
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC INHOMOGENEOUS QUANTUM RESOURCE
SCHEDULING WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A central challenge in quantum information science and technology is achieving
real-time estimation and feedforward control of quantum systems. This challenge
is compounded by the inherent inhomogeneity of quantum resources, such as qubit
properties and controls, and their intrinsically probabilistic nature. This leads to
stochastic challenges in error detection and probabilistic outcomes in processes
such as heralded remote entanglement. Given these complexities, optimizing the
construction of quantum resource states is an NP-hard problem. In this paper,
we address the quantum resource scheduling issue by formulating the problem
and simulating it within a digitized environment, allowing the exploration and
development of agent-based optimization strategies. We employ reinforcement
learning agents within this probabilistic setting and introduce a new framework
utilizing a Transformer model that emphasizes self-attention mechanisms for pairs
of qubits. This approach facilitates dynamic scheduling by providing real-time,
next-step guidance. Our method significantly improves the performance of quantum
systems, achieving more than a 3× improvement over rule-based agents, and
establishes an innovative framework that improves the joint design of physical
and control systems for quantum applications in communication, networking, and
computing.

1 INTRODUCTION

Quantum Information Science (QIS) is an emerging field poised to revolutionize computation, com-
munication, precision measurement, and fundamental quantum science. At the heart of QIS lies
the quantum resource state, which underpins quantum information representation and processing.
For this paper, a quantum resource state refers to an entangled network of qubits (Appendix A.5,
A.6). Achieving larger, high-fidelity quantum resource states is critical for advancing applications
in material and drug discovery, optimization, and machine learning via quantum computing (Ap-
pendix A.6). Scaling physical qubit resources to meet the demands of quantum information processing
is increasingly enabled by advances in solid-state quantum systems such as color centers and quantum
dots (Appendix A.3). These systems leverage modern semiconductor fabrication technologies and
heterogeneous integration (Wan et al., 2020; Li et al., 2024; Clark et al., 2024; Golter et al., 2023;
Starling et al., 2023; Palm et al., 2023). Such technologies allow for large-scale quantum systems with
dynamically configurable qubit interactions through remote entanglement (Humphreys et al., 2018),
customized to meet system requirements (Choi et al., 2019; Nickerson et al., 2014; Nemoto et al.,
2014). However, optimizing the control and scheduling of these large, complex systems is essential
to maximize performance. Quantum resources exhibit inherent inhomogeneity due to their distinct
physical properties and control mechanisms, which vary spatially and temporally. This inhomogene-
ity, coupled with the probabilistic nature of quantum operations like heralded remote entanglement
(Appendix A.10), introduces stochastic challenges in error detection and system performance. These
complexities render the optimization of quantum resource state construction an NP-hard problem.
Nevertheless, achieving larger, high-fidelity quantum resource states offers exponential advantages in
quantum information processing.

Recent developments in reinforcement learning have demonstrated significant value in various
scientific and technological fields. This includes advances in protein structure design (Wang et al.,
2023b), mathematics discovery (Fawzi et al., 2022), chip design (Mirhoseini et al., 2021), optimized
control within the laboratory (Degrave et al., 2022; Szymanski et al., 2023). In addition, the
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application of machine learning in quantum technologies is becoming increasingly critical (Metz &
Bukov, 2023; Chen et al., 2022; Mills et al., 2020; Sels et al., 2020; Carrasquilla et al., 2019; Lu &
Ran, 2023). However, leveraging these advances in a scalable quantum engineering system requires a
system-level optimization approach. This approach needs to take into account the varied properties
of qubit arrays to effectively manage control and scheduling tasks.

In this paper, we formulate the quantum resource scheduling problem in a digitized environment
with Monte Carlo Simulation (MCS) (Appendix A.9, B). This environment enables us to develop a
rule-based greedy heuristic method that significantly outperforms the random scheduling baseline. We
also train reinforcement learning agents in this interactive probabilistic environment. We introduce
a “Transformer-on-QuPairs” framework that uses self-attention on inhomogeneous qubit pairs’
sequential information to provide the dynamic, next-step scheduling guidance for qubit resource
state building. Furthermore, this Transformer-on-QuPairs scheduler enhances quantum system
performance by more than 3× compared to our rule-based method in our inhomogeneous simulation
experiment.

The remainder of the paper is organized as follows: Section 2 discusses related works. Section 3 de-
fines our problem of dynamic inhomogeneous quantum resource scheduling, analyzes its complexity,
and provides a benchmarking and scheduling example. In Section 4, we detail the RL-based optimiza-
tion framework and Transformer-on-QuPairs architecture for dynamic scheduling strategies. Section
5 outlines the experimental setup and presents a comparison of the results. Section 6 concludes the
paper, and Section 7 discusses the broader impacts of this work.

2 RELATED WORKS

Machine learning has helped the development of quantum information processing. The Transformer
model, for example, has been effectively used in various applications such as quantum error correc-
tion (Wang et al., 2023a), quantum state representation using tensor networks (Chen et al., 2023;
Zhang & Di Ventra, 2023), and quantum state reconstruction (Ma et al., 2023), and quantum error-
correction code decoding (Bausch et al., 2024). Reinforcement learning has similarly found extensive
application in a broad spectrum of quantum computing tasks, including quantum circuit design
search (Herbert & Sengupta, 2018; Alam et al., 2023; Fösel et al., 2021; Pirhooshyaran & Terlaky,
2021), quantum architecture search (Kuo et al., 2021; Ostaszewski et al., 2021), quantum ground state
identification (Mills et al., 2020), quantum control optimization (Lu & Ran, 2023; Metz & Bukov,
2023).

Previous studies have primarily focused on quantum computing platforms with limited qubit connec-
tivity, such as those using superconducting circuits (Arute et al., 2019). In contrast, platforms that
support all-to-all connectivity can utilize different protocols, such as cluster state quantum computing,
offer greater control flexibility, allowing for enhanced optimization through machine learning. This
paper explores a quantum control architecture tailored to a unique class of quantum resources featur-
ing a spin-photon (Appendix A.8, Fig.6) interface conducive to remote entanglement routing. This
setup affords a high degree of freedom in dynamic quantum resource scheduling, a domain where
control strategies remain underexplored. The qubit platform based on the spin-photon interface has
the potential for rapidly scaling, such as the heterogeneous integration between the diamond color
center with the CMOS backplane (Li et al., 2023), PIC backplane (Wan et al., 2020), the T center in
Si (Higginbottom et al., 2022), and the quantum dot (Coste et al., 2023) platform. These capabilities
position it well for applications in quantum networking, communication, and computing. This
control protocol is also compatible with the leading quantum platform with massive programmable
connectivity such as the trapped ion (Srinivas et al., 2021), neutral atom array (Periwal et al., 2021),
manufacturable photonic qubit (Alexander et al., 2024), and the hybrid systems encompassing diverse
physical qubits (Mirhosseini et al., 2020).

3 DYNAMIC INHOMOGENEOUS QUANTUM RESOURCE SCHEDULING

In this section, we formulate the dynamic inhomogeneous quantum resource scheduling problem in
graph representation. We begin by presenting an analysis of the problem’s complexity and define
benchmarks for assessing quantum system performance. Additionally, we develop a simulated
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Figure 1: Dynamic quantum resource scheduling game. a, At the initial time step Nt = 1,
individual qubit resources (represented by black circles) are depicted, poised for the formation of
entanglement pairs (illustrated by dashed black lines). This figure shows only a portion of the 11 qubit
nodes of the quantum resource. b, By the early stage at Nt = 5, each time step carries a probability of
successfully establishing entanglement pairs. Newly formed entanglements are indicated by solid
red lines, and the largest connected subgraph is highlighted with red nodes. c, At a later stage,
Nt = 150, the diagram shows a larger connected qubit cluster within the quantum resource, with
earlier entanglements depicted in lighter red. d, The result table records each successful entanglement
event derived from the quantum simulation. For each time step Nt, when the entanglement between
Qubit i and Qubit j is successfully established through Monte Carlo simulation, a new entry is added
to the table, updating the maximum size of the connected graph Nmax.

experiment example of dynamic quantum resource scheduling and describe the methods used to
generate assumed system pre-information.

Complexity of the cluster building scheduling problem Before delving into the specifics of
our quantum cluster building scheduling challenge, it is useful to examine a related, yet simpler,
NP-hard problem known as the Minimum Weight Connected Subgraph Problem (MWCSP) (Haouari
et al., 2013; Hwang et al., 1992). This problem is defined on a weighted graph G = (V,E) ,
where each edge is assigned a real number weight through the function ω. The goal is to find a
connected subgraph H = (V ′, E′), with V ′ ⊆ V and E′ ⊆ E, that minimizes the total weight
of the edges ω(E′), ensuring connectivity among all vertices in V ′. In our quantum context, this
scheduling challenge equates qubits and their entanglement links to the vertices and edges of the
graph, respectively, with εij representing the quantum error associated with each link. Our objective is
to minimize the total quantum error ε =

∑
ij εij (total weight of the edges ω(E′)) across a connected

cluster of |V ′| qubits (V ′ ⊆ V , where V is the whole qubit vertex set). The complexity intensifies
in what we term the dynamic MWCSP, which incorporates entanglement links that not only have a
success rate psucc ≤ 1 but also allow the establishment of Kpairs ≥ 1 entanglements simultaneously.
When psucc = 1 and Kpairs = 1, this dynamic variant reduces to the standard MWCSP, underscoring
that our dynamic MWCSP is at least as challenging as the NP-hard baseline. Constructing a cluster
state that includes an N -qubit cluster within this framework causes the search space for the dynamic
MWCSP to expand exponentially, scaling beyond O(NN ) (Cayley, 1878).

Quantum system performance benchmarking The effectiveness of a cluster state quantum
system is measured by the cluster-state quantum volume (Cross et al., 2019) VQ, which is defined as
µ = log2 VQ = argmaxn≤N min

(
n, 1

nε

)
. This metric applies to our cluster system when interfaced

with general quantum computing hardware. In this context, n refers to the number of qubits in
the cluster, ε is the total error throughout the quantum cluster, and N indicates the maximum
cluster resource available. Given that each interconnection error within our qubit cluster nodes
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V is considerably low (εij ≪ 1), the aggregate cluster error can be calculated as ε =
∑

ij εij .
This equation influences the determination of the maximum sustainable cluster size Nmax and the
cumulative cluster error ε, both parameters that typically grow with increasing scheduling time steps
Nt in the system.

Dynamic quantum resource scheduling example We used Monte Carlo simulations to depict
the cluster building process, as demonstrated in Fig.1. The simulation environment has Nq qubit
resources and has maximum Nq/2 entanglement workers to attempt entanglement in parallel. Each
time step for attempting entanglement has a success probability Rij ≤ 1 between the qubits i and j.
When an entanglement is successfully established, its details are recorded in a progress table, which
keeps track of the success time step index Nt(i, j) and updates the qubit graph using a disjoint-set
data structure. The maximum cluster size achieved, Nmax, is also recorded. In a scenario targeting a
40-qubit system (illustrated in Fig.3), updates to the progress table cease once Nmax exceeds 30, in
alignment with our predefined error metrics. Data for Figs. 3b and 3c are subsequently extracted from
these progress table entries. The error associated with each established entanglement is calculated
using the formula 1− Fij exp(−∆tij/Tmem), where Fij is the fidelity and ∆tij is the time elapsed
since the formation of the entanglement, calculated as (Nt −Nt(i, j))/rent within the Nt trial time
steps. Tmem is the coherence time of the qubit memory, and rent is the rate of entanglement attempt.

Quantum system pre-information generation To support the simulations of the cluster state
building process, we generate random performance distributions for Fij and Rij . Here, Fij , which
denotes the fidelity of the entanglement, is determined using a Gaussian distribution with a mean F̄ =
0.98 and a standard deviation σ(F ). Fidelity values Fij that surpass the maximum allowable fidelity,
max(F ) = 0.998 (IBM, 2024), are adjusted to this upper limit. Likewise, the success probability
Rij for forming each entanglement is derived from a Gaussian distribution centered on r̄ with a
standard deviation σ(r). Both Fij and Rij parameters can be produced through Quantum Monte
Carlo Simulation (QMCS), utilizing characterized experimental data as detailed in the Appendix B.
This approach ensures that the scheduling strategy is not only theoretically sound but also practically
feasible for implementation on actual quantum information processing systems.

4 A REINFORCEMENT LEARNING FRAMEWORK

In this section, we present our reinforcement learning (RL)-based optimization framework along with
a detailed explanation of the Transformer-on-QuPairs architecture.

RL-based optimization framework Figure 2a presents an RL-based framework designed to
enhance the overall performance of a quantum system. The process starts with pre-characterized
system information, which includes matrices for entanglement fidelity (MF(i, j) = Fij) and success
rate (MR(i, j) = Rij).

The RL agent receives the state matrix (MS) as input and generates an output action matrix (MA).
Each element in this matrix represents the potential cost associated with selecting that particular action
within the strategy scheduler. The strategy scheduler selects the action with the lowest cost from
the action matrix for the available operation qubits and forwards this to the heralding entanglement
worker, subsequently updating the state matrix (MS). MS is with size Nq by Nq as shown in
Figure 2a. It uses the adjacent matrix to store whether two qubits are already entangled. If entangled,
MS(i, j) = MS(j, i) = 1, else 0. A state check function (f1) determines if the scheduling event
is complete; if not, scheduling continues with the updated state matrix. Otherwise, the process
transitions to a Monte Carlo simulation for each time step in the entanglement trial.

Successful entanglements alter the state matrix, and these modifications are tracked to evaluate against
stopping conditions. If the cluster size exceeds a specified threshold, the system proceeds to calculate
the reward, using the data to compute the VQ of the cluster state. If the cluster size remains below the
threshold, another function (f2) checks if enough idle qubits are available for subsequent scheduling.
If conditions are met, the scheduling loop recommences, facilitated by the RL agent.

The RL agent, capable of dynamically adjusting to any number of qubits, employs a Transformer
architecture (depicted in Fig. 2b). This architecture calculates a cost estimate matrix for potential
links, utilizing preliminary information (MF, MR, MS).
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Figure 2: RL-based optimization framework and dynamic scheduling strategies using the
Transformer-on-QuPairs architecture. a, The entire optimization flow aimed at enhancing VQ
within a quantum system, starting with inputs from system pre-information data. b, Representation of
the Transformer architecture used as an RL agent in a, processing a sequence of qubit pairs with input
length N2

q and feature dimensions Ndim. It outputs a sequence predicting the cost function for each
qubit pair, formatted as N2

q × 1. c, The output of the transformer is further processed into a matrix
to determine the minimal error (ε) for the operations in the next step. This processed action matrix
sets an error threshold at Ath = 0.02. The suggested scheduling action, marked by a red rectangle,
indicates the qubit pair with the minimum predicted error.

Transformer-on-QuPairs architecture definition In this study, we utilize the standard Transformer
architecture to model entanglement link creation within a quantum system. This architecture processes
input tokens representing potential entanglement links. We encapsulate all possible entanglement
combinations in an adjacency matrix for Nq qubits, setting the input sequence length to N2

q .

Each input token is a vector with dimension Ndim = 7, normalized between 0 and 1, composed of
pre-information encoding, dynamic encoding, and position encoding:

• Pre-information Encoding: Utilizes three dimensions to express the fidelity (F ),
the exponential decay exp(−1/RrentTmem), and the corresponding error term 1 −
F exp(−1/RrentTmem).

• Dynamic Encoding: Reflects the current status of each entanglement link, derived from the
adjacency matrix, indicating whether a link is established or pending.

• Position Encoding: Assigns normalized indices to the qubits involved in entanglements,
represented as i/Nq and j/Nq .

These vectors are embedded into a 32-dimensional space through an embedding layer. Following a
bi-directional architecture, the Transformer predicts the real quantum error for each entanglement
link, aiding the scheduling algorithm in selecting the link with the lowest anticipated quantum error.
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Figure 3: Schematic of cluster state construction example (Nq = 40). a, The scheduling simulation
progress example at various time steps (Nt). Black circles represent individual qubit resources, red-
labeled circles and connected lines indicate the largest subgraph formed among the qubits, and grey
lines show the established entanglements between qubit nodes. b, Accumulation of errors (ϵ) during
the cluster state construction, plotted against the simulation time steps (Nt). The black connected
line corresponds to the Nt time step shown in panel a. c, Representation of the maximum number
of connected subgraph size Nmax as it evolves with Nt (blue line), alongside the logarithm of the
system’s quantum volume (µ = log2 VQ), which also progresses with Nt (red line)

The decision for subsequent actions is guided by the action matrix MA, which combines the error
matrix with 1− F exp(−1/RrentTmem) and the neural network’s output weighted at 0.1. We set a
threshold of Ath = 0.02 for MA to prioritize the better half of the high-quality entanglement links.
The post-processed MA is depicted in Fig. 2c, with the red rectangle highlighting the next prioritized
entanglement link for scheduling. If the only available options are above the threshold error Ath, the
system opts to temporarily idle that corresponding entanglement worker.

5 EXPERIMENTS

We detail the experimental setups for rule-based and RL-based strategies below, along with the
presentation of the experimental results. The relevant code and data are accessible with the instructions
provided in the supplementary materials submitted.

5.1 EXPERIMENTAL SETUP AND METHODOLOGICAL COMPARISON

Ruled-based strategies We formulate the quantum resource scheduling problem in a digitizied
environment with Monte Carlo simulation allowing for the implementation of rule-based scheduling
strategies. Our baseline involves random scheduling, where we disregard the heterogeneous properties
of qubit pairs and select the next scheduling step randomly using a generated action matrix. We
compare this with the static minimum spanning tree (MST) approach, which is anticipated to be an
effective heuristic when the quantum system’s coherence time is indefinitely long or has a determinis-
tic success probability during entanglement attempts. For quantum systems with limited coherence
times that necessitate rapid dynamic actions, we employ a greedy algorithm that consistently selects
the qubit pair with the lowest quantum error for the next step in resource state building scheduling.
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Table 1: Comparison of scheduling strategies: Rule-based vs. RL-based. The superior system
performance of the Transformer-on-QuPairs strategy compared to various rule-based approaches.

Types Strategies µ̄

Random 3.85±0.23
Rule-based Static Minimum Spanning Tree 10.51±0.55

Greedy-on-QuPairs 13.90±0.62

Transformer-on-Qubit 3.91±0.31
RL-based Fully-connected-on-QuPairs 14.70±0.72

Transformer-on-QuPairs 15.58±0.84

RL-based strategies In addition to rule-based strategies, we employ RL-based strategies (Paszke
et al., 2019) within the digitized environment, utilizing the capabilities of the Transformer-on-QuPairs
agent and a fully-connected (FC) neural network. The Transformer-on-Qubit, with 1 layer, an
embedding dimension of 320, a single attention head, and a feed-forward network hidden dimension
of 640, takes qubit information as input to predict the most suitable qubit pairs for the next scheduling
step. This process involves running the Transformer twice to determine the optimal qubit pair
combination. The FC neural network, featuring two layers each with 1000 latent nodes, manages a
fixed input size that matches the entire qubit set (N2

q ×Ndim) and outputs a decision for all possible
qubit pairs, providing less flexibility for transfer learning compared to the Transformer. The main
Transformer model, specifically designed for scheduling using qubit pair data, consists of 3 blocks
but with an embedding dimension of 32 and a simpler structure, having a single head and a feed-
forward network hidden dimension of 64. It aims to identify the next qubit pairs by analyzing
the post-processed action matrix. The Transformer models are trained over 3000 epochs in the
simulation environment, using a constant learning rate of 3× 10−3 with the Adam optimizer, and
hyperparameters optimized through grid searching. The training process takes approximately two
days on a single A30 GPU supported by a 24-core Intel Xeon E5 CPU.

The training process for the Transformer neural network begins with an initialization phase where
the network is pre-trained to mimic the outputs of the Greedy-on-QuPair algorithm. This provides a
baseline for the network’s parameters. To introduce variability and enhance generalization, random
variations are added to the network parameters. The training then proceeds iteratively, with the
network updating its parameters based on the rewards obtained from Monte Carlo simulations. The
goal of each update is to guide the network toward actions that maximize the reward. To improve
scalability and training efficiency, the Transformer-on-Qupairs architecture leverages transfer learning.
Specifically, the model trained for Nq = 40 qubits is used as the initial model for training the Nq =
80 model. Similarly, the Nq = 80 trained model serves as the starting point for training the Nq =
120 model. This progressive training approach significantly reduces the computational overhead and
speeds up convergence for larger systems.

5.2 RESULTS

Dynamic scheduling process Figure 3 presents the quantum resource scheduling process for a
system with Nq = 40 qubits. Figure 3a displays the progression of the simulation at various time
steps (Nt). Figure 3b shows that as the entanglement trials advance, there is an increase in both the
maximum cluster size and the systematic error, ultimately leading to the largest connected subgraph
size Nmax, which is further illustrated in Figure 3c. Interestingly, the logarithm of the system’s
quantum volume (µ = log2 VQ) reaches a peak at a specific Nt. This peak value of µ is used as our
representative result in a Monte Carlo simulation. To establish a benchmark for different strategies,
we conduct 100 simulations and calculate the average µ̄. The error bars represent a 2-sigma interval,
used to compute the standard deviation σ(µ̄) across these samples.

Scheduling methodological comparison Table 1 presents a performance comparison of various
scheduling methods measured by µ̄. We examine several rule-based strategies, including the random
baseline, which is employed when detailed inhomogeneous information about the qubit resource
is unavailable. The Static MST method is suitable for systems with long coherence times or high
probabilities of successful heralded entanglement. In contrast, for more realistic quantum systems
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Figure 4: Comparison of qubit cluster state building strategies. a, Histograms of 100 samplings
µ for various strategies: random (black), Greedy-on-QuPairs (green), and Transformer-on-QuPairs
(red), with cumulative density functions overlaid. b, Probability density function (Gaussian fitting)
comparison for µ̄ between Greedy and Transformer-on-QuPairs strategies, highlighting the superior
optimization capacity of the Transformer. The ∆µ̄ shows a benefit improvement in the quantum
system, with 2∆µ̄ > 3 indicating a significant enhancement.

with limited coherence times and lower entanglement success rates, a greedy heuristic that selects
steps based on the minimum expected error performs best among the rule-based options.

In our examination of RL-based methods, the Transformer on individual qubit information, which
does not incorporate qubit pair data, performs similarly to random scheduling. However, the fully-
connected graph of the QuPairs, where output results are mixed with a 10% incorporation of the
greedy action matrix predictions, is trainable and uses these predictions as a baseline, thereby
achieving superior results compared to the standalone greedy method. The Transformer-on-QuPairs
architecture, which inherently accounts for latent interactions between qubit pairs and supports
scaling to larger input sequences, also mixes its outputs with the greedy predictions at a 10% ratio,
and it outperforms the fully-connected architecture.

For comparative analysis, we focus on the most effective rule-based strategy, Greedy-on-QuPairs, and
the best RL-based method, Transformer-on-QuPairs, to highlight the advantages of machine learning
technologies. Given the intrinsic probabilistic nature of quantum state building, we conducted 100
Monte Carlo simulations to generate a histogram of the quantum volume distribution (µ = log2 VQ),
illustrated in Figure 4a with three typical strategies: random (black baseline), Greedy-on-QuPairs
(green), and Transformer-on-QuPairs (red). The analysis shows that the Greedy method, utilizing
pre-characterized system information, significantly outperforms random sampling, underscoring
the importance of inhomogenous info input. The Transformer strategy further enhances this by
dynamically adjusting cost functions based on state changes, boosting system performance. This
improvement could potentially be augmented through the use of Monte Carlo tree search techniques
in resource scheduling. The probability density function (PDF) after Gaussian fitting for these two
methods is plotted in Figure 4b, and the mean difference between these distributions is calculated by
∆µ̄. Given that the quantum system’s performance, evaluated by the quantum volume, exponentially
improves with larger µ, we estimate an enhancement of 2∆µ̄ > 3 in quantum system benefits when
transitioning from rule-based to RL-based scheduling with the Transformer-on-QuPairs architecture.

Environmental variation comparison Table 2 shows the performance distributions, highlighting
the mean µ̄. Strategies that employ random scheduling, disregarding the inhomogeneity of the
graph data, demonstrate the least effectiveness due to their non-optimized construction processes.
Among various strategies, an increase in µ̄ is associated with a corresponding increase in σ(µ̄).
Furthermore, environments with greater variability show a more pronounced advantage when utilizing
the Transformer-on-QuPairs approach over the Greedy-on-QuPairs method.

Qubit number scaling comparison We also explore the scaling of qubits to augment the dynamic
scheduling resource pool, summarized in Table 3. In our qubit scaling experiments, the agent
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Table 2: Environment variations sweep. In a homogeneous qubit environment (σ(F ) = 0), there
is minimal variation in performance across different strategies. In contrast, more inhomogeneous
environments (characterized by larger σ(F )) enhance the benefits of using the Transformer-on-
QuPairs method, as indicated by 2mean(∆µ̄). Conversely, the performance of the random baseline
strategy deteriorates as σ(F ) increases.

.

σ(F ) µ̄ - Random µ̄ - Greedy-on-QuPairs µ̄ - Transformer-on-QuPairs 2mean(∆µ̄)

0 4.61±0.16 4.63±0.16 4.65±0.16 1.01

0.03 4.50±0.17 12.66±0.61 13.09±0.66 1.35
0.06 4.18±0.18 13.74±0.66 14.93±0.76 2.28
0.09 3.85±0.23 13.90±0.62 15.58±0.84 3.20

Table 3: Qubit number scaling comparison. As the number of qubits (Nq) in the system increases,
the Transformer-on-QuPairs strategies offer greater benefits compared to the rule-based Greedy
methods, as reflected in the 2mean(∆µ̄) values. Meanwhile, the performance of the random baseline
strategy declines with the scaling of Nq .

Nq µ̄ - Random µ̄ - Greedy-on-QuPairs µ̄ - Transformer-on-QuPairs 2mean(∆µ̄)

40 3.85±0.23 13.90±0.62 15.58±0.84 3.20

80 3.38±0.18 14.11±0.70 15.85±0.88 3.34
120 3.18±0.17 14.20±0.92 16.12±0.95 3.78
160 2.97±0.15 14.32±1.06 16.51±1.21 4.56

designed for scheduling larger Nq qubit resources takes advantage of a model trained on a smaller
scale (Nq = 40). This transfer learning approach uses the same training configuration, running for
3000 epochs under identical conditions as those used for training from scratch. This strategy ensures
consistent training settings while adapting the model to handle increased complexity due to more
qubits. We observe that as the number of qubits increases, the performance of the random algorithm
deteriorates, whereas both the greedy and Transformer-on-QuPairs methods demonstrate improved
performance due to their enhanced flexibility in programmable operations. The Transformer-on-
QuPairs method particularly shows greater benefits for quantum system performance with larger
Nq sizes. This improvement underscores the scalability of the Transformer-on-QuPairs method,
facilitated by transfer learning settings, to effectively manage dynamic scheduling across varying
qubit quantities for system optimization.

6 CONCLUSION

In this paper, the key achievements of this study include: (1), We formulate the quantum resource
scheduling problem in a digitized environment with Monte Carlo Simulation. Such environment
enables us to develop a rule-based greedy heuristic method that significantly outperforms the random
scheduling baseline. (2), We train reinforcement learning agents in this interactive probabilistic
environment with a Transformer-on-QuPairs framework that uses self-attention on the sequential
information of inhomogeneous qubit pairs to provide the next-step dynamic scheduling guidance.
Furthermore, this Transformer-on-QuPairs scheduler achieves a quantum system performance im-
provement of more than 3× compared to our rule-based method in the inhomogeneous simulation
experiment. (3), This framework is scalable, capable of handling larger sets of input variables like
charge-state estimations and fidelity-rate trade-offs, that potentially extending beyond the current
limit of 7 input dimensions. It also supports longer sequences to accommodate more interaction links
as the number of qubits (Nq) increases. These advancements pave the way for new possibilities in the
co-design of physical and control systems within the realms of quantum communication, networking,
and computing.
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7 BROADER IMPACTS AND DISCUSSION

Quantum computing has the potential to dramatically enhance fields like chemistry, notably in drug
and material design, offering substantial societal benefits such as the development of new, effective
pharmaceuticals. The increasing relevance of machine learning in quantum applications emphasizes
the necessity for system-level optimization to manage control and scheduling tasks effectively across
nonuniform qubit arrays. Our RL-based framework for system optimization is versatile, suitable for
a range of large-scale quantum systems including superconducting qubits, artificial-atom quantum
repeaters, neural atoms, and trapped ions. This research specifically utilizes RL to improve dynamic
scheduling decisions, maximizing the effectiveness of existing hardware platforms. We foresee
no negative impact from our research, no significant consequences from system failures, nor do
we believe that our methods leverage any bias in any data. We did not perform any experiments
on a real quantum machine. However, possible ethical and social impacts, such as the use for the
development of chemical weapons, require careful scrutiny. This works also has limitations that using
large sequence attention on qubit pairs (N2

q ) becomes computationally challenging for a too large
number of Nq. Additionally, varying environments in the quantum resource distribution (different
F,R distributions) would require retraining of the reinforcement learning model to maintain optimal
system performance.
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A QUANTUM INFORMATION PROCESSING ADDITIONAL BACKGROUND

Since this paper is based on the quantum resource scheduling of cluster states, we introduce some of
the basic concepts for the better clarity of the readers. We organize the appendix in the following
ways. We start with the basic postulates in quantum mechanics and compare them with that in
classical physics, as they are the building blocks for computing. Next, we talk about the fundamentals
of quantum computing and compare it with its classical counterpart. Then we introduce the concept
of quantum entanglement which is important to understand the notion of cluster states. We further
discuss the basics of cluster states and their usage in computing, communication, resource scheduling.
It is the resource scheduling part which is crucial for our paper. Physically, there are various ways to
generate these cluster states, but for our paper we rely on atom-cavity system. We then introduce
the formalism of atom-cavity-photodetection and since this is an open quantum system, we also
talk about the equations of motion which describe its time evolution. We use quantum Monte-Carlo
method to simulate these equations of motion which is further described. At last we talk about how
to generate an entanglement using an atom-cavity system, one of the methods being the Barrett-Kok
Protocol.

Readers can feel free to skip parts which they are already familiar with. Since quantum mechanics
is a vast subject by itself, this appendix is just an attempt to very briefly summarize all the relevant
concepts for an ease of understanding.

A.1 POSTULATES IN QUANTUM MECHANICS (LANDAU & LIFSHITS, 1991; NIELSEN &
CHUANG, 2010)

• State Postulate:
Description: The state of a quantum system is fully described by a wavefunction |ψ⟩ (for
pure states) or a density matrix ρ (for mixed states).
Mathematical Forms: Pure state: |ψ⟩ ∈ H, where H is a complex Hilbert space. Mixed
state: ρ =

∑
i pi|ψi⟩⟨ψi|, where pi are probabilities and |ψi⟩ are pure states, and ⟨ψi| ∈ H†

is the adjoint of the state |ψi⟩.
• Observable Postulate:

Description: Observables in quantum mechanics are represented by Hermitian (self-adjoint)
operators Â acting on the Hilbert space H.
Mathematical Forms: Â = Â†.
Examples: The position operator x̂ and the momentum operator p̂.

• Measurement Postulate:
Description: The measurement of an observable Â yields one of its eigenvalues an with a
probability given by the Born rule.
Mathematical Forms: The probability P (an) of obtaining eigenvalue an is P (an) =
|⟨ψ|ϕn⟩|2, where |ϕn⟩ is the eigenstate corresponding to an. After measurement, the
system collapses to the eigenstate |ϕn⟩.

• Time Evolution Postulate:
Description: The time evolution of a quantum state is governed by the Schrödinger equation.

Mathematical Forms: For a pure state: iℏ ∂
∂t |ψ(t)⟩ = Ĥ|ψ(t)⟩, where Ĥ is the Hamiltonian.

For a density matrix: dρ
dt = − i

ℏ [Ĥ, ρ]. Here, for any two operators A and B, the operation
[A,B] is called the commutator given by AB − BA. Similarly {A,B} is called the ant-
commutator given by AB +BA.

• Superposition Postulate:
Description: If a system can be in states |ψ1⟩ and |ψ2⟩, it can also be in any linear combina-
tion of these states.
Mathematical Forms: |ψ⟩ = c1|ψ1⟩+ c2|ψ2⟩, where c1 and c2 are complex coefficients.

• Composite Systems Postulate:
Description: The state space of a composite quantum system is the tensor product of the
state spaces of the individual subsystems.
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Mathematical Forms: If systems A and B are described by HA and HB , respectively, then
the composite system is described by HA ⊗HB .
Example: For two particles A and B, the combined state will be |ψ⟩ = |ψA⟩ ⊗ |ψB⟩.

A.2 COMPARISON TO CLASSICAL MECHANICS (GOLDSTEIN, 1980)

• State Description: In classical mechanics, the state is described by precise values of position
and momentum (phase space points), whereas in quantum mechanics, the state is described
by a wavefunction or density matrix.

• Observables and Measurement: Classical observables have definite values and their
measurement does not disturb the system. In contrast, quantum measurements generally
disturb the system and the outcome is probabilistic.

• Time Evolution: Classical systems follow deterministic trajectories governed by New-
ton’s laws or Hamilton’s equations. Quantum systems evolve according to the Schrödinger
equation, which is deterministic in terms of the wavefunction but probabilistic upon mea-
surement.

• Superposition: Classical systems cannot exist in superpositions of states; they are always
in a definite state. Quantum systems, however, can exist in superpositions, leading to
phenomena like interference and entanglement.

A.3 BASICS OF QUANTUM COMPUTING (NIELSEN & CHUANG, 2010)

• Quantum Bits (Qubits):
Description: The basic unit of quantum information is the qubit, which can exist in a
superposition of the basis states |0⟩ and |1⟩.
Mathematical Form: A qubit state |ψ⟩ is represented as |ψ⟩ = α|0⟩+ β|1⟩, where α and β
are complex numbers satisfying |α|2 + |β|2 = 1.
Physical Realization: A physical system having two quantum states can be encoded as a
qubit. For example, the two least energetic states (ground |g⟩ and excited |e⟩) of an atom
(Saffman, 2016), superconducting qubit (Blais et al., 2021), color center defects (Doherty
et al., 2022), quantum dots (Brown et al., 2001), the two polarization states (horizontal |H⟩
and vertical |V ⟩) of a photon (Wang et al., 2019), ion traps (Bruzewicz et al., 2019), the two
time-bin (early |E⟩ and late |L⟩) of an incoming photon (Ward & Keller, 2022), can be each
encoded as a qubit.

• Quantum Gates:
Description: Quantum gates are the basic operations applied to qubits. They are represented
by unitary matrices that manipulate qubit states through reversible transformations.
Mathematical Form: For a single qubit, a quantum gate U acts on the qubit state |ψ⟩ as
U |ψ⟩. In the density matrix formalism, for the qubit state ρ, operation of U transforms the
state to UρU†

Basic single qubit gates:

Pauli-X Gate σX =

(
0 1
1 0

)
(similar to bit flip in classical computing)

Pauli-Y Gate σY =

(
0 −i
i 0

)
(similar to phase flip)

Pauli-Z Gate σZ =

(
1 0
0 −1

)
Hadamard Gate 1√

2

(
1 1
1 −1

)
Phase Gate

(
1 0
0 i

)
π/8 Gate

(
1 0
0 eiπ/4

)
Examples:
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α|0⟩+ β|1⟩ β|0⟩+ α|1⟩
α|0⟩+ β|1⟩ α|0⟩ − β|1⟩
α|0⟩+ β|1⟩ α |0⟩+|1⟩√

2
+ β |0⟩−|1⟩√

2

Basic two qubit gate:

CNOT Gate:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Universal Gate set: Set of gates from which any quantum operation can be constructed.
Such a set allows for the implementation of any quantum algorithm. For example, any
multiple qubit gate can be represented as the composition of a CNOT and single qubit gates.
Physical Realization: To implement a quantum gate, usually laser (optical) (Greilich et al.,
2009), radio-frequency (Bardin et al., 2021) (RF/microwave) electromagnetic field, or
mechanical wave (Hong et al., 2012) is used, which probes the energy levels of the quantum
system.

• Quantum Algorithms:
Description: Quantum algorithms leverage quantum superposition, entanglement, and
interference to solve certain problems more efficiently than classical algorithms.
Examples:
Shor’s Algorithm (Shor, 1997): Efficiently factorizes large integers, exponentially faster
than the best-known classical algorithms.
Grover’s Algorithm (Grover, 1996): Searches an unsorted database of N items in O(

√
N)

time, providing a quadratic speedup over classical algorithms.

A.4 COMPARISON TO CLASSICAL COMPUTING

• Bits vs. Qubits: Classical bits can be either 0 or 1, while qubits can exist in superpositions of
0 and 1, allowing quantum computers to process a vast amount of information simultaneously.
Bits are physically realized using transistors, whereas qubits rely on quantum states of
different physical systems (superconducting qubit, ion-traps, atom-arrays, color-centers,
quantum dots, photons etc.)

• Deterministic vs. Probabilistic: Classical gates perform deterministic operations on bits.
Quantum gates perform unitary transformations, leading to probabilistic outcomes upon
measurement.

• No Entanglement: Classical bits are independent, while qubits can be entangled, creating
correlations that enable more powerful computational techniques.

A.5 INTRODUCTION TO QUANTUM ENTANGLEMENT (NIELSEN & CHUANG, 2010)

• Definition:
Description: Entanglement occurs when the quantum state of a composite system cannot be
factored into states of individual subsystems.
Mathematical Form: For a system with two qubits A and B, an entangled state |ψAB⟩
cannot be expressed as |ψA⟩ ⊗ |ψB⟩. For example, |ψ⟩ = 1√

2
(|00⟩+ |11⟩) is an entangled

state.

• Measurement of Entangled Particles:
Description: Measurement of one particle in an entangled pair instantaneously determines
the state of the other particle due to their correlated nature.
Mathematical Form: For the entangled state |ψ⟩ = 1√

2
(|00⟩+ |11⟩), measuring qubit A in

state |0⟩ collapses the entire state to |00⟩, and measuring qubit A in state |1⟩ collapses it to
|11⟩.

• Bell States (Maximally Entangled States):
Description: Bell states represent the simplest and most well-known examples of maximally
entangled states.
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Mathematical Form:
The four Bell states for two qubits are:
|Φ+⟩ = 1√

2
(|00⟩ + |11⟩); |Φ−⟩ = 1√

2
(|00⟩ − |11⟩); |Ψ+⟩ = 1√

2
(|01⟩ + |10⟩); |Ψ−⟩ =

1√
2
(|01⟩ − |10⟩)

• Entanglement as a resource: Entanglement is used as a resource for various quantum
protocols in the field of quantum networks, quantum communication and quantum comput-
ing. There exist schemes based on quantum repeaters which extend entanglement between
distant nodes. For this paper, we particularly focus on cluster states as a resource.

A.6 USING CLUSTER STATES AS A RESOURCE (NIELSEN, 2006)

• Definition of Cluster States:
Description: A cluster state is a type of multi-qubit entangled state that can be used as a
universal resource for quantum computation through a series of adaptive measurements.
Mathematical Form:
1D cluster state of N qubits:

|ϕN ⟩ = 1

2N/2
⊗N

a=1 (|0⟩aZa+1 + |1⟩a) (1)

GHZ state:

|GHZN ⟩ = 1√
2
(|0⟩1|0⟩2...|0⟩N + |1⟩1|1⟩2...|1⟩N ) (2)

W state:

|WN ⟩ = 1√
N

(|1⟩1|0⟩2...|0⟩N + |0⟩1|1⟩2...|0⟩N + ...+ |0⟩1|0⟩2...|0⟩N−1|1⟩N ) (3)

• Universal Quantum Computation (DiVincenzo et al., 2000): Any quantum algorithm can
be implemented on a cluster state through a sequence of single-qubit measurements and
classical feedforward. Logical quantum gates are implemented by performing measurements
on the qubits in the cluster state.

• Entanglement Distribution (Inagaki et al., 2013): Cluster states can be used to distribute
entanglement across nodes in a quantum network for various protocols.

• Quantum Communication (Gisin & Thew, 2007): Cluster states enable protocols like
quantum teleportation and superdense coding over a network.

• Error Correction and Fault Tolerance Egan et al. (2021): Use redundancy and entan-
glement in cluster states to detect and correct errors through syndrome measurements and
classical processing.

• Resource Sharing (Qian et al., 2015): Cluster states enable the sharing of quantum
resources (e.g., entanglement) across different parts of a quantum network. Different parts of
a cluster state can be used for different tasks such as entanglement swapping, teleportation,
and secure communication.

• Generating Cluster States (Rohde & Barrett, 2007): Cluster states are built upon pair
wise entanglement. For this paper, we particularly focus on generating entanglement using
spin-photon interfaces and beam splitter. An example of a spin-photon interface is an
atom-cavity system. Here, atomic system has the spin qubit whereas the cavity has the
photonic qubit. Since the atom and cavity is coupled, a spin-photon interface generates
entanglement between the spin qubit and the photonic qubit.
If we consider two spin-photon interfaces A and B, the photons generated by them are passed
through a beam splitter. When photons from two sources pass through the beam splitter,
they interfere and leads to clicks in the detectors. Heralding on the clicks is equivalent to
projecting the photonic qubits on a Bell-basis. Since these photonic qubits are entangled
to the spins A and B individually, projecting the photonic qubits into Bell basis, leaves a
residual entanglement between spin A and B.
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A.7 FORMALISM OF ATOM-CAVITY INTERACTION (JANITZ ET AL., 2020)

• Atom-Cavity Systems: The interaction of a two-level atom with a single mode of a quantized
electromagnetic field in a cavity is described by the Jaynes-Cummings Hamiltonian:

ĤJC =
ℏω0

2
σ̂z + ℏωâ†â+ ℏg(σ̂+â+ σ̂−â

†) (4)

where ω0 is the transition frequency of the two-level atom, ω is the frequency of the cavity
mode, g is the coupling strength between the atom and the cavity mode, σ̂z is the Pauli
z-operator for the two-level atom, σ̂+ and σ̂− are the raising and lowering operators for the
atomic states, respectively, â† and â are the creation and annihilation operators for the cavity
photons. This formalism has no direct classical counterpart but can be seen as analogous to
a classical resonator coupled to a harmonic oscillator.

• Rabi Oscillations: These are coherent oscillations in the probability amplitude of the atomic
states due to their interaction with the cavity mode.

• Purcell Enhancement: The interaction of an atom with a cavity can significantly modify
the spontaneous emission properties of the atom, a phenomenon known as the Purcell effect.
Purcell Factor: The enhancement of the spontaneous emission rate Γ in the presence of a
cavity is quantified by the Purcell factor FP :

Γcav/Γfree = FP =
3

4π2

(
λ

n

)3
Q

V
(5)

where Γcav and Γfree is the spontaneous emission rate of the atom in cavity and free space
respectively, λ is the vacuum wavelength of the emitted light, n is the refractive index of the
medium, Q is the quality factor of the cavity, which measures the sharpness of the resonance,
V is the mode volume of the cavity.
Physical Interpretation: The Purcell factor indicates how much the emission rate is enhanced
due to the cavity. A high Q/V ratio means that the cavity strongly enhances the interaction
between the atom and the electromagnetic field, increasing the emission rate. This is
particularly useful in applications like single-photon sources and quantum information
processing.

A.8 LINDBLAD EQUATION OF MOTION FOR OPEN QUANTUM SYSTEMS (SCULLY & ZUBAIRY,
1997)

• Open Quantum Systems: Quantum systems interacting with their environment are de-
scribed by the Lindblad master equation, which includes both unitary and dissipative
dynamics. The dissipative dynamics is also referred to as the process of decoherence.
To have an operational and useful qubit, one mainly requires three counter-acting abilities:
(1) Control qubit: to efficiently control (initialize, manipulate, readout) the qubit
(2) Memory qubit: to store quantum information in the qubit
(3) Communication qubit: to transmit quantum information between multiple locations
(1) requires qubit to have controlled interaction with the environment which also leads to
some amount of decoherence, whereas (2) demands qubits to be completely isolated from
the environment to increase the storage time (also known as T1 and T2). On the other hand,
(3) requires to store quantum information in the type of qubits which can travel fast between
different spatial locations.
In order to resolve each of these points in a single system, we use a spin-photon interface
with the following set of qubits:
(1) Electron-spin qubit: color-center defects have electronic-energy level structure which
closely resembles to that of a two level structure, and is efficiently controllable by microwave
B-field with high fidelity. Hence, they are ideal as a control qubit, but they suffer decoherence
due to their coupling with the environment.
(2) Nuclear spin qubit: defect centers also have nuclear spins which are isolated from the
environment and hence have low decoherence. Using hyperfine coupling, the electron spin
qubit and nuclear spin qubit can interact and exchange quantum information. This makes
nuclear spins ideal for quantum memory purposes.
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(3) Photon qubit: implanting a color center qubit in an optical cavity, couples the electron
spin qubit with a photon qubit, realizing a spin-photon interface.
This architecture, gives the ability to exchange quantum information between control,
memory and communication qubits and use each to the best of their abilities.

• Lindblad Master Equation: The Lindblad equation for the density matrix ρ is:

dρ

dt
= − i

ℏ
[H, ρ] +

∑
k

(
LkρL

†
k − 1

2
{L†

kLk, ρ}
)

(6)

Here, Lk are the Lindblad operators representing various environmental interactions, such
as decay or dephasing.

• Interpretation: The first term − i
ℏ [H, ρ] represents the coherent evolution, while the second

term accounts for the dissipative processes due to the environment.
• Example: For spontaneous emission in a two-level atom, the Lindblad operator is L =√

γσ̂−, where γ is the decay rate and σ̂− is the lowering operator.

A.9 QUANTUM MONTE-CARLO/JUMP METHOD (MØLMER ET AL., 1993)

• Quantum Jump Method: Density matrix formalism deals with the ensemble average over
multiple realizations of the system evolution, whereas the Quantum Jump (Monte-Carlo)
method allows to simulate the system dynamics individually. Environment is continuously
monitored in the form of quantum measurements (in our case detecting photon clicks in
detector), and each measurement leads to collapsing of wavefunction to a pure state.

• Non-Hermitian Evolution: The evolution above is described by Schrödinger equation with
a non-Hermitian effective Hamiltonian:

Heff = Hsys −
iℏ
2

∑
n

C†
nCn (7)

where Cn are the collapse operators each corresponding to irreversible processes present in
the system, with rate γn. Due to the non-Hermitian nature of the Hamiltonian, the norm of
the wavefunction reduces in a small time δt, given by ⟨ψ(t+ δt)|ψ(t+ δt)⟩ = 1 - δp, where

δp = δt
∑
n

⟨ψ(t)|C†
nCn|ψ(t)⟩ (8)

• Collapsing of the Wavefunction: If there is a quantum jump registered by environmental
measurements, for example photon emitted by the atom-cavity system being detected by the
photodetector, it leads to a quantum jump to the state |ψ(t+ δt)⟩, obtained by projecting
the previous state |ψ(t)⟩ via the collapse operator Cn corresponding to the measurement:

|ψ(t+ δt)⟩ = Cn|ψ(t)⟩
⟨ψ(t)|C†

nCn|ψ(t)⟩1/2
(9)

Similarly, the probability of collapse due to the ith collapse operator Ci is given by:

Pi(t) =
⟨ψ(t)|C†

iCi|ψ(t)⟩
δp

(10)

• QuTiP algorithm (qut, 2011): Quantum Monte Carlo evolution is tedious, therefore QuTiP
uses the following algorithm to simulate the system:
1. Initialization: Start from an initial pure state |ψ(0)⟩.
2. Random number selection: Choose a random number r between 0 and 1, which would
represent the probability that a quantum jump occurs.
3. Integration: Integrate the Schrödinger equation using the effective Hamiltonian Heff in
Eq. 7 until a time τ , such that ⟨ψ(τ)|ψ(τ)⟩ = r, at which point a quantum jump occurs.
4. Selecting the collapse operator: Select the collapse operator Ck such that k is the
smallest integer which satisfies:

k∑
i=1

Pi(τ) ≥ r. (11)
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5. Renormalization: After projecting the state using the collapse operator Ck, obtain the
new renormalized state using Eq. 9.

6. Repeat: Using the state obtained in step (5) as an initial state, repeat from step (1), unless
the simulation time is reached.

A.10 BARRETT-KOK (BK) PROTOCOL OVERVIEW (BARRETT & KOK, 2005)

• Purpose: The Barrett-Kok protocol aims to generate high-fidelity entangled states between
distant qubits, crucial for quantum communication and distributed quantum computing.
Fig. 6(a) shows the experimental layout for implementing the BK protocol. Fig. 6(b) shows
the energy-level diagram of the electron spin qubit in a group-IV defect center in diamond.

• Entanglement Generation: The protocol typically involves using atom-cavity systems
and beam-splitter to mediate entanglement between remote qubits. Readers are suggested
to simultaneously refer to Fig. 6 to understand the experimental implementation of the
following steps. The steps include:

1. Initialization: The electron spin qubit is initialized to the state |g↓⟩+|g↑⟩
2 using laser and

microwave antenna. Proceed to step 2.

2. Interaction: System A(B) is equivalent to an atom-cavity system, therefore the Hamil-
tonian H0 in Eq. 12 and Fig. 7 is similar in form to the Jaynes-Cummings Hamiltonian in
Eq. 4. Proceed to step 3.

3. System Evolution: Both the system evolves w.r.t the Hamiltonian described in step 2.
The evolution leads to creation of photon qubits which pass through optical fibres due to its
coupling with the optical cavity. Proceed to step 4.

4. Beamsplitter: The photons emitted by two atom-cavity system passes through the two
input ports of the 50:50 beamsplitter. Beam-splitter erases the which-path information of
the incoming photons due to interference. Proceed to step 5.

5. Monitoring: Start the round by waiting for upto time twait for a photo-detection event
in detectors D1 and D2. Monitor the clicks on the detectors. If this is first round and there
is no click, the protocol fails and re-start from step 1. If this is first round and if there is
a single photo-detection event in this round, wait further for time trelax for the remaining
excitation in the system to relax, then proceed to step 6. If this is second round and there is
no click, the protocol fails and re-start from step 1. If this is second round and if there is
a single photo-detection event in this round, wait further for time trelax for the remaining
excitation in the system to relax, then proceed to step 7.

6. Conditional Operations: Apply an X gate (Appendix A.3) on the electron spin qubit
using a MW antenna. Go back to step 3.

7. Additional swap: Reaching this step means a successful entanglement attempt between
electron spin qubit A and B. An additional step which is not included in the original BK
scheme, but something which we propose in our protocol is the step of entanglement
swapping, which means implementing electron-nuclear quantum SWAP gates via MW
antenna, to swap the state from electron spin qubit to nuclear spin qubit, which serves as a
quantum memory. Thus, by swap gates the entanglement between spin qubits is transferred
to that between the nuclear spin qubits at two distant nodes A and B.

B QMCS SIMULATION

The quantum simulation of the Barrett-Kok protocol starts by specifying the parameters for an atom
within a cavity. A comprehensive detail of the entire protocol is presented in Appendix A.10, Fig. 5,
6a, 7 and in Alg. 1. The primary Hamiltonian for a dual atom-cavity system, relative to a frame
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{

Figure 5: Finite State Machine (FSM) representation of the BK protocol. This loop from START
to END corresponds to a single succesful entanglement attempt of the protocol. Here Si represents
the steps mentioned in Appendix A.10. The variable R corresponds to the round number, and C = N
means no click, C = Y means single photon click.

rotating at ω0, is expressed as follows (Appendix A.7):

Ĥ0 = ℏ∆ωc,Aâ
†â+ ℏ∆ωc,B b̂

†b̂+
ℏ∆ω↓,A

2
σ̂z↓,A

+
ℏ∆ω↑,A

2
σ̂z↑,A +

ℏ∆ω↓,B

2
σ̂z↓,B +

ℏ∆ω↑,B

2
σ̂z↑,A

− gA(σ̂
+
↓,Aâ+ σ̂−

↓,Aâ
† + σ̂+

↑,Aâ+ σ̂−
↑,Aâ

†)

− gB(σ̂
+
↓,B b̂+ σ̂−

↓,B b̂
† + σ̂+

↑,B b̂+ σ̂−
↑,B b̂

†)

+ ℏΩA(t)(σ̂
+
↓,A + σ̂−

↓,A + σ̂+
↑,A + σ̂−

↑,A)

+ ℏΩB(t)(σ̂
+
↓,B + σ̂−

↓,B + σ̂+
↑,B + σ̂−

↑,B).

(12)

The atom is modeled as a 4-level system {|g ↓⟩, |g ↑⟩, |u ↓⟩, |u ↑⟩} as seen in Fig. 6b, where we use
the following nomenclatures for the operators and coefficients:

σ̂z↓ ≡ (|u ↓⟩⟨u ↓ | − |g ↓⟩⟨g ↓ |) (13a)
σ̂z↑ ≡ (|u ↑⟩⟨u ↑ | − |g ↑⟩⟨g ↑ |) (13b)

σ̂+
↓ ≡ |u ↓⟩⟨g ↓ | (13c)

σ̂−
↓ ≡ |g ↓⟩⟨u ↓ | (13d)

σ̂+
↑ ≡ |u ↑⟩⟨g ↑ | (13e)

σ̂−
↑ ≡ |g ↑⟩⟨u ↑ | (13f)

σ̂−
↓↑ ≡ |g ↑⟩⟨u ↓ | (13g)

σ̂−
↑↓ ≡ |u ↑⟩⟨g ↓ | (13h)

∆ωc = ωcav − ω0 (13i)
∆ω↓ = ω↓ − ω0 (13j)
∆ω↑ = ω↑ − ω0 (13k)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where labels A and B correspond to system A and B, â (â†) and b̂ (b̂†) correspond to the annihilation
(creation) operator for cavity A and B respectively, ωcav is the cavity frequency, ω↓ is the frequency
of the transition |g ↓⟩ ↔ |u ↓⟩, ω↑ is the frequency of the transition |g ↑⟩ ↔ |u ↑⟩, gA and gB is
the atom-cavity coupling strength for system A and B respectively, ΩA(t) and ΩB(t) is the gaussian
laser-driving strength for atom A and B respectively. The pulse envelope ΩA(B)(t) is selected so
that the laser drive performs a perfect optical σX -gate in the basis {|g⟩, |u⟩}. To incorporate losses
into the system, we use the Lindblad equation of motion for the density matrix and the Lindblad
superoperators γiLi (Appendix A.8):

d

dt
ρ =

1

iℏ

[
Ĥ0, ρ

]
+
∑
i

γiLi(ρ) (14)

where
γiLi(ρ) =

γi
2

(
2ĉiρĉ

†
i −

{
ĉ†i ĉi, ρ

})
(15)

ĉi ∈
{
σ̂−
↓,A, σ̂

−
↓,B , σ̂

−
↑,A, σ̂

−
↑,B , σ̂

−
↓↑,A, σ̂

−
↓↑,B , σ̂

−
↑↓,A, σ̂

−
↑↓,B , σ̂z↓,A, σ̂z↓,B , σ̂z↑,A, σ̂z↑,B , â, b̂,

â+ b̂√
2
,
â− b̂√

2

} (16)

γi ∈
{
γA, γB , γA, γB ,

γA
χA

,
γB
χB

,
γA
χA

,
γB
χB

,Kdep
A ,Kdep

B ,Kdep
A ,Kdep

B , κA, κB ,K
det
A ,Kdet

B

}
, (17)

where γA(B) corresponds to the spontaneous decay rate of atom A(B), χA(B) corresponds to the
cyclicity of the spin-conserving transitions of atom A(B), κA(B)+K

det
A(B) corresponds to the decay rate

of cavity A(B),Kdep
A(B) corresponds to the optical-dephasing rate of atom A(B),Kdet

A(B) corresponds to
the coupling rate to detector A(B). We assume that ∆ω↑ >> ∆ω↓, because in this limit the coupling
of the optical transition |g ↑⟩ ↔ |u ↑⟩ to the laser and cavity can be ignored as it is highly detuned,
which simplifies the QMC simulation and reduces the run-time. The collapse operators of interest
are:

ĉA =
â+ b̂√

2
, ĉB =

â− b̂√
2

(18)

The occurrence of collapse operators ĉA and ĉB corresponds to getting a click in detectors A and B,
respectively, which is important information as seen in Fig. 6. Given a set of simulation parameters,
we can run a quantum Monte Carlo solver (Appendix A.9) with ntraj number of trajectories for the
Hamiltonian Ĥ0. The solution leads to multiple quantum trajectories, which we divide based on
whether the operators ĉA or ĉB occurred or not. For trajectories with a click on detectors A or B, we
perform a conditional microwave (MW) Hamiltonian Ĥπ on the final state, given by:

Ĥπ = ℏΩMW (t)(σ̂+
MW,A + σ̂−

MW,A)

+ ℏΩMW (t)(σ̂+
MW,B + σ̂−

MW,B),
(19)

where ΩMW (t) is microwave gaussian driving strength for the transitions |g ↓⟩ ↔ |g ↑⟩, and σ̂+
MW,A

(σ̂−
MW,A) and σ̂+

MW,B (σ̂−
MW,B) corresponds to the raising: |g ↑⟩⟨g ↓⟩| (lowering: |g ↓⟩⟨g ↑ |)

operator for the MW transitions of atom A and B respectively. The pulse envelope ΩMW (t) is
selected so that Ĥπ performs a perfect σX -gate in the basis {|g ↓⟩, |g ↑⟩}. After applying Ĥπ, we
apply Ĥ0 again. This again leads to three possibilities of getting clicks on detectors A, B, or no clicks.

In this scheme, we applied Ĥ0 twice and, of all quantum trajectories, we classify only those trajectories
as good which leads to a click on detector A or B after each application of Ĥ0. The trajectory picture
can be seen in the Fig. 7. We can divide the good trajectories into 4 types: {AA, AB, BA, BB}. AA
means detector A clicks both times, AB means detector A clicks first and detector B clicks second,
BA means detector B clicks first and detector A clicks second, and BB means detector B clicks both
times. QMCS gives the statistics for each of these trajectory types: {nAA, nAB , nBA, nBB}. For
each of the good trajectories, we take the partial trace over the photon degrees of freedom and average
over the density matrix for the 4 different types of good trajectories giving: {ρAA, ρAB , ρBA, ρBB}.
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Using these values, we obtain the following expression for the fidelity of the Bell pair F and the
success probability R:

F1 = F (ρAA,Φ+), R1 = nAAN/n2traj

F2 = F (ρAB ,Φ−), R2 = nABN/n2traj

F3 = F (ρBA,Φ−), R3 = nBAN/n2traj

F4 = F (ρBB ,Φ−), R4 = nBBN/n2
traj,

(20)

where Φ+(−) are the Bell states given by (Appendix A.5):

Φ+(−) =
| ↑↓⟩AB ± | ↓↑⟩AB√

2
, (21)

and F is the fidelity function such that for any two density matrices ρ1 and ρ2 we have:

F (ρ1, ρ2) = Tr

(√√
ρ1ρ2

√
ρ1

)
, (22)

and ntraj is the number of trajectories for which the QMCS runs for, and N is a normalization constant.
Using this, we evaluate the cost function as follows:

C = min
i
(1− Fie

−1/rentTmemRi). (23)

One of the four branches (i = 1, 2, 3, 4) is selected which minimizes the cost function above, to
report the fidelity (Fi) and success rate (rentRi) of the established entanglement between the qubit
pair.
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Algorithm 1 QMCS BK Protocol
Initialize system and simulation parameter set {p}
Define spin-photon operators for systems A and B
Define Hamiltonians Ĥ0 and Ĥπ

Define the collapse operator set with ĉA and ĉB

function COST-FUNCTION({x})
Initialize ρ and counts
Run mcsolver for Ĥ0 using {x} and {p}
for (i ≤ ntraj):

if (ĉA happened):
Run mesolver for Ĥπ

Run mcsolver for Ĥ0

for (j ≤ ntraj):
if (ĉA happened):

Append final state to ρ[0]
Increment counts[0]

if (ĉB happened):
Append final state to ρ[1]
Increment counts[1]

if (ĉB happened):
Run mesolver for Ĥπ

Run mcsolver for Ĥ0

for (k ≤ ntraj):
if (ĉA happened):

Append final state to ρ[2]
Increment counts[2]

if (ĉB happened):
Append final state to ρ[3]
Increment counts[3]

Evaluate C using Eq. 23
return C

end function
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: Electron Spin Qubit

: Nuclear Spin Qubit

: Beam Splitter (BS)

: Single Photon Detector

: Photon Qubit

: Diamond with
color center defect

System A

System B

: Optical Cavity with field

: Laser

: Microwave Antenna

b

a

Figure 6: Protocol layout example. a, System A (B) comprises of an optical cavity with atomic qubit
(diamond based color center defect as example). This atomic qubit has an electron spin qubit and a
nuclear spin qubit. Laser is used to initialize and readout the electron spin qubit. The microwave
antenna is used to implement quantum gates on the electron and nuclear spin qubit. The optical
cavity is coupled to optical fibers allowing the transmission of the leaked photon qubit. The two
photon qubits pass through the input ports of the beam splitter. The detectors D1 and D2 connected
to the output ports of the beam splitter are monitored for a photon click. b, Four-level atomic system
illustration for a atomic qubit (diamond based color center defect as an example). In color show the
operators, blue, red, and orange representing the spin-conserving, spin-flipping, and MW transitions
respectively.
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Selecting the
minimum

Quantum 
Monte-Carlo

Solver

: Main Hamiltonian

: Conditional Hamiltonian

: Clicks on Det A

:  Clicks on Det B

:  No Clicks

Quantum 
Trajectories

Figure 7: QMCS visualization. Barrett-Kok protocol visualization.
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