 (0.58) 1.11 (0.57) 1.22 (0.6)
pairwise False reconstructed -0.37 (0.02) -0.6 (0.06) -0.6 (0.05) -0.11 (0.03) -0.13 (0.05)

intervened(0.2)  -0.36(0.03)  0.21(0.34)  0.04(045)  0.02(0.26)  0.13(0.28)
intervened(1.0)  -0.31(0.07) 0.4 (0.56) 0.12(057)  021(049)  0.35(0.54)
True reconstructed 037(0.02) 0.6 (0.06) 0.6 (0.05) 0.14(0.08) _ -0.18 (0.08)
intervened(0.2)  -0.36 (0.03)  0.21(0.34)  0.04(045) 0.4 (0.56) 0.35 (0.66)
intervened(1.0)  -0.31(0.07) 0.4 (0.56) 0.12(057)  0.68(0.68)  0.7(0.73)

Figure 10. Experimental results for the Case 2 data generating process. Mean improvement and standard deviation of improvement is
reported. reconstructed refers to the mean outcome improvement of the reconstructed image from the autoencoder with no intervention
in the latents, as compared to the original image. intervened(a) refers to the mean outcome improvement of the image produced by
intervening on the latents in direction « - u, where uw = 6/||0|| and 6 is estimated by 2SLS in latent space.
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Figure 11. IRAE on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 32, regularization weights A = 1 = 2 = ps = 1 and training for 50 epochs with early stopping (patience 5
epochs) from scratch (no warm start from IRAE1).
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Figure 12. IRAE on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 10, regularization weights A\ = p1 = p2 = us = 1 and training for 50 epochs with early stopping (patience 5
epochs) from scratch (no warm start from IRAE1).
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Figure 13. IRAE[2] on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 32, regularization weights A = 1 = p2 = 1 and training for 50 epochs with early stopping (patience 5
epochs) from scratch (no warm start from IRAE[1]).
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Figure 14. IRAE[2] on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 10, regularization weights A = p; = p2 = 1 and training for 50 epochs with early stopping (patience 5
epochs) from scratch (no warm start from IRAE[1]).
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Figure 15. IRAE[1] on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 3 = number of instruments, regularization weights A\ = 11 = 1 and 2 = p3 = 0 and training for 50
epochs with early stopping (patience 5 epochs).
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Figure 16. IRAE[0] on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 3 = number of instruments, regularization weights A = 1 = 1 and po = p3 = 0 and training for 50
epochs with early stopping (patience 5 epochs).
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Figure 17. Vanilla AE on Case 2 DGP for one random seed (random seed 22), with a Dense AutoEncoder, linear HSIC as independence
criterion, latent dimension 3 = number of instruments, regularization weights A = 1 = p2 = ps = 0 and training for 50 epochs with
early stopping (patience 5 epochs).

F.5. Case 3: Confounded Outcome

We examine the following confounded outcome generating process, where the instruments now affect the colors in a more
convoluted intertwined manner. We denote this as Case 3 DGP.

All of models are trained with 60k training samples and evaluated on 10k test set, for 40 random seeds. Regularization
weights are 0 or 1. All models are trained with 50 epochs after initialization with early stopping of patience 5.
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Case 3 DGP

Draw DGP parameters «, 8 ~ Unif(0.1,0.7). Then generate samples as:

G; €[0,1]28x28 (grayscale MNIST image)
Zi, Ui ~ N(0,13), Z, 1L U; (instrument & confounder)

r; = clip(0.5 +aZiy+ BUjn, 0, 1) (red channel)

gi = clip(0.5 +aZis+ BUsg, 0, 1) (green channel)

b; = clip(0.5 +aZiz+ BUs, 0, 1) (blue channel)

c €{R,G, B},

Xi(k, 4, ¢) = Gi(k, 0) - (ri, gis bi)e, (k,0) € {1,...,28)

(colour image)

Yi=ri+gi+b — U1 —Usp — Uss. (confounded outcome)

Returns the tuples (Zi7 X, Yi).

In this confounding setting, we found that IRAE[0], IRAE[1], IRAE[2], IRAE still led to improved outcome, whereas
Vanilla AE did not.

Vanilla AE IRAE[0] IRAE[1] IRAE[2] IRAE
Arch Latent Dim Reg Type ‘Warm Start image

dense 10 linear False reconstructed -0.46 (0.02) -0.67 (0.02) -0.67 (0.02) -0.27 (0.01) -0.27 (0.01)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.1) 1.38 (0.15) 1.35 (0.16)
intervened(1.0) -0.37 (0.03) 1.54 (0.11) 1.54 (0.09) 1.57 (0.12) 1.58 (0.08)
32 Tinear False reconstructed -0.46 (0.02) -0.67 (0.02) -0.67 (0.02) -0.14 (0.02) -0.13 (0.01)
intervened(0.2) -0.45 (0.02) 1.4 (0.12) 1.4 (0.1) 0.74 (0.34) 0.63 (0.35)
intervened(1.0) -0.37 (0.03) 1.54 (0.11) 1.54 (0.09) 1.42 (0.32) 1.34 (0.35)
conv 10 linear False reconstructed -0.37(0.02) -0.6 (0.06) -0.6 (0.05) -0.21 (0.03) -0.23(0.03)

intervened(0.2) -0.36 (0.03) 0.21 (0.34) 0.4 (0.4) 0.98 (0.23) 0.8 (0.39)
intervened(1.0) -0.31 (0.07) 0.4 (0.56) 0.69 (0.58) 1.25 (0.54) 1.12 (0.65)
32 Tinear False reconstructed -0.37(0.02) -0.6 (0.06) -0.6 (0.05) -0.1(0.03) -0.11 (0.03)
intervened(0.2) -0.36 (0.03) 0.21 (0.34) 0.4 (0.4) 0.7 (0.33) 0.62 (0.38)

intervened(1.0)  -0.31(0.07) 0.4 (0.56) 0.69(058)  1.26(0.39)  1.04(0.52)

Figure 18. Experimental results for the Case 3 data generating process. Mean improvement and standard deviation of improvement is
reported.

F.6. Case 4: Confounded DGP with One Outcome Relevant Dimension

We examine the following confounded outcome generating process, where the instruments now affect the colors in a more
convoluted intertwined manner. Moreover, only the red channel is relevant for the outcome and the outcome is confounded.
We denote this as Case 4 DGP.

All of models are trained with 60k training samples and evaluated on 10k test set, for 40 random seeds. Regularization
weights are 0 or 1. All models are trained with 50 epochs after initialization with early stopping of patience 5.
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Vanilla AE IRAE[0] IRAE[1] IRAE[2] IRAE
Arch Latent Dim Reg Type ‘Warm Start image
dense 10 linear False reconstructed -0.16 (0.01) -0.22 (0.01) -0.22 (0.01) -0.09 (0.01) -0.09 (0.01)
intervened(0.2) -0.15 (0.01) 0.51 (0.03) 0.5 (0.03) 0.51 (0.02) 0.51 (0.02)
intervened(1.0) -0.1 (0.02) 0.55 (0.01) 0.55 (0.02) 0.55 (0.01) 0.55 (0.01)
32 Tinear False reconstructed -0.16 (0.01) -0.22°(0.01) -0.22°(0.01) -0.05 (0.01) -0.05 (0.01)
intervened(0.2) -0.15 (0.01) 0.51 (0.03) 0.5 (0.03) 0.5(0.01) 0.49 (0.04)
intervened(1.0) -0.1 (0.02) 0.55 (0.01) 0.55 (0.02) 0.54 (0.01) 0.54 (0.01)
conv 10 Tinear False reconstructed -0.13(0.01) -0.2(0.02) -0.2'(0.02) -0.07 (0.03) -0.07 (0.02)

intervened(0.2)  -0.13 (0.01) 026 (0.12)  0.28(0.14)  0.45(0.03) 043 (0.13)
intervened(1.0)  -0.11 (0.04)  0.42(0.19)  0.44(021)  054(0.01)  0.51 (0.14)
32 linear False reconstructed -0.13(0.01) -0.2 (0.02) -0.2 (0.02) -0.04 (0.03) -0.03 (0.02)
intervened(0.2) -0.13 (0.01) 0.26 (0.12) 0.28 (0.14) 0.45 (0.04) 0.45 (0.05)
intervened(1.0) -0.11 (0.04) 0.42 (0.19) 0.44 (0.21) 0.53 (0.01) 0.52 (0.05)

Figure 19. Experimental results for the Case 4 data generating process. Mean improvement and standard deviation of improvement is
reported.

Case 4 DGP

Draw DGP parameters «, 8 ~ Unif(0.1,0.7). Then generate samples as:

G; €[0,1]28x28 (grayscale MNIST image)
Zi, U ~ N(0,13), Z; U U; (instrument & confounder)
r; = clip(0.5 +a(Zin — Zin)+ BU, 0, 1) (red channel)
gi = clip(0.5 +a(Zig — Ziz) + U, 0, 1) (green channel)
bi = clip(0.5 + a (Zis — Zn) + BUis, 0, 1) (blue channel)

c €{R,G, B},

Xi(k‘,é,c) = Gz(k7€) . (rivg’i,b’i)C7 (k g) c {1 28}2

(colour image)

Y, =r; —Usa. (confounded outcome)

Returns the tuples (Z;, X;,Y;).

We demonstrate in this data generating process the importance of running an instrumental variable regression in the latent
space. We see below that if instead we had run OLS regressing the outcome on the identified latent factors, then the direction
would be erroneous and the interventional images will not be moving the image towards more red colors.
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Figure 20. IRAE on Case 4 DGP for one random seed, with a Dense AutoEncoder, linear HSIC as independence criterion, latent
dimension 32, regularization weights A\ = p1 = p2 = ps = 1 and training for 50 epochs with early stopping (patience 5 epochs) from
scratch (no warm start from IRAE1). Interventional images are intervened in the direction identified by 2SLS in the latent space with
instrument Z, treatment D and outcome Y. The outcome is larger when the color of the image is changed to red.
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Figure 21. IRAE on Case 4 DGP for one random seed, with a Dense AutoEncoder, linear HSIC as independence criterion, latent
dimension 32, regularization weights A\ = 1 = p2 = ps = 1 and training for 50 epochs with early stopping (patience 5 epochs) from
scratch (no warm start from IRAE[1]). Interventional images are intervened in the direction identified by OLS(Y ~ D) in the latent
space. The outcome is larger when the color of the image is changed to red.
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