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Abstract—This paper employs model-free adaptive control
methods to investigate second-order multi-agent systems under
mixed attacks. Based on backstepping techniques, second-order
multi-agent systems are equivalently transformed into two inter-
connected first-order subsystems to reduce structural complexity.
Additionally, considering the impacts of multi-source mixed
network attacks,compensation mechanism employing predictive
distributed output are designed, which mitigate the negative
consequences of such attacks. Furthermore, leveraging only
input-output data from each subsystem, a distributed model-
free adaptive control scheme utilizing backstepping is developed
to achieve consensus. Finally, the effectiveness of the proposed
method is validated through two simulation examples.

Index Terms—mixed attack, data-driven control, second-order
multi-agent systems, backstepping method

I. INTRODUCTION

In recent years, multi-agent systems (MASs) have seen
widespread application and emerge as a significant research
direction in the field of network intelligence. MASs achieve
numerous outstanding research results in various practical
fields, such as remote unmanned aerial vehicles (UAVs) [1],
multirotor drone systems [2], and multi-robot systems [3].
Compared to traditional control systems, multi-agent systems
offer several advantages, including distribution, autonomy, ef-
ficiency, and cost-effectiveness. Advantages make multi-agent
systems particularly appealing for a wide range of applications,
from industrial automation to environmental monitoring, and
from defense systems to intelligent transportation networks.

Typically, current research on cooperative control problems
can be classified into three primary directions: leaderless
cooperative control [4], leader-follower cooperative control
[5], and containment control [6]. Leaderless cooperative con-
trol focuses on achieving consensus among agents without a
designated leader, emphasizing decentralized decision-making
and robustness to individual agent failures. Leader-follower
cooperative control, involves a hierarchical structure where
certain leaders guide the behavior of the followers, facilitating
coordinated actions and efficient task completion. Contain-
ment control aims at ensuring that certain leaders steer the

group of followers to stay within a desired area or follow
a specific trajectory, which is crucial in applications such as
formation flying and swarm robotics.

It is important to note that cybersecurity plays a crucial role
in MASs. In general, network attacks include denial of service
(DoS) attacks, false data injection (FDI) attacks, deception
attacks (DA), and more. Attacks can have various unexpected
impacts on the system, disrupting normal operations and po-
tentially causing significant damage. Consequently, escalating
emphasis is placed on researching service denial assaults
within academic community. The work [7] introduces a col-
laborative defense mechanism aimed at countering sporadic
incidents of such attacks. In [8], event-triggered state observer
is developed to treat attack signals as states. In [9], compen-
sation for attacks is achieved by inversely compensating for
deception attacks, mitigating adverse effects on the system.

In [10], predictive control algorithms apply to multi-agent
systems with communication constraints. Predictive control
algorithms enable MASs to achieve cooperative control even
when network attacks are present. By anticipating future
states and adjusting control inputs, predictive control enhances
resilience to disruptions and uncertainties. When reliable com-
munication cannot be guaranteed, the system must dynam-
ically adapt to the ever-changing environment and potential
threats. The integration of predictive control algorithms repre-
sents a significant advancement in MASs capability to operate
effectively in complex and adversarial environments, ensuring
robust performance and maintaining operational goals despite
network attacks.

It is worth noting that the majority of current research on
MASs under network attacks presupposes a basic premise:
the model of the system is known. However, in numerous
complex systems, securing an exact model is difficult, which
considerably narrows the depth and breadth of cooperative
control studies. Yet, the challenge is being addressed with
the emergence of data-driven control strategies introduced by
Hou et al. [11], which has been further developed in later
publications [12]-[13]. Such strategies for control do not rely
on the underlying mathematical model of the system; they



function solely with input and output data. This strategy has
unveiled opportunities for examining many intricate systems,
permitting researchers to delve into cooperative control issues
more profoundly. Presently, an extensive collection of studies
utilizes the technique to explore cooperative control issues
further [14]-[15]. However, when it comes to more complex
second-order systems, the technique still grapples with offer-
ing a sufficient and holistic solution.

Backstepping is a pivotal control algorithm in the realm
of nonlinear control. The specific design process involves
breaking down the model of the controlled system into several
subsystems to ensure stability. Step-by-step design is then
applied to intermediate virtual control variables, followed
by monitoring the performance of these virtual variables to
achieve desired control objectives. [17] introduces a backstep-
ping strategy for tracking control utilizing state observers to
enhance system performance. [18] utilizes the backstepping
method with command control to bypass the complexity of
intermediate virtual variables, simplifying the control pro-
cess. Reference [19] proposes a backstepping approach that
addresses the computational challenges found in traditional
backstepping algorithms. [20] combines backstepping with a
model-free approach to solve control problems by dividing
second-order systems into two interrelated subsystems. In
summary, the combination of backstepping and model-free
control effectively tackles tracking control problems under
external disturbances, providing robust solutions in complex
environments.

Drawing on the findings mentioned earlier, the paper delves
into control strategies for second-order nonlinear multi-agent
systems, employing a backstepping approach. When compared
with existing literature on multi-agent systems, the highlights
are:

(1) This paper applies the backstepping method to second-
order multi-agent systems, converting the systems into two
interconnected serial first-order subsystems. By creating vir-
tual desired velocities, the development of the controller for
the second-order system is achieved.

(2) Considering that sensor-controller communication chan-
nels suffer from mixed network attacks, we design a compen-
sation mechanism that uses predictive distributed output to
counteract the received attacks.

(3) The proposed distributed model-free adaptive control
scheme based on backstepping utilizes only real-time mea-
sured input-output (I/O) data and information from neighbor-
ing nodes, which positions it as the data-driven consensus
control method for multi-agent systems.

The subsequent sections will provide an in-depth exposition
of the core material of this paper. Section II will delve into
the principles of graph theory and the formalization of the
issue at hand. Section III presents the controller design for
second-order systems considering mixed network attacks and
convergence analysis. Section IV provides a numerical case to
demonstrate the control effectiveness of the proposed control
scheme. Section V concludes the paper.

II. GRAPH THEORY AND PROBLEM FORMULATION

A. Graph Theory

The real numbers are represented by the symbol R. For any
matrix A ∈ RN×N , the norm is indicated as ‖A‖. The term
Diag(·) is used to denote a matrix with entries only on its main
diagonal, while I denotes the standard matrix of the same
size with ones on the diagonal and zeros elsewhere. Graph
theory serves as a crucial framework in multi-agent systems
to model interaction topologies. Consider a weighted directed
graph G = (V,E,A), where V = {1, 2, . . . , N} is the set of
vertices, E ⊆ V × V is the set of edges, and A is the matrix
that encodes the connections between nodes.. The vertices V
also function as indices for the agents.

When agent j receives a message from agent i, the edge
(i, j) ∈ E exists. Here, agent j is referred to as the child of
agent i, and agent i is the parent of agent j. The neighborhood
of agent i is described as Ni = {j ∈ V | (j, i) ∈ E}. The
weighted adjacency matrix A = (ai,j) ∈ RN×N is defined
such that ai,i = 0 and ai,j = 1 if (j, i) ∈ E; otherwise,
ai,j = 0.

The Laplacian matrix L of graph G is defined as L = D−A,
where D = diag(din,1, din,2, . . . , din,N ). The in-degree din,i
of vertex i is given by

∑N
j=1 ai,j . A graph is considered

connected when it is possible to move from any node to
another through a viable route.

B. Problem Formulation

Let us examine the subsequent second-order nonlinear sys-
tem in discrete time:

{
yp (k + 1) = hp(yp (k) , xp(k))
xp(k + 1) = fp(xp(k), up(k))

(1)

in this case, Additionally, fp(·) and hp(·) denotes an un-
known nonlinear function.

For subsystem 1
Assumption 1 [21]: The subsystem 1 adheres to the general-

ized Lipschitz condition, indicating that if the variation in con-
trol input ∆up(k − 1) 6= 0, then ∆xp(k) ≤ b1∆up(k), where
∆xp(k) = xp(k)−xp(k−1) and ∆up(k) = up(k)−up(k−1).
The constantb1 is positive.

Assumption 2 [21]: The derivatives of the function fp(·)
concerning the system’s control signal up(k) are uninterrupted.

Assumption 3: There exists an upper limit to the proportion
of the variation in uq(k) relative to up(k) is bounded, i.e.,
|∆uq(k)/∆up(k)| < ς , with ς being a positive constant.

Assumption 4 [22]: The attribute of directed graph N is its
possession of a directed root-branch structure that spans all its
vertices.

Remark 1: Assumptions 1 and 2 are commonly found in the
domain of regulatory systems and support the application of
dynamic linearization techniques throughout the present work.
Assumption 3 is employed in the following proof. Assumption
4 is crucial to achieve consensus in leader-follower coordina-
tion.



Lemma 1 [23]: Assuming that subsystem 1 adheres to
Assumptions 1 and 2 are satisfied and |∆up(k)| 6= 0 for
all time k, then a pseudo-partial derivative (PPD) parameter
Φp1(k) exists. Consequently, the formulation of subsystem 1
can be restructured to reflect this:

∆xp(k + 1) = Φp1(k)∆up(k) (2)

where Φp1(k)| ≤ b̄1

Similarly, for subsystem 2
Assumption 5 [21]: The subsystem 2 adheres to the general-

ized Lipschitz condition, indicating that if the variation in con-
trol input ∆xp(k − 1) 6= 0, then ∆yp(k) ≤ b2∆xp(k), where
∆yp(k) = yp(k)−yp(k−1) and ∆xp(k) = xp(k)−xp(k−1).
The constant b2 is positive.

Assumption 6 [21]: It is assumed that the derivatives of fp(·)
concerning the control input up(k) of the system are unbroken
throughout their domain.

Assumption 7: It is posited that the proportional change
in xq(k) relative to xp(k) is confined within a limit, i.e.,
|∆xq(k)/∆xp(k)| < ζ1 with ζ1 being a positive constant.

Assumption 8 [22]: The directed graph G is characterized
by the presence of a directed spanning tree.

Lemma 2 [23]: For subsystem 2, if Assumptions 5 and
6 are satisfied and |∆xp(k)| 6= 0 for all time k, then
a pseudo-partial derivative (PPD) parameter Φp2(k) exists.
Consequently, subsystem 2 can be expressed as:

∆yp(k + 1) = Φp2(k)∆xp(k) (3)

where Φp2(k)| ≤ b̄2

For the overall system

∆yp(k + 1) = Φp(k)∆up(k − 1) (4)

where Φp(k) = Φp1(k − 1)Φp2(k)

The error term associated with the output of the pth agent,
when distributed, is delineated as follows:

εp(k + 1) =
∑
p∈Np

apq(yp(k + 1)− yq(k + 1)) (5)

By substituting equation (1) into equation (5) and introduc-
ing a new nonlinear function F(·), equation (5) becomes:

εp(k + 1) = Fp(yp(k), up(k), yq(k), uq(k)) (6)

Theorem 1: For equation (6), if assumptions 1-3 hold true
and |∆up(k)| 6= 0 at all times k, it follows that there
exists a pseudo-partial derivative (PPD) parameter Φp(k).
Consequently, the formulation of equation (6) is rephrased to:

∆εp(k + 1) = Φp(k)∆up(k) (7)

where ∆εp(k + 1) = εp(k + 1) − εp(k) and |Φp(k)| ≤ bp,
with bp being a positive constant.

Proof: Utilizing system (6), ∆εp(k + 1) is calculated as

∆εp(k + 1) = Fp[yp(k), up(k), yq(k), uq(k)]

−Fp[yp(k − 1), up(k − 1), yq(k − 1), uq(k − 1)]

+ Fp[yp(k − 1), up(k − 1), yq(k − 1), uq(k − 1)]

−Fp[yp(k − 1), up(k − 1), yq(k), uq(k)]

Then, utilizing the mean value theorem for differentiation
on the difference Fp[yp(k), up(k), yq(k), uq(k)]−Fp[yp(k −
1), up(k−1), yq(k), uq(k)] with respect to up(k), it is possible
to derive

∆εp(k + 1) =
∂F∗p
∂up(k)

∆up(k) + Ψp(k)

where
(

∂F∗
p

∂up(k)

)
denotes the partial derivative value of Fp

with respect to up(k) in the interval [up(k−1), up(k)]. The ter-
m Ψp(k) is defined as Fp[yp(k−1), up(k−1), yq(k), uq(k)]−
Fp[yp(k − 1), yq(k), uq(k), up(k − 1)].

Examine the equation for data discrepancies Ψp(k) =
ηp(k)∆up(k) + ηq(k)∆uq(k) with variable ηp(k) and ηq(k)
for every predetermined moment k. According to Assumption
3, there exists a solution η∗p(k) where Ψp(k) = η∗p(k)∆up(k)

is valid. Letting Φp(k) =
(

∂F∗
p

∂up(k)

)
+η∗p(k), the formula above

can be derived. Additionally, in accordance with Assumptions
1 and 4, A number of constants exist with the property that
c̄p > 0 and c̄q > 0 such that:

|∆εp(k + 1)| ≤c̄papp|∆up(k)|+
∑
q∈Np

b̄qapq|∆uq(k)|

≤ c̄papp|∆up(k)|+
∑
q∈Np

c̄qapq|∆uq(k)|

≤

c̄papp +
∑
q∈Np

b̄qapq

 |∆up(k)|

= cp|∆up(k)|

where cp = c̄papp +
∑
q∈Np

b̄qapq|e|. Therefore, one can
follow from the formula above that the PPD parameter Φp(k)
remains bounded, i.e., |Φp(k)| ≤ ci.

III. MAIN RESULTS

This section elaborates on the main content of this article,
including the design of mixed network attacks, compensation
mechanisms, controller design, and proof of bounded distribut-
ed output errors. The theoretical structure of the article is
illustrated in Fig.1.

Fig. 1. System model decomposition diagram.



A. Mixed Cyber-attacks Design

In this section, we will detail the development of a compos-
ite cyber-assault strategy. The attack, consisting of DoS, FDI,
and DA, constitutes a stochastic attack. εpi(k) represents the
output signals under different attacks, with ε̄p(k) denoting the
final output signal subjected to the mixed attack.

In the scenario where i = 1, the system endures a specific
form of DoS attack, and the corresponding formula, labeled
as equation (5), can be articulated as follows:

εp1(k) = l1(k)εp(k) (8)

where l1(k) represents the success of the DoS attacks and
follows a Bernoulli distribution. If l1(k) = 0, it shows that the
assaults achieved their intended outcome, with the likelihood
of P{l1(k) = 0} = l̄. Conversely, if l1(k) = 1, the offensives
did not succeed, and the likelihood is P{l1(k) = 1} = 1− l̄.

In the case where i = 2, the system experiences FDI attacks,
and thus formula (5) is transformed to:

εp2(k) = εp(k) + (1− l2(k))πp(k) (9)

where πp(k) denotes the gain parameter of the FDI attack-
s, oscillating randomly within a predefined boundary. The
occurrence of an FDI attack is ascertained using l2(k)∗ =
exp{−‖εp(k) − ε̂p(k)‖} If l2(k)∗ is below a predefined
positive threshold denoted by ν, the attack is deemed to occur,
resulting in l2(k) = 0.

In the scenario where i = 3, the system faces Deception
Attacks (DA), and equation (5) is modified to:

εp3(k) = (−1)1−l3(k)εp(k) (10)

The variable l3(k) determines the success of the DA, conform-
ing to a Bernoulli distribution. A value of l3(k) = 0, signifies
a successful attack, occurring with certainty P{l3(k) = 0} = l̄.
Conversely, when l3(k) = 1, the offensives did not succeed,
with the probability P{l3(k) = 1} = 1− l̄ for failure..

Ultimately, l(k) signifies the outcome of a mixed attack,
with l(k) = 1 representing a successful attack and l(k) = 0
indicating a failed attack. Here, l(k) = l1(k)l2(k)l3(k).

To conclude, the methodology presented advances a refined
distributed output error formula that incorporates an element
of predictive compensation:

ε̄p(k) = l(k)εp(k) + (1− l(k))ε̂p(k) (11)

where ε̂p(k) = (ε̄p(k − 1) + Φ̂p2(k − 1)∆xp(k − 1))

Remark 2: Within this framework, DoS attacks are deliber-
ate interruptions targeting network protocol implementation,
aimed at rendering the computer or network incapable of
providing standard services or accessing resources. FDI and
DA attacks involve attackers injecting false signals to replace
authentic information, thereby preventing the system from
achieving its intended goals.

B. Design of Second-order System

For subsystem 1, due to the compression of the nonlinear
dynamic characteristics of the system into Φp1(k), obtaining
its dynamic model remains challenging, but numerical varia-
tions can be estimated. Therefore, the cost function for Φp1(k)
is given in the following form:

J(Φ̂p1(k)) =|∆xp(k + 1)− Φ̂p1(k)∆up(k − 1)|2

+ µ|Φ̂p1(k)− Φ̂p1(k − 1)|2

Taking the partial derivative of Φ̂p1(k) from the above
equation yields 0, with

Φ̂p1(k) =Φ̂p1(k − 1) +
η∆up(k − 1)

µ+ |∆up(k − 1)|2

(∆xp(k + 1)− Φ̂p1(k − 1)∆up(k − 1))

where η ∈ (0, 2] is the step-size factor, which enhances
the algorithm’s flexibility and generality, and µ is a positive
constant.

Likewise, in the case of subsystem 2, the associated cost
function is formulated in the subsequent manner:

J(Φ̂p2(k)) =|∆εp(k + 1)− Φ̂p2(k)∆xp(k − 1)|2

+ µ|Φ̂p2(k)− Φ̂p2(k − 1)|2

Taking the partial derivative of Φ̂p2(k) from the above
equation yields 0, with

Φ̂p2(k) =Φ̂p2(k − 1) +
η∆xp(k − 1)

µ+ |∆xp(k − 1)|2

(∆εp(k + 1)− Φ̂p(k − 1)∆xp(k − 1))

Based on this, a control protocol is formulated for subsystem
1 and subsystem 2,

up(k) =up(k − 1) +
ρΦ̂p1(k)

λ+
∣∣∣Φ̂p1(k)

∣∣∣2
(x̂p(k)− xp(k))

xp(k) = xp(k − 1) +
ρΦ̂p2(k)

λ+
∣∣∣Φ̂p2(k)

∣∣∣2 ε̄p(k)

Taking into account the current position and velocity state at
the present time, the virtual desired velocity state is designed
as follows:{

x̂p(k) = x̂p(k − 1) +
ρΦ̂2

p1(k)

λ+Φ̂2
p1(k)

x̃p(k − 1) + g

g = −x̃p(k − 1)

Consequently, the full control structure can be delineated
below

Φ̂p1(k) = Φ̂p1(k − 1) +
η∆up(k − 1)

µ+ |∆up(k − 1)|2

(∆xp(k)− Φ̂p1(k − 1)∆up(k − 1))

(12)



Φ̂p1(k) = Φ̂p1(1) if
∣∣∣Φ̂p1(k)

∣∣∣ ≤ ξ or |∆up(k − 1)| ≤ ξ

up(k) = up(k − 1) +
ρΦ̂p1(k)

λ+
∣∣∣Φ̂p1(k)

∣∣∣2 (x̂p(k)− xp(k)) (13)

Φ̂p2(k) =Φ̂p2(k − 1) +
η∗∆xp(k − 1)

µ∗ + |∆xp(k − 1)|2
(∆ε̄p(k)

− Φ̂p2(k − 1)∆xp(k − 1))

(14)

Φ̂p2(k) = Φ̂p2(1) if
∣∣∣Φ̂p2(k)

∣∣∣ ≤ ξ∗ or |∆xp(k − 1)| ≤ ξ∗

xp(k) = xp(k − 1) +
ρΦ̂p2(k)

λ∗ +
∣∣∣Φ̂p2(k)

∣∣∣2 ε̄p(k) (15)


x̂p(k) = x̂p(k − 1) +

ρΦ̂2
p1(k)

α+Φ̂2
p1(k)

x̃p(k − 1) + g

g = −x̃p(k − 1)

(16)

The above MFAC consists of PPD estimation algorithm
(12) (14), PPD reset algorithm, control algorithm (13) (15),
and virtual estimation algorithm (16), which is designed with
compensated distributed output ∆ε̄p(k).

C. Convergence review

In this segment, we delve into the convergence properties of
subsystem 1 when it is subjected to stochastic cyber-intrusions,
with the principal outcomes encapsulated in Theorem 2.

Theorem 2: For subsystem 1 experiencing random cyber-
attacks, provided assumptions 1-4 are fulfilled and the con-
troller parameters are selected as λ > 0, 0 < η < 2, µ > 0,
ρ ∈ (0, 1], The control methodologies outlined in equations
(12) to (16) are instrumental in attaining this consensus.

Proof: The proof is structured into four main parts. First,
it is verified that the PPD parameter approximation error is
bounded. Second, we show the boundedness of the error in
virtual tracking speed. Third, the verification of the distributed
output forecast error’s bounded nature is addressed. Fourth,
the argument concludes with the proof of the distributed out-
put error’s boundedness. The rationale behind these bounded
attributes is rooted in the mathematical expectation principle.

part-1: Let Φ̂p1(k) = Φ̂p1(k)− Φp1(k) denote the approx-
imation error of the PPD parameter, as stated in (12).

Φ̃p1(k) =

(
1− η∆up(k − 1)2

µ+ |∆up(k − 1)|2

)
× Φ̃p1(k − 1) + Φp1(k − 1)− Φp1(k).

(17)

From equation (20), it is derived that

|Φ̃p1(k)| ≤
∣∣∣∣(1− η∆up(k − 1)2

µ+ |∆up(k − 1)|2

)∣∣∣∣ |Φ̃p1(k − 1)|

+ |Φp1(k − 1)− Φp1](k)|.
(18)

Since |∆up(k)| ≤ b, by appropriately selecting η and µ
such that 0 < η ≤ 1 and µ ≥ 0, there exists a constant q1

ensuring that holds.

0 <

(
1− η∆up(k − 1)2

µ+ |∆up(k − 1)|2

)
≤ q1 < 1 (19)

Since |Φp1(k)| ≤ a, in light of Assumption 4, it follows
that the difference |Φp1(k − 1)− Φp1(k)| ≤ a.

Drawing from equations (8) and (9), we deduce that

|Φ̃p1(k)| ≤ q1|Φ̃p1(k − 1)|+ a

≤ · · ·

≤ qk1 |Φ̂p1(0)|+ a(1− qk1 )

1− q1

(20)

which implies that Φ̃p1(k) is bounded. Consequently,
Φp1(k) is also bounded as Φ̃p1(k) is bounded.

part-II: Let Φ̃p2(k) = Φ̂p2(k) − Φp2(k) be the estimation
discrepancy associated with the PPD parameter, as per equa-
tion (14)

Φ̃p2(k) =Φ̃p2(k − 1)−∆Φp2(k) +
η∗∆xp(k − 1)

µ∗ + |∆xp(k − 1)|2

(ε̄p(k)− ε̄p(k − 1)− Φ̂p2(k − 1)∆xp(k − 1))

=Φ̃p2(k − 1)−∆Φp2(k) +
η∗∆xp(k − 1)

µ∗ + |∆xp(k − 1)|2

(l(k)εp(k)− l(k)ε̂p(k))

=[1−
η∗∆x2

p(k − 1)l(k)

µ∗ + |∆xp(k − 1)|2
]Φ̃p2(k − 1)−∆Φp2(k)

(21)

By evaluating the absolute value and then employing the
expectation operator across the entirety of the preceding e-
quation, the result is

E{|Φ̃p2(k)|} ≤ |1−
η∗∆x2

p(k − 1)l(k)

µ∗ + ∆x2
p(k − 1)

|E{|Φ̃p2(k − 1)|}

+ |∆Φp2(k)| (22)

Observe that for 0 < η∗ < 2, µ∗ > 0, 0 < l(k) < 1.
Consequently, a positive value d is identified, fulfilling the
condition that 0 < |1− η∗∆x2

p(k−1)l(k)

µ∗+∆u2(k−1) | = d < 1. Also because
of |Φp2(k)| ≤ b2, so |4Φp2(k)| ≤ 2b2. Consequently, the
formulation of equation (22) is articulated to be,

E{|Φ̃p2(k)|} ≤ dE{|Φ̃p2(k − 1)|}+ 2b2

≤ · · ·

≤ dk−1E{|Φ̃p2(1)|}+
2b2

1− d
(23)

Based on the inequality above, it is evident that Φ̃p2(k)
is uniformly bounded. Therefore, based on Φp2(k) being
bounded, Φ̂p2(k) is also bounded.

part-III: Define the virtual desired velocity tracking
errorx̃p(k) = x̂p(k)−xp(k). Utilizing equations (15) and (16),
may be represented in the form of



x̃p(k + 1) =x̂p(k + 1)− x̂p(k) + x̂p(k + 1)− xp(k + 1)

=∆x̂p(k + 1) + (1− ρΦ̂p1(k)Φp1(k)

α+ Φ̂2
p1(k)

)x̃p(k)

(24)

Let a Lyapunov function be defined:v(k) = x̃2
p(k)

∆v(k + 1) =(x̃p(k + 1)− x̃p(k))(x̃p(k + 1) + x̃p(k))

=2x̃p(k)(∆x̃p(k + 1)− ρΦ̂p1(k)Φp1(k)

α+ Φ̂2
p1(k)

x̃p(k))

(∆x̃p(k + 1)− ρΦ̂p1(k)Φp1(k)

α+ Φ̂2
p1(k)

x̃p(k))2 (25)

when limk→∞ a = 0, so lima→0k→∞ Φ̃p1(k) = 0

∆v(k + 1) =2x̃p(k)(g +
ρΦ̂p1(k)Φ̃p1(k)

α+ Φ̂2
p1(k)

x̃p(k))

(g +
ρΦ̂p1(k)Φ̃p1(k)

α+ Φ̂2
p1(k)

x̃p(k))2

=g2 + 2x̃p(k)g

=− x̃2
p(k) (26)

Evidently, with the control scheme delineated within this
document, the condition ∆v(k) < 0 is reliably met. The
divergence between the current velocity and the envisioned
target velocity achieves asymptotic and sustained convergence,
thereby finalizing the verification.

part-IV: Let us denote the distributed output forecast dis-
crepancy by ε̄p(k) = ε̂p(k)−εp(k). Utilizing the formulations
from equation (11), this discrepancy is articulated in the
subsequent manner:

ε̃p(k) = ε̂p(k)− εp(k) (27)

= ε̄p(k − 1) + Φ̂p2(k − 1)4xp(k − 1)

− εp(k − 1)− Φp2(k − 1)∆xp(k − 1)

= (1− l(k))ε̃p(k − 1) + Φ̂p2(k − 1)

4xp(k − 1) (28)

Obtain the absolute magnitude and then employ the expect-
ed value operator on the expression designated as equation
(27), and scale them to derive the result, then

E{|ε̃p(k)|} ≤ (1− l(k))E{|ε̃p(k − 1)|}
+|Φ̃p2(k − 1)4xp(k − 1)| (29)

Due to the boundedness of Φ̂p1(k) proven in the part-I, and
from our findings in the part-II that xp(k−1) is also bounded,
we can conclude that Φ̂p1(k)xp(k − 1) is bounded.

Let Φ̂p1(k)xp(k − 1) < q, where q is a positive constant.
Given that l ∈ (0, 1), the relational expression is subsequently
reformulated to read:

E{|ε̃p(k)|} ≤ (1− l)E{|ε̃p(k − 1)|}+ q (30)
≤ · · ·

≤ (1− l)k−1E{|ε̃p(1)|}+
q

1− l
(31)

This indicates that the value of ε̃p(k) remains consistently
confined within limits.

part-V: Due to (14) and eεp(k + 1) = ε∗p − εp(k − 1),
eεp(k + 1) can be expressed as,

eεp(k + 1) =ε∗p − εp(k − 1)

=eεp(k)−∆εp(k − 1)

=(1− ρ∗Φ̂p2(k)Φp2(k)

λ∗ + Φ̂2
p2(k)

)eεp(k)

+
ρ∗Φ̂p2(k)Φp2(k)

λ∗ + Φ̂2
p2(k)

ε̂p(k) (32)

let ρ∗Φ̂p2(k)Φp2(k)

λ∗+Φ̂2
p2(k)

= m(k)

Employing an identical approach as outlined in part-I,
equation (35) is subsequently reformulated in the following
manner:

∣∣eεp(k + 1)
∣∣ ≤ |1−m(k)|

∣∣eεp(k)
∣∣

|m(k)|
∣∣∣l(k)ε̃p(k) + Φ̃p2(k − 1)∆xp(k − 1)

∣∣∣
(33)

Based on the evidence presented within the demonstrations
of part I and II, ε̃p(k) and Φ̃p2(k − 1) are bounded, so let
(1−D)lE{|ε̃p(k)|}+(1−D)E{|Φ̃p2(k−1)∆xp(k−1)|} < d∗

with d∗ > 0 being a constant.
Consequently, equation (29) is articulatedin the subsequent

format:

E{|eεp(k + 1)|} ≤ DE{|eεp(k)|}+ (1−D)lE{|ε̃p(k)|}
(1−D)E{|Φ̃p2(k − 1)∆xp(k − 1)|}
≤ DE{|eεp(k)|}+ d∗

≤ DkE{|eεp(1)|}+
d∗

1−D
(34)

which illustrate ε∗p is bounded. Due to eεp(k+ 1) is bounded,
εp(k − 1) is also bounded.

The conclusion of the demonstration has been reached,this
crucial result ensures that the proposed control algorithm
effectively maintains system stability and achieves its intended
control objectives under the specified conditions. The meticu-
lous application of Lyapunov functions and the detailed step-
by-step analysis provide a solid theoretical foundation for
our approach. This comprehensive proof not only validates
the robustness and reliability of the proposed control strategy
but also highlights its practical applicability in real-world
scenarios where multi-agent systems are subject to mixed
network attacks. Consequently, we can confidently assert that
the control strategy developed in this paper is both sound



and effective, offering significant potential for enhancing the
performance and resilience of multi-agent systems in dynamic
and potentially hostile environments.

IV. SIMULATION

In this segment, we introduce a computational example to
substantiate the efficacy of the suggested methodology.

Example 1: Consider the MASs comprising a single leader
and four subordinate agents, as depicted in the communication
structure diagram in Fig. 1.

The dynamics of each constituent agent’s model are delin-
eated below:



Agent1 : y1(k + 1) =
y1(k)x1(k)

1 + y2
1(k)

+
x1(k)u1(k)

1 + x2
1(k)

+ u1(k)

Agent2 : y2(k + 1) =
y2(k)x2(k)

1 + y2
2(k)

+
x2(k)u2(k)

1 + x3
2(k)

+ 0.5u2(k)

Agent3 : y3(k + 1) =
y3(k)x3(k)

1 + y2
3(k)

+
x3(k)u3(k)

1 + x2
3(k)

+ 0.9u3(k)

Agent4 : y4(k + 1) =
y4(k)x4(k)

1 + y2
4(k)

+
x4(k)u4(k)

1 + x5
4(k)

+ 0.8u4(k)

Furthermore, one can determine the Laplacian matrix from
the interaction structure diagram displayed in Fig. 2, as fol-
lows:

L =


1 0 0 −1
0 1 −1 0
0 −1 2 −1
0 −1 −1 2


The trajectory of the leading agent is defined through the

subsequent mathematical expression:

yd(k) =

{
2, 0 < k ≤ 200

0.5, 200 < k ≤ 400

Here , the starting values and controller parameters for the
agents are: l̄1 = 0.5, l̄2 = 0.55, l̄3 = 0.45, l̄4 = 0.55
and The gain parameter for FDI attacks πp(k) varies within
the spectrum encompassing [0, 5]. The starting parameters
and regulatory configurations are outlined below yp(0) =
[1; 1; 1; 1], up(0) = [1; 1; 1; 1], Φ̂p1(k) = [1.05; 1.1; 1.2; 1.03],
Φ̂p2(k) = [1.2; 1.1; 1.02; 1.3], ξ = 10−5 , ρ = 0.3, η = 1.5,
λ = 4, µ = 0.5, p = 1, 2, 3, 4.ρ∗ = 0.3, η∗ = 1.5,
λ∗ = 4, µ∗ = 0.5, p = 1, 2, 3, 4. The outcomes of the
simulation are depicted within Fig. 3 to Fig. 6. Fig. 3 illustrates
the tracking performance under a time-invariant signal in
Example 1, comparing the proposed algorithm, a reference
algorithm, and the performance without compensation. Fig.
5 illustrates the tracking performance under a time-varying
signal in Example 2, using the proposed algorithm, a compar-
ative algorithm, and an uncompensated scenario. Fig. 4 . 6 . 7
and 8 present the error trajectories for the systems under the
proposed and comparative algorithms. This clear comparison
demonstrates that the proposed method yields good control
effects in simulations.

Fig. 2. Structural diagram of the Examples 1 and 2.

Time(k)
(a)

Time(k)
(b)

Time(k)
(c)

Fig. 3. Performance of multi-agent systems tracking under mixed attacks. (a)
Proposed MFAC algorithm. (b) Control methodology described in reference
[24]. (c) Control strategy without any compensation.



Remark 4: In the course of the simulation, the predeter-
mined path for the fictitious leader is designated at node O. In
this scenario, only agents 2 and 4 directly receive information
from the leader, while agents 1 and 3 receive information
indirectly through agents 2 and 4.

Time(k)
(a)

Time(k)
(b)

Time(k)
(c)

Fig. 4. The tracking error of multi-agent systems under mixed attacks. (a)
Proposed MFAC algorithm. (b) Control methodology described in reference
[24]. (c) Control strategy without any compensation.

The aforementioned simulation results indicate that, under
time-invariant signals, the proposed MFAC algorithm exhibits
superior control performance compared to the control method
described in reference [24]. Specifically, the proposed algorith-
m achieves smaller errors and higher stability. Furthermore, the
compensation method introduced in this paper demonstrates
a significant improvement over the scenario without com-
pensation. The control effect with compensation is markedly
better than that without compensation. In summary, the MFAC

algorithm with compensation proposed in this paper shows
excellent control performance under time-invariant signals,
making it a robust and effective solution for managing system
stability and accuracy.

Example 2: The multi-agent systems with a time-varying
signal is analyzed, as showcased by the connectivity diagram
in Fig. 1.

The path followed by the leader is defined by the formula
below:

yd(k) = 0.6 + 0.2(sin(
2πk

50
) + sin(

2πk

100
) + sin(

2πk

150
))

Here, the starting conditions and controller settings for the
agents are: l̄1 = 0.45, l̄2 = 0.6, l̄3 = 0.55, l̄4 = 0.5 and The
gain parameter for FDI attacks πp(k) varies randomly between
[0, 6]. The starting states and the parameters for regulation
are set out below yp(0) = [0; 0; 0; 0], up(0) = [1; 1; 1; 1],
Φ̂p1(0) = [1.05; 1.1; 1.02; 1.3], Φ̂p2(0) = [1.2; 1.1; 1.02; 1.3],
ξ = 10−5 , ρ = 0.3, η = 1.5, λ = 4, µ = 0.5,
p = 1, 2, 3, 4.ρ∗ = 0.3, η∗ = 1.5, λ∗ = 4, µ∗ = 0.5,
p = 1, 2, 3, 4. as illustrated by the outcomes presented
within the simulation Fig. 4.Simulation results demonstrate
that, whether under time-varying or time-invariant signals, the
proposed algorithm exhibits smaller errors, faster convergence,
and better tracking performance compared to the algorithm
presented in [24]. Through clear comparisons across various
aspects, the proposed method shows good control effects
in simulations. The simulation results illustrated above
indicate that, under time-varying signals, the proposed MFAC
algorithm demonstrates markedly better control performance
compared to the control strategy outlined in reference [24].
This improvement is reflected in significantly reduced error
margins and enhanced system stability. Moreover, the intro-
duction of the compensation method proposed in this study
shows a clear and substantial improvement over the scenario
without compensation. Specifically, the control effect achieved
with compensation is considerably superior to that without
compensation. Thus, it can be concluded that the MFAC
algorithm, when coupled with the proposed compensation
technique, delivers outstanding control performance under
time-varying signal conditions. This highlights the algorithm’s
robustness and efficacy in managing dynamic systems with
fluctuating signals, ensuring both precision and stability in
control outcomes.

V. CONCLUSION

The present study investigates the adaptive control challenge
for second-order nonlinear multi-agent networks subjected to
a combination of cyber threats. To facilitate ongoing scholarly
work, the output discrepancies across agents within each
subsystem are determined using backstepping methodologies
devoid of model dependencies, subsequently converting them
into a linear form through dynamic linearization. This tech-
nique streamlines the control formulation, making it more
manageable. Additionally, the paper delves into the orches-
tration of hybrid cyber-assaults, proposing a countermeasure
mechanism designed to alleviate their detrimental effects. Such



Time(k)
(a)

Time(k)
(b)

Time(k)
(c)

Fig. 5. Tracking performance of multi-agent systems under mixed attacks.
(a) The proposed MFAC algorithm. (b) The control algorithm in reference
[24]. (c) The control algorithm without compensation.

Fig. 6. Error trajectories eεp (k)(p = 1, 2, 3, 4) of the proposed algorithm.

Fig. 7. Error trajectories eεp (k)(p = 1, 2, 3, 4) of the algorithm proposed
in reference [24].

Fig. 8. Error trajectories eεp (k)(p = 1, 2, 3, 4) of the algorithm without
compensation.

a mechanism enhances system resilience to diverse cyber-
intrusions. The convergence of the strategy is substantiated
through the application of Lyapunov stability theory, establish-
ing a robust theoretical foundation. In conclusion, empirical
simulations corroborate the commendable control efficacy of
the method, preserving system steadiness and potency amidst
adverse scenarios.
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