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Abstract

Transformer-based trackers have achieved high accuracy on standard benchmarks.
However, their efficiency remains an obstacle to practical deployment on both GPU
and CPU platforms. In this paper, to mitigate this issue, we propose a fully trans-
former tracking framework based on the successful MixFormer tracker [14], coined
as MixFormerV2, without any dense convolutional operation or complex score
prediction module. We introduce four special prediction tokens and concatenate
them with those from target template and search area. Then, we apply a unified
transformer backbone on these mixed token sequence. These prediction tokens are
able to capture the complex correlation between target template and search area
via mixed attentions. Based on them, we can easily predict the tracking box and
estimate its confidence score through simple MLP heads. To further improve the
efficiency of MixFormerV2, we present a new distillation-based model reduction
paradigm, including dense-to-sparse distillation and deep-to-shallow distillation.
The former one aims to transfer knowledge from the dense-head based MixViT
to our fully transformer tracker, while the latter one is for pruning the backbone
layers. We instantiate two MixForemrV2 trackers, where the MixFormerV2-B
achieves an AUC of 70.6% on LaSOT and AUC of 56.7% on TNL2k with a high
GPU speed of 165 FPS, and the MixFormerV2-S surpasses FEAR-L by 2.7%
AUC on LaSOT with a real-time CPU speed.

1 Introduction

Visual object tracking has been a fundamental and long-standing task in computer vision, which aims
to locate the object in a video sequence, given its initial bounding box. It has a wide range of practical
applications, which often require for low computational latency. So it is important to design a more
efficient tracking architecture while maintaining high accuracy.

Recently, the transformer-based one-stream trackers [7, 14, 55] attain excellent tracking accuracy
than the previous Siamese-based ones [2, 10, 11], due to the unified modeling of feature extraction
and target integration within a transformer block, which allows both components to benefit from
the transformer development (e.g. ViT [18], self-supervised pre-training [24] or contrastive pre-
training [43]). However for these trackers, inference efficiency, especially on CPU, is still the main
obstacle to practical deployment. Taking the state-of-the-art tracker MixViT [15] as an instance, its
pipeline contains i) transformer backbone on the token sequence from target template and search
area, ii) dense corner head on the 2D search region for regression and iii) extra complex score
prediction module for classification (i.e., estimating the box quality for reliable online samples
selection). To achieve a high-efficiency tracker, there are still several issues on the design of MixViT.
First, the dense convolutional corner head still exhibits a time-consuming design, as implied in Tab 1.
This is because it densely estimates the probability distribution of the box corners through a total of
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Layer Head Score GPU FPS GFLOPs
8 Pyram. Corner ✓ 90 27.2
8 Pyram. Corner - 120(↑ 33.3%) 26.2
8 Token-based - 166(↑ 84.4%) 22.5

Table 1: Efficiency analysis on MixViT-B with dif-
ferent heads. ‘Pyram. Corner’ represents for the
pyramidal corner head [15].

Layer MLP Ratio Image Size CPU FPS GPU FPS

4
1 288 21 262

224 30 280

4 288 12 255
224 15 275

8
1 288 12 180

224 16 190

4 288 7 150
224 8 190

12
1 288 8 130

224 12 145

4 288 4 100
224 6 140

Table 2: Efficiency analysis on MixViT-B with dif-
ferent backbone settings. The employed prediction
head is plain corner head [14] for the analysis.
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Figure 1: Comparison with state-of-the-art
trackers in terms of AUC performance, model
Flops and GPU Speed on LaSOT. The cir-
cle diameter is in proportion to model flops.
MixFormerV2-B surpasses existing trackers
by a large margin in terms of both accuracy and
inference speed. MixFormerV2-S achieves ex-
tremely high tracking speed of over 300 FPS
while obtaining competitive accuracy com-
pared with other efficient trackers [4, 5].

ten convolutional layers on the high-resolution 2D feature maps. Second, to deal with online template
updating, an extra complex score prediction module composed of precise RoI pooling layer, two
attention blocks, and a three-layer MLP is required for improving online samples quality, which
largely hinders its efficiency and simplicity of MixViT.

To avoid the dense corner head and complicated score prediction module, we propose a new fully
transformer tracking framework—MixFormerV2 without any dense convolutional operation. Our
MixFormerV2 yields a very simple and efficient architecture, which is composed of a transformer
backbone on the mixed token sequence and two simple MLP heads on the learnable prediction tokens.
Specifically, we introduce four special learnable prediction tokens and concate them with the original
tokens from target template and search area. Like the CLS token in standard ViT, these prediction
tokens are able to capture the complex relation between target template and search area, serving as a
compact representation for subsequent regression and classification. Based on them, we can easily
predict the target box and confidence score through simple MLP heads, which results in an efficient
fully transformer tracker. Our MLP heads directly regress the probability distribution of four box
coordinates, which improves the regression accuracy without increasing overhead.

To further improve efficiency of MixFormerV2, we present a new model reduction paradigm based
on distillation, including dense-to-sparse distillation and deep-to-shallow distillation. The dense-
to-sparse distillation aims to transfer knowledge from the dense-head based MixViT, to our fully
transformer tracker. Thanks to the distribution-based regression design in our MLP head, we can
easily adopt logits mimicking strategy for distilling MixViT trackers to our MixFormerV2. Based on
the observation in Tab. 2, we also exploit the deep-to-shallow distillation to prune our MixFormerV2.
We devise a new progressive depth pruning strategy by following a critical principle that constraining
the initial distribution of student and teacher trackers to be as similar as possible, which can augment
the capacity of transferring knowledge. Specifically, instructed by the frozen teacher model, some
certain layers of a copied teacher model are progressively dropped and we use the pruned model as
our student initialization. For CPU-realtime tracking, we further introduce an intermediate teacher
model to bridge the gap between the large teacher and small student, and prune hidden dim of MLP
based on the proposed distillation paradigm.

Based on the proposed model reduction paradigm, we instantiate two types of MixFormerV2 trackers,
MixFormerV2-B and MixFormerV2-S. As shown in Fig. 1, MixFormerV2 achieves better trade-off
between tracking accuracy and inference speed than previous trackers. Especially, MixFormerV2-B
achieves an AUC of 70.6% on LaSOT with a high GPU speed of 165 FPS, and MixFormerV2-S
outperforms FEAR-L by 2.7% AUC on LaSOT with a real-time CPU speed. Our contributions are
two-fold: 1) We propose the first fully transformer tracking framework without any convolution
operation, dubbed as MixFormerV2, yielding a more unified and efficient tracker. 2) We present a
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new distillation-based model reduction paradigm to make MixFormerV2 more effective and efficient,
which can achieve high-performance tracking on platforms with GPUs or CPUs.

2 Related Work

Efficient Visual Object Tracking. In recent decades, the visual object tracking task has witnessed
rapid development due to the emergence of new benchmark datasets[20, 28, 41, 42, 48] and better
trackers [2, 10, 12–14, 32, 52, 55]. Researchers have tried to explore efficient and effective track-
ing architectures for practical applications, such as siamese-based trackers [2, 31, 32, 50], online
trackers [3, 16] and transformer-based trackers [10, 37, 52]. Benefiting from transformer structure
and attention mechanism, recent works [7, 14, 55] on visual tracking are gradually abandoning
traditional three-stage model paradigm, i.e., feature extraction, information interaction and location
head. They adopted a more unified one-stream model structure to jointly perform feature extraction
and interaction, which turned out to be effective for modeling visual object tracking task. However,
some modern tracking architectures are too heavy and computational expensive, making it hard
to deploy in practical applications. LightTrack [53] employed NAS to search the a light Siamese
network, but its speed was not extremely fast on powerful GPUs. FEAR [5], HCAT [9], E.T.Track [4]
designed more efficient framework, however were not suitable for one-stream trackers. We are the
first to design efficient one-stream tracker so as to achieve good accuracy and speed trade-off.

Knowledge Distillation. Knowledge Distillation [27] was proposed to learn more effective student
models with teacher model’s supervision. In the beginning, KD is applied in classification problem,
where KL divergence is used for measuring the similarity of teacher’s and student’s predicted
probability distribution. For regression problem like object detection, feature mimicking [1, 23, 33] is
frequently employed. LD [57] operate logits distillation on bounding box location by converting Dirac
delta distribution representation to probability distribution representation of bounding box, which
well unifies logits distillation and location distillation. In this work, we exploit some customized
strategies to make knowledge distillation more suitable for our tracking framework.

Vision Transformer Compression. There exist many general techniques for the purpose of speed-
ing up model inference, including model quantization [22, 47], knowledge distillation [27, 36],
pruning [25], and neural architecture search [19]. Recently many works also focus on compressing
vision transformer models. For example, Dynamic ViT [44], Evo-ViT[51] tried to prune tokens in
attention mechanism. AutoFormer [8], NASViT [21], SlimmingViT [6] employed NAS technique to
explore delicate ViT architecture. ViTKD [54] provided several ViT feature distillation guidelines
but it focused on compressing the feature dimension instead of model depth. MiniViT [56] applied
weights sharing and multiplexing to reduce model parameters. Since one-stream trackers highly rely
on training-resource-consuming pre-training, we resort to directly prune the layers of our tracker.

3 Method

In this section, we first present the MixFormerV2, which is a more efficient and unified fully
transformer tracking framework. Then we describe the proposed distillation-based model reduction,
including dense-to-sparse distillation and deep-to-shallow distillation.

3.1 Fully Transformer Tracking: MixFormerV2

The proposed MixFormerV2 is a fully transformer tracking framework without any convolutional
operation and complex score prediction module. Its backbone is a plain transformer on the mixed
token sequence of three types: target template token, search area token, and learnable prediction
token. Then, simple MLP heads are placed on top for predicting probability distribution of the
box coordinates and corresponding target quality score. Compared with other transformer-based
trackers (e.g. TransT [10], STARK [52], MixFormer [14], OSTrack [55] and SimTrack [7]), our
MixFormerV2 streamlines the tracking pipeline by effectively removing the customized convolutional
classification and regression heads for the first time, which yields a more unified, efficient and flexible
tracker. The overall architecture is depicted in Fig. 2. With inputting the template tokens, the search
area tokens and learnable prediction tokens, MixFormerV2 predicts the target bounding boxes and
quality score in an end-to-end manner.
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Figure 2: MixFormerV2 Framework. MixFormerV2 is a fully transformer tracking framework,
composed of a transformer backbone and two simple MLP heads on the learnable prediction tokens.

Prediction-Token-Involved Mixed Attention. Compared to original slimming mixed attention [15]
in MixViT, the key difference lies in the introduction of the special learnable prediction tokens, which
are used to capture the correlation between the target template and search area. These prediction
tokens can progressively compress the target information and used as a compact representations for
subsequent regression and classification. Specifically, given the concatenated tokens of multiple
templates, search and four learnable prediction tokens, we pass them into N layers of prediction-
token-involved mixed attention modules (P-MAM). We use qt, kt and vt to represent template
elements (i.e. query, key and value) of attention, qs, ks and vs to represent search region, qe, ke and
ve to represent learnable prediction tokens. The P-MAM can be defined as:

ktse = Concat(kt, ks, ke), vtse = Concat(vt, vs, ve),

Attent = Softmax(
qtk

T
t√
d
)vt,Attens = Softmax(

qsk
T
tse√
d

)vtse,Attene = Softmax(
qek

T
tse√
d

)vtse

(1)
where d represents the dimension of each elements, Attent, Attents and Attene are the attention
output of the template, search and the learnable prediction tokens respectively. Similar to the original
MixFormer, we use the asymmetric mixed attention scheme for efficient online inference. Like the
CLS tokens in standard ViT, the learnable prediction tokens automatically learn on the tracking
dataset to compress both the template and search information.

Direct Prediction Based on Tokens. After the transformer backbone, we directly use the prediction
tokens to regress the target location and estimate its reliable score. Specifically, we exploit the
distribution-based regression based on the four special learnable prediction tokens. In this sense, we
regress the probability distribution of the four bounding box coordinates rather than their absolute
positions. Experimental results in Section 4.2 also validate the effectiveness of this design. As the
prediction tokens can compress target-aware information via the prediction-token-involved mixed
attention modules, we can simply predict the four box coordinates with a same MLP head as follows:

P̂X(x) = MLP(tokenX), X ∈ {T ,L,B,R}. (2)
In implementation, we share the MLP weights among four prediction tokens. For predicted target
quality assessment, the Score Head is a simple MLP composed of two linear layers. Specifically,
firstly we average these four prediction tokens to gather the target information, and then feed the
token into the MLP-based Score Head to directly predict the confidence score s which is a real
number. Formally, we can represent it as:

s = MLP (mean (tokenX)) , X ∈ {T ,L,B,R}.
These token-based heads largely reduces the complexity for both the box estimation and quality score
estimation, which leads to a more simple and unified tracking architecture.
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3.2 Distillation-Based Model Reduction

To further improve the efficiency and effectiveness of MixFormerV2, we present a distillation-based
model reduction paradigm as shown in Fig. 3, which first perform dense-to-sparse distillation for
better token-based prediction and then deep-to-shallow distillation for the model pruning.

3.2.1 Dense-to-Sparse Distillation

In MixFormerV2, we directly regress the target bounding box based on the prediction tokens to the
distribution of four random variables T ,L,B,R ∈ R, which represents the box’s top, left, bottom and
right coordinate respectively. In detail, we predict the probability density function of each coordinate:
X ∼ P̂X(x), where X ∈ {T ,L,B,R}. The final bounding box coordinates B can be derived from
the expectation over the regressed probability distribution:

BX = EP̂X
[X] =

∫
R
xP̂X(x)dx. (3)

Since the original MixViT’s dense convolutional corner heads predict two-dimensional probability
maps, i.e. the joint distribution PT L(x, y) and PBR(x, y) for top-left and bottom-right corners, the
one-dimensional version of box coordinates distribution can be deduced easily through marginal
distribution:

PT (x) =

∫
R
PT L(x, y)dy, PL(y) =

∫
R
PT L(x, y)dx

PB(x) =

∫
R
PBR(x, y)dy, PR(y) =

∫
R
PBR(x, y)dx.

(4)

Herein, this modeling approach can bridge the gap between the dense corner prediction and our
sparse token-based prediction, i.e., and the regression outputs of original MixViT can be regarded as
soft labels for dense-to-sparse distillation. Specifically, we use MixViT’s outputs PX as in Equation 4
for supervising the four coordinates estimation P̂X of MixFormerV2, applying KL-Divergence loss
as follows:

Lloc =
∑

X∈{T ,L,B,R}

LKL(P̂X , PX). (5)

In this way, the localization knowledge is transferred from the dense corner head of MixViT to the
sparse token-based head of MixFormerV2.

3.2.2 Deep-to-Shallow Distillation

For further improving efficiency, we focus on pruning the transformer backbone. However, designing
a new light-weight backbone is not suitable for fast one-stream tracking. A new backbone of one-
stream trackers often highly relies on large-scale pre-training to achieve good performance, which
requires for huge amounts of computation. Therefore, we resort to directly cut down some layers
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of MixFormerV2 backbone based on both the feature mimicking and logits distillation, as can be
seen in Fig. 3:Stage2. Let FS

i , FT
j ∈ Rh×w×c denote the feature map from student and teacher,

the subscript represents the index of layers. For logits distillation, we use KL-Divergence loss. For
feature imitation, we apply L2 loss:

Lfeat =
∑

(i,j)∈M

L2(F
S
i , FT

j ), (6)

where M is the set of matched layer pairs need to be supervised. Specifically, we design a progressive
model depth pruning strategy for distillation.

Progressive Model Depth Pruning. Progressive Model Depth Pruning aims to compress Mix-
FormerV2 backbone through reducing the number of transformer layers. Since directly removing
some layers could lead to inconsistency and discontinuity, we explore a progressive method for model
depth pruning based on the feature and logits distillation. Specifically, instead of letting teacher to
supervise a smaller student model from scratch, we make the original student model a complete
copy of the teacher model. Then, we will progressively eliminate certain layers of student and make
the remaining layers to mimic teacher’s representation during training with supervision of teacher.
This design allows the initial representation of student and teacher to keep as consistent as possible,
providing a smooth transition scheme and reducing the difficulty of feature mimicking.

Formally, let xi denote output of the i-th layer of MixFormerV2 backbone, the calculation of attention
block can be represented as below (Layer-Normalization operation is omitted in equation):

x′
i = ATTN(xi−1) + xi−1,

xi = FFN(x′
i) + x′

i

= FFN(ATTN(xi−1) + xi−1) + ATTN(xi−1) + xi−1,

(7)

Let E be the set of layers to be eliminated in our student network, we apply a decay rate γ on the
weights of these layers:

xi = γ(FFN(ATTN(xi−1) + xi−1) + ATTN(xi−1)) + xi−1, i ∈ E . (8)

During the first m epochs of student network training, γ will gradually decrease from 1 to 0 in the
manner of cosine function:

γ(t) =

0.5×
(
1 + cos

(
t

m
π

))
, t ≤ m,

0, t > m.

(9)

This means these layers in student network are gradually eliminated and finally turn into identity
transformation, as depicted in Figure 4. The pruned student model can be obtained by simply
removing layers in E and keeping the remaining blocks.

Intermediate Teacher. For distillation of an extremely shallow model (4-layers MixFormerV2), we
introduce an intermediate teacher (8-layers MixFormerV2) for bridging the deep teacher (12-layers
MixFormerV2) and the shallow one. Typically, the knowledge of teacher may be too complex for a
small student model to learn. So we introduce an intermediate role serving as teaching assistant to
relieve the difficulty of the extreme knowledge distillation. In this sense, we divide the problem of
knowledge distillation between teacher and small student into several distillation sub-problems.

MLP Reduction. As shown in Table 2, one key factor affecting the inference latency of tracker
on CPU device is the hidden feature dim of MLP in Transformer block. In other words, it becomes
the bottleneck that limits the real-time speed on CPU device. In order to leverage this issue, we
further prune the hidden dim of MLP based on the proposed distillation paradigm, i.e., feature
mimicking and logits distillation. Specifically, let the shape of linear weights in the original model is
w ∈ Rd1×d2 , and the corresponding shape in the pruning student model is w′ ∈ Rd′

1×d′
2 , in which

d′1 ≤ d1, d
′
2 ≤ d2, we will initialize weights for student model as: w′ = w[: d′1, : d

′
2]. Then we apply

distillation supervision for training, letting the pruned MLP to simulate original heavy MLP.
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3.3 Training of MixFormerV2

The overall training pipeline is demonstrated in Fig. 3, performing dense-to-sparse distillation and
then deep-to-shallow distillation to yield our final efficient MixFormerV2 tracker. Then, we train
the MLP based score head for 50 epochs. Particularly, for CPU real-time tracking, we employ the
intermediate teacher to generate a shallower model (4-layer MixFormerV2) based on the proposed
distillation. Besides, we also use the designed MLP reduction strategy for further pruning the CPU
real-time tracker. The total loss of distillation training with student S and teacher T is calculated as:

L = λ1L1(B
S , Bgt) + λ2Lciou(B

S , Bgt) + λ3Ldist(S, T ), (10)

where the first two terms are exactly the same as original MixFormer’s location loss supervised by
ground truth bounding box labels, and the rest term is for aforementioned distillation.

4 Experiments

4.1 Implemented Details

Training and Inference. Our trackers are implemented using Python 3.6 and PyTorch 1.7. The
distillation training is conducted on 8 NVidia Quadro RTX 8000 GPUs. The inference process runs
on one NVidia Quadro RTX 8000 GPU and Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz. The
training datasets includes TrackingNet [42], LaSOT [20], GOT-10k [28] and COCO [35] training
splits., which are the same as MixFormer [14]. Each distillation training stage takes 500 epochs,
where the first m = 40 epochs are for progressively eliminating layers. We train the score prediction
MLP for additional 50 epochs. The batch size is 256, each GPU holding 32 samples. We use
AdamW optimizer with weight decay of 10−4. The initial learning rate is 10−4 and will be decreased
to 10−5 after 400 epochs. We use horizontal flip and brightness jittering for data augmentation.
We instantiate two types of MixFormerV2, including MixFormerV2-B of 8 P-MAM layers for
high-speed tracking on GPU platform and MixFormerV2-S of 4 P-MAM layers with MLP ratio of
1.0 for real-time tracking on CPU platform. Their numbers of parameters are 58.8M and 16.2M
respectively. The resolutions of search and template images for MixFormerV2-B are 288× 288 and
128× 128 respectively. While for MixFormerV2-S, the resolutions of search and template images
are 224× 224 and 112× 112 for real-time tracking on CPU platform. The inference pipeline is the
same as MixFormer [14]. We use the first template together with the current search region as input of
MixFormerV2. The dynamic templates are updated when the update interval of 200 is reached by
default, where the template with the highest score is selected as an online sample.

Distillation-Based Reduction. For dense-to-sparse distillation, we use MixViT-L as teacher for
training MixFormerV2-B by default. We also try to use MixViT-B as the teacher in Tab 5. Particularly,
we employ a customized MixViT-B of plain corner head and with search input size of 224×224 as the
teacher for MixFormer-S. For deep-to-shallow distillation, we use the progressive model depth pruning
strategy to produce the 8-layer MixFormerV2-B from a 12-layer one. For MixFormerV2-S, we
additionally employs intermediate teacher and MLP reduction strategies, and the process is ‘12-layers
MixFormerV2 to 8-layers MixFormerV2, then 8-layers MixFormerV2 to 4-layers MixFormerV2,
finally 4-layers MLP-ratio-4.0 MixFormerV2 to 4-layers MLP-ratio-1.0 MixFormerV2-S’.

4.2 Exploration Studies

To verify the effectiveness of our proposed framework and training paradigm, we analyze different
components of MixFormerV2 and perform detailed exploration studies on LaSOT [20] dataset.

4.2.1 Analysis on MixFormerV2 Framework

Token-based Distribution Regression. The design of distribution-based regression with special
learnable prediction tokens is the core of our MixFormerV2. We conduct experiments on different
regression methods in Tab. 3a. All models employ ViT-B as backbone and are deployed without
distillation and online score prediction. Although the pyramidal corner head obtains the best perfor-
mance, the running speed is largely decreased compared with our token-based regression head in
MixFormerV2. MixFormerV2 with four prediction tokens achieves good trade-off between perfor-
mance and inference latency. Besides, compared to the direct box prediction with one token on the
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Type Layer AUC FPS
T1 12 63.1% 112
T4 12 67.5% 110

Py-Corner. 12 69.0% 92

(a) Different regression methods.
‘T1’ denotes direct box prediction
based on one token, ‘T4’ is the pro-
posed distribution-based prediction
with 4 prediction tokens, and ‘Py-
Conrer.’ is the pyramidal corner
head as in MixViT. Models are with-
out distillation and score prediction.

Method Score. AUC FPS
Ours - 68.9% 166
Ours ✓ 70.6% 165

MixViT-B - 69.0% 92
MixViT-B ✓ 69.6% 80

(b) Quality score prediction. In
MixFormerV2, we use token-based
MLP head for sample quality score
prediction. While in MixViT, it use
an extra SPM for score prediction.
We employ MixFormerV2-B of 8
layers, with the MixViT-L as the dis-
tillation teacher, for this analysis.

Stu. Tea. Tea-AUC AUC
base - - 67.5%
base base 69.0% 68.9%
base large 71.5% 69.6%

(c) Dense-to-Sparse distillation.
The ‘base’ student denotes the
12-layers MixFormerV2 framework
without score prediction. The ‘base’
teacher is the MixViT-B and the
‘large’ teacher is the MixViT-L. ‘Tea-
AUC’ is the AUC of the teacher.
Models are without score prediction.

Log-dis. Feat-mim. AUC
- - 60.7%
✓ - 62.4%
✓ ✓ 62.9%

(d) Feature mimicking & logits
distillation. For distillation analysis,
we use the MixViT-B of 12 layers
with corner head as the teacher, and
MixViT of 4 layers as the student.

Init. method AUC
MAE-fir4 62.9%
Tea-skip4 64.4%

PMDP 64.8%

(e) Progressive model depth prun-
ing (PMDP). ‘MAE-fir4’ denotes
using first 4 layers of MAE-B for
student initialization. ‘Tea-skip4’ is
using 4 skipped layers of the teacher.

Inter. teacher AUC
- 64.8%
✓ 65.5%

(f) Intermediate teacher. For
the analysis, we use the 12-layers
MixViT-B as the teacher, 8-layers
MixViT as the intermediate teacher
and 4-layers MixViT as the student.

Epoch m AUC
30 68.3%
40 68.5%
50 68.5%

(g) Eliminating Epochs. ’Epoch
m’ indicates the number of epochs
in progressive eliminating process.
The model architecture is based on
MixFormerV2-B. Models are with-
out score prediction.

blocks num. head AUC
12 Py-Corner. 69.0%
12 T4 68.9%
8 T4 68.5%

(h) Model pruning route of
MixFormerV2-B∗. ‘T4’ denotes
the proposed distribution-based pre-
diction with 4 prediction tokens. We
use the MixViT-B as the distillation
teacher for this analysis.

blocks num. head MLP-r AUC
12 Cor. 4 68.2%
12 T4 4 67.7%
8 T4 4 66.6%
4 T4 4 61.0%
4 T4 1 59.4%

(i) Model pruning route of
MixFormerV2-S. ‘Cor.’ represents
for the plain corner head, which is
used in the initial teacher model.
‘MLP-r’ denotes the MLP ratio in
attention blocks.

Table 3: Ablation studies on LaSOT.The default choice for our model is colored in gray .

first line of Tab. 3a, which estimates the absolute target position instead of the probability distribution
of four coordinates, the proposed distribution-based regression obtains better accuracy. Besides, this
design allows to perform dense-to-sparse distillation so as to further boost performance.

Token-based Quality Score Prediction. The design of the prediction tokens also allows to perform
more efficient quality score prediction via a simple MLP head. As shown in Tab. 3b, the token-based
score prediction component improves the baseline MixFormerV2-B by 1.7% with increasing quite
little inference latency. Compared to ours, the score prediction module in MixViT-B further decreases
the running speed by 13.0%, which is inefficient. Besides, the SPM in MixViT requires precise RoI
pooling, which hinders the migration to various platforms.

4.2.2 Analysis on Dense-to-Sparse Distillation

We verify the effectiveness of dense-to-sparse distillation in Tab. 3c. When use MixViT-B without
its SPM (69.0% AUC) as the teacher model, the MixFormerV2 of 12 P-MAM layers achieves an
AUC score of 68.9%, increasing the baseline by 1.4%. This further demonstrate the significance of
the design of four special prediction tokens, which allows to perform dense-to-sparse distillation.
The setting of using MixViT-L (71.5% AUC) as the teacher model increases the baseline by an AUC
score of 2.2%, which implies the good distillation capacity of the large model.
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KCF SiamFC ATOM D3Sv2 DiMP ToMP TransT SBT SwinTrack Ours-S Ours-B
[26] [2] [16] [38] [3] [39] [10] [49] [34]

EAO 0.239 0.255 0.386 0.356 0.430 0.511 0.512 0.522 0.524 0.431 0.556
Accuracy 0.542 0.562 0.668 0.521 0.689 0.752 0.781 0.791 0.788 0.715 0.795
Robustness 0.532 0.543 0.716 0.811 0.760 0.818 0.800 0.813 0.803 0.757 0.851

Table 4: State-of-the-art comparison on VOT2022 [30]. The best results are shown in bold font.

4.2.3 Analysis on Deep-to-Shallow Distillation

In the following analysis on deep-to-shallow distillation, we use the MixViT-B of 12 layers with plain
corner head as the teacher, and MixViT of 4 layers with the same corner head as the student. The
models are deployed without score prediction module.

Feature Mimicking & Logits Distillation. To give detailed analysis on different distillation
methods for tracking, we conduct experiments in Tab. 3d. The models are all initialized with the
first 4-layers MAE pre-trained ViT-B weights. It can be seen that logits distillation can increase
the baseline by 1.7% AUC, and adding feature mimicking further improves by 0.4% AUC, which
indicates the effectiveness of both feature mimicking and logits distillation for tracking.

Progressive Model Depth Pruning. We study the effectiveness of the progressive model depth
pruning (PMDP) for the student initialization in Tab. 8b. It can be observed that the PMDP improves
the traditional initialization method of using MAE pre-trained first 4-layers ViT-B by 1.9%. This
demonstrates that it is critical for constraining the initial distribution of student and teacher trackers
to be as similar as possible, which can make the feature mimicking easier. Surprisingly, we find
that even the initial weights of the four layers are not continuous, i.e., using the skipped layers (the
3,6,9,12-th) of the teacher for initialization, the performance is better than the baseline (62.9% vs.
64.4%), which further verifies the importance of representation similarity between the two ones.

Determination of Eliminating Epochs. We conduct experiments as shown in the Table 3g to
choose the best number of epochs m in the progressive eliminating period. We find that when the
epoch m greater than 40, the choice of m seems hardly affect the performance. Accordingly we
determine the epoch to be 40.

Intermediate Teacher. Intermediate teacher is introduced to promote the transferring capacity
from a deep model to a shallow one. We conduct experiment as in Table 3f. We can observe that the
intermediate teacher can bring a gain of 0.7% AUC score which can verify that.

4.2.4 Model Pruning Route

We present the model pruning route from the teacher model to MixFormerV2-B∗ and MixFormerV2-S
in Tab. 3h and Tab. 3i respectively. The models on the first line are corresponding teacher models.
We can see that, through the dense-to-sparse distillation, our token-based MixFormerV2-B obtains
comparable accuracy with the dense-corner-based MixViT-B with higher running speed. Through the
progressive model depth pruning based on the feature and logits distillation, MixFormerV2-B with 8
layers only decreases little accuracy compared to the 12-layers one.

4.3 Comparison with the Previous Methods

Comparison with State-of-the-art Trackers. We evaluate the performance of our proposed track-
ers on 6 benchmark datasets: including the large-scale LaSOT [20], LaSOText [20], TrackingNet [42],
UAV123 [41], TNL2K [48] and VOT2022 [30]. LaSOT is a large-scale dataset with 1400 long videos
in total and its test set contains 280 sequences. TrackingNet provides over 30K videos with more
than 14 million dense bounding box annotations. UAV123 is a large dataset containing 123 aerial
videos which is captured from low-altitude UAVs. VOT2022 benchmark has 60 sequences, which
measures the Expected Average Overlap (EAO), Accuracy (A) and Robustness (R) metrics. Among
them, LaSOText and TNL2K are two relatively recent benchmarks. LaSOText is a released ex-
tension of LaSOT, which consists of 150 extra videos from 15 object classes. TNL2K consists of
2000 sequences, with natural language description for each. We evaluate our MixFormerV2 on
the test set with 700 videos. The results are presented in Tab. 4 and Tab. 5. More results on other
datasets will be present in supplementary materials. Only the trackers of similar complexity are
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Method LaSOT LaSOText TNL2K TrackingNet UAV123 Speed
AUC PNorm P AUC P AUC P AUC PNorm P AUC P GPU

MixFormerV2-B 70.6 80.8 76.2 50.6 56.9 57.4 58.4 83.4 88.1 81.6 69.9 92.1 165
MixFormerV2-B∗ 69.5 79.1 75.0 - - 56.6 57.1 82.9 87.6 81.0 70.5 91.9 165
MixFormer [14] 69.2 78.7 74.7 - - - - 83.1 88.1 81.6 70.4 91.8 25
CTTrack-B [45] 67.8 77.8 74.0 - - - - 82.5 87.1 80.3 68.8 89.5 40
OSTrack-256 [55] 69.1 78.7 75.2 47.4 53.3 54.3 - 83.1 87.8 82.0 68.3 - 105
SimTrack-B [7] 69.3 78.5 - - - 54.8 53.8 82.3 86.5 - 69.8 89.6 40
CSWinTT [46] 66.2 75.2 70.9 - - - - 81.9 86.7 79.5 70.5 90.3 12
SBT-Base [49] 65.9 - 70.0 - - - - - - - - - 37
SwinTrack-T [34] 67.2 - 70.8 47.6 53.9 53.0 53.2 81.1 - 78.4 - - 98
ToMP101 [39] 68.5 79.2 68.5 - - - - 81.5 86.4 78.9 66.9 - 20
STARK-ST50 [52] 66.4 - - - - - - 81.3 86.1 - - - 42
KeepTrack [40] 67.1 77.2 70.2 48.2 - - - - - - 69.7 - 19
TransT [10] 64.9 73.8 69.0 - - 50.7 51.7 81.4 86.7 80.3 69.1 - 50
PrDiMP [17] 59.8 68.8 60.8 - - - - 75.8 81.6 70.4 68.0 - 47
ATOM [16] 51.5 57.6 50.5 - - - - 70.3 77.1 64.8 64.3 - 83

Table 5: State-of-the-art comparison on TrackingNet [42], LaSOT [20], LaSOText [20], UAV123 [41]
and TNL2K [48]. The best two results are shown in bold and underline fonts. ‘*’ denotes tracker
with MixViT-B as the teacher during the dense-to-sparse distillation process. The default teacher is
MixViT-L. Only trackers of similar complexity are included.

Method LaSOT LaSOText TNL2K TrackingNet UAV123 Speed
AUC PNorm P AUC P AUC P AUC PNorm P AUC P GPU CPU

MixFormerV2-S 60.6 69.9 60.4 43.6 46.2 48.3 43 75.8 81.1 70.4 65.8 86.8 325 30
FEAR-L [5] 57.9 68.6 60.9 - - - - - - - - - - -
FEAR-XS [5] 53.5 64.1 54.5 - - - - - - - - - 80 26
HCAT[9] 59.0 68.3 60.5 - - - - 76.6 82.6 72.9 63.6 - 195 45
E.T.Track [4] 59.1 - - - - - - 74.5 80.3 70.6 62.3 - 150 42
LightTrack-LargeA [53] 55.5 - 56.1 - - - - 73.6 78.8 70.0 - - - -
LightTrack-Mobile [53] 53.8 - 53.7 - - - - 72.5 77.9 69.5 - - 120 36
STARK-Lightning 58.6 69.0 57.9 - - - - - - - - - 200 42
DiMP [3] 56.9 65.0 56.7 - - - - 74.0 80.1 68.7 65.4 - 77 15
SiamFC++ [50] 54.4 62.3 54.7 - - - - 75.4 80.0 70.5 - - 90 20

Table 6: Comparison with CPU-realtime trackers on TrackingNet [42], LaSOT [20], LaSOText [20],
UAV123 [41] and TNL2k [48]. The best results are shown in bold fonts.

included, i.e., the trackers with large-scale backbone or large input resolution are excluded. Our
MixFormerV2-B achieves state-of-the-art performance among these trackers with a very fast speed,
especially compared to transformer-based one-stream tracker. For example, MixFormerV2-B without
post-processing strategies surpasses OSTrack by 1.5% AUC on LaSOT and 2.4% AUC on TNL2k,
running with quite faster speed (165 FPS vs. 105 FPS). Even the MixFormerV2-B with MixViT-B
as the teacher model obtains better performance than existing SOTA trackers, such as MixFormer,
OSTrack, ToMP101 and SimTrack, with much faster running speed on GPU.

Comparison with Efficient Trackers. For real-time running requirements on limited computing
resources such as CPU, we explore a lightweight model, i.e. MixFormerV2-S, which still reaches
strong performance. And it is worth noting that this is the first time that transformer-based one-
stream tracker is able to run on CPU device with a real-time speed. As demonstrated in Figure 6,
MixFormerV2-S surpasses all other architectures of CPU-real-time trackers by a large margin. We
take a comparison with other prevailing efficient trackers on multiple datasets, including LaSOT,
TrackingNet, UAV123 and TNL2k, in Tab 6. We can see that our MixFormerV2-S outperforms
FEAR-L by a an AUC score of 2.7% and STARK-Lightning by an AUC score of 2.0% on LaSOT.

5 Conclusion

In this paper, we have proposed a fully transformer tracking framework MixFormerV2, composed of
standard ViT backbones on the mixed token sequence and simple MLP heads for box regression and
quality score estimation. Our MixFormerV2 streamlines the tracking pipeline by removing the dense
convolutional head and the complex score prediction modules. We also present a distillation based
model reduction paradigm for MixFormerV2 to further improve its efficiency. Our MixFormerV2
obtains a good trade-off between tracking accuracy and speed on both GPU and CPU platforms. We
hope our MixFormerV2 can facilitate the development of efficient transformer trackers in the future.
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Appendix

Broader Impact

In this paper, we introduce MixFormerV2, a fully transformer tracking approach for efficiently and
effectively estimating the state of an arbitrary target in a video. Generic object tracking is one of the
fundamental computer vision problems with numerous applications. For example, object tracking
(and hence MixFormerV2) could be applied to human-machine interaction, visual surveillance
and unmanned vehicles. Our research could be used to improve the tracking performance while
maintaining a high running speed. Of particular concern is the use of the tracker by those wishing to
position and surveil others illegally. Besides, if the tracker is used in unmanned vehicles, it may be a
challenge when facing the complex real-world scenarios. To mitigate the risks associated with using
MixFormerV2, we encourage researchers to understand the impacts of using the trackers in particular
real-world scenarios.

Limitations

The main limitation lies in the training overhead of MixFormerV2-S, which performs multiple model
pruning based on the dense-to-sparse distillation and deep-to-shallow distillation. In detail, we first
perform distillation from MixViT with 12 layers and plain corner head to MixFormerV2 of 12 layers.
The 12-layers MixFormerV2 is pruned to 8-layers and then to 4-layers MixFormerV2 based on
the deep-to-shallow distillation. Finally, the MLP-ratio-4.0 4-layers MixFormerV2 is pruned to the
MLP-ratio-4.0 4-layers MixFormerV2-S for real-time tracking on CPU. For each step, it requires
training for 500 epochs which is time-consuming.

S.1 Details of Training Time

The models are trained on 8 Nvidia RTX8000 GPUs. The dense-to-sparse stage takes about 43 hours.
The deep-to-shallow stage1 (12-to-8 layers) takes about 42 hours, and stage2 (8-to-4 layers) takes
about 35 hours.

S.2 More Results on VOT2020 and GOT10k

VOT2020. We evaluate our tracker on VOT2020 [29] benchmark, which consists of 60 videos with
several challenges including fast motion, occlusion, etc. The results is reported in Table 7, with metrics
Expected Average Overlap(EAO) considering both Accuracy(A) and Robustness. Our MixFormerV2-
B obtains an EAO score of 0.322 surpassing CSWinTT by 1.8%. Besides, our MixFormerV2-S
achieves an EAO score of 0.258, which is higher than the efficient tracker LightTrack, with a real-time
running speed on CPU.

GOT10k. GOT10k [28] is a large-scale dataset with over 10000 video segments and has 180
segments for the test set. Apart from generic classes of moving objects and motion patterns, the
object classes in the train and test set are zero-overlapped. We evaluate MixFormerV2 trained with
the four datasets of LaSOT, TrackingNet, COCO and GOT10k-train on GOT10k-test. We compare it
with MixFormer and TransT with the same training datasets for fair comparison. MixFormerV2-B
improves MixFormer and TransT by 0.7% and 1.6% on AO respectively with a high running speed of
165 FPS.

KCF SiamFC ATOM LightTrack DiMP STARK TransT CSWinTT MixFormer Ours-S Ours-B
[26] [2] [16] [53] [3] [52] [10] [46] [14]

VOT20EAO 0.154 0.179 0.271 0.242 0.274 0.280 - 0.304 - 0.258 0.322
GOT10kAO 0.203 0.348 0.556 - 0.611 0.688 0.723∗ 0.694 0.726∗ 0.621∗ 0.739∗

Table 7: State-of-the-art comparison on VOT2020 [29] and GOT10k [28]. ∗ denotes training with
four datasets including LaSOT [20], TrackingNet [42], GOT10k [28] and COCO [35]. The best
results are shown in bold font.

S.3 More Ablation Studies

Design of Prediction Tokens. We practice three different designs of prediction tokens for the
target localization in Tab. 8a. All the three methods use the formulation of estimating the probability
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token num. MLP num. AUC
1 4 67.1%
4 4 67.3
4 1 67.5%

(a) Different prediction designs. ‘token num.’
indicates the number of the learnable prediction
tokens, ‘MLP num.’ denotes the number of
employed MLP layers for localization.

Init. method LaSOT LaSOT_ext UAV123
Tea-fir4 62.9% 45.2% 65.7%

Tea-skip4 64.4% 46.1% 66.6%
PMDP 64.8% 47.1% 67.5%

(b) Progressive Model Depth Pruning
(PMDP). ‘Tea-fir4’ denotes using first 4 layers
of the teacher for student initialization. ‘Tea-
skip4’ is using 4 skipped layers of the teacher.

Table 8: More ablation studies. The default choice for our model is colored in gray .

distribution of the four coordinates of the bounding box. The model on the first line denotes using
one prediction token and then predicting coordinates distribution with four independent MLP heads.
It can be observed that adopting separate prediction tokens for the four coordinates and a same MLP
head retains the best accuracy.

More Exploration of PMDP Tea-skip4 is a special initialization method, which chooses the skiped
four layers (layer-3/6/9/12) of the teacher (MixViT-B) for initialization. In other words, Tea-skip4 is
an extreme case of ours PMDP when the eliminating epoch m equal to 0. So it is reasonable that
Tea-skip4 performs better than the baseline Tea-fir4, which employs the first four layers of the teacher
(MixViT-B) to initialize the student backbone. In Table 8b, we further evaluate the performance on
more benchmarks. It can be seen that ours PMDP surpasses Tea-skip4 by 1.0% on LaSOT_ext, which
demonstrate its effectiveness.

Computation Loads of Different Localization Head We showcase the FLOPs of different heads
as follows. Formally, we denote Cin as input feature dimension, Cout as output feature dimen-
sion, Hin,Win as input feature map shape of convolution layer, Hout,Wout as output feature map
shape, and K as the convolution kernel size. The computational complexity of one linear layer is
O(CinCout), and that of one convolutional layer is O(CinCoutHoutWoutK

2).

In our situation, for T4, the Localization Head contains four MLP to predict four coordinates. Each
MLP contains two linear layer, whose input and output dimensions are all 768. The loads can be
calculated as:

LoadT4 = 4× (768× 768 + 768× 72) = 2580480 ∼ 2.5M

For Py-Corner, totally 24 convolution layers are used. The loads can be calculated as:

LoadPy−Corner = 2 ∗ (768 ∗ 384 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
384 ∗ 192 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
384 ∗ 192 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
192 ∗ 96 ∗ 36 ∗ 36 ∗ 3 ∗ 3+
384 ∗ 96 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
96 ∗ 48 ∗ 72 ∗ 72 ∗ 3 ∗ 3+
48 ∗ 1 ∗ 72 ∗ 72 ∗ 3 ∗ 3+
192 ∗ 96 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
96 ∗ 48 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
48 ∗ 1 ∗ 18 ∗ 18 ∗ 3 ∗ 3+
96 ∗ 48 ∗ 36 ∗ 36 ∗ 3 ∗ 3+
48 ∗ 1 ∗ 36 ∗ 36 ∗ 3 ∗ 3)

=3902587776 ∼ 3.9B

For simplicity, we do not include some operations such as bias terms and Layer/Batch-Normalization,
which does not affect the overall calculation load level. Besides, the Pyramid Corner Head utilize
additional ten interpolation operations. Obviously the calculation load of Py-Corner is still hundreds
of times of T4.
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S.4 Visualization Results
Visualization of Attention Map To explore how the introduced learnable prediction tokens work
within the P-MAM, we visualize the attention maps of prediction-token-to-search and prediction-
token-to-template in Fig. 5 and Fig. 6, where the prediction tokens are served as query and the
others as key/val of the attention operation. From the visualization results, we can arrive that the
four prediction tokens are sensitive to corresponding part of the targets and thus yielding a compact
object bounding box. We suspect that the performance gap between the dense corner head based
MixViT-B and our fully transformer MixFormerV2-B without distillation lies in the lack of holistic
target modeling capability. Besides, the prediction tokens tend to extract partial target information in
both the template and the search so as to relate the two ones.

Visualization of Predicted Probability Distribution We show two good cases and bad cases in
Figure 7. In Figure 7a MixFormerV2 deals with occlusion well and locate the bottom edge correctly.
As show in Figure 7b, the probability distribution of box representation can effectively alleviate issue
of ambiguous boundaries. There still exist problems like strong occlusion and similar objects which
will lead distribution shift, as demonstrated in Figure 7c and 7d.

Search Top Left Bottom Right

Figure 5: Visualization of prediction-token-to-
search attention maps, where the prediction to-
kens are served as query of attention operation.

Template Top Left Bottom Right

Figure 6: Visualization of prediction-token-to-
template attention maps, where the prediction to-
kens are served as query of attention operation.

(a) (b)

(c) (d)
Figure 7: In each figure, the left one is plot of the probability distribution of predicted box (red),
which demonstrates how our algorithm works. The right one is heatmap of attention weights in the
backbone. The examples are from LaSOT test subset and the green boxes are ground truths.
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