
Published as a Tiny Paper at ICLR 2023

TRAINING DATA EIGENVECTOR DYNAMICS IN THE
EIGENPRO IMPLEMENTATION OF THE NEURAL TAN-
GENT KERNEL AND RECURSIVE FEATURE MACHINES

Cyril Gorlla
Halıcıoğlu Data Science Institute
University of California San Diego
La Jolla, CA 92093, USA
cyril.m.gorlla@jacobs.ucsd.edu

ABSTRACT

There has been much recent work on kernel methods as a viable alternative to
deep neural networks (DNNs). The advent of the Neural Tangent Kernel (NTK)
has brought on renewed interest in these methods and their application to typical
deep learning tasks. Recently, kernels have been shown to be capable of feature
learning similar to that of DNNs, termed Recursive Feature Machines (RFMs). In
accordance with the growing scale of kernel models, the EigenPro 3 algorithm was
proposed to facilitate large-scale training based on preconditioned gradient de-
scent. We propose an accessible framework for observing the eigenvector dynam-
ics of EigenPro’s training data in its implementation of these kernel methods, and
find empirically that significant change ceases early in training along with appar-
ent bias towards equilibrium. In the case of RFMs, we find that significant change
in the training data eigenvectors typically curtails before five iterations, in accor-
dance with findings that RFMs achieve optimal performance in five iterations.
This represents a path forward in gaining intuition for the inner workings of large-
scale kernel training methods. We provide an easy to use Python implementation
of our framework at https://github.com/cgorlla/ep3dynamics.

1 INTRODUCTION

In the past decade, deep neural networks have achieved state of the art performance in a wide variety
of areas, including computer vision (Szegedy et al., 2013), speech synthesis (Ze et al., 2013), and
text generation (Brown et al., 2020). More recently, it has been observed that increasing sample and
parameter count in deep learning models yields significant gains in model performance (Chowdhery
et al., 2022), bucking classical statistical theory which suggests that overfitting should cause poorer
performance (Belkin et al., 2019). Considering this and other phenomena, it is apparent that the
advances in deep learning are rapidly outpacing our understanding of why they perform so well.
Kernels have been a well studied concept for over a century (Aronszajn, 1950), and have recently
found relevance in machine learning spurred by the Neural Tangent Kernel (Jacot et al., 2018), which
showed that the behavior of a fully-connected neural network can be captured by the NTK. Conse-
quently, it has been suggested that, as kernels display similar phenomena to over-parameterized
neural networks, and since kernels are easier to analyse than neural networks (Belkin et al., 2018),
understanding kernel methods will yield insights for deep learning as well.

To that end, there has been much recent work analyzing kernel methods in relation to DNNs. The
evolution of the NTK has been shown to consist of a rapid initial transient in the first few epochs
(Fort et al., 2020), and has the propensity to stay constant in deep networks when in an “ordered”
hyperparameter phase (Poole et al., 2016; Seleznova & Kutyniok, 2022). Furthermore, feature learn-
ing in fully connected neural networks was shown to be connected to a statistical object called the
expected gradient outer product, and this property was exploited in a kernel framework termed Re-
cursive Feature Machines (Radhakrishnan et al., 2022). RFMs were shown to surpass state of the
art performance on a plethora of tabular dataset benchmarks. EigenPro 3 (Abedsoltan et al., 2023) is
a recently proposed algorithm to facilitate the efficient training of large-scale kernel models utiliz-

1

https://github.com/cgorlla/ep3dynamics


Published as a Tiny Paper at ICLR 2023

ing projected dual preconditioned stochastic gradient descent. We use EigenPro 3 for the NTK and
EigenPro 2 for the RFM, as this is the currently available implementation. Considering the growing
promise of kernel methods, building accessible frameworks to understand large-scale kernel training
algorithms is prescient. Consequently, we explore the dynamics of eigenvectors in training data in
EigenPro.

2 SETUP

For a general machine learning problem, we have training data (x, y) = xi ∈ Rd, yi ∈ Rn
i=1. This

training data is used by a machine learning model to generate some predicted output. A gen-
eral kernel model predicts with f(x) =

∑p
i=1 αiK(x, zi), where K is a positive semi-definite

kernel, and zi are (arbitrary) model centers. EigenPro 3 (and 2) utilizes Nyström approximation
in order to compute inexact projection, based on the Nyström extension (Ma & Belkin, 2019):
ψi = K(·, X) ei√

λi
=

∑n
j=1K(·, xj) ei√

λi
, where λi is an eigenvalue of the Hessian operator for

the square loss for 1 ≤ i ≤ n and ψi its eigenfunction, such that Hessian Operator = λiψi. Fol-
lowing this, λi is also an eigenvalue of K(x, x) and consequently if ei is a unit-norm eigenvector,
K(x, x) · ei = λiei, leading to the above equation. It is in this step of EigenPro that we extract
the eigenvectors with respect to the training data at a given epoch. As RFMs operate on iterations
with multiple epochs, we modify the Nyström approximation and iterative solver in the EigenPro
implementation of RFMs to expose the training data eigenvectors at the end of each iteration. The
implementation of the NTK is with respect to fully-connected neural networks with ReLU nonlin-
earity.

3 RESULTS

CIFAR-10 was used to train the models. For the NTK, the number of model centers was 5000 and a
depth of 2 was used, resulting in 5000 eigenvectors. These values were chosen for the purposes of
these experiments, but similar phenomena were observed with larger models with 10000 and 15000
centers. 2000 samples were selected by EigenPro 3 for projection in each epoch. For the RFM,
5000 samples were used and, similarly, 2000 subsamples were used at each iteration of EigenPro 2,
resulting in 2000 eigenvectors. For an eigenvector e, we compute the change in e from time i to j as
follows:

∑n
ej−

∑n
ei. We plot the eigenvectors at each epoch/iteration with respect to the change

from the original eigenvector. We observe both attractive and repulsive effects in the distribution of
training data evolution for both NTK and RFM models. If e.g. positive or negative eigenvectors
are more spread out at one point in time, this effect is reversed in the next, and vice versa. For the
NTK, we see that overall changes in the eigenvectors are minute after the first epoch, which is in
line with the nature of the initialization of the EigenPro 3 algorithm (Abedsoltan et al., 2023). This
holds true for the RFM, albeit with more variability. Unlike the NTK, whose capability to learn
features has been questioned (Yang & Hu, 2020), the RFM kernelizes a mechanism provably linked
to feature learning in fully-connected neural networks. Empirically, RFMs were shown to attain
optimal performance in many scenarios within five iterations (Radhakrishnan et al., 2022); in the
EigenPro implementation of RFMs, we also did not typically observe significant change in training
data eigenvectors after five iterations.

Figure 1: Boxplots of eigenvectors (Left: RFM, Right: NTK)

2



Published as a Tiny Paper at ICLR 2023

Figure 2: Change from original eigenvectors (Left: RFM, Right: NTK)

URM STATEMENT

This paper meets the criteria of the ICLR 2023 Tiny Papers Track.

REFERENCES

Amirhesam Abedsoltan, Mikhail Belkin, and Parthe Pandit. Toward large kernel models, 2023. URL
https://arxiv.org/abs/2302.02605.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical So-
ciety, 68(3):337–404, 1950. ISSN 00029947. URL http://www.jstor.org/stable/
1990404.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to un-
derstand kernel learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 541–549. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/belkin18a.html.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Siyuan Ma and Mikhail Belkin. Kernel machines that adapt to gpus for effective large batch training.
Proceedings of Machine Learning and Systems, 1:360–373, 2019.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Feature
learning in neural networks and kernel machines that recursively learn features, 2022. URL
https://arxiv.org/abs/2212.13881.

3

https://arxiv.org/abs/2302.02605
http://www.jstor.org/stable/1990404
http://www.jstor.org/stable/1990404
https://proceedings.mlr.press/v80/belkin18a.html
https://proceedings.mlr.press/v80/belkin18a.html
https://arxiv.org/abs/2212.13881


Published as a Tiny Paper at ICLR 2023

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
of depth and initialization. In International Conference on Machine Learning, pp. 19522–19560.
PMLR, 2022.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for object detec-
tion. Advances in neural information processing systems, 26, 2013.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Heiga Ze, Andrew Senior, and Mike Schuster. Statistical parametric speech synthesis using deep
neural networks. In 2013 ieee international conference on acoustics, speech and signal process-
ing, pp. 7962–7966. IEEE, 2013.

A APPENDIX

A.1 DEEPER NTK

When using a depth of 20 for the NTK, we do not observe any major changes in the phenomena
observed.

Figure 3: Left: Boxplot of eigenvectors, Right: Change in eigenvectors

A.2 CODE

To illustrate the intuitive nature of our framework, we provide example code. Code can be found on
the GitHub repository: https://github.com/cgorlla/ep3dynamics.

1 import torch
2 from eigenpro3.utils import accuracy, load_dataset
3 from eigenpro3.datasets import CustomDataset
4 from eigenpro3.models import KernelModel
5 from eigenpro3.kernels import ntk_relu
6 import os
7

8 from torchvision.datasets import CIFAR10
9 os.environ[’DATA_DIR’] = ’./download’

10 CIFAR10(os.environ[’DATA_DIR’], train=True, download=True)
11

12 p = 5000 # model size
13

14 if torch.cuda.is_available():
15 DEVICES = [torch.device(f’cuda:{i}’) for i in range(torch.cuda.

device_count())]
16 else:
17 DEVICES = [torch.device(’cpu’)]
18

19 evs = []
20

21

22 for num in [epochs]:

4

https://github.com/cgorlla/ep3dynamics


Published as a Tiny Paper at ICLR 2023

23

24 kernel_fn = lambda x, z: ntk_relu(x, z, depth=2)
25

26 n_classes, (X_train, y_train), (X_test, y_test) = load_dataset(’
cifar10’)

27

28 centers = X_train[torch.randperm(X_train.shape[0])[:p]]
29

30 testloader = torch.utils.data.DataLoader(
31 CustomDataset(X_test, y_test.argmax(-1)), batch_size=512,
32 shuffle=False, pin_memory=True)
33

34 model = KernelModel(n_classes, centers, kernel_fn, X=X_train, y=
y_train, devices=DEVICES)

35 model.fit(model.train_loaders, testloader, score_fn=accuracy, epochs=
num)

36 evs.append(model.eigenvectors_data)

5


	Introduction
	Setup
	Results
	Appendix
	Deeper NTK
	Code


