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ABSTRACT

Deep neural networks are used for a wide range of regression problems. However,
there exists a significant gap in accuracy between specialized approaches and
generic direct regression in which a network is trained by minimizing the squared
or absolute error of output labels. Prior work has shown that solving a regression
problem with a set of binary classifiers can improve accuracy by utilizing well-
studied binary classification algorithms. We introduce binary-encoded labels
(BEL), which generalizes the application of binary classification to regression by
providing a framework for considering arbitrary multi-bit values when encoding
target values. We identify desirable properties of suitable encoding and decoding
functions used for the conversion between real-valued and binary-encoded labels
based on theoretical and empirical study. These properties highlight a tradeoff
between classification error probability and error-correction capabilities of label
encodings. BEL can be combined with off-the-shelf task-specific feature extractors
and trained end-to-end. We propose a series of sample encoding, decoding, and
training loss functions for BEL and demonstrate they result in lower error than
direct regression and specialized approaches while being suitable for a diverse set of
regression problems, network architectures, and evaluation metrics. BEL achieves
state-of-the-art accuracies for several regression benchmarks. Code is available at
https://github.com/ubc-aamodt-group/BEL_regression.

1 INTRODUCTION

Deep regression networks, in which a continuous output is predicted for a given input, are traditionally
trained by minimizing squared/absolute error of output labels, which we refer to as direct regression.
However, there is a significant gap in accuracy between direct regression and recent task-specialized
approaches for regression problems including head pose estimation, age estimation, and facial
landmark estimation. Given the increasing importance of deep regression networks, developing
generic approaches to improving their accuracy is desirable.

A regression problem can be posed as a set of binary classification problems. A similar approach
has been applied to other domains such as ordinal regression (Li & Lin, 2006) and multiclass
classification (Dietterich & Bakiri, 1995). Such a formulation allows the use of well-studied binary
classification approaches. Further, new generalization bounds for ordinal regression or multiclass
classification can be derived from the known generalization bounds of binary classification. This
reduces the efforts for design, implementation, and theoretical analysis significantly (Li & Lin,
2006). Dietterich & Bakiri (1995) demonstrated that posing multiclass classification as a set of
binary classification problems can increase error tolerance and improve accuracy. However, the
proposed approaches for multiclass classification do not apply to regression due to the differences
in task objective and properties of the classifiers’ error probability distribution (Section 2). On the
other hand, prior works on ordinal regression have explored the application of binary classifiers in
a more restricted way which limits its application to a wide range of complex regression problems
(Section 2). There exists a lack of a generic framework that unifies possible formulations for using
binary classification to solve regression.

In this work, we propose binary-encoded labels (BEL) which improves accuracy by generalizing
application of binary classification to regression. In BEL, a target label is quantized and converted
to a binary code of length M , and M binary classifiers are then used to learn these binary-encoded
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labels. An encoding function is introduced to convert the target label to a binary code, and a decoding
function is introduced to decode the output of binary classifiers to a real-valued prediction. BEL
allows using an adjustable number of binary classifiers depending upon the quantization, encoding,
and decoding functions. BEL opens possible avenues to improve the accuracy of regression problems
with a large design space spanning quantization, encoding, decoding, and loss functions.

We focus on the encoding and decoding functions and theoretically study the relations between the
absolute error of label and binary classifiers’ errors for sample encoding and decoding functions.
This analysis demonstrates the impact of binary classifiers’ error distribution over the numeric range
of target labels on the suitability of different encoding and decoding functions. Based on our analysis
and empirically observed binary classifiers’ error distribution, we propose properties of suitable
encoding functions for regression and explore various encoding functions on a wide range of tasks.
We also propose an expected correlation-based decoding function for regression that can effectively
reduce the quantization error introduced by the use of classification.

A deep regression network consists of a feature extractor and a regressor and is trained end-to-end.
A regressor is typically the last fully connected layer with one output logit for direct regression.
Our proposed regression approach (BEL) can be combined with off-the-shelf task-specific feature
extractors by increasing the regressor’s output logits. Further, we find that the correlation between
multiple binary classifiers’ outputs can be exploited to reduce the size of the feature vector and
consequently reduce the number of parameters in the regressor. We explore the use of different
decoding functions for training loss formulation and evaluate binary cross-entropy, cross-entropy, and
squared/absolute error loss functions for BEL. We evaluate BEL on four complex regression problems:
head pose estimation, facial landmark detection, age estimation, and end-to-end autonomous driving.
We make the following contributions in this work:

• We propose binary-encoded labels for regression and introduce a general framework and a
taxonomy for the design aspects of regression by binary classification. We propose desirable
properties of encoding and decoding functions suitable for regression problems.

• We present a series of suitable encoding, decoding, and loss functions for regression with
BEL. We present an end-to-end learning approach and regression layer architecture for
BEL. We combine BEL with task-specific feature extractors for four tasks and evaluate
multiple encoding, decoding, and loss functions. BEL outperforms direct regression for all
the problems and specialized approaches for several tasks.

• We theoretically and empirically demonstrate the effect of different design parameters on
the accuracy, how it varies across different tasks, datasets, and network architectures, and
provide preliminary insights and motivation for further study.

2 RELATED WORK

Binary classification for regression: Prior works have proposed binary classification-based
approaches for ordinal regression (Crammer & Singer, 2001; Chu & Keerthi, 2005; Li & Lin, 2006).
Ordinal regression is a class of supervised learning problems, where the samples are labeled by a
rank that belongs to an ordinal scale. Ordinal regression approaches can be applied to regression
by discretizing the numeric range of the real-valued labels (Fu et al., 2018; Berg et al., 2021). In
the existing works on ordinal regression by binary classification, N − 1 binary classifiers are used
for target labels ∈ {1, 2, ..., N}, where classifier-k predicts if the label is greater than k or not for
a given input. Li & Lin (2006) provided a reduction framework and generalization bound for the
same. However, the proposed binary classification formulation is restricted. It requires several binary
classifiers if the numeric range of output is extensive, whereas reducing the number of classifiers by
using fewer quantization levels increases quantization error. Thus, a more generalized approach for
using binary classification for regression is desirable to allow flexibility in the design of classifiers.
Binary classification for multiclass classification: Dietterich & Bakiri (1995) proposed the use
of error-correcting output codes (ECOC) to convert a multiclass classification to a set of binary
classification problems. This improves accuracy as it introduces tolerance to binary classifiers’ errors
depending upon the hamming distance (i.e., number of bits changed between two binary strings)
between two codes. Allwein et al. (2001) provided a unifying framework and multiclass loss bounds
in terms of binary classification loss. More recent works have also used Hadamard code, a widely
used error-correcting code (Song et al., 2021; Verma & Swami, 2019). Other works have focused on
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Figure 1: The training (top) and inference (bottom) flow of binary-encoded labels (BEL) for regression networks.
Red colored blocks represent design aspects we focus on.

the use and design of compact codes that exhibit a sublinear increase in the length of codes with the
number of classes for extreme classification problems with a large number of classes (Cissé et al.,
2012; Evron et al., 2018). However, the proposed encoding and decoding approaches do not consider
the task objective and labels’ ordinality for regression. Further, the binary classifiers possess distinct
error probability distribution properties for regression problems as observed empirically (Section 3.1),
which can be exploited to design codes suitable for regression.

Multiclass classification and ordinal regression by binary classification can be viewed as special cases
falling under the BEL framework. As shown in Section 4, other BEL designs yield improvements in
accuracy over these approaches. Task-specific regression techniques are well explored as summarized
below (see also Appendix D). While effective, task-specific approaches lack generality by design.

Head pose estimation: SSR-Net (Yang et al., 2018) and FSA-Net (fsa, 2019) used a soft stagewise
regression approach. HopeNet (Ruiz et al., 2018) used a combination of classification and regression
loss. Hsu et al. (2019) used a combination of regression and ordinal regression loss.
Facial landmark detection: Wang et al. (2020) minimize L2 loss between predicted and target 2D
heatmaps with the latter formed using small variance Gaussians centered on ground truth landmarks.
AWing (Wang et al., 2019) modified loss for different pixels in the heatmap. LUVLi (Kumar et al.,
2020) proposed a landmark’s location, uncertainty, and visibility likelihood-based loss. Bulat &
Tzimiropoulos (2016) used binary heatmaps with pixel-wise binary cross-entropy loss.
Age estimation: OR-CNN (Niu et al., 2016) and CORAL-CNN (Cao et al., 2020) used ordinal
regression via binary classification. MV-Loss (Pan et al., 2018) proposed to penalize the model output
based on the age distribution’s variance, while Gao et al. (2018) proposed to use the KL-divergence
between the softmax output and a generated label distribution for training.

3 BINARY-ENCODED LABELS FOR REGRESSION (BEL)

We consider regression problems where the goal is to minimize the error between real-valued target
labels yi and predicted labels ŷi, over a set of training samples i. We transform this problem to a set
of binary classification sub-problems by converting a real-valued label to a binary code.

Figure 1 shows the training and inference flow for BEL. The red-colored blocks highlight functions
that vary under BEL. A real-valued label yi ∈ R is quantized to level Qi ∈ {1, 2, ..., N} 1©. The
quantized label is converted to a binary vector Bi ∈ {0, 1}M , that we call a binary-encoded label,
using encoding function E 2©. There are

(
2M

N

)
possible encoding functions—a large number. The

binary-encoded labelsBi are used to trainM classifiers 3©. During inference theM classifiers predict
a binary code B̂i ∈ {0, 1}M for input xi 4©. The predicted code (B̂i) or the predictions’ magnitude
(Ẑi), which indicates its confidence, is then decoded to a predicted label ŷi ∈ R using a decoding
function D 5©. We explore decoding functions that yield either quantized or continuous predicted
outputs. The latter avoids quantization error by employing expected correlation (Section 3.3).

BEL contains five major design parameters resulting in a large design space: quantization, encoding,
decoding, regressor network architecture, and training loss formulation. In this work we consider
only uniform quantization while leaving nonuniform quantization (Fu et al., 2018) to future work.
Section 3.2 and 3.3 explore the characteristics of suitable encoding, decoding, and loss functions.
Section 3.4 explores the impact of regressor network architecture. We find varying any of these
aspects can improve accuracy. While BEL provides a framework, and some design choices appear
generally better than others, the most suitable BEL parameters to employ vary across task, dataset,
and network architecture, as we show both theoretically (Section 3.1) and empirically (Section 4).
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Figure 2: Examples of BEL codes. Part (a) represents the quantized values of the labels for Unary and Johnson
codes shown in Parts (b) and (c). Part (d) shows a B1JDJ code without reflected binary; Parts (e) and (f) show
B1JDJ and B2JDJ codes for targets in the range 1 to 16. Part (g) shows quantized and encoded values for a
HEXJ code (space added to differentiate between base and displacement, or digits). Red lines represent bit
transitions. These BEL codes described in Section 3.2.

3.1 ANALYSIS OF ENCODING/DECODING FUNCTIONS

This section analyzes the potential impact of encoding/decoding functions on regression error
assuming empirically observed error distributions for the underlying classifiers. We compare Unary
and Johnson codes (Figure 2b and 2c) to determine when each is preferable. With this analytical
study, we aim to obtain insight into ordinal label classifier impact on regression error when employing
simple encoding and decoding functions {E ,D}. Based upon this analysis we identify desirable
properties for these functions. The design of the codes and intuition for trying them are discussed in
Section 3.2. We divide our analysis into three parts: First, the expected error of predicted labels is
derived in terms of classifiers’ errors for two {E ,D} functions. Next, we propose an approximate
classifier’s error probability distribution over the numeric range of target labels for regression based
on empirical study. Last, we compare the expected error of sample {E ,D} functions based on our
analysis. We use labels yi ∈ [1, N−1], with quantization levelsQi ∈ {1, 2, ..., N−1}. Quantization
error is not included as it is not affected by {E ,D} functions.

Expected absolute error bounds in terms of classification error: First, we analyze the unary
code (BEL-U). The encoding function EBEL-U converts Qi to Bi = b1i , b

2
i , ..., b

N−2
i , where bki = 1

for k < Qi, else 0. In this case, a good choice of decoding function turns out to be simply counting
the number of 1 outputs across all N − 2 classifiers since a error in a single classifier changes the
prediction by only one quantization level. Adding one since Qi = 1 is encoded by all zeros gives:

DBEL-U(b̂1i , b̂
2
i , ..., b̂

N−2
i ) =

N−2∑
k=1

b̂ki + 1 (1)

Let ek(n) be the error probability of classifier k for target quantized label Qi = n. For a uniform
distribution of yi in the range [1, N−1] the expected error for BEL-U can be shown (see Appendix B)
to be bounded as follows:

E(|ŷBEL-U − y|) 6 1

N − 1

N−1∑
n=1

(N−2∑
k=1

ek(n)
)

(2)

A similar analysis of expected error can be applied to binary encoded labels constructed to yield
Johnson codes (BEL-J), in which Qi is encoded using Bi = b1i , b

2
i , ..., b

N/2
i , where, bki = 1 for

N
2 −Qi < k − 1 6 N −Qi, else 0 (see Equation 27 in Appendix B).

Error probability of classifiers: To use Equation 2 we need to determine ek(n). A classifier’s
target output is 0 or 1. For BEL, the target labels of a given classifier will have one or more bit
transitions from 0→ 1 or 1→ 0 as the target value of the regression network’s output varies. For
example, for the unary code (Figure 2b), the target output of classifier b2 has a bit transition from 0 to
1 going from Qi = 2 to Qi = 3. The classifier should learn a decision boundary in (2, 3). Each BEL
classifier is tasked with learning decision boundaries for all bit transitions. As the difficulty of this
task varies with the number of bit transitions it varies with different encoding functions. Moreover,
the misclassification probability of a classifier tends to increase as the target label is closer to the
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Figure 3: Part (a) and (b): classification error probability vs. target output for two classifiers. Target output 1
where blue and 0 elsewhere. Part (c): expected error increase of BEL-U versus BEL-J based on Equation 2 to
Equation 4 (blank means that combination of r and σ results in an error probability greater than one).

classifier’s decision boundaries (Cardoso & Pinto da Costa, 2007). Thus, we approximate ek(y) for
a classifier k with t bit transitions as a linear combination of t Gaussian distributions. Here, each
Gaussian term is centered around a bit transition. Let fN (µ,σ2)(y) denote the probability density of a
normal distribution with mean µ and variance σ2. Each classifier for BEL-U encoding has one bit
transition, whereas, each classifier for BEL-J encoding has two bit transitions (except the first and
last classifiers). ek(y) of a classifier k for BEL-U and BEL-J encoding is approximated as:

eBEL-U
k (y) = rfN (µk,σ2)(y),where, µk = k + 0.5 (3)

eBEL-J
k (y) = rfN (µ1k,σ

2)(y) + rfN (µ2k,σ
2)(y),where, µ1k =

N

2
− k + 1.5, µ2k = N − k + 1.5 (4)

Here, r is a scaling factor. Figure 3a and 3b compares Equation 3 and 4 against empirically observed
error distributions for two classifiers using an HRNetV2-W18 (Wang et al., 2020) feature extractor
(backbone) trained with the COFW facial landmark detection dataset (Burgos-Artizzu et al., 2013).

Comparison of expected absolute error for BEL-U and BEL-J: Based on the above analysis,
we compare the expected absolute errors of BEL-U and BEL-J. Figure 3c represents the percentage
increase in absolute error for BEL-U compared to BEL-J for valid values of standard deviation σ
(y−axis) and scaling factor r (x−axis) as used in Equation 3 and 4. Here, BEL-J has a lower error in
the red-colored region (%increase> 0), whereas BEL-U has a lower error in the blue-colored region
(%increase < 0). The figure shows that whether BEL-J or BEL-U has lower error depends upon the
values of σ and r. This suggests that the best {E ,D} function will depend upon the classifier error
probability distribution. The classifier error distribution in turn may depend upon the task, dataset,
label distribution, network architecture, and optimization approach. Derivation of expected error for
BEL-U and BEL-J and classifiers’ empirical error probability distributions for different architectures,
datasets, and encodings are provided in Appendix B to C.

3.2 DESIGN OF ENCODING FUNCTIONS

Based on the above analysis and further empirical observation we identify three principles for
selecting BEL codes for regression so as to minimize error. First, individual classifiers should require
fewer bit transitions as this makes them easier to train. Second, a desirable property for a BEL
encoding function is that the hamming distance between two codes (number of bits that differ) should
be proportional to the difference between the target values they encode. However, hamming distance
weighs all bit changes equally. Thus, hamming distance based code design provides equal error
protection capability to all bits (Wu, 2018; Xie et al., 2002) and does not account for which classifiers
are more likely to mispredict for a given input. This matters because the misclassification probability
of BEL classifiers is not uniform, but rather increases the closer the target value of an input is to a bit
transition (e.g., Figure 3a and 3b). These observations yield a third important consideration: For a
given target value classifiers closer to a bit transition are more likely to incur an error.

The principles above highlight a tradeoff between classification error probability and error-correction
properties when selecting BEL codes. To evaluate the trade-offs, we empirically evaluate encodings
that, to greater or lesser extent, satisfy one or more of the principles while focusing on reducing the
number of classifiers (bits) so as to avoid increasing model parameters. Development of algorithms
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that might systematically optimize encoding functions is left to future work. Specifically, we explore
the following codes:

Unary code (U): Unary codes (Figure 2b) have only one bit transition per classifier and thus require
M = N − 1 bits to encode N values. Unary codes satisfy the first two principles and prior work on
ordinal regression by binary classification (Li & Lin, 2006; Niu et al., 2016) uses similar codes.

Johnson code (J): The Johnson code sequence (Figure 2c) is based on Libaw-Craig code (Libaw &
Craig, 1953). We select this code as it has well-separated bit transitions and requires M = N

2 bits
compared toN required for unary code. This code exemplifies the impact of considering non-uniform
classifier error probabilities (third principle). For example the hamming distance between 1 and
8 is just one. However, the bit transition for the differing bit, for classifier b1, is far from 1 or 8.
Assuming equal error probability distributions centered on each bit transition for each classifier (as in
Equation 4), b1 is less likely to mispredict than b2, b3 or b4 for inputs with target values near 1 or 8.

Base+displacement based code (B1JDJ/B2JDJ): We further reduce the number of bits using a
base+displacement-based representation. In this representation, a value is represented in base-k using
a base-term b and displacement d via b * k + d. b and d are represented using Johnson codes.
Further, to improve the distance between two remote codes, we adapt reflected binary codes for term
d (Gray, 1953). We evaluate base-2 (B1JDJ - Figure 2e) and base-4 codes (B2JDJ - Figure 2f).

Binary coded hex - Johnson code (HEXJ): In HEXJ (Figure 2g), each digit (0-F) of the hexadecimal
representation of a number is converted to an 8-bit binary code using Johnson code. For example,
for the decimal number 47 (i.e., 2F in hex), HEXJ(47) = Concetanate(Johnson(2), Johnson(F)). A
16-bit HEXJ code can represent numbers in the range of 00 to FF (a total of 256). The number of
bits increases sublinearly with the number of quantization levels for HEXJ, making it suitable for
regression problems with many quantization levels.

Hadamard code (HAD): Hadamard codes (Bose & Shrikhande, 1959) are widely used as error-
correcting codes and have been used for multiclass classification (Dietterich & Bakiri, 1995; Verma
& Swami, 2019). They require M = N bits to encode N values. However, Hadamard codes violate
all three BEL code selection principles: First, each classifier has many bit transitions. Second, as
each code is equidistant (hamming distance of M2 ), the difference between target values is ignored.
Finally, they protect all bits equally so do not take advantage of non-uniform error probabilities. We
verify empirically Hadamard codes are unsuitable for regression (Section A).

3.3 DESIGN OF DECODING FUNCTIONS

We explore three decoding functions: custom decoding, correlation-based decoding, and expected
correlation-based decoding. Custom decoding functions are specific to the encoding function, and are
only evaluated for unary and Johnson codes. In contrast, correlation-based decoding, first explored
in prior work studying ECOC for multiclass classification (Allwein et al., 2001), can be applied to
all codes. For quantized labels in {1, 2, ..., N}, we define a code matrix C of size N ×M , where
M is the number of bits/classifiers used for the binary-encoded label. Each row Ck,: in this matrix
represents the binary code for label Qi = k. For example, Figure 2b can be considered a code matrix,
where the first row represents code for label Qi = 1. Let Ẑi ∈ RM denote the output logit values
of the classifiers. For decoding, the row with the highest correlation with the output Ẑi is selected
as the decoded label. Here, real-valued output Ẑi is used instead of output binary code B̂i to find
the correlation as it uses the confidence of a classifier to make a more accurate prediction. For target
quantized labels Qi ∈ {1, 2, ..., N}, the decoding function is defined as:

DGEN(Ẑi) = argmax
k∈{1,2,...,N}

(
Ẑi ·Ck,:

)
(5)

However, DGEN outputs a quantized prediction, introducing quantization error. To remedy this
concern and demonstrate the potential of more sophisticated decoding rules, we propose and evaluate
an expected correlation-based decoding function, which allows prediction of real-valued label ŷi. For
target labels yi ∈ [1, N ], the decoding function is defined as:

DGEN-EX(Ẑi) =

N∑
k=1

kσk,where σk =
eẐi·Ck,:∑N
j=1 e

Ẑi·Cj,:

(6)
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Figure 4: Network architecture for direct and BEL regression; only the regressor architecture is modified, but the
entire network is trained end to end. P is the number of dimensions of the regression network output.

Table 1: Benchmarks used for evaluation

Task Feature
Extractor Specialized Approach Dataset Benchmark Label range/

Quantization levels θ

Landmark-free 2D head
pose estimation

ResNet50 Regression+classification
(Ruiz et al., 2018)

BIWI HPE1 -100-100/200 10
300LP/AFLW2000 HPE2 -100-100/200 10

RAFANet Direct regression
(Behera et al., 2021)

BIWI HPE3 -180-180/360 50
300LP/AFLW2000 HPE4 -180-180/360 50

Facial Landmark
Detection

HRNetV2-
W18

Heatmap regression
(Wang et al., 2020; Xu et al.,

2020)

COFW FLD1 0-256/256 10
300W FLD2 0-256/256 10

WFLW FLD3 0-256/256 10
AFLW FLD4 0-256/256 30

Age estimation ResNet50
/ResNet34

Ordinal regression
(Cao et al., 2020)

MORPH-II AE1 0-64/64 10
AFAD AE2 0-32/32 10

End-to-end autonomous
driving PilotNet Direct regression (Bojarski

et al., 2017) PilotNet PN 0-670/670 10

Training loss functions: A deep neural network with multiple output binary classifiers can be
trained using the binary cross-entropy (BCE) loss LBCE

(
Ẑi, E(Qi)

)
. However, this loss minimizes

the mismatch between predicted and target code but does not directly minimize the error between the
target and predicted values. Decoding functions DGEN and DGEN-EX can be used to calculate the loss
and minimize the mismatch between decoded predictions and target values directly. Decoding func-
tion DGEN finds the correlation between each row of the code matrix (Ck,:) and the output Ẑi. CẐi
gives the correlation vector, and the index with the highest correlation is used as the predicted label. In
this case, cross-entropy loss LCE

(
CẐi, Qi

)
can be used to train the network. Similarly, for decoding

functionDGEN-EX, which predicts a continuous value, L1 or L2 loss LL1/L2
(
DGEN-EX(Ẑi), yi

)
can also

be used for training. We evaluate multiple combinations of decoding and loss functions in Section 4.

3.4 REGRESSION NETWORK ARCHITECTURE FOR BEL

A regression network typically consists of a feature extractor and regressor. The regressor consists
of a fully connected layer between the feature extractor’s output (i.e., feature vector) and output
logits for direct regression as shown in Figure 4a. In BEL, the number of output logits is increased
to the number of classifiers (bits) used. When y ∈ RP , with P > 1, the required number of output
logits—P ×M assuming M -bit BEL encoding per output dimension—can significantly increase the
size of the regression layer. However, empirically, we find small feature vectors suffice as the output
logits are highly correlated for the explored encoding functions. Adding a fully connected bottleneck
layer to reduce feature vector size to θ reduces the number of parameters and provides a trade-off
between the model size and accuracy. Figure 4b shows the modified network architecture for BEL.

4 EVALUATION

Table 1 summarizes the tasks, datasets, and network architectures used for the evaluation of BEL.
These tasks are commonly used for evaluation of regression approaches by prior works due to the
complexity of problem and network architectures (Díaz & Marathe, 2019). Landmark-free 2D head
pose estimation (HPE) aims to find a human head’s pose in terms of three angles: yaw, pitch, and roll
from a 2D image without landmarks. Facial landmark detection (FLD) is a problem of detecting the
(x, y) coordinates of keypoints in a given face image. Age estimation aims to predict the age of a
person from an image. In end-to-end autonomous driving, the steering wheel’s next angle is predicted
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Figure 5: Error (MAE or NME) for different encoding, decoding, and loss functions for BEL. D1-D5 represents
different combinations of decoding and loss functions: D1 (BCE loss with BEL-U/BEL-J/GEN decoding for
U/J/others), D2 (CE/GEN-EX), D3 (CE/GEN), D4 (L1 or L2/GEN-EX), and D5 (BCE/GEN-EX).

from an image of the road. Normalized Mean Error (NME) and Mean Absolute Error (MAE) with
respect to raw real-valued labels are used as the evaluation metric for FLD and the rest, respectively.

We also evaluate direct regression and multiclass classification as baseline regression approaches. For
direct regression, L1 or L2 loss functions are used. Label values are scaled to reduce the range of
labels. The loss function and the scaling factors are set using hyperparameter tuning. In the multiclass
classification-based regression, the target values are quantized and converted to a class. The network
is trained using cross-entropy loss in this case. In our evaluation, the entire network (i.e., feature
extractor and regressor) are trained end-to-end for direct regression, multiclass classification, and
BEL. The feature extractor, data augmentation, evaluation protocols, and the number of training
iterations are kept uniform across different methods for each benchmark. We report average of five
training runs and error margin of 95% confidence interval. Details on datasets, training parameters,
related work for specific tasks, and other evaluation metrics are provided in Appendix C.

BEL introduces several design parameters for regression by binary classification. We evaluate differ-
ent encoding (E), decoding (D), and training loss (L) functions for BEL across all the benchmarks
and study the extent and nature of the impact of these design parameters on accuracy.

Encoding function (E): Figure 5 plots error (MAE or NME) using different encodings. We
do not show results for Hadamard codes here as it results in significantly higher error than other
encodings (Appendix A). On average, Hadamard codes result in ∼ 60% higher error than J encoding,
which shows that these codes are unsuitable for regression. The results show the encoding function
significantly affects the accuracy and the best-performing encoding function varies across tasks,
datasets, and network architectures (e.g., HPE1 and HPE3 are trained on the same dataset and
different architecture). In Section 3.1 we observed that which encoding/decoding functions result
in lower error depends upon the classifiers’ error distribution. For decoding functions used for the
comparison in Section 3.1, J does better than U for HPE3, FLD1, and AE1; we attribute this to
misclassification errors occurring more frequently near bit transitions based on the analytical study.

The encoding function impacts the number of classifiers and the complexity of the function to be
learned by a classifier. We observe a trade-off between these two parameters. For some benchmarks,
the availability of sufficient training data and network capacity facilitates the learning of complex
classifiers such as B2JDJ. In such a case, a reduced number of classifiers compared to U, J, or B1JDJ
codes results in a lower error. We provide empirical results for the same in Appendix A.

Decoding (D) and training loss (L) functions: We explore three decoding and three training loss
functions (Section 3.3). However, not all the combinations of decoding and loss functions (D/L)
perform well. For example, CE, L1, or L2 losses do not use decodings DBEL-J or DBEL-U. Therefore,
optimizing the network for these losses does not directly minimize the absolute error between targets
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Table 2: Comparison of BEL with different regression approaches. “Specialized approach” described in Table 1

Error (MAE or NME) / Model size
Approach HPE1 HPE2 HPE3 HPE4

Specialized approach - - 3.40 / 69.8M 4.14 / 69.8M
Direct regression 4.76±0.35 / 23.5M 5.65±0.13 / 23.5M 3.40±0.26 / 69.8M 4.14±0.12 / 69.8M
Multiclass classification 4.49±0.24 / 24.2M 5.31±0.05 / 24.8M 4.54±0.04 / 72.0M 5.14±0.08 / 72.0M
BEL 3.56±0.01 / 23.6M 4.77±0.05 / 23.6M 3.30±0.04 / 69.8M 3.90±0.03 / 69.8M
BEL E/D/L functions U/GEN-EX/L2 U/GEN-EX/BCE B1JDJ/GEN-EX/BCE U/GEN-EX/BCE

Approach FLD1 FLD2 FLD3 FLD4

Specialized approach 3.45 / 9.6M 3.32 / 9.6M 4.32 / 9.6M 1.57 / 9.6M
Direct regression 3.60±0.02 / 10.2M 3.54±0.03 / 10.2M 4.64±0.03 / 10.2M 1.51±0.01 / 10.2M
Multiclass classification 3.58±0.03 / 25.4M 3.51±0.02 / 45.2M 4.50±0.01 / 61.3M 1.56±0.01 / 20.1M
BEL 3.34±0.02 / 10.6M 3.40±0.02 / 11.2M 4.36±0.02 / 11.7M 1.47±0.00 / 10.8M
BEL E/D/L functions HEXJ/GEN-EX/CE U/GEN-EX/CE B1JDJ/GEN-EX/CE B1JDJ/GEN-EX/CE

Approach AE1 AE2 PN

Specialized approach 2.49 / 21.3M 3.47 / 21.3M 4.24 / 1.8M
Direct regression 2.44±0.01 / 23.1M 3.21±0.02 / 23.1M 4.24±0.45 / 1.8M
Multiclass classification 2.75±0.03 / 23.1M 3.38±0.05 / 23.1M 5.54±0.00 / 1.9M
BEL 2.27±0.01 / 23.1M 3.11±0.00 / 23.1M 3.11±0.01 / 1.8M
BEL E/D/L functions J/BEL-J/BCE B1JDJ/GEN-EX/L1 J/GEN/CE

and decoded predictions. We present results for five out of nineD/L combinations. Figure 5 compares
error (MAE or NME) achieved by different D/L combinations and highlights the range of error
variations. DGEN-EX results in the lowest error for the majority of the benchmarks as it reduces
quantization error and also utilizes the output logit confidence values. DGEN-EX consistently perform
better than DGEN function that has been used for multiclass classification by prior works (Allwein
et al., 2001). The use of CE or L1/L2 loss results in a lower error with DGEN-EX for most benchmarks
as the training loss function directly minimizes the error between targets and decoded predictions.

Comparison of BEL with regression approaches: Table 2 compares BEL with other approaches
for different benchmarks (Table 1). We explore and evaluate multiple combinations of encoding (E),
decoding (D), and loss (L) functions for BEL in this work. In these experiments 20% of the training
set is used as validation set and the validation error is used to choose the best BEL approach. An
ablation study for using more fully connected layers for direct regression and multiclass classification
is in Appendix A. BEL results in lower error than direct regression and multiclass classification and
even outperforms task-specific regression approaches for several benchmarks.

The results show no single combination of encoding/decoding/loss functions evaluated was best for
all benchmarks but also demonstrate BEL improves accuracy across a range of regression problems.

5 CONCLUSION

This work proposes binary-encoded labels (BEL) to pose regression as binary classification. We
propose a taxonomy identifying the key design aspects for regression by binary classification and
demonstrate the impact of classification error and encoding/decoding functions on the expected label
error. Different encoding, decoding, and loss functions are explored to evaluate our approach using
four complex regression tasks. BEL results in an average 9.9%, 15.5%, and 7.2% lower error than
direct regression, multiclass classification, and task-specific regression approaches, respectively. BEL
improves accuracy over state-of-the-art approaches for head pose estimation (BIWI, AFLW2000),
facial landmark detection (COFW), age estimation (AFAD), and end-to-end autonomous driving
(PilotNet). Our analysis and empirical evaluation in this work demonstrate the potential of the
vast design space of BEL for regression problems and the importance of finding suitable design
parameters for a given task. The best performing encoding/decoding function pair may be task,
dataset, and network specific. A possibility this suggests, which we leave to future work, is that it
may be beneficial to develop automated approaches for optimizing these functions.
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A ABLATION STUDY

Impact of combination of encoding, decoding, and loss functions: We propose multiple
combinations of encoding, decoding, and loss functions that can be used with BEL. In Tables 3- 13,
we show the effect of each combination of encoding, decoding, and loss function on the error of
the model. Although general trends exist and some combinations perform consistently well across
datasets, the optimal combination varies based on the dataset.

Table 3: Comparison of BEL design parameters on MAE for head pose estimation with BIWI dataset and
ResNet50 feature extractor (HPE1).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 3.38 3.65 - - - -
GEN-EX BCE 3.37 3.64 5.11 8.02 4.76 7.53

GEN BCE 3.38 3.65 5.16 8.16 4.99 7.73
GEN-EX CE 4.22 3.55 3.88 4.08 4.09 5.50

GEN CE 4.25 3.62 3.93 4.06 4.39 5.48
GEN-EX L2 3.56 3.93 3.66 3.59 5.99 4.21

Table 4: Comparison of BEL design parameters on MAE for head pose estimation with 300LP/AFLW2000
datasets and ResNet50 feature extractor (HPE2).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 4.78 4.84 - - - -
GEN-EX BCE 4.77 4.84 5.43 5.09 4.94 7.84

GEN BCE 4.78 4.87 5.11 5.05 5.15 8.54
GEN-EX CE 4.93 5.04 5.04 4.97 4.79 5.64

GEN CE 5.07 5.17 5.13 5.10 4.99 5.62
GEN-EX L2 5.05 5.18 5.19 5.09 5.17 5.07

Table 5: Comparison of BEL design parameters on MAE for head pose estimation with BIWI dataset and
RAFA-Net feature extractor (HPE3).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 3.47 3.16 - - - -
GEN-EX BCE 3.46 3.12 3.30 3.35 3.80 5.75

GEN BCE 3.49 3.14 3.62 3.78 4.44 5.83
GEN-EX CE 3.82 3.91 3.52 3.49 3.98 3.98

GEN CE 3.92 4.09 3.62 3.65 4.35 4.28
GEN-EX L2 3.72 3.60 4.31 4.29 6.61 18.69
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Table 6: Comparison of BEL design parameters on MAE for head pose estimation with 300LP/AFLW2000
datasets and RAFA-Net feature extractor (HPE4).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 3.94 4.00 - - - -
GEN-EX BCE 3.90 3.93 4.19 4.12 4.39 9.17

GEN BCE 3.93 3.94 4.21 4.25 4.53 9.21
GEN-EX CE 4.55 4.62 4.34 4.53 4.45 5.12

GEN CE 4.68 4.75 4.46 4.61 4.63 5.29
GEN-EX L2 4.45 5.87 5.11 9.34 10.43 17.89

Table 7: Comparison of BEL design parameters on NME for facial landmark detection with COFW dataset and
HRNetV2-W18 feature extractor (FLD1).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 3.47 3.45 - - - -
GEN-EX BCE 3.45 3.43 3.42 3.41 3.47 4.28

GEN BCE 3.46 3.45 3.43 3.47 3.66 4.43
GEN-EX CE 3.37 3.37 3.38 3.41 3.34 3.69

GEN CE 3.44 3.44 3.44 3.49 3.57 3.69
GEN-EX L1 3.44 3.41 3.45 3.47 3.41 4.52

Table 8: Comparison of BEL design parameters on NME for facial landmark detection with 300W dataset and
HRNetV2-W18 feature extractor (FLD2).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 3.5 3.49 - - - -
GEN-EX BCE 3.48 3.46 3.43 3.42 3.38 4.71

GEN BCE 3.50 3.49 3.45 3.45 3.55 4.78
GEN-EX CE 3.40 3.36 3.37 3.41 3.37 3.62

GEN CE 3.50 3.45 3.45 3.51 3.59 3.65
GEN-EX L1 3.41 3.39 3.49 3.67 3.43 4.04

Table 9: Comparison of BEL design parameters on NME for facial landmark detection with WFLW dataset and
HRNetV2-W18 feature extractor (FLD3).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 4.62 4.54 - - - -
GEN-EX BCE 4.6 4.51 4.43 4.38 4.37 7.18

GEN BCE 4.62 4.53 4.44 4.42 4.55 7.14
GEN-EX CE 4.36 4.34 4.36 4.33 4.34 5.15

GEN CE 4.46 4.44 4.47 4.47 4.56 4.83
GEN-EX L1 4.39 4.42 4.47 4.47 4.45 4.74

Table 10: Comparison of BEL design parameters on NME for facial landmark detection with AFLW dataset and
HRNetV2-W18 feature extractor (FLD4).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 1.51 1.52 - - - -
GEN-EX BCE 1.50 1.50 1.47 1.47 1.49 1.52

GEN BCE 1.51 1.52 1.50 1.49 1.54 1.55
GEN-EX CE 1.48 1.47 1.47 1.47 1.47 1.47

GEN CE 1.52 1.51 1.51 1.51 1.52 1.52
GEN-EX L1 1.47 1.47 1.48 1.48 1.48 1.59
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Table 11: Comparison of BEL design parameters on MAE for age estimation with MORPH-II dataset and
ResNet50 feature extractor (AE1).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 2.32 2.27 - - - -
GEN-EX BCE 2.30 2.29 2.35 2.49 2.45 2.99

GEN BCE 2.28 2.28 2.34 2.51 2.54 3.07
GEN-EX CE 2.55 2.54 2.75 2.65 2.63 12.33

GEN CE 2.60 2.58 2.61 2.66 2.61 3.10
GEN-EX L1 2.30 2.30 2.32 2.30 2.32 2.29

Table 12: Comparison of BEL design parameters on MAE for age estimation with AFAD dataset and ResNet50
feature extractor (AE2).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 3.13 3.15 - - - -
GEN-EX BCE 3.14 3.16 3.32 3.35 3.28 3.34

GEN BCE 3.13 3.19 3.41 3.44 3.41 3.52
GEN-EX CE 3.26 3.29 3.38 3.44 3.40 3.30

GEN CE 3.36 3.34 3.42 3.47 3.40 3.45
GEN-EX L1 3.13 3.12 3.11 3.12 3.13 3.13

Table 13: Comparison of BEL design parameters on MAE for end-to-end autonomous driving with PilotNet
dataset and feature extractor (PN).

Encoding function
Decoding function Loss function U J B1JDJ B2JDJ HEXJ HAD

BEL-J/BEL-U BCE 4.34 3.91 - - - -
GEN-EX BCE 4.57 4.20 4.83 4.96 5.29 10.12

GEN BCE 4.37 3.95 3.51 3.61 4.01 10.00
GEN-EX CE 4.30 4.16 4.99 5.87 5.39 87.17

GEN CE 3.15 3.11 3.14 3.21 3.64 6.20
GEN-EX L1 4.10 4.11 4.34 4.34 4.11 5.09
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Impact of quantization and decoding functions: As discussed in Section 3, a real-valued
label is quantized to a discrete value in {1, 2, ..., N} before applying the encoding function. In
Table 14, we show the effect of increasing the number of quantization levels (N ) on the error for
correlation-based decoding (DGEN, which returns a quantized prediction) and expected correlation-
based decoding (DGEN-EX, which returns a continuous prediction). As shown in the table, there exists
a tradeoff between reducing quantization error and using fewer classifiers. The error is lower for
128 quantization levels than it is for 256 as the improvement resulting from fewer binary classifiers
is higher than the increase in quantization error. Moreover, the use of proposed decoding function
DGEN-EX for regression consistently results in lower error compared to DGEN.

Table 14: Impact of the quantization and decoding functions on NME for facial landmark detection.

COFW 300W
Quantization levels 64 128 256 64 128 256

EBEL-U +DGEN 3.66 3.51 3.46 3.79 3.59 3.46
EBEL-U +DGEN-EX 3.46 3.41 3.44 3.54 3.47 3.44
EBEL-J +DGEN 3.65 3.49 3.43 3.76 3.58 3.46
EBEL-J +DGEN-EX 3.45 3.40 3.42 3.52 3.45 3.43

Impact of the number of training samples on BEL: As discussed in Section 4, the performance
of different encoding functions varies depending on the availability of sufficient training data. In
Table 15, we analyze the effect of the number of available training samples for both simple and
complex encodings. We use the number of bit transitions as a measure of the complexity of a classifier.
As the number of training samples decreases, simpler encodings (U and J) perform better than more
complex encodings (B1JDJ, B2JDJ, and HEXJ). Using a more complex encoding reduces the number
of classifiers; however, it increases each classifier’s complexity (i.e. the number of bit transitions)
and thus performs poorly with less training data.

Table 15: Effect of training dataset size on optimal encoding function for facial landmark detection. BCE loss
function and GEN-EX decoding function are used for the training and evaluation.

Reduction in the number training samples

Encoding #Classifiers/label #bit
transitions/classifier 0% 20% 40% 60% 80% 90% 95%

COFW (FLD1)
U 256 1 3.45 3.48 3.55 3.72 3.94 4.52 6.29
J 128 2 3.43 3.48 3.51 3.61 3.88 4.32 5.39
B1JDJ 65 4 3.42 3.44 3.52 3.60 4.11 4.50 5.68
B2JDJ 34 8 3.41 3.45 3.48 3.80 3.94 4.80 6.56
HEXJ 17 32 3.47 3.69 3.78 4.03 4.61 5.48 6.69

300W (FLD2)
U 256 1 3.48 3.55 3.58 3.64 3.89 4.26 5.66
J 128 2 3.46 3.56 3.52 3.58 3.79 4.04 4.58
B1JDJ 65 4 3.43 3.48 3.53 3.61 3.89 4.31 6.10
B2JDJ 34 8 3.42 3.47 3.51 3.54 3.88 4.50 5.80
HEXJ 17 32 3.38 3.64 3.73 3.97 4.41 5.38 6.60

WFLW (FLD3)
U 256 1 4.60 4.67 4.83 5.00 5.37 6.04 7.46
J 128 2 4.51 4.60 4.65 4.84 5.23 5.64 6.39
B1JDJ 65 4 4.43 4.44 4.52 4.66 5.08 5.90 8.39
B2JDJ 34 8 4.38 4.46 4.49 4.61 5.02 5.95 8.78
HEXJ 17 32 4.37 4.60 4.72 4.96 5.72 6.86 8.09

AFLW (FLD4)
U 256 1 1.50 1.53 1.53 1.56 1.61 1.68 1.83
J 128 2 1.50 1.51 1.52 1.54 1.60 1.68 1.79
B1JDJ 65 4 1.47 1.50 1.52 1.54 1.60 1.67 1.78
B2JDJ 34 8 1.47 1.50 1.50 1.52 1.57 1.64 1.73
HEXJ 17 32 1.49 1.54 1.54 1.55 1.59 1.71 1.89

Impact of reflected binary conversion: As mentioned in Section 3.2, we use reflected binary
to increase the distance between distant labels based on the design properties of suitable regression
encodings we proposed. Table 16 shows the impact of using reflected binary conversion on error for
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facial landmark detection benchmarks. As shown in the table, the use of reflected binary significantly
reduces the error.

Table 16: Effect of reflected binary conversion for B1JDJ encoding on facial landmark detection. Here, BCE
loss and GEN-EX decoding functions are used.

COFW 300W WFLW AFLW

B1JDJ 3.43 3.46 4.43 1.47
B1JDJ- w/o reflected binary 4.13 4.43 5.70 1.97

Use of binary heamaps: Facial landmark detection approaches typically use heatmap regression.
We also evaluate BEL-H-x, in which the real-valued heatmaps are converted to binary heatmaps with
8 quantization levels. Table 17 shows the impact of using binary heatmaps on error for facial landmark
detection benchmarks. For unary code, a 64 × 64 real-valued heatmap of one facial landmark is
converted to eight 64 × 64 binary heatmaps, resulting in 32, 768 (8 × 64 × 64) binary classifiers
compared to 512 for BEL-U. We believe that training a high number of binary classifiers results in
high error for BEL-H-x.

Table 17: Comparison of BEL with heatmaps for facial landmark detection. Here, BCE loss and GEN-EX
decoding functions are used.

FLD1 FLD2 FLD3 FLD4

BEL-U 3.45 3.46 4.60 1.50
BEL-J 3.48 3.46 4.51 1.50
BEL-H-U 4.13 4.43 5.70 1.97
BEL-H-J 10.17 33.02 22.50 2.99

Hyperparameter θ: As shown in Figure 4b, we introduce a feature vector of size θ before the
output layer. Figure 6 compares the decrease in the error for different encodings and θ values. We
observe that more complex encodings benefit more from an increase in the value of θ, while a lower
value of θ can be used for simpler encodings.
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Figure 6: Effect of θ on error for different encodings on FLD1.

Impact of increasing the number of fully connected layers: For BEL, we propose to add a fully
connected bottleneck layer in the regressor to reduce the feature vector size to θ and thus decrease
the number of parameters in the regressor. We perform an ablation study to study the impact of this
added fully connected layer on relative performance of direct regression, multiclass classification,
and binary encoded labels. Table 18 provides the error (MAE or NME) for direct regression and
multiclass classification with one or two fully connected layers after the feature extractor. Further, we
evaluate BEL, direct regression, and multiclass classification for higher number of fully connected
layers as shown in Table 19. We observe that increasing the number of fully connected layers in direct
regression and multiclass classification does not improve the accuracy for most benchmarks (possibly
due to overparameterization). BEL with two fully connected layers outperforms direct regression
and multiclass classification in both cases. Furthermore, even for a higher number of fully connected
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Table 18: Impact increasing number of fully connected layers in direct regression and multiclass classification
on the error (MAE or NME).

Benchmark Direct regression Multiclass classification BEL
1 FC layer 2 FC layers 1 FC layer 2 FC layers 2 FC layers

HPE1 4.76 5.19 4.49 4.82 3.37
HPE2 5.65 5.59 5.31 5.42 4.77
HPE3 3.40 3.54 4.45 4.54 3.12
HPE4 4.14 4.22 5.14 5.45 3.90
FLD1 3.60 3.63 3.58 3.56 3.34
FLD2 3.54 3.58 3.51 3.62 3.36
FLD3 4.64 4.63 4.50 4.64 4.33
FLD4 1.51 1.51 1.56 1.53 1.47
AE1 2.44 2.35 2.75 2.81 2.27
AE2 3.21 3.14 3.38 3.40 3.11
PN 4.24 4.33 4.56 5.74 3.11

layers in BEL, the suitability of an encoding function varies with the dataset, demonstrating the
importance of BEL design space.

Table 19: Impact increasing number of fully connected layers in direct regression, multiclass classification, and
BEL. GEN-EX decoding function and BCE loss function are used for BEL.

Benchmark # FC layers (size of FC
layers)

Direct re-
gression

Multiclass
classification U J B1JDJ B2JDJ HEXJ

FLD1
1 (1024-x) 3.6 3.58 - - - - -
2 (1024-30-x) 3.63 3.56 3.45 3.43 3.42 3.41 3.47
3 (1024-30-10-x) 3.63 3.94 3.55 3.47 3.82 4.02 3.62

FLD2
1 (1024-x) 3.54 3.51 - - - - -
2 (1024-10-x) 3.58 3.62 3.48 3.46 3.43 3.42 3.38
3 (1024-30-10-x) 3.55 3.78 3.42 3.46 3.5 3.61 3.52

Training-validation set based evaluation: Ideally, a validation set should be used for model
selection. Hence we have reevaluated the benchmarks with a validation set to select the best design
parameters and the best model (i.e., which model is the best over multiple epochs). Since datasets
used in benchmarks do not provide separate validation datasets, we use 20% of the training data as a
validation set. Since earlier works use 100% training data for the reported results and use test error for
model selection, we have re-run specialized approaches (if possible), direct regression, and multiclass
classification. It was not possible for us to re-run experiments for all specialized approaches due to
resource constraints, and the comparison is conservative for many benchmarks.

Table 20 compares different regression approaches for this evaluation setup. Note that the additional
results do not diminish the effectiveness of BEL and BEL outperforms direct regression and multiclass
classification for all benchmarks and specialized approaches for several benchmarks.

B EXPECTED ERROR DERIVATION

This section explains the expected error equations used to compare BEL-U and BEL-J in Sec-
tion 3.1. We first explain the encoding and decoding function used for BEL-U and derive the relation
between the expected regression error and classification error for BEL-U. Then, we explain the
encoding/decoding functions and expected error relation for BEL-J.

B.1 PRELIMINARIES

Given a sample i drawn from a dataset with minimum label a and maximum label b, let yi ∈ [a, b]
represent the target label for that sample. Assuming uniform quantization, the range of target labels
can be quantized using q : [a, b]→ {1, 2, ..., N} through Equation 7.

q(yi) = (yi − a) ∗
N − 1

b− a
+ 1 (7)
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Table 20: Comparison of BEL with different regression approaches. Specialized approaches for each benchmark
are described in Table 1

Error (MAE or NME) / Model size
Approach (% training set) HPE1 HPE2 HPE3 HPE4

Specialized approach (100%) - - 3.40 / 69.8M 4.14 / 69.8M
Specialized approach (80%) - - 4.08±0.11 / 69.8M 4.69±0.02 / 69.8M
Direct regression (80%) 6.12±0.02 / 23.5M 5.97±0.09 / 23.5M 4.08±0.11 / 69.8M 4.67+4.70 / 69.8M
Multiclass classification (80%) 5.38±0.03 / 24.2M 5.60±0.13 / 24.8M 5.58±0.04 / 72.0M 5.86±0.10 / 72.0M
BEL (80%) 3.91±0.08 / 23.6M 4.91±0.10 / 23.6M 3.50±0.08 / 69.8M 3.99±0.04 / 69.8M
BEL E/D/L functions U/GEN-EX/L2 U/GEN-EX/BCE B1JDJ/GEN-EX/BCE U/GEN-EX/BCE

Approach (%training set) FLD1 FLD2 FLD3 FLD4

Specialized approach (100%) 3.45 / 9.6M 3.32 / 9.6M 4.32 / 9.6M 1.57 / 9.6M
Direct regression (80%) 3.70±0.04 / 10.2M 3.69±0.06 / 10.2M 4.71±0.02 / 10.2M 1.51±0.01 / 10.2M
Multiclass classification (80%) 3.64±0.02 / 25.4M 3.68±0.02 / 45.2M 4.77±0.02 / 61.3M 1.56±0.01 / 20.1M
BEL (80%) 3.35±0.02 / 10.6M 3.40±0.03 / 11.2M 4.37±0.01 / 11.7M 1.48±0.01 / 10.8M
BEL E/D/L functions HEXJ/GEN-EX/CE U/GEN-EX/CE B1JDJ/GEN-EX/CE B1JDJ/GEN-EX/CE

Approach (% training set) AE1 AE2 PN

Specialized approach (100%) 2.49 / 21.3M 3.47 / 21.3M 4.24 / 1.8M
Direct regression (80%) 2.45±0.01 / 23.1M 3.34±0.02 / 23.1M 4.56±0.45 / 1.8M
Multiclass classification (80%) 2.85±0.03 / 23.1M 3.47±0.05 / 23.1M 6.37±0.00 / 1.9M
BEL (80%) 2.36±0.01 / 23.1M 3.20±0.00 / 23.1M 3.49±0.01 / 1.8M
BEL E/D/L functions J/BEL-J/BCE B1JDJ/GEN-EX/L1 J/GEN/CE

We define the encoding function E : {1, 2, ..., N − 1} → {0, 1}M to convert a target quantized level
Qi ∈ {1, 2, ..., N − 1} to a binary code Bi ∈ {0, 1}M . We further define the decoding function
D : {0, 1}M → [a, b] to convert the predicted binary code B̂i to the predicted label ŷi.

Although the decoding functions used in this analysis predict the quantized label and introduce
quantization error, we do not include quantization error in the expected absolute error for our analysis
as it is constant for both BEL-U and BEL-J. The expected value of absolute error between the target y
and predicted labels ŷ is used for the analysis as typically mean absolute error is used as the evaluation
metric in regression problems.

Let us denote the error probability of a binary classifier Ck used to predict bit k in a binary code
Bi = E(n) as ek(n), where n is the target quantized label Qi. Then,

ek(n) = E(|b̂ki − bki |)
= Pr(b̂ki = F ) for target label Qi = n and target binary code Bi = E(n)

(8)

where b̂ki = T indicates a correct binary classification by classifier Ck (b̂ki == bki ) for sample i and
b̂ki = F indicates an incorrect binary classification by classifier Ck (b̂ki 6= bki ) for sample i.

B.2 EXPECTED ERROR FOR BEL-U

Encoding and decoding functions: The encoding and decoding functions for BEL-U are defined
as:

EBEL-U(Qi) = b1i , b
2
i , .., b

N−2
i , where bki =

{
1, k < Qi
0, Otherwise

(9)

DBEL-U(b̂1i , b̂
2
i , ..., b̂

N−2
i ) =

N−2∑
k=1

b̂ki + 1 (10)
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Expected error: For target quantized label Qi = n (n ∈ {1, 2, ..., N − 1}), ignoring the quantiza-
tion error, the expected error between target yi and predicted label ŷi can be derived as:

E(|ŷBEL-U
i − yi|) = E

(∣∣∣N−2∑
k=1

(
b̂ki + 1

)
−
N−2∑
k=1

(
bki + 1

)∣∣∣)
= E

(∣∣∣N−2∑
k=1

(b̂ki − bki )
∣∣∣)

6 E
(N−2∑
k=1

|b̂ki − bki |
)

=

N−2∑
k=1

E |b̂ki − bki |

=

N−2∑
k=1

ek(n) (using Equation 8)

(11)

For a uniform distribution of target labels in the range [1, N − 1], the expected error can be derived
as:

E(|ŷBEL-U − y|) 6 1

N − 1

N−1∑
n=1

N−2∑
k=1

ek(n) (12)

B.3 EXPECTED ERROR FOR BEL-J

Encoding and decoding functions: For target quantized label Qi ∈ {1, 2, ..., N − 1}, BEL-J
encoding requires N

2 bits/binary classifiers. The encoding for BEL-J can be defined as:

EBEL-J(Qi) = b1i , b
2
i , .., b

N
2
i ,where bki =

{
1, N

2 −Qi < k 6 N −Qi
0, Otherwise

(13)
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Decoding function’s output is calculated using y′ = T l + Tf + Tc, where T l = −maxk∈{1...N

2
} kb̂

k
i ,

Tf = maxk∈{1...N
2
}

(
N
2
− k + 1

)
b̂ki , and Tc = N

2 .
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Figure 8: Effect of classifier error on T̂ f i − Tfi for label Qi = n. Case 1 and case 2 represent erroneous
outputs. 0/1 highlighted in red color represents an error in the classifier’s output. “-” represents error/no error in
both cases.

Similarly, the decoding functions for BEL-J can be defined as:

DBEL-J(B̂i) = T l(B̂i) + Tf(B̂i) + Tc

where, T l(B̂i) = − max
k∈{1...N2 }

kb̂ki

Tf(B̂i) = max
k∈{1...N2 }

(N
2
− k + 1

)
b̂ki , T c =

N

2

(14)

In Equation 14, T l() finds the location of the last occurrence of “1” in the predicted binary code B̂i.
Similarly, Tf() finds the location of the first occurrence of “1” in the binary code B̂i. Figure 7 gives
examples of binary codes for label Qi ∈ {1, 2, ..., 7} and the corresponding values of the different
terms in Equation 14. For example, for label Qi = 3, the binary code is “0111”. Here, the last
occurrence of “1” is at position 4, and T l = −4. Similarly, the first occurrence of “1” is at position 2,
and Tf = (4 + 1)− 2 = 3.

Expected error: For BEL-J code, binary classifiers (C1, C2, ..., C
N
2 ) are used. For a given input

sample i, an error in any of the binary classifiers’ outputs (b̂1i , b̂
2
i , ..., b̂

N
2 ) will result in an error

between Tf(B̂i)/T l(B̂i) and Tf(Bi)/T l(Bi) in Equation 14. We refer to Tf(B̂i) and T l(B̂i) as
T̂ f i and T̂ li (predicted binary code), and Tf(Bi) and T l(Bi) as Tfi and T li (target binary code)
for brevity. Expected value of the absolute error can be further expanded as:

E(|ŷBEL-J
i − yi|) = E(|T̂ f i + T̂ li + Tc− (Tfi + T li + Tc)|)

= E(|(T̂ f i − Tfi) + (T̂ li − T li)|)
6 E(|T̂ f i − Tfi|+ |T̂ li − T li|)
= E(|T̂ f i − Tfi|) + E(|T̂ li − T li|)

(15)

Thus, the sum of the expected error of Tf() and T l() is the upper bound of the label’s expected error.
Further, we derive the relation between binary classifiers’ error probabilities and E(|T̂ f i − Tfi|) and
E(|T̂ li − T li|).

We consider Qi = n,where 1 6 n 6 N
2 for our derivation. In such a case, Tfi = n and T li = −N2 .

However, as the code is symmetric around Qi = N
2 , it can be shown that the derived equation for

E |ŷi − yi| can be used for 1 6 Qi 6 N − 1.

1. Derivation of E |T̂ f i − Tfi|: As shown in Equation 14, Tf() finds the location k of the first
occurrence of “1” in the binary sequence. In the case of an erroneous binary sequence, the position of
the first occurrence of “1” might shift, which results in an error between T̂ f i and Tfi. Figure 8 shows
examples of the correct and erroneous outputs of classifiers for label Qi = n. For label Qi = n,
bki = 0 for k ∈ {1, 2, ..., N2 − n} and bki = 1 for k ∈ {N2 − n+ 1, N2 − n+ 2, ..., N2 }.

For case 1, error in a classifier Ck, k ∈ {1, 2, ..., N2 − n} is considered, where bki = 0 and b̂ki = 1.
For k ∈ {1, 2, ..., N2 −n}, an error at classifier Ck will result in erroneous T̂ f i only if all proceeding
classifiers are correct, since if any of the proceeding classifier z is incorrect, i.e. b̂zi = 1, then the
location of the first occurrence of “1” will be shifted to z, and any error in the following classifiers
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will not affect the value of T̂ f . Such a case (b̂1i = T, b̂2i = T, ..., b̂k−1i = T, b̂ki = F, b̂k+1
i =

T/F, ..., b̂
N
2
i = T/F ) considers a total of 2

N
2 −k combinations out of 2

N
2 for k ∈ {1, 2, ..., N2 − n}.

Assuming that the binary classifiers are mutually independent, the error value and the probability of
this combination can be shown to be:

|T̂ f i − Tfi| =
(N
2
− n+ 1− k

)
(16)

Pr(b̂1i = T, b̂2i = T, ..., b̂k−1i = T, b̂ki = F ) = Pr(b̂1 = T )Pr(b̂2i = T )...P r(b̂k−1i = T )Pr(b̂k = F )

=
( k−1∏
j=1

(1− ej(n))
)
· ek(n)

(17)

The above term considers combinations (b′1 = T, b′2 = T, ..., b′k−1 = T, b′k = F, b′k+1 =

T/F, ..., b′
N
2 =T/F ) for k ∈ {1, 2, ..., N2 − n}, which constitutes to a total of

∑N
2 −n
k=1 2

N
2 −k

combinations out of 2
N
2 .

For case 2, error in a classifier Ck, k ∈ {N2 − n+ 1, N2 − n+ 2, ..., N2 } is considered, where bki = 1

and b̂ki = 0. We consider a combination (b̂1i = T, b̂2i = T, ..., b̂
N
2 −n
i = T, b̂

N
2 −n+1
i = F, ..., b̂k−1i =

F, b̂ki = T, b̂k+1
i = T/F, ..., b̂

N
2 =T/F
i ). For this case, the position of the first occurrence of “1” will

be moved to k, which will result in erroneous T̂ f i. Such a case would cover 2
N
2 −k combinations

out of 2
N
2 for k ∈ {N2 − n + 1, N2 − n + 2, ..., N2 }. The error value and the probability of this

combination can be shown to be:

|T̂ f i − Tfi| =
(
k − (

N

2
− n+ 1)

)
(18)

Pr(b̂1i = T, b̂2i = T, ..., b̂
N
2 −n
i = T, b̂

N
2 −n+1
i = F, ..., b̂k−1i = F, b̂ki = T ) =( N

2 −n∏
j=1

(1− ej(n))
)
·
( k−1∏
j=N

2 −n+1

ej(n)
)
·
(
1− ek(n)

) (19)

The above term considers combinations (b̂1i = T, b̂2i = T, ..., b̂
N
2 −n
i = T, b̂

N
2 −n+1
i = F, ..., b̂k−1i =

F, b̂ki = T, b̂k+1
i = T/F, ..., b̂

N
2 =T/F
i ), which constitutes to a total of

∑N
2

k=N
2 −n+1

2
N
2 −k combina-

tions out of 2
N
2 for k ∈ {N2 − n+ 1, N2 − n+ 2, ..., N2 }.

Combining Equation 16 to Equation 19, the expected value of |T̂ f i − Tfi| can be derived as:

E(|T̂ f i − Tfi|) =
N
2 −n∑
k=1

(N
2
− n+ 1− k

)
·
( k−1∏
j=1

(1− ej(n))
)
· ek(n)

+

N
2∑

k=N
2 −n+1

(
k − (

N

2
− n+ 1)

)
·
( N

2 −n∏
j=1

(1− ej(n))
)
·
( k−1∏
j=N

2 −n+1

(ej(n))
)
·
(
1− ek(n)

)

=

N
2 −n∑
k=1

(N
2
− n+ 1− k

)
· ek(n) ·

( k−1∏
j=1

(1− ej(n))
)
+

N
2∑

k=N
2 −n+1

( k∏
j=N

2 −n+1

ej(n)
)

(20)
The first term in Equation 20 covers

∑N
2 −n
k=1 2

N
2 −k combinations and the second term considers∑N

2

k=N
2 −n+1

2
N
2 −k combinations. Adding one combination where all the classifiers are correct,

Equation 20 considers all of the possible combinations 2
N
2 to find expected value of |T̂ f i − Tfi|.
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Figure 9: Effect of classifier error on T̂ li − T li for label Qi = n. Case 1 and case 2 represent erroneous outputs.
0/1 highlighted in red color represents an error in the classifier’s output. “-” represents error/no error in both
cases.

2. Derivation of E |T̂ li − T li|: As shown in Equation 14, T l() finds the location k of the last
occurrence of “1” in the binary sequence. In the case of an erroneous binary sequence, the position of
the last occurrence of “1” might shift, which results in an erroneous value of T̂ li. Figure 9 shows
examples of correct and erroneous outputs of classifiers for label Qi = n.

For case 1, an error in a classifier Ck, k ∈ {N2 − n + 1, N2 − n + 2, ..., N2 } is considered, where

bki = 1 and b̂ki = 0. We consider a combination (b̂
N
2
i = F, b̂

N
2 −1
i = F, ..., b̂k+1

i = F, b̂ki = T, b̂k−1i =

T/F, ..., b̂1i = T/F ). For this case, position of the last occurrence of “1” will be moved to k, which
will result in erroneous T̂ li. Such a case would cover 2k−1 combinations out of 2

N
2 . The error value

and the probability of this combination can be shown to be:

|T̂ li − T li| =
(N
2
− k
)

(21)

Pr(b̂
N
2
i = F, b̂

N
2 −1
i = F, ..., b̂k+1

i = F, b̂ki = T ) =
( N

2∏
j=k+1

ej(n)
)
· (1− ek(n)) (22)

The above term considers combinations (b̂
N
2
i = F, b̂

N
2 −1
i = F, ..., b̂k+1

i = F, b̂ki = T, b̂k−1i =

T/F, ..., b̂1i = T/F ) for k ∈ {N2 − n + 1, N2 − n + 2, ..., N2 }, which constitutes to a total of∑N
2

k=N
2 −n+1

2k−1 combinations out of 2
N
2 .

For case 2, an error in a classifier Ck, k ∈ {1, 2, ..., N2 − n} is considered, where bki = 0 and b̂ki = 1.

We consider a combination (b̂
N
2
i = F, ..., b̂

N
2 −n+1
i = F, b̂

N
2 −n
i = T, ..., b̂k+1

i = T, b̂ki = F, b̂k−1i =

T/F, ..., b̂1i = T/F ). For this case, position of the last occurrence of “1” will be moved to k, which
will result in erroneous T̂ li. Such a case would cover 2k−1 combinations out of 2

N
2 . The error value

and the probability of this combination can be shown to be:

|T̂ li − T li| =
(N
2
− k
)

(23)

Pr(b̂
N
2
i = F, ..., b̂

N
2 −n+1
i = F, b̂

N
2 −n
i = T, ..., b̂k+1

i = T, b̂ki = F ) =( N
2∏

j=N
2 −n+1

ej(n)
)
·
( N

2 −n∏
j=k+1

(1− ej(n))
)
· (ek(n))

(24)

The above term considers combinations (b̂
N
2
i = F, ..., b̂

N
2 −n+1
i = F, b̂

N
2 −n
i = T, ..., b̂k+1

i =

T, b̂ki = F, b̂k−1i = T/F, ..., b̂1i = T/F ) for k ∈ {1, 2, ..., N2 − n}, which constitutes to a total of∑N
2 −n
k=1 2k−1 combinations out of 2

N
2 .

Combining Equation 21 to Equation 24, the expected value of |T̂ li − T li| can be derived
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as:

E(|T̂ li − T li|) =
N
2∑

k=N
2 −n+1

(N
2
− k
)
·
( N

2∏
j=k+1

ej(n)
)
· (1− ek(n))

+

N
2 −n∑
k=1

(N
2
− k
)
·
( N

2∏
j=N

2 −n+1

ej(n)
)
·
( N

2 −n∏
j=k+1

(1− ej(n))
)
· (ek(n))

=

N
2∑

k=N
2 −n+1

( N
2∏

j=k

ej(n)
)
+
( N

2∏
j=N

2 −n+1

ej(n)
)
·

N
2 −n∑
k=1

( N
2 −n∏
j=k

(1− ej(n))
)

(25)

The first term in Equation 25 covers
∑N

2

k=N
2 −n+1

2k−1 combinations and the second term

considers
∑N

2 −n
k=1 2k−1 combinations. Adding one combination where all the classifiers are correct,

Equation 25 considers all of the possible combinations 2
N
2 to find expected value of |T̂ li − T li|.

Combining Equation 15, Equation 20, and Equation 25, the expected value of error for Qi = n in
terms of classifiers’ error probabilities can be derived as:

E(ŷBEL-J
i −yi) 6

N
2 −n∑
k=1

(N
2
−n+1−k

)
·ek(n)·

( k−1∏
j=1

(1−ej(n))
)
+

N
2∑

k=N
2 −n+1

( k∏
j=N

2 −n+1

ej(n)
)

+

N
2∑

k=N
2 −n+1

( N
2∏

j=k

ej(n)
)
+
( N

2∏
j=N

2 −n+1

ej(n)
)
·

N
2 −n∑
k=1

( N
2 −n∏
j=k

(1− ej(n))
)

(26)

As the binary code is symmetric around N
2 as shown in Figure 7, the expected errors for label

yi ∈ [1, N2 ] can be mirrored to find expected errors for label yi ∈ [N2 , N − 1]. For a uniform
distribution of target labels in the range [1, N − 1], the expected error can be derived as:

E(ŷBEL-J−y) 6 1

N − 1

N−1∑
n=1

[ N
2 −n∑
k=1

(N
2
−n+1−k

)
·ek(n)·

( k−1∏
j=1

(1−ej(n))
)
+

N
2∑

k=N
2 −n+1

( k∏
j=N

2 −n+1

ej(n)
)

+

N
2∑

k=N
2 −n+1

( N
2∏

j=k

ej(n)
)
+
( N

2∏
j=N

2 −n+1

ej(n)
)
·

N
2 −n∑
k=1

( N
2 −n∏
j=k

(1− ej(n))
)]

(27)

We also verify the equation by comparing the expected value of error based on Equation 26
for Qi ∈ {1, 2, ..., N − 1} with the expected error calculated by 100, 000 random samples of
binary sequences for the same error probabilities ek(n). Figure 10 compares the expected error
from Equation 26 and measured from statistical samples, and validates error upper bounds calculated
using Equation 26 and Equation 27.
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Figure 10: Comparison of expected value of error from Equation 26 and random samples for given error
probabilities of the classifiers.

C ERROR PROBABILITY OF CLASSIFIERS

It is known that the error/misclassification probability ek(n) of a classifier tends to increase as the
target label value n is closer to the classifier’s decision boundaries (Cardoso & Pinto da Costa,
2007). We approximate ek(y) for a classifier Ck with t bit transitions as a linear combination of t
Gaussian distributions. Here, each Gaussian term is centered around a bit transition. Figure 11 shows
the empirically observed error probability distributions for different classifiers trained for different
combinations of network and dataset. We also show the approximate error probability distribution
using a linear combination of Gaussian distributions. Here r is a scalar multiplied with probability
density of gaussian distribution and σ is the standard deviation (Equation 3 and Equation 4).
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(b) HRNetV2-W18 (AFLW facial landmark detection)
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(c) HRNetV2-W18 (300W facial landmark detection)
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(d) HRNetV2-W18 (300W facial landmark detection)
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(e) HRNetV2-W18 (WFLW facial landmark detection)
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(f) HRNetV2-W18 (WFLW facial landmark detection)

Figure 11: Classification error probability versus target label y for different classifiers. The top horizontal bar
represent target output of the classifier. Blue color represents output 1.

D EXPERIMENTAL METHODOLOGY

All experiments are conducted on a Linux machine with an Intel i9-9900X processor and an Nvidia
RTX 2080 Ti GPU with 11GB of memory. Our code is implemented using Python 3.8.3 with Pytorch
1.5.1 using CUDA 10.2. Our evaluation is averaged over 5 training runs with separate seeds.

D.1 HEAD POSE ESTIMATION

Head pose estimation aims to find a human head’s pose in terms of three angles: yaw, pitch, and roll.
In this work, we consider landmark-free 2D head pose estimation.
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Datasets: We follow the evaluation setting of Hopenet (Ruiz et al., 2018) and FSA-Net (fsa, 2019)
and use two evaluation protocols with three widely used datasets: 300W-LP (Zhu et al., 2016),
BIWI (Fanelli et al., 2013), and AFLW2000 (Zhu et al., 2016).

Protocol 1: BIWI dataset is used for training and evaluation in this protocol. BIWI dataset consists of
24 videos of 20 subjects with total 15, 128 frames. Three random splits of 70%-30% images are used
for training and evaluation. For the BIWI dataset, the yaw angle is in the range [−75◦, 75◦], the pitch
is in the range [−65◦, 85◦], and the roll angle is in the range [−55◦, 45◦].
Protocol 2: In this setting, the synthetic 300W-LP dataset is used for training, consisting of 122, 450
samples. The trained network is tested on a real-world AFLW2000 dataset. Yaw, pitch, and roll
angles are in the range [−99◦, 99◦] for both datasets.

Evaluation metrics: Mean Absolute Error (MAE) between the target and predicted values is used
as the evaluation metric for this benchmark. MAE for a regression task is defined as:

MAE =
1

N

N∑
i=1

1

P

P∑
j=1

|yi,j − ŷi,j | (28)

Here, N is the number of test samples, and P is the dimension of the regression task output. For head
pose estimation, the dimension of regression output is three (i.e., yaw, pitch, and roll). y is the target,
and ŷ is the predicted label.

Network architecture and training parameters: We evaluate our approach on two models:
ResNet-50 and RAFA-Net. With ResNet-50, two runs with different random seeds for each combi-
nation of learning rate {0.001, 0.0001, 0.00001} and batch size {8, 16} are used for hyperparameter
tuning. For data augmentation, images are loosely cropped around the center in the training and
testing datasets with random flipping. With RAFA-Net, we use the training parameters and data
augmentation used in Behera et al. (2021).

We refer to Protocol 1 evaluated with ResNet-50 as HPE1, Protocol 1 evaluated with RAFA-Net as
HPE3, Protocol 2 evaluated with ResNet-50 as HPE2, and Protocol 2 evaluated with RAFA-Net
as HPE4. Table 21 provides a summary of the training parameters used with protocol 1. Table 22
provides a summary of the training parameters used with protocol 2.

Table 21: Training parameters for head pose estimation with protocol 1.

Approach Label range/Quantization
levels Optimizer Epochs Batch size Learning rate Learning rate

schedule
Training time
(GPU hours)

HPE1
Yaw: [−75◦, 75◦]/150,
Pitch:[−65◦, 85◦]/150 ,
Roll: [−55◦, 45◦]/100

Adam, weight
decay=0,

momentum = 0
50 8 0.0001 1/10 after 30 Epochs 2

HPE3 [−179◦, 180◦]/360
RMSProp,

momentum=0,
rho = 0.9

100 16 0.001 - 6

Table 22: Training parameters for head pose estimation with protocol 2.

Approach Label range/Quantization
levels Optimizer Epochs Batch size Learning rate Learning rate

schedule
Training time
(GPU hours)

HPE2 [−99◦, 99◦]/200
Adam, weight

decay=0,
momentum = 0

20 16 0.00001 1/10 after 10 Epochs 4

HPE4 [−179◦, 180◦]/360
RMSProp,

momentum=0,
rho = 0.9

100 16 0.001 - 48

Related work Existing approaches for head pose estimation include stage-wise soft regres-
sion (Yang et al., 2018; fsa, 2019), a combination of classification and regression (Mukherjee
& Robertson, 2015; Ruiz et al., 2018), and ordinal regression (Hsu et al., 2019). SSR-Net (Yang et al.,
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2018) proposes the use of stage-wise soft regression to use the softmax values of classification output
to refine the label. FSA-Net (fsa, 2019) proposes extending stage-wise estimation to head pose
estimation using feature aggregation. HopeNet (Ruiz et al., 2018) uses a combination of classification
and regression loss to train a model for head pose estimation. Whereas, QuatNet (Hsu et al., 2019)
proposes a combination of L2 loss and a custom ordinal regression loss. RAFA-Net (Behera et al.,
2021) uses an attention based approach for feature extraction with direct regression.

We compare BEL with the performance of related work in Table 23 and Table 24. 95% confidence
intervals are given.

Table 23: Landmark-free 2D Head poses estimation evaluation for protocol 1 (HPE1 and HPE3).

Approach Feature
Extractor

#Params
(M) Yaw Pitch Roll MAE

SSR-Net-MD (Yang et al., 2018)
(Soft regression) SSR-Net 1.1 4.24 4.35 4.19 4.26

FSA-Caps-Fusion (fsa, 2019)
(Soft regression) FSA-Net 5.1 2.89 4.29 3.60 3.60

Direct regression (L2 loss) ResNet50
(HPE1) 23.5 4.62 5.24 4.43 4.76± 0.35

BEL-U/GEN-EX/L2 ResNet50
(HPE1) 23.6 3.32 3.80 3.53 3.56± 0.01

RAFA-Net (Behera et al., 2021)
(Direct Regression)

RAFA-Net
(HPE3) 69.8 3.07 4.30 2.82 3.40

BEL-B1JDJ/GEN-EX/BCE RAFA-Net
(HPE3) 69.8 3.21 3.34 3.43 3.30± 0.04

Table 24: Landmark-free 2D Head poses estimation evaluation for protocol 2 (HPE2 and HPE4).

Approach Feature
Extractor

#Params
(M) Yaw Pitch Roll MAE

SSR-Net-MD (Yang et al., 2018)
(Soft regression) SSR-Net 1.1 5.14 7.09 5.89 6.01

FSA-Caps-Fusion (fsa, 2019)
(Soft regression) FSA-Net 5.1 4.50 6.08 4.64 5.07

HopeNet* (α = 2) (Ruiz et al.,
2018) (classification +
regression loss)

ResNet50 23.9 6.47 6.56 5.44 6.16

Direct regression (L2 loss) ResNet50
(HPE2) 23.5 5.85 6.34 4.80 5.65± 0.13

BEL-U/GEN-EX/BCE ResNet50
(HPE2) 23.6 4.54 5.76 3.96 4.77± 0.05

RAFA-Net (Behera et al., 2021)
(Direct Regression)

RAFA-Net
(HPE4) 69.8 3.60 4.92 3.88 4.13

BEL-U/GEN-EX/BCE RAFA-Net
(HPE4) 69.8 3.28 4.78 3.55 3.90± 0.03

D.2 FACIAL LANDMARK DETECTION

Facial landmark detection is a problem of detecting the (x, y) coordinates of keypoints in a given
face image.

Datasets We use the COFW (Burgos-Artizzu et al., 2013), 300W (Sagonas et al., 2013), WFLW (Wu
et al., 2018), and AFLW (Köstinger et al., 2011) datasets with data augmentation and evaluation
protocols described in (Wang et al., 2020). Data augmentation is performed by random flipping,
0.75− 1.25 scaling, and ±30 degrees in-plane rotation for all the datasets. We use 256 quantization
levels for binary-encoded labels.

COFW: The COFW dataset (Burgos-Artizzu et al., 2013) consists of 1, 345 training and 507 testing
images. Each image is annotated with 29 facial landmarks.

300W: This dataset is a combination of HELEN, LFPW, AFW, XM2VTS, and IBUG datasets. Each
image is annotated with 68 facial landmarks. The training dataset consists of 3, 148 images. We
evaluate the trained model on four test sets: full test set with 689 images, common subset with 554
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images from HELEN and LFPW, challenging subset with 135 images from IBUG, and the official
test set with 300 indoor and 300 outdoor images.

WFLW: WFLW dataset consists of 7, 500 training images where each image is annotated with 98
facial landmarks. Full test dataset consists of 2, 500 images. We use test subsets: large pose (326
images), expression (314 images), illumination (698 images), make-up (206 images), occlusion (736
images), and blur (773 images).

AFLW: Each image has 19 annotated facial key points in this dataset. AFLW dataset consists of
20, 000 training images where each image is annotated with 19 facial landmarks. The full test dataset
consists of 4, 836 images, and the frontal test set consists of 1, 314 images.

Evaluation metrics: Mean Normalized Error (NME) between the target and predicted values is
used as the evaluation metric for this benchmark. NME for a regression task is defined as:

NME =
1

N

N∑
i=1

1

P
· 1
L

P∑
j=1

|yi,j − ŷi,j |2 (29)

Here, N is the number of test samples, and P is the dimension of the regression task output, i.e., the
number of landmarks for facial landmark detection. y is the target, and ŷ is the predicted label. L is
the normalization factor. . Inter-ocular distance normalization is used for COFW, 300W, and WFLW
datasets, and bounding box-based normalization is used for AFLW dataset.

We also report failure rate (f@10%) for some datasets. The failure rate (f@10%) is defined as the
fraction of test samples with normalized errors higher than 0.1.

Network architecture and training parameters: We evaluate BEL by applying it on HRNetV2-
W18. HRNetV2-W18 feature extractor’s output is 240 channels of size 64 × 64. For heatmap
regression, a 1× 1 convolution is used to get P heatmaps of size 64× 64, where P is the number
of landmarks. Since BEL-x predicts (x, y) coordinates directly we modify the architecture of
HRNetV2-W18 to support direct prediction of landmarks. Figure 12 shows the modified architecture
of HRNetV2-W18 for BEL-x.

The state-of-the-art approaches for facial landmark detection uses heatmap regression, which mini-
mizes the pixel-level loss between the predicted and target heatmaps. We evaluate the applicability of
BEL on heatmap regression in Appendix A. In contrast, BEL-x predicts (x, y) coordinates directly
with 256 quantization levels.

Feature 
Extactor Upsample - 1x1

Conv 1x1 + Batchnorm + ReLU

MaxPool (3x3, stride 2)

Concatenate
256/256/3

64/64/240

32/32/240

32/32/#lab
els

1024 x # lab
els

1024

θ
#bits

label1

1024

θ
#bits

label2

1024

θ
#bits

labelN

HRNetv2-W18 Feature extractor Feature extraction extension (our addition) BEL 

Figure 12: HRNetV2-W18 feature extractor combined with BEL regressor for (x,y) coordinates

We use two runs with different random seeds to decide the learning rate. We consider learning rates
{0.0003, 0.0005, 0.0007} and θ ∈ {10, 30}.
Table 25 provides a summary of all the training parameters. We refer to HRNetV2-W18 evaluated on
COFW as FLD1, on 300W as FLD2, on WFLW as FLD3, and on AFLW as FLD4.
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Table 25: Training parameters for facial landmark detection for HRNetV2-W18 feature extractor.

Dataset Optimizer Epochs Batch size

Learning rate
(BEL/Direct

regres-
sion/Multiclass
classification)

Learning rate
schedule

Training time
(GPU hours)

COFW Adam, weight decay=0,
momentum = 0 60 8 0.0005/0.0003/

0.0003
1/10 after 30 and 50

Epochs
1
2

300W Adam, weight decay=0,
momentum = 0 60 8 0.0007/0.0003/

0.0003
1/10 after 30 and 50

Epochs 3

WFLW Adam, weight decay=0,
momentum = 0 60 8 0.0003/0.0003/

0.0003
1/10 after 30 and 50

Epochs 5

AFLW Adam, weight decay=0,
momentum = 0 60 8 0.0005/0.0005/

0.0003
1/10 after 30 and 50

Epochs 8

Related work Facial landmark detection is an extensively studied problem used for facial anal-
ysis and modeling. Common regression approaches for this tasks includes regression using MSE
loss (Xiong & De la Torre, 2013; Lv et al., 2017), cascaded regression (Miao et al., 2018; Tz-
imiropoulos, 2015; Zhu et al., 2016; Sun et al., 2013), and coarse-to-fine regression (Sun et al.,
2013; Shizhan Zhu et al., 2015; Zhang et al., 2014). State-of-the-art methods for this task learn
heatmaps by regression to find facial landmarks. SAN (Dong et al., 2018) augments training data
using temporal information and GAN-generated faces. DVLN (Wu & Yang, 2017), CFSS (Shizhan
Zhu et al., 2015), LAB (Wu et al., 2018), DSRN (Miao et al., 2018) take advantage of correlations
between facial landmarks. DAN (Kowalski et al., 2017) introduces a progressive refinement ap-
proach using predicted landmark heatmaps. LAB (Wu et al., 2018) also exploits extra boundary
information to improve the accuracy. LUVLi (Kumar et al., 2020) proposes a landmark’s location,
uncertainty, and visibility likelihood-based loss. Bulat & Tzimiropoulos (2016) proposes the use
of binary heatmaps with pixel-wise binary cross-entropy loss. AWing (Wang et al., 2019) proposes
adapted wing loss to improve the accuracy of heatmap regression. AnchorFace (Xu et al., 2020)
demonstrates that anchoring facial landmarks on templates improves regression performance for
large poses. HRNet (Wang et al., 2020) proposes a CNN architecture to maintain high-resolution
representations across the network, and uses heatmap regression. The target heatmap is generated by
assuming a Gaussian distribution around the landmark location.

We compare BEL with related work in Table 26- 29. 95% confidence intervals are provided.

Table 26: Facial landmark detection results on COFW dataset (FLD1). The failure rate is measured at the
threshold 0.1. θ = 30 is used for BEL.

Approach Feature Extractor #Params/
GFlops Test NME FR0.1

LAB (w B) (Wu et al., 2018) Hourglass 25.1/19.1 3.92 0.39
AWing (Wang et al., 2019)* Hourglass 25.1/19.1 4.94 -

HRNetV2-W18 (Wang et al., 2020)
(Heatmap regression) HRNetV2-W18 9.6/4.6 3.45 0.19

Direct regression (L2 loss) HRNetV2-W18 10.2/4.7 3.96± 0.02 0.29
Direct regression (L1 loss) HRNetV2-W18 10.2/4.7 3.60± 0.02 0.29
BEL-HEXJ/GEN-EX/CE HRNetV2-W18 10.6/4.6 3.34± 0.02 0.40

∗Uses different data augmentation for the training
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Table 27: Facial landmark detection results on 300W dataset (FLD2). θ = 10 is used for BEL.

Approach Feature Extractor #Params/
GFlops Test Common Challenging Full

DAN (Kowalski et al., 2017) - - - 3.19 5.24 3.59
LAB (w B) (Wu et al., 2018) Hourglass 25.1/19.1 - 2.98 5.19 3.49
AnchorFace (Xu et al., 2020) ShuffleNet-V2 - - 3.12 6.19 3.72
AWing (Wang et al., 2019)* Hourglass 25.1/19.1 - 2.72 4.52 3.07
LUVLi (Kumar et al., 2020) CU-Net - - 2.76 5.16 3.23

HRNetV2-W18 (Wang et al.,
2020) (Heatmap regression) HRNetV2-W18 9.6/4.6 - 2.87 5.15 3.32

Direct regression (L2 loss) HRNetV2-W18 10.2/4.7 4.40 3.25 5.65 3.71± 0.05
Direct regression (L1 loss) HRNetV2-W18 10.2/4.7 4.26 3.10 5.42 3.54± 0.03
BEL-U/GEN-EX/CE HRNetV2-W18 11.2/4.6 4.09 2.91 5.50 3.40± 0.02

∗Uses different data augmentation for the training

Table 28: Facial landmark detection results (NME) on WFLW test (FLD3) and 6 subsets: pose, expression
(expr.), illumination (illu.), make-up (mu.), occlusion (occu.) and blur. θ = 10 is used for BEL.

Approach Feature Extractor #Params/
GFlops Test Pose Expr. Illu. MU Occu. Blur

LAB (w B) (Wu et al.,
2018) Hourglass 25.1/19.1 5.27 10.24 5.51 5.23 5.15 6.79 6.32

AnchorFace (Xu et al.,
2020)* HRNetV2-W18 -/5.3 4.32 7.51 4.69 4.20 4.11 4.98 4.82

AWing (Wang et al.,
2019)* Hourglass 25.1/19.1 4.36 7.38 4.58 4.32 4.27 5.19 4.96

LUVLi (Kumar et al.,
2020) CU-Net - 4.37 - - - - - -

HRNetV2-W18 (Wang
et al., 2020) (Heatmap
regression)

HRNetV2-W18 9.6/4.6 4.60 7.94 4.85 4.55 4.29 5.44 5.42

Direct regression (L2 loss) HRNetV2-W18 10.2/4.7 5.56± 0.05 10.17 6.13 5.49 5.29 6.83 6.52
Direct regression (L1 loss) HRNetV2-W18 10.2/4.7 4.64± 0.03 8.13 4.96 4.49 4.45 5.41 5.25
BEL-B1JDJ/GEN-EX/CE HRNetV2-W18 11.7/4.6 4.36± 0.02 7.53 4.64 4.28 4.19 5.19 5.05

∗Uses different data augmentation for the training

Table 29: Facial landmark detection results on AFLW dataset (FLD4). θ = 30 is used for BEL.

Approach Feature Extractor #Params/
GFlops Full Frontal

LAB (w/o B) (Wu et al., 2018) Hourglass 25.1/19.1 1.85 1.62
AnchorFace (Xu et al., 2020) ShuffleNet-V2 - 1.56
LUVLi (Kumar et al., 2020) CU-Net - 1.39 1.19

HRNetV2-W18 (Wang et al., 2020)
(Heatmap regression) HRNetV2-W18 9.6/4.6 1.57 1.46

Direct regression (L2 loss) HRNetV2-W18 10.2/4.7 2.10± 0.02 1.71
Direct regression (L1 loss) HRNetV2-W18 10.2/4.7 1.51± 0.01 1.34
BEL-B1JDJ/GEN-EX/CE HRNetV2-W18 10.8/4.6 1.47± 0.00 1.30

∗Uses different data augmentation for the training
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D.3 AGE ESTIMATION

Age estimation aims to predict the age given an image of a human head.

Datasets We use the MORPH-II (Ricanek & Tesafaye, 2006) and AFAD (Niu et al., 2016) datasets
for our evaluation. Cumulative Score (CS) and MAE are used as evaluation metrics. We preprocess
the MORPH-II dataset by aligning images first along the average eye position (Raschka, 2018), then
by re-aligning so that the tip of the nose is in the center of each image. We do not preprocess the
AFAD dataset as faces are already centered. Afterwards, face images are resized to 256× 256× 3
and randomly cropped to 224× 224× 3 for training. For testing, a center crop of 224× 224× 3 is
taken.

MORPH-II: This dataset consists of 55,608 face images with age labels between 16 and 70. The
dataset is randomly divided into 39,617 training, 4,398 validation, and 11,001 testing images.

AFAD: This dataset consists of 164,432 Asian facial images and age labels between 15 and 40. The
dataset is randomly divided into 118,492 training, 13,166 validation, and 32,763 testing images.

Evaluation metrics: MAE (Equation 28) is used as the evaluation metric. We report Cumulative
Score (CSθ) for some datasets. CSθ is defined as the fraction of test images with absolute error less
than θ years.

Network architecture and training parameters: We evaluate our approach on ResNet-
50. We perform two runs with different random seeds to determine the learning rate between
[0.00001, 0.0001, 0.001] and use a batch size of 64 for all experiments. We use ImageNet pretrained
weights to initialize the network. Full training parameters are described in Table 30. We refer to our
evaluation on MORPH-II as AE1 and AFAD as AE2.

Table 30: Training parameters for age estimation using MORPH-II and AFAD dataset

Optimizer Epochs Batch size Learning rate Learning rate
schedule

Adam, weight decay=0,
momentum=0 50 64 0.0001 -

Related work Existing approaches for age estimation include ordinal regression (Niu et al., 2016;
Cao et al., 2020), soft regression (Yang et al., 2018), and expected value ordinal regression (Pan
et al., 2018; Gao et al., 2018). OR-CNN (Niu et al., 2016) proposed the use of ordinal regression
via binary classification to predict the label. CORAL-CNN (Cao et al., 2020) refined this approach
by enforcing the ordinality of the model output. SSR-Net (Yang et al., 2018) proposed the use of
stage-wise soft regression using the softmax of the classification output to refine the predicted label.
MV-Loss (Pan et al., 2018) extended the soft regression approach by penalizing the output of the
model based on the variance of the age distribution, while DLDL (Gao et al., 2018) proposed to use
the KL-divergence between the softmax output and a generated label distribution to train a model.

We compare BEL with related work in Table 31 and Table 32. 95% confidence intervals are provided.

D.4 END-TO-END SELF DRIVING

We evaluate our approach on the NVIDIA PilotNet dataset and PilotNet model for end-to-end
autonomous driving (Bojarski et al., 2016). In this task, the steering wheel’s next angle is predicted
from an image of the road. We refer to these experiments as PN. MAE (Equation 28) is used as the
evaluation metric.

Dataset We use a driving dataset consisting of 45,500 images taken around Rancho Palos Verdes
and San Pedro, California (Chen). We crop images to 256× 70× 3 then resize them to 200× 66× 3.
We randomly vary the brightness of the image between [0.2×, 1.5×], randomly flip images, and make
random minor perturbations on the steering direction. We use θ = 10 with 670 quantization levels
for BEL.
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Table 31: Age estimation results on MORPH-II dataset (AE1). θ = 10 is used for BEL.

Approach Feature extractor #Parameters (M) MORPH-II (MAE) MORPH-II
(CSθ = 5)

OR-CNN (Niu et al., 2016) (Ordinal
regression by binary classification ) - 1.0 2.58 0.71

MV Loss (Pan et al., 2018) (Direct
regression) VGG-16 138.4 2.41 0.889

DLDL-v2 (Gao et al., 2018) (Ordinal
regression with multi-class classification) ThinAgeNet 3.7 1.96* -

CORAL-CNN (Cao et al., 2020) (Ordinal
regression by binary classification) ResNet34 21.3 2.49 -

Direct Regression (L2 Loss) ResNet50 23.1 2.44± 0.01 0.903± 0.002
BEL-J/BEL-J/BCE ResNet50 23.1 2.27± 0.01 0.928± 0.001

∗Uses different data augmentation for the training

Table 32: Age estimation results on AFAD dataset (AE2). θ = 10 is used for BEL.

Approach Feature extractor #Parameters (M) AFAD (MAE) AFAD (CSθ = 5)

OR-CNN (Niu et al., 2016) (Ordinal
regression by binary classification ) - 1.0 3.51 0.74

CORAL-CNN (Cao et al., 2020) (Ordinal
regression by binary classification) ResNet34 21.3 3.47 -

Direct Regression (L2 Loss) ResNet50 23.1 3.21± 0.02 0.810± 0.02
BEL-B1JDJ/GEN-EX/L1 ResNet50 23.1 3.11± 0.01 0.823± 0.001

Training parameters We perform two runs with different random seeds to determine the learning
rate between [0.00001, 0.0001, 0.001] and use a batch size of 64 for all experiments. Full training
parameters are described in Table 33.

Table 33: Training parameters for end-to-end autonomous driving using PilotNet.

Optimizer Epochs Batch size Learning rate Learning rate
schedule

SGD with weight decay=1e-5,
momentum=0 50 64 0.1 1/10 at 10, 30

epochs

Related work End-to-end autonomous driving is a novel task that has become increasingly relevant
due to the rise of self-driving vehicles. The autonomous driving model’s task is to predict the future
driving angle based on a forward-facing image from the perspective of the vehicle. PilotNet (Bojarski
et al., 2017) used a small, application-specific network to provide good accuracy within the time
constraints of autonomous driving.

We compare BEL with the baseline PilotNet architecture in Table 34. 95% confidence intervals are
provided.
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Table 34: End-to-end autonomous driving results on PilotNet dataset (PN) and architecture (Bojarski et al., 2017;
2016).

Approach Feature extractor #Parameters (M) MAE

PilotNet (Bojarski et al., 2017) PilotNet 1.8 4.24± 0.45
BEL-J/GEN/CE PilotNet 1.8 3.11± 0.01
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