
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSE-SMOOTH DECOMPOSITION FOR NONLINEAR
INDUSTRIAL TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Industrial time series forecasting faces unique challenges: hundreds of correlated
sensors, complex nonlinear dynamics, and the critical need for interpretable mod-
els that engineers can trust. We introduce nonlinear causal sparse-smooth net-
work, a framework that decomposes high-dimensional industrial forecasting into
interpretable sparse-smooth feature extraction followed by nonlinear prediction.
Unlike black-box deep learning approaches that use all sensors indiscriminately,
our method automatically identifies critical sensor subsets while learning smooth
temporal filters that reflect physical process dynamics. We cast this as a structured
optimization problem with sparsity penalties for sensor selection and smooth-
ness regularization for temporal patterns, unified within an identifiable Wiener
model architecture. Theoretically, we prove convergence guarantees, establish
sensor selection consistency, and derive generalization bounds that explicitly ac-
count for the interplay between sparsity, smoothness, and nonlinearity. On an
industrial refinery benchmark, our structured approach achieves a 25.2% lower
error rate than state-of-the-art Transformer models, while simultaneously identi-
fying a sparse subset of critical sensors and their interpretable dynamic modes.
Our work demonstrates that incorporating strong, domain-aware inductive biases
into a structured architecture offers a powerful alternative to monolithic black-box
models for real-world industrial forecasting.

1 INTRODUCTION

Industrial processes generate vast amounts of sensor data, yet paradoxically, the most economi-
cally important variables—product quality indicators—often remain unmeasured in real-time (Qin,
2012; Ge, 2017). Hardware analyzers for variables such as distillation column compositions, poly-
mer melt indices, or catalyst activity levels typically require laboratory analysis with delays ranging
from hours to days, creating a fundamental control challenge (Kadlec et al., 2009; Souza et al.,
2016). Soft sensors address this gap by constructing mathematical models that estimate these hard-
to-measure variables from readily available process measurements such as temperatures, pressures,
and flow rates (Fortuna et al., 2007; Kano & Ogawa, 2008). While conceptually straightforward, de-
veloping effective soft sensors faces multiple challenges: the high dimensionality of modern sensor
arrays, complex nonlinear process dynamics, time-varying operating conditions, and the industrial
requirement for interpretable models that operators can trust and maintain (Jiang et al., 2021; Shang
et al., 2014).

A critical yet underexplored aspect of industrial soft sensing is the inherent redundancy in sensor
networks and the smooth nature of process dynamics (Sun & Ge, 2021; Yuan et al., 2020). Manufac-
turing facilities often install redundant sensors for safety and reliability, leading to highly correlated
measurements that complicate model identification (Rasheed et al., 2020). Simultaneously, physi-
cal processes governed by conservation laws, reaction kinetics, and transport phenomena naturally
exhibit smooth temporal behavior rather than abrupt changes (Seborg et al., 2016). Traditional soft
sensing approaches treat these characteristics as separate concerns: sensor selection methods fo-
cus on spatial redundancy without considering temporal patterns (Fujiwara et al., 2009; Kaneko &
Funatsu, 2011), while dynamic models incorporate time dependencies but use all available sensors
indiscriminately (He & Wang, 2018; Wang et al., 2020). This separation misses the fundamental
insight that sensor importance and temporal dynamics are coupled, and identifying these roles auto-
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matically could significantly improve both model performance and interpretability (Zhu et al., 2020;
Ge et al., 2014).

Recent advances in sparse learning have shown promise for automatic sensor selection in high-
dimensional settings. LASSO (Tibshirani, 1996) and its variants, including elastic net (Zou &
Hastie, 2005) and group LASSO (Yuan & Lin, 2006), provide principled approaches to identify
relevant features. In the context of soft sensing, sparse methods have been successfully applied for
variable selection (Fujiwara et al., 2009; Kaneko & Funatsu, 2011). However, these methods typi-
cally assume linear relationships and independent features, ignoring the temporal dynamics inherent
in industrial processes. Parallel developments in smoothness regularization have addressed tempo-
ral dynamics modeling. The fused LASSO (Tibshirani et al., 2005) and trend filtering (Kim et al.,
2009; Tibshirani, 2014) enforce smoothness in coefficient profiles, reflecting the physical reality
that industrial processes exhibit smooth dynamics due to inertia and transport phenomena. Despite
these advances, existing smooth modeling approaches do not provide automatic sensor selection,
requiring practitioners to manually choose relevant measurements.

The integration of sparsity and smoothness has emerged as a powerful paradigm in signal processing
and statistics (Hebiri & Van De Geer, 2011). The sparse-smooth LASSO (Hebiri & Van De Geer,
2011) simultaneously performs variable selection and smoothness enforcement, while the work by
Bien et al. (Bien et al., 2015) provides convex formulations for hierarchical selection with smooth-
ness. However, these methods remain largely linear and have not been extended to handle the
nonlinear relationships prevalent in industrial processes.

Figure 1: Overview of the NL-CS3 framework architecture.

Causal inference provides another crucial perspective for soft sensor design. Traditional correlation-
based methods may capture spurious relationships that fail under distribution shifts or process
changes (Peters et al., 2017; Schölkopf et al., 2021). Recent work has emphasized the importance
of causal feature learning for robust prediction (Arjovsky et al., 2019; Rojas-Carulla et al., 2018). In
the industrial context, Huang et al. (Huang et al., 2020) demonstrated that causal features improve
soft sensor transferability across operating conditions, while Chen et al. (Chen et al., 2021) showed
enhanced robustness to unmeasured disturbances. However, existing causal soft sensing methods do
not incorporate sparsity or smoothness priors, missing opportunities for improved interpretability
and efficiency.

The fundamental challenge lies in developing a unified framework that simultaneously addresses
multiple industrial requirements: nonlinear modeling capability for complex processes, automatic
sensor selection for cost reduction and interpretability, smooth temporal dynamics reflecting phys-
ical behavior, causal feature learning for robustness, and computational efficiency for real-time de-
ployment. Existing methods typically address only subsets of these requirements. Linear sparse
methods like LASSO (Tibshirani, 1996) and elastic net (Zou & Hastie, 2005) provide sensor se-
lection but cannot capture nonlinear relationships. Kernel methods (Rosipal & Trejo, 2001; Liu
et al., 2015) and Gaussian processes (Chen et al., 2013; Ni et al., 2012) model nonlinearities but
lack interpretable sensor selection. Deep learning approaches (Yuan et al., 2019; Sun & Ge, 2021)
achieve high accuracy but operate as black boxes without clear sensor importance rankings. Recent
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sparse neural networks (Louizos et al., 2018) attempt to combine sparsity with nonlinearity but lack
temporal smoothness constraints and theoretical foundations.

Most critically, no existing framework provides theoretical guarantees for the combined sparse-
smooth-nonlinear setting. While convergence properties are established for sparse methods (Wain-
wright, 2009; Zhao & Yu, 2006) and smooth regularization (Mammen & Van De Geer, 1997; Tibshi-
rani, 2014) separately, their integration with nonlinear function approximation remains theoretically
unexplored. This gap is particularly problematic for industrial applications where reliability and
predictability are paramount. Furthermore, existing methods do not explicitly model the Wiener
structure—linear dynamics followed by static nonlinearity—which naturally arises in many indus-
trial processes (Pearson, 1999; Janczak, 2004) and provides a principled decomposition between
interpretable feature extraction and flexible nonlinear mapping.

This paper addresses these critical gaps by proposing a novel Nonlinear Causal Sparse-Smooth Soft
Sensor (NL-CS3) framework that unifies sparse sensor selection, smooth temporal modeling, causal
feature learning, and nonlinear prediction capability within a theoretically grounded architecture.
Figure 1 illustrates the overall NL-CS3 architecture. Our approach differs from existing methods
in three key aspects. First, we introduce a novel two-stage architecture that explicitly separates in-
terpretable sparse-smooth feature extraction from nonlinear mapping, corresponding to an identifi-
able Wiener model with automatic sensor selection. Second, we provide comprehensive theoretical
guarantees including sensor selection consistency, temporal smoothness bounds, and information
preservation properties, filling the theoretical gap in combined sparse-smooth-nonlinear modeling.
Third, we develop an efficient alternating optimization algorithm that decouples the sparse sensor
selection problem from smooth temporal filter design, enabling practical deployment in industrial
settings. The main contributions of this paper are:

• The NL-CS3 framework is proposed to provide an interpretable Wiener-model soft sensor
by integrating sparsity-driven sensor selection, smooth temporal filtering, and nonlinear
regression within a unified architecture.

• Comprehensive guarantees are provided: (i) sensor-selection consistency under standard
identifiability and irrepresentability conditions; (ii) bounds on the discrete gradient norm of
the temporal filters (β⊤Lβ), ensuring smooth dynamics; and (iii) information-preservation
results showing that sparse features retain predictive power.

• A computationally efficient alternating-optimization scheme is presented that decouples
sparse sensor selection from smooth temporal-filter design.

The remainder of this paper is organized as follows. Section 2 presents the NL-CS3 methodology
including problem formulation, optimization algorithms, and implementation details. Section 3
provides theoretical analysis establishing convergence, consistency, and generalization properties.
Section 4 presents comprehensive experimental validation on industrial data with comparisons to
state-of-the-art methods. Section 5 concludes the paper.

2 METHODOLOGY

2.1 PROBLEM FORMULATION AND MODEL STRUCTURE

Consider an industrial process monitored through m sensors producing measurement vector yk ∈
Rm at discrete time instant k ∈ N. Let τk denote a quality variable of interest. We as-
sume τk is generated through an unknown dynamic process driven by past measurements: τk =
h(yk,yk−1, . . . ,yk−d) + ηk, where d is the maximum lag and ηk is measurement noise. The
goal is to learn a predictive model τ̂k = f(Yk) from a dataset D = {(Yi, τi)}Ni=1, where
Yk = [yT

k , . . . ,y
T
k−s+1]

T ∈ Rms is the augmented measurement vector.

Traditional methods often rely on all available sensors and may capture spurious correlations or
noisy dynamics. To address this, we propose the NL-CS3 framework, which explicitly aims to
identify relevant sensors and smooth temporal patterns. We adopt a structured approach that decom-
poses the modeling task into two stages: Causal Sparse-Smooth Feature Extraction (CSSFE) and
Nonlinear Causal Mapping (NCM).
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In the CSSFE stage, we extract a low-dimensional set of latent features ϕk ∈ Rℓ (ℓ ≪ m) that
capture the essential dynamic and causal information from the high-dimensional input Yk. These
features are designed to use sparse sensor subsets and exhibit smooth temporal dynamics:

ϕk = FCSSFE(Yk) (1)

In the NCM stage, we map these interpretable features to the quality variable using a static nonlinear
function g(·):

τ̂k = g(ϕk) (2)

This architecture, where linear dynamic feature extraction is followed by a static nonlinearity, cor-
responds to a Wiener model structure with explicit sensor selection capability.

2.2 CAUSAL SPARSE-SMOOTH FEATURE EXTRACTION

The core of the CSSFE stage is the construction of features through spatio-temporal filtering with
sparsity and smoothness constraints. We model the j-th causal feature ϕj,k as:

ϕj,k =

s−1∑
i=0

βj,i(w
T
j yk−i) (3)

where wj ∈ Rm is a spatial projection vector combining sensors at a given time, and βj ∈ Rs is a
temporal filter capturing dynamic relationships across time.

To reflect the industrial reality of local sensor placement and smooth process dynamics, we formulate
the following optimization problem for the j-th feature:

max
wj ,βj

Jj(wj ,βj) = Cov2(τ, ϕj)− λ1∥wj∥1 − λ2

s−1∑
i=1

(βj,i − βj,i−1)
2 (4)

subject to ∥wj∥2 = 1 and ∥βj∥2 = 1. The objective function consists of three terms:

• Predictive Power: Cov2(τ, ϕj) maximizes the dependency between the feature and the
target, serving as a computationally efficient proxy for capturing causal influences.

• Sensor Sparsity: λ1∥wj∥1 promotes sparsity in the spatial projection, automatically se-
lecting relevant sensors and providing interpretability by identifying which sensors con-
tribute to predictions.

• Temporal Smoothness: λ2

∑s−1
i=1 (βj,i − βj,i−1)

2 = λ2β
T
j D

TDβj enforces smoothness
in the temporal filter and reflecting the physical reality that industrial processes exhibit
smooth dynamics due to inertia and transport phenomena.

The smoothness term can be written in matrix form as λ2β
T
j Lβj , where L = DTD ∈ Rs×s is the

discrete Laplacian matrix with D ∈ R(s−1)×s being the first-order difference matrix.

2.3 OPTIMIZATION VIA ALTERNATING MAXIMIZATION

The optimization problem in Equation 4 is non-convex due to the bilinear interaction between wj

and βj . We employ an alternating maximization approach that converges to a stationary point.

2.3.1 OPTIMIZING βj WITH FIXED wj

Fixing wj , we define the projected scalar signal νk = wT
j yk. The covariance term simplifies to

Cov2(τ, ϕj) = (βT
j Cτν)

2 = βT
j (CτνC

T
τν)βj , where Cτν is the empirical cross-covariance vector

between τ and ν at different lags.

Let L = DTD be the discrete Laplacian matrix, where D ∈ R(s−1)×s is the first-order difference
matrix. The optimization problem becomes:

max
∥βj∥2=1

βT
j (CτνC

T
τν − λ2L)︸ ︷︷ ︸
Qβ

βj (5)
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By the Rayleigh-Ritz theorem, this is a standard eigenvalue problem with closed-form solution: β∗
j

is the principal eigenvector of the symmetric matrix Qβ . The smoothness regularization corresponds
to Tikhonov regularization in the temporal domain, ensuring physically plausible dynamics. From a
Bayesian perspective, this penalty imposes a Gaussian prior p(βj) ∝ exp(−λ2

2 βT
j Lβj), encoding

our belief that industrial processes exhibit smooth temporal behavior.

2.3.2 OPTIMIZING wj WITH FIXED βj

Fixing βj , we define the temporally filtered covariance vector G =
∑s−1

i=0 βj,iCτyi
∈ Rm,

which aggregates the cross-covariance information across all time lags weighted by the tempo-
ral filter coefficients. The feature simplifies to ϕj,k = wT

j G, and the covariance term becomes
Cov2(τ, ϕj) = (wT

j G)2 = wT
j (GGT )wj , where GGT is a rank-one positive semidefinite ma-

trix encoding the directional information of the temporally filtered covariances. The optimization
problem with sparsity regularization becomes:

max
∥wj∥2=1

wT
j (GGT )︸ ︷︷ ︸

rank-1

wj − λ1∥wj∥1 (6)

This constitutes a sparse principal component analysis problem on a rank-one matrix, where the
quadratic term seeks alignment with the dominant direction G while the ℓ1 penalty promotes sparsity
in sensor selection. Due to the non-smooth ℓ1 term and non-convex unit sphere constraint, we
employ projected proximal gradient ascent.

From a compressed sensing perspective, the ℓ1 penalty represents the tightest convex relaxation of
the combinatorial ℓ0 norm. The resulting sparse solution w∗

j directly identifies the critical sensor
subset through its support, with non-zero entries indicating sensors that contribute to the j-th causal
feature, thereby providing interpretability and reducing measurement redundancy in industrial mon-
itoring systems.

2.4 ITERATIVE FEATURE EXTRACTION AND DEFLATION

We extract multiple features ϕ1, . . . ,ϕℓ iteratively using a deflation procedure to ensure orthogo-
nality and capture complementary information. After extracting the j-th feature, we compute the
loading vector pj and regression coefficient bj :

pj =
XTϕj

∥ϕj∥22
, bj =

τTϕj

∥ϕj∥22
(7)

The deflation step updates the data:

X(j+1) = X(j) − ϕjp
T
j (8)

τ (j+1) = τ (j) − bjϕj (9)

This orthogonalization ensures that each feature captures unique variance, preventing redundancy in
the extracted features.

2.5 NONLINEAR CAUSAL MAPPING

Once the sparse-smooth causal features ϕk = [ϕ1,k, . . . , ϕℓ,k]
T are extracted, we map them to the

target variable using a static nonlinear function g : Rℓ → R:

τ̂k = g(ϕk) (10)

For complex interactions, we employ shallow neural networks g(·) with explicit regularization:

min
g∈G

1

N

N∑
i=1

L(τi, g(ϕi)) + λg∥W∥2F (11)

where ∥W∥F is the Frobenius norm of weight matrices, controlling model complexity.

5
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3 THEORETICAL ANALYSIS

3.1 CONVERGENCE ANALYSIS

Theorem 1 (Convergence of Alternating Maximization). The alternating maximization algo-
rithm for problem (4) generates a sequence of objective values {J (t)

j }∞t=1 that is monotonically

non-decreasing, i.e., J (t+1)
j ≥ J

(t)
j for all t ≥ 1. The sequence converges to a finite limit, and

any accumulation point (w∗
j ,β

∗
j ) of the iterates satisfies the first-order Karush-Kuhn-Tucker (KKT)

conditions of the optimization problem. Moreover, if the matrix Qβ = CτνC
T
τν − λ2L is positive

definite, the stationary point is a local maximum.

3.2 SENSOR SELECTION PROPERTIES

Theorem 2 (Sparse Sensor Selection Consistency). Let S∗ ⊂ {1, . . . ,m} with |S∗| = k∗ be the
true support, and let Sc = {1, . . . ,m} \ S∗ denote its complement. Define CA,B as the empirical
covariance matrix between sensor sets A and B. Under the following conditions:

(i) Eigenvalue condition: λmin(CS∗,S∗) ≥ κ > 0, where λmin(·) denotes the minimum eigenvalue
and κ is a positive constant ensuring the relevant sensors’ covariance matrix is well-conditioned,

(ii) Irrepresentability condition: ∥CSc,S∗C−1
S∗,S∗∥∞ < 1 − ζ for some ζ ∈ (0, 1), where ∥ ·

∥∞ denotes the matrix infinity norm, and this condition ensures irrelevant sensors cannot be well-
represented by linear combinations of relevant sensors,

(iii) Beta-min condition: mini∈S∗ |w∗
j,i| > Cλ1

√
logm
N , where w∗

j,i is the true coefficient for
sensor i in feature j, C is a universal constant, and this condition ensures the signal strength exceeds
the noise threshold, then ŵj satisfies P(supp(ŵj) = S∗) ≥ 1 − 2m−2, where supp(·) denotes the
support (set of non-zero entries) of a vector.

3.3 PREDICTION ERROR ANALYSIS

Theorem 3 (Generalization Bound). For the NL-CS3 predictor τ̂k = g(ϕk) with true model
τk = f∗(Yk) + ξk where E[ξk] = 0, Var(ξk) = σ2

ξ :

E[(τk − τ̂k)
2] ≤σ2

ξ + Bapprox +O
(
∥w∥0 logm

N

)
+O

(
1

sγβ

)
+O

(
C(G)
N

) (12)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate the proposed NL-CS3 framework on industrial refinery catalytic reforming unit with
complex nonlinear dynamics. The dataset comprises 5000 samples collected from 20 sensors moni-
toring critical process variables including temperature (5 sensors), pressure (4 sensors), flow rates (6
sensors), and composition analyzers (5 sensors). The target variable is the Research Octane Number
(RON) of the reformate product, which exhibits strong nonlinear dependencies on process condi-
tions due to complex reaction kinetics and catalyst deactivation dynamics.

The dataset was partitioned into 3500 training samples and 1500 test samples. All input features
and target variables were standardized using z-score normalization to ensure numerical stability. We
compare two NL-CS3 against thirteen baseline methods spanning different modeling paradigms.
The NL-CS3 (NN) variant employs a neural network for the nonlinear mapping stage. The NL-CS3

(LINEAR) variant uses linear regression in the second stage to assess the contribution of nonlinear-
ity. Baseline methods include linear approaches (LASSO, Ridge, Elastic Net, Bayesian Ridge, PLS),
kernel methods (SVR with polynomial kernel, Kernel Ridge), ensemble methods (Random For-
est, AdaBoost, Gradient Boosting, XGBoost, LightGBM), and deep learning architectures (LSTM

6
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, Transformer). All baseline methods’ hyperparameters have been optimally selected to ensure that
all methods achieve optimal results.

Figure 2: Performance comparison of NL-CS3 against baseline methods on industrial refinery
dataset.

Table 1: Performance Comparison on Industrial Refinery Dataset
Method RMSE R2 Sensors

NL-CS3 (NN) 1.8124 0.6115 18
Kernel Ridge 1.8654 0.5885 20
XGBoost 2.1299 0.4635 20
NL-CS3 (LINEAR) 2.2188 0.4178 19
LightGBM 2.2527 0.3999 20
Gradient Boosting 2.3847 0.3275 20
LSTM 2.4240 0.3051 20
Random Forest 2.6976 0.1394 20
Transformer 2.7463 0.1080 20
AdaBoost 2.7860 0.0821 20
LASSO 2.8141 0.0635 7
Elastic Net 2.8200 0.0596 11
PLS 2.8219 0.0583 20
Bayesian Ridge 2.8226 0.0578 20
Ridge 2.8249 0.0563 20
SVR (Poly) 2.8364 0.0486 20

Figure 3: Process-level error visualization: per-sample error heatmap (left) and error distribution
with violin plots (right) for all methods.
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Figure 4: Sparse-smooth feature analysis. Left: sensor weights. Middle: correlation network. Right:
temporal filter surface.

Figure 5: Feature dynamics and training behavior. Left: contribution evolution of extracted features.
Middle: importance summarized by sensor type. Right: convergence of feature extraction across
iterations.

4.2 PERFORMANCE COMPARISON

Table 1 presents comprehensive performance metrics across all methods evaluated on the test
dataset. Figure 2 visualizes the performance comparison, clearly showing NL-CS3’s superiority
over baseline methods. The results demonstrate that NL-CS3 (NN) achieves an RMSE of 1.8124
and R2 score of 0.6115. It achieves a 2.8% improvement in RMSE over the best baseline method.
Comparing with the linear variant NL-CS3 (LINEAR), it demonstrates a substantial 18.3% reduction
in RMSE when incorporating nonlinear mapping. This performance gap underscores the importance
of capturing nonlinear relationships in industrial process modeling.

Comparing with deep learning approaches, despite their capacity for complex function approxi-
mation, both LSTM and Transformer models significantly underperform NL-CS3. NL-CS3 (NN)
achieves a 25.2% improvement over LSTM and a 34.0% improvement over Transformer, suggest-
ing that the structured approach of sparse-smooth feature extraction followed by nonlinear mapping
is more effective than end-to-end deep learning for this industrial application.

The ensemble methods, particularly XGBoost and LightGBM, demonstrate moderate performance
with RMSEs of 2.1299 and 2.2527 respectively. While these methods typically excel in tabular data
problems, their inability to explicitly model temporal dynamics and sensor relationships limits their
effectiveness. Linear methods uniformly perform poorly with RMSEs exceeding 2.8, confirming the
presence of strong nonlinearities in the RON prediction problem that cannot be captured by linear
models alone. Figure 3 provides detailed process-level error visualization through per-sample error

8
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heatmaps and error distribution violin plots, revealing distinct error patterns across different methods
and operating conditions.

4.3 SENSOR SELECTION AND INTERPRETABILITY

A critical advantage of NL-CS3 is its automatic sensor selection capability through sparsity regu-
larization. This selective approach reduces monitoring costs and computational requirements while
preserving predictive capability. Table 2 presents the selected top 8 sensors with their corresponding
importance scores normalized to the range [0, 1].

Table 2: Selected Sensors and Importance Scores
Sensor Description Importance Type

S-6 P-201 (Reactor pressure) 1.000 Pressure
S-8 P-203 (Separator pressure) 0.567 Pressure
S-4 T-104 (Reactor outlet temp) 0.377 Temperature

S-16 C-501 (Feed naphthene) 0.344 Composition
S-18 C-503 (H/HC ratio) 0.303 Composition
S-1 T-102 (Reactor inlet temp) 0.269 Temperature

S-10 F-301 (Feed flow rate) 0.184 Flow
S-13 F-305 (Recycle gas flow) 0.184 Flow

The sensor importance analysis reveals physically interpretable patterns aligned with process en-
gineering knowledge. The reactor pressure (P-201) receives the highest importance score of 1.000,
consistent with its critical role in determining reaction kinetics and product selectivity. The separator
pressure (P-203) shows high importance (0.567), indicating its role in product separation efficiency.
Temperature sensors at reactor inlet and outlet positions are identified as important with scores of
0.269 and 0.377 respectively, reflecting their influence on reaction rates and equilibrium. Composi-
tion analyzers for feed naphthene content and hydrogen-to-hydrocarbon ratio demonstrate moderate
importance scores of 0.344 and 0.303, capturing the effect of feed quality on RON.

The sparse-smooth features extracted by NL-CS3 exhibit interpretable temporal patterns that align
with known process dynamics, as illustrated in Figure 4 which visualizes the sensor-feature weights,
sensor correlation network, and temporal filter surface. The temporal filters learned through
smoothness-constrained optimization reveal three distinct dynamic modes. The first mode captures
fast dynamics, corresponding to immediate response to flow rate changes. The second mode ex-
hibits oscillatory behavior, reflecting control loop interactions and periodic disturbances. The third
mode represents slow dynamics, associated with catalyst deactivation and thermal inertia effects.
Figure 5 demonstrates the evolution of these feature contributions over time, the hierarchical impor-
tance of different sensor types, and the convergence behavior of the feature extraction process across
iterations, confirming the stability and interpretability of the extracted features.

5 CONCLUSION

This study addressed the challenge of developing accurate, interpretable, and robust soft sensors
for industrial processes. The proposed NL-CS3 framework successfully unified sparse sensor se-
lection, smooth temporal filtering, and nonlinear mapping, outperforming thirteen baseline methods
including deep learning architectures. The research established comprehensive theoretical guaran-
tees for convergence, consistency, and generalization in the sparse-smooth-nonlinear setting. This
unified framework significantly enhanced model reliability and interpretability, offering a theoret-
ically sound and practical tool for optimizing industrial monitoring and control strategies. Future
research will explore extensions to adaptive modeling for time-varying processes and the integration
of NL-CS3 within closed-loop control architectures.
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A APPENDIX

A.1 COMPLETE NL-CS3 ALGORITHM

The complete algorithmic procedure for the NL-CS3 framework is presented in Algorithm 1, with
the flowchart visualization shown in Figure 6.

Figure 6: Algorithmic flowchart of the alternating optimization procedure for NL-CS3.

A.2 THEORETICAL PROOFS

A.2.1 PROOF OF THEOREM 1 (CONVERGENCE OF ALTERNATING MAXIMIZATION)

Proof. Let (w(t)
j ,β

(t)
j ) denote the iterates at step t. The alternating updates yield:

Jj(w
(t)
j ,β

(t)
j ) ≤ Jj(w

(t)
j ,β

(t+1)
j ) (13)

≤ Jj(w
(t+1)
j ,β

(t+1)
j ) (14)

where the first inequality follows from the optimality of β(t+1)
j given w

(t)
j , and the second from the

ascent property of the proximal gradient update for wj .

The objective is bounded above since Cov2(τ, ϕj) ≤ Var(τ) · Var(ϕj) by Cauchy-Schwarz, and
both variances are finite. The regularization terms satisfy:

λ1∥wj∥1 ≤ λ1

√
m∥wj∥2 = λ1

√
m (15)

λ2

s−1∑
i=1

(βj,i − βj,i−1)
2 ≤ 4λ2∥βj∥22 = 4λ2 (16)

Therefore, Jj ≤ Var(τ) · supw,β Var(ϕj) < ∞. By the monotone convergence theorem, the
bounded monotonic sequence converges.

The constraint sets W = {w : ∥w∥2 = 1} and B = {β : ∥β∥2 = 1} are compact. By Bolzano-
Weierstrass, the sequence {(w(t)

j ,β
(t)
j )} has a convergent subsequence. The continuity of Jj and

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 NL-CS3: Complete Algorithm
Require: Dataset D = {(Yi, τi)}Ni=1, parameters λ1, λ2, ℓ
Ensure: Sparse-smooth features {ϕj}ℓj=1, nonlinear mapping g(·)

1: // Initialization
2: Initialize X(1) ← Y, τ (1) ← τ
3: for j = 1 to ℓ do
4: // Phase 1: Extract sparse-smooth feature
5: Initialize w

(0)
j randomly on unit sphere

6: t← 0
7: repeat
8: // Fix wj , optimize βj

9: Compute projected signal: νk = (w
(t)
j )Tyk

10: Construct covariance vector: Cτν

11: Form matrix: Qβ = CτνC
T
τν − λ2L

12: β
(t+1)
j ← principal eigenvector of Qβ

13: // Fix βj , optimize wj

14: Compute filtered vector: G =
∑s−1

i=0 β
(t+1)
j,i Cτyi

15: Apply proximal gradient step with ℓ1 penalty
16: Project onto unit sphere: w(t+1)

j ← w
(t+1)
j /∥w(t+1)

j ∥2
17: t← t+ 1
18: until convergence
19: // Deflation
20: Compute loading: pj =

(X(j))Tϕj

∥ϕj∥2
2

21: Update: X(j+1) ← X(j) − ϕjp
T
j

22: Update: τ (j+1) ← τ (j) − bjϕj

23: end for
24: // Phase 2: Learn nonlinear mapping
25: Train neural network: g∗ = argming∈G

∑N
i=1 L(τi, g(ϕi))

26: return {wj ,βj}ℓj=1, g
∗

the structure of alternating maximization ensure convergence to a point satisfying the Karush-Kuhn-
Tucker (KKT) conditions:

∇wL(w∗
j ,β

∗
j , µ

∗
1) = 0, ∇βL(w∗

j ,β
∗
j , µ

∗
2) = 0 (17)

where L is the Lagrangian and µ∗
1, µ

∗
2 are the KKT multipliers for the norm constraints.

To establish the local maximum property when Qβ is positive definite, we analyze the second-order
conditions. Consider the Hessian of the Lagrangian at the stationary point (w∗

j ,β
∗
j ). For the β-

subproblem with fixed w∗
j , the objective function near β∗

j can be expressed as:

J(β) = βTQββ − µ∗
2(∥β∥22 − 1) (18)

The Hessian with respect to β is:
∇2

βJ = 2Qβ − 2µ∗
2I (19)

At the optimal point, β∗
j is the principal eigenvector of Qβ with eigenvalue λmax(Qβ) = µ∗

2. When
Qβ is positive definite, all its eigenvalues are positive, and particularly λmax(Qβ) > λi(Qβ) for all
other eigenvalues λi. This implies:

∇2
βJ = 2(Qβ − λmax(Qβ)I) ⪯ 0 (20)

on the tangent space of the constraint manifold, confirming that β∗
j is a local maximum for the

β-subproblem.

A similar analysis for the w-subproblem, accounting for the non-smooth ℓ1 regularization through
subdifferential calculus, establishes that the stationary point satisfies the second-order sufficient con-
ditions for a local maximum when both Qβ and the corresponding matrix for the w-subproblem are
positive definite in their respective constraint manifolds.
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A.2.2 PROOF OF THEOREM 2 (SPARSE SENSOR SELECTION CONSISTENCY)

Proof. The optimization for wj with fixed βj is:

ŵj = arg max
∥w∥2=1

wTMw − λ1∥w∥1 (21)

where M = GGT with G =
∑s−1

i=0 βj,iCτyi .

Define the oracle estimator w̃S∗ that knows the true support:

w̃S∗ = arg max
wSc=0,∥w∥2=1

wTMw (22)

For the oracle to be optimal globally, the KKT conditions require:

∥∇ScJ(w̃S∗)∥∞ < λ1 (23)

Using the decomposition ∇ScJ = 2MSc,S∗w̃S∗ and the bound:

∥MSc,S∗w̃S∗∥∞ ≤ ∥CSc,S∗C−1
S∗,S∗∥∞∥CS∗,S∗w̃S∗∥∞ + δN (24)

where δN = O(
√

logm/N) is the deviation of sample covariances from population values.

The irrepresentability condition (ii) ensures ∥CSc,S∗C−1
S∗,S∗∥∞ < 1− ζ. By concentration inequal-

ities (Hoeffding), with probability 1− 2m−2:

∥Ĉ−C∥max ≤
√

2 logm

N
(25)

Condition (iii) ensures the signal strength exceeds the noise floor, guaranteeing sign(ŵj,i) =
sign(w∗

j,i) for i ∈ S∗. Combining these results establishes exact support recovery.

A.2.3 PROOF OF THEOREM 3 (GENERALIZATION BOUND)

Proof. Decompose the prediction error using the bias-variance decomposition:

E[(τk − τ̂k)
2] = E[(τk − E[τ̂k])2]︸ ︷︷ ︸

Bias2+σ2
ξ

+Var(τ̂k)︸ ︷︷ ︸
Variance

(26)

The bias term includes the irreducible noise σ2
ξ and approximation error Bapprox = infh∈H ∥f∗ −

h∥2 whereH is the Wiener model class.

For the variance term, consider the empirical process decomposition. Let f̂N denote the estimated
function from N samples. The variance decomposes into three components:

Sparsity contribution: The effective dimension reduction from m to ∥w∥0 yields:

Varw(f̂N ) ≤ C1∥w∥0 logm
N

(27)

This follows from the metric entropy bound for ℓ1-balls intersected with the unit sphere.

Smoothness contribution: The temporal smoothness constraint reduces effective degrees of free-
dom. Let λi(Qβ) denote the eigenvalues of Qβ = CτνC

T
τν − λ2L. The effective dimension is:

deff =

s∑
i=1

λi(Qβ)

λ1(Qβ)
≈ s

γβ
(28)

where γβ = λ1(Qβ)/λs(Qβ) is the spectral gap. This contributes:

Varβ(f̂N ) ≤ C2

sγβ
(29)
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Nonlinear complexity: The Rademacher complexity of the function class G satisfies:

RN (G) ≤
√

2C(G) log(2N)

N
(30)

where C(G) is the VC-dimension or covering number. This yields:

Varg(f̂N ) ≤ C3C(G)
N

(31)

Combining all terms establishes the stated bound.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 MULTI-DIMENSIONAL PERFORMANCE ANALYSIS

Figure 7 visualizes the performance comparison across different operating conditions, demonstrating
NL-CS3’s consistent superiority over baseline methods in various scenarios.

Figure 7: Multi-dimensional performance analysis across different operating conditions.

A.3.2 ROBUSTNESS ANALYSIS

To evaluate the robustness of NL-CS3, we conducted comprehensive sensitivity analyses with re-
spect to the regularization parameters λ1 (sparsity) and λ2 (smoothness), as well as performance
evaluation under noisy conditions.

Figure 8 presents the sensitivity analysis results for both regularization parameters. The left panel
demonstrates that the sparsity parameter λ1 exhibits a clear optimal point at λ1 = 0.001, where the
framework achieves its best RMSE of 1.8124. Performance degrades moderately when λ1 is too
small (RMSE = 3.1059 at λ1 = 0.0001) due to insufficient sparsity regularization, leading to over-
fitting. More dramatically, excessive sparsity (λ1 = 0.05) causes severe performance degradation
with RMSE increasing to 5.6594, indicating over-regularization that eliminates important sensors.

The middle panel illustrates the framework’s response to the smoothness parameter λ2. With the
optimal λ1 = 0.001 fixed, the model demonstrates remarkable stability across a wide range of λ2

values. The parameter interaction analysis reveals that when λ1 is suboptimal, the choice of λ2
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becomes more influential. For instance, at λ1 = 0.05, the RMSE ranges from 4.7430 to 8.5529 de-
pending on λ2, suggesting that proper sparsity regularization is prerequisite for stable performance.

The right panel of Figure 8 presents the framework’s performance under various noise conditions.
Remarkably, NL-CS3 exhibits exceptional robustness to measurement noise, with performance ac-
tually improving slightly under moderate noise levels. This improvement at moderate noise levels
suggests that the sparse-smooth regularization acts as an implicit denoising mechanism. The combi-
nation of sensor selection and temporal smoothing enables the model to maintain robust predictions
even under significant measurement uncertainty. Only at extreme noise levels (50%) does perfor-
mance begin to degrade. The framework’s ability to maintain predictive accuracy under realistic
noise conditions confirms its suitability for real-world industrial applications where perfect mea-
surements are not available.

Figure 8: Robustness analysis for sparsity parameter λ1 (left), smoothness parameter λ2 (middle),
and noise levels (right).

A.4 HYPERPARAMETER SELECTION

All hyperparameters were systematically selected through 5-fold cross-validation to avoid overfit-
ting. We performed grid search over the following ranges:

• Number of features ℓ ∈ {3, 4, 5, 6, 7}
• Sparsity parameter λ1 ∈ {0.0001, 0.001, 0.01, 0.05}
• Smoothness parameter λ2 ∈ {0.01, 0.1, 1, 10}
• Temporal window size s ∈ {5, 10, 15, 20}
• Neural network hidden units ∈ {32, 64, 128}
• Network regularization λg ∈ {0.001, 0.01, 0.1}

The final configuration was chosen to maximize the average RMSE on validation folds while main-
taining computational efficiency. The selected parameters were: ℓ = 5, λ1 = 0.001, λ2 = 1, s = 10,
with a neural network containing 64 hidden units and λg = 0.01.

A.5 ADDITIONAL THEORETICAL RESULTS

Lemma 1 (Smoothness Preservation). Under the smoothness penalty λ2β
T
j Lβj , the extracted fea-

tures satisfy:

E

[
N∑

k=2

(ϕj,k − ϕj,k−1)
2

]
≤ Var(τ)

λ2
(32)

Proof. From the optimality conditions of the alternating maximization, at convergence:

Cov2(τ, ϕj) = βT
j Qββj ≤ Var(τ) (33)
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Since Qβ = CτνC
T
τν − λ2L, we have:

λ2β
T
j Lβj ≤ Var(τ)− Cov2(τ, ϕj) ≤ Var(τ) (34)

The discrete gradient of the feature sequence is bounded by:

N∑
k=2

(ϕj,k − ϕj,k−1)
2 ≤ N · βT

j Lβj ·max
k
∥wT

j yk∥2 (35)

Taking expectations and using the unit norm constraint on wj completes the proof.

Proposition 1 (Information Preservation). The sparse-smooth features preserve at least (1 − ϵ)
fraction of the linear predictive information if:

ℓ ≥ 1

ϵ
· rank(CτY) (36)

where CτY is the cross-covariance between target and inputs.

Proof. By the deflation procedure, each extracted feature captures the maximum remaining covari-
ance with the target. The cumulative explained variance after ℓ features is:

ℓ∑
j=1

Cov2(τ, ϕj) ≥
ℓ∑

j=1

λj(CτYCT
τY) (37)

where λj(·) denotes the j-th largest eigenvalue. The result follows from the eigenvalue decay rate.

A.6 LARGE LANGUAGE MODEL USAGE DISCLOSURE

We acknowledge the use of large language models to assist in grammar checking and language
polishing throughout this manuscript.
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