

SPARSE-SMOOTH DECOMPOSITION FOR NONLINEAR INDUSTRIAL TIME SERIES FORECASTING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Industrial time series forecasting faces unique challenges: hundreds of correlated
 012 sensors, complex nonlinear dynamics, and the critical need for interpretable mod-
 013 els that engineers can trust. We introduce nonlinear causal sparse-smooth net-
 014 work, a framework that decomposes high-dimensional industrial forecasting into
 015 interpretable sparse-smooth feature extraction followed by nonlinear prediction.
 016 Unlike black-box deep learning approaches that use all sensors indiscriminately,
 017 our method automatically identifies critical sensor subsets while learning smooth
 018 temporal filters that reflect physical process dynamics. We cast this as a structured
 019 optimization problem with sparsity penalties for sensor selection and smooth-
 020 ness regularization for temporal patterns, unified within an identifiable Wiener
 021 model architecture. Theoretically, we prove convergence guarantees, establish
 022 sensor selection consistency, and derive generalization bounds that explicitly ac-
 023 count for the interplay between sparsity, smoothness, and nonlinearity. On an
 024 industrial refinery benchmark, our structured approach achieves a 25.2% lower
 025 error rate than state-of-the-art Transformer models, while simultaneously identi-
 026 fying a sparse subset of critical sensors and their interpretable dynamic modes.
 027 Our work demonstrates that incorporating strong, domain-aware inductive biases
 028 into a structured architecture offers a powerful alternative to monolithic black-box
 029 models for real-world industrial forecasting.

1 INTRODUCTION

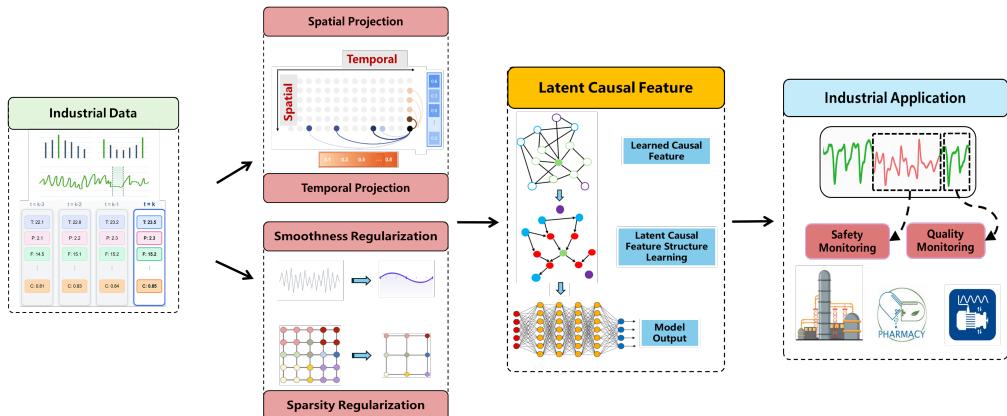
031 Industrial processes generate vast amounts of sensor data, yet paradoxically, the most economi-
 032 cally important variables—product quality indicators—often remain unmeasured in real-time (Qin,
 033 2012; Ge, 2017). Hardware analyzers for variables such as distillation column compositions,
 034 polymer melt indices, or catalyst activity levels typically require laboratory analysis with delays ranging
 035 from hours to days, creating a fundamental control challenge (Kadlec et al., 2009; Souza et al.,
 036 2016). Soft sensors address this gap by constructing mathematical models that estimate these hard-
 037 to-measure variables from readily available process measurements such as temperatures, pressures,
 038 and flow rates (Fortuna et al., 2007; Kano & Ogawa, 2008). While conceptually straightforward, de-
 039 veloping effective soft sensors faces multiple challenges: the high dimensionality of modern sensor
 040 arrays, complex nonlinear process dynamics, time-varying operating conditions, and the industrial
 041 requirement for interpretable models that operators can trust and maintain (Jiang et al., 2021; Shang
 042 et al., 2014).

044 A critical yet underexplored aspect of industrial soft sensing is the inherent redundancy in sensor
 045 networks and the smooth nature of process dynamics (Sun & Ge, 2021; Yuan et al., 2020). Manufac-
 046 turing facilities often install redundant sensors for safety and reliability, leading to highly correlated
 047 measurements that complicate model identification (Rasheed et al., 2020). Simultaneously, physi-
 048 cal processes governed by conservation laws, reaction kinetics, and transport phenomena naturally
 049 exhibit smooth temporal behavior rather than abrupt changes (Seborg et al., 2016). Traditional soft
 050 sensing approaches treat these characteristics as separate concerns: sensor selection methods fo-
 051 cus on spatial redundancy without considering temporal patterns (Fujiwara et al., 2009; Kaneko &
 052 Funatsu, 2011), while dynamic models incorporate time dependencies but use all available sensors
 053 indiscriminately (He & Wang, 2018; Wang et al., 2020). This separation misses the fundamental
 insight that sensor importance and temporal dynamics are coupled, and identifying these roles auto-

054 matically could significantly improve both model performance and interpretability (Zhu et al., 2020;
 055 Ge et al., 2014).

056 Recent advances in sparse learning have shown promise for automatic sensor selection in high-
 057 dimensional settings. LASSO (Tibshirani, 1996) and its variants, including elastic net (Zou &
 058 Hastie, 2005) and group LASSO (Yuan & Lin, 2006), provide principled approaches to identify
 059 relevant features. In the context of soft sensing, sparse methods have been successfully applied for
 060 variable selection (Fujiwara et al., 2009; Kaneko & Funatsu, 2011). However, these methods typi-
 061 cally assume linear relationships and independent features, ignoring the temporal dynamics inherent
 062 in industrial processes. Parallel developments in smoothness regularization have addressed tempo-
 063 ral dynamics modeling. The fused LASSO (Tibshirani et al., 2005) and trend filtering (Kim et al.,
 064 2009; Tibshirani, 2014) enforce smoothness in coefficient profiles, reflecting the physical reality
 065 that industrial processes exhibit smooth dynamics due to inertia and transport phenomena. Despite
 066 these advances, existing smooth modeling approaches do not provide automatic sensor selection,
 067 requiring practitioners to manually choose relevant measurements.

068 The integration of sparsity and smoothness has emerged as a powerful paradigm in signal processing
 069 and statistics (Hebiri & Van De Geer, 2011). The sparse-smooth LASSO (Hebiri & Van De Geer,
 070 2011) simultaneously performs variable selection and smoothness enforcement, while the work by
 071 Bien et al. (Bien et al., 2015) provides convex formulations for hierarchical selection with smooth-
 072 ness. However, these methods remain largely linear and have not been extended to handle the
 073 nonlinear relationships prevalent in industrial processes.



089 Figure 1: Overview of the NL-CS³ framework architecture.

090 Causal inference provides another crucial perspective for soft sensor design. Traditional correlation-
 091 based methods may capture spurious relationships that fail under distribution shifts or process
 092 changes (Peters et al., 2017; Schölkopf et al., 2021). Recent work has emphasized the importance
 093 of causal feature learning for robust prediction (Arjovsky et al., 2019; Rojas-Carulla et al., 2018). In
 094 the industrial context, Huang et al. (Huang et al., 2020) demonstrated that causal features improve
 095 soft sensor transferability across operating conditions, while Chen et al. (Chen et al., 2021) showed
 096 enhanced robustness to unmeasured disturbances. However, existing causal soft sensing methods do
 097 not incorporate sparsity or smoothness priors, missing opportunities for improved interpretability
 098 and efficiency.

099 The fundamental challenge lies in developing a unified framework that simultaneously addresses
 100 multiple industrial requirements: nonlinear modeling capability for complex processes, automatic
 101 sensor selection for cost reduction and interpretability, smooth temporal dynamics reflecting phys-
 102 ical behavior, causal feature learning for robustness, and computational efficiency for real-time de-
 103 ployment. Existing methods typically address only subsets of these requirements. Linear sparse
 104 methods like LASSO (Tibshirani, 1996) and elastic net (Zou & Hastie, 2005) provide sensor se-
 105 lection but cannot capture nonlinear relationships. Kernel methods (Rosipal & Trejo, 2001; Liu
 106 et al., 2015) and Gaussian processes (Chen et al., 2013; Ni et al., 2012) model nonlinearities but
 107 lack interpretable sensor selection. Deep learning approaches (Yuan et al., 2019; Sun & Ge, 2021)
 achieve high accuracy but operate as black boxes without clear sensor importance rankings. Recent

108 sparse neural networks (Louizos et al., 2018) attempt to combine sparsity with nonlinearity but lack
 109 temporal smoothness constraints and theoretical foundations.
 110

111 Most critically, no existing framework provides theoretical guarantees for the combined sparse-
 112 smooth-nonlinear setting. While convergence properties are established for sparse methods (Wain-
 113 wright, 2009; Zhao & Yu, 2006) and smooth regularization (Mammen & Van De Geer, 1997; Tibshi-
 114 rani, 2014) separately, their integration with nonlinear function approximation remains theoretically
 115 unexplored. This gap is particularly problematic for industrial applications where reliability and
 116 predictability are paramount. Furthermore, existing methods do not explicitly model the Wiener
 117 structure—linear dynamics followed by static nonlinearity—which naturally arises in many indus-
 118 trial processes (Pearson, 1999; Janczak, 2004) and provides a principled decomposition between
 119 interpretable feature extraction and flexible nonlinear mapping.

120 This paper addresses these critical gaps by proposing a novel Nonlinear Causal Sparse-Smooth Soft
 121 Sensor (NL-CS³) framework that unifies sparse sensor selection, smooth temporal modeling, causal
 122 feature learning, and nonlinear prediction capability within a theoretically grounded architecture.
 123 Figure 1 illustrates the overall NL-CS³ architecture. Our approach differs from existing methods
 124 in three key aspects. First, we introduce a novel two-stage architecture that explicitly separates in-
 125 terpretable sparse-smooth feature extraction from nonlinear mapping, corresponding to an identifi-
 126 able Wiener model with automatic sensor selection. Second, we provide comprehensive theoretical
 127 guarantees including sensor selection consistency, temporal smoothness bounds, and information
 128 preservation properties, filling the theoretical gap in combined sparse-smooth-nonlinear modeling.
 129 Third, we develop an efficient alternating optimization algorithm that decouples the sparse sensor
 130 selection problem from smooth temporal filter design, enabling practical deployment in industrial
 131 settings. The main contributions of this paper are:
 132

- 133 • The NL-CS³ framework is proposed to provide an interpretable Wiener-model soft sensor
 134 by integrating sparsity-driven sensor selection, smooth temporal filtering, and nonlinear
 135 regression within a unified architecture.
- 136 • Comprehensive guarantees are provided: (i) sensor-selection consistency under standard
 137 identifiability and irrepresentability conditions; (ii) bounds on the discrete gradient norm of
 138 the temporal filters ($\beta^\top L \beta$), ensuring smooth dynamics; and (iii) information-preservation
 139 results showing that sparse features retain predictive power.
- 140 • A computationally efficient alternating-optimization scheme is presented that decouples
 141 sparse sensor selection from smooth temporal-filter design.

142 The remainder of this paper is organized as follows. Section 2 presents the NL-CS³ methodology
 143 including problem formulation, optimization algorithms, and implementation details. Section 3
 144 provides theoretical analysis establishing convergence, consistency, and generalization properties.
 145 Section 4 presents comprehensive experimental validation on industrial data with comparisons to
 146 state-of-the-art methods. Section 5 concludes the paper.
 147

148 2 METHODOLOGY

150 2.1 PROBLEM FORMULATION AND MODEL STRUCTURE

152 Consider an industrial process monitored through m sensors producing measurement vector $\mathbf{y}_k \in$
 153 \mathbb{R}^m at discrete time instant $k \in \mathbb{N}$. Let τ_k denote a quality variable of interest. We as-
 154 sume τ_k is generated through an unknown dynamic process driven by past measurements: $\tau_k =$
 155 $h(\mathbf{y}_k, \mathbf{y}_{k-1}, \dots, \mathbf{y}_{k-d}) + \eta_k$, where d is the maximum lag and η_k is measurement noise. The
 156 goal is to learn a predictive model $\hat{\tau}_k = f(\mathbf{Y}_k)$ from a dataset $\mathcal{D} = \{(\mathbf{Y}_i, \tau_i)\}_{i=1}^N$, where
 157 $\mathbf{Y}_k = [\mathbf{y}_k^T, \dots, \mathbf{y}_{k-s+1}^T]^T \in \mathbb{R}^{ms}$ is the augmented measurement vector.

158 Traditional methods often rely on all available sensors and may capture spurious correlations or
 159 noisy dynamics. To address this, we propose the NL-CS³ framework, which explicitly aims to
 160 identify relevant sensors and smooth temporal patterns. We adopt a structured approach that decom-
 161 poses the modeling task into two stages: Causal Sparse-Smooth Feature Extraction (CSSFE) and
 Nonlinear Causal Mapping (NCM).

162 In the CSSFE stage, we extract a low-dimensional set of latent features $\phi_k \in \mathbb{R}^\ell$ ($\ell \ll m$) that
 163 capture the essential dynamic and causal information from the high-dimensional input \mathbf{Y}_k . These
 164 features are designed to use sparse sensor subsets and exhibit smooth temporal dynamics:

$$165 \quad \phi_k = \mathcal{F}_{CSSFE}(\mathbf{Y}_k) \quad (1)$$

167 In the NCM stage, we map these interpretable features to the quality variable using a static nonlinear
 168 function $g(\cdot)$:

$$169 \quad \hat{\tau}_k = g(\phi_k) \quad (2)$$

171 This architecture, where linear dynamic feature extraction is followed by a static nonlinearity, cor-
 172 responds to a Wiener model structure with explicit sensor selection capability.

173 2.2 CAUSAL SPARSE-SMOOTH FEATURE EXTRACTION

175 The core of the CSSFE stage is the construction of features through spatio-temporal filtering with
 176 sparsity and smoothness constraints. We model the j -th causal feature $\phi_{j,k}$ as:

$$178 \quad \phi_{j,k} = \sum_{i=0}^{s-1} \beta_{j,i} (\mathbf{w}_j^T \mathbf{y}_{k-i}) \quad (3)$$

181 where $\mathbf{w}_j \in \mathbb{R}^m$ is a spatial projection vector combining sensors at a given time, and $\beta_j \in \mathbb{R}^s$ is a
 182 temporal filter capturing dynamic relationships across time.

183 To reflect the industrial reality of local sensor placement and smooth process dynamics, we formulate
 184 the following optimization problem for the j -th feature:

$$186 \quad \max_{\mathbf{w}_j, \beta_j} J_j(\mathbf{w}_j, \beta_j) = \text{Cov}^2(\tau, \phi_j) - \lambda_1 \|\mathbf{w}_j\|_1 - \lambda_2 \sum_{i=1}^{s-1} (\beta_{j,i} - \beta_{j,i-1})^2 \quad (4)$$

188 subject to $\|\mathbf{w}_j\|_2 = 1$ and $\|\beta_j\|_2 = 1$. The objective function consists of three terms:

- 190 • **Predictive Power:** $\text{Cov}^2(\tau, \phi_j)$ maximizes the dependency between the feature and the
 191 target, serving as a computationally efficient proxy for capturing causal influences.
- 192 • **Sensor Sparsity:** $\lambda_1 \|\mathbf{w}_j\|_1$ promotes sparsity in the spatial projection, automatically se-
 193 lecting relevant sensors and providing interpretability by identifying which sensors con-
 194 tribute to predictions.
- 195 • **Temporal Smoothness:** $\lambda_2 \sum_{i=1}^{s-1} (\beta_{j,i} - \beta_{j,i-1})^2 = \lambda_2 \beta_j^T \mathbf{D}^T \mathbf{D} \beta_j$ enforces smoothness
 196 in the temporal filter and reflecting the physical reality that industrial processes exhibit
 197 smooth dynamics due to inertia and transport phenomena.

199 The smoothness term can be written in matrix form as $\lambda_2 \beta_j^T \mathbf{L} \beta_j$, where $\mathbf{L} = \mathbf{D}^T \mathbf{D} \in \mathbb{R}^{s \times s}$ is the
 200 discrete Laplacian matrix with $\mathbf{D} \in \mathbb{R}^{(s-1) \times s}$ being the first-order difference matrix.

202 2.3 OPTIMIZATION VIA ALTERNATING MAXIMIZATION

204 The optimization problem in Equation 4 is non-convex due to the bilinear interaction between \mathbf{w}_j
 205 and β_j . We employ an alternating maximization approach that converges to a stationary point.

207 2.3.1 OPTIMIZING β_j WITH FIXED \mathbf{w}_j

209 Fixing \mathbf{w}_j , we define the projected scalar signal $\nu_k = \mathbf{w}_j^T \mathbf{y}_k$. The covariance term simplifies to
 210 $\text{Cov}^2(\tau, \phi_j) = (\beta_j^T \mathbf{C}_{\tau\nu})^2 = \beta_j^T (\mathbf{C}_{\tau\nu} \mathbf{C}_{\tau\nu}^T) \beta_j$, where $\mathbf{C}_{\tau\nu}$ is the empirical cross-covariance vector
 211 between τ and ν at different lags.

212 Let $\mathbf{L} = \mathbf{D}^T \mathbf{D}$ be the discrete Laplacian matrix, where $\mathbf{D} \in \mathbb{R}^{(s-1) \times s}$ is the first-order difference
 213 matrix. The optimization problem becomes:

$$214 \quad \max_{\|\beta_j\|_2=1} \beta_j^T \underbrace{(\mathbf{C}_{\tau\nu} \mathbf{C}_{\tau\nu}^T - \lambda_2 \mathbf{L})}_{\mathbf{Q}_\beta} \beta_j \quad (5)$$

216 By the Rayleigh-Ritz theorem, this is a standard eigenvalue problem with closed-form solution: β_j^*
 217 is the principal eigenvector of the symmetric matrix \mathbf{Q}_β . The smoothness regularization corresponds
 218 to Tikhonov regularization in the temporal domain, ensuring physically plausible dynamics. From a
 219 Bayesian perspective, this penalty imposes a Gaussian prior $p(\beta_j) \propto \exp(-\frac{\lambda_2}{2} \beta_j^T \mathbf{L} \beta_j)$, encoding
 220 our belief that industrial processes exhibit smooth temporal behavior.
 221

222 2.3.2 OPTIMIZING \mathbf{w}_j WITH FIXED β_j

224 Fixing β_j , we define the temporally filtered covariance vector $\mathbf{G} = \sum_{i=0}^{s-1} \beta_{j,i} \mathbf{C}_{\tau y_i} \in \mathbb{R}^m$,
 225 which aggregates the cross-covariance information across all time lags weighted by the tempo-
 226 ral filter coefficients. The feature simplifies to $\phi_{j,k} = \mathbf{w}_j^T \mathbf{G}$, and the covariance term becomes
 227 $\text{Cov}^2(\tau, \phi_j) = (\mathbf{w}_j^T \mathbf{G})^2 = \mathbf{w}_j^T (\mathbf{G} \mathbf{G}^T) \mathbf{w}_j$, where $\mathbf{G} \mathbf{G}^T$ is a rank-one positive semidefinite ma-
 228 trix encoding the directional information of the temporally filtered covariances. The optimization
 229 problem with sparsity regularization becomes:
 230

$$\max_{\|\mathbf{w}_j\|_2=1} \mathbf{w}_j^T \underbrace{(\mathbf{G} \mathbf{G}^T)}_{\text{rank-1}} \mathbf{w}_j - \lambda_1 \|\mathbf{w}_j\|_1 \quad (6)$$

231 This constitutes a sparse principal component analysis problem on a rank-one matrix, where the
 232 quadratic term seeks alignment with the dominant direction \mathbf{G} while the ℓ_1 penalty promotes sparsity
 233 in sensor selection. Due to the non-smooth ℓ_1 term and non-convex unit sphere constraint, we
 234 employ projected proximal gradient ascent.
 235

236 From a compressed sensing perspective, the ℓ_1 penalty represents the tightest convex relaxation of
 237 the combinatorial ℓ_0 norm. The resulting sparse solution \mathbf{w}_j^* directly identifies the critical sensor
 238 subset through its support, with non-zero entries indicating sensors that contribute to the j -th causal
 239 feature, thereby providing interpretability and reducing measurement redundancy in industrial mon-
 240 itoring systems.
 241

242 2.4 ITERATIVE FEATURE EXTRACTION AND DEFLATION

243 We extract multiple features ϕ_1, \dots, ϕ_ℓ iteratively using a deflation procedure to ensure orthogo-
 244 nality and capture complementary information. After extracting the j -th feature, we compute the
 245 loading vector \mathbf{p}_j and regression coefficient b_j :
 246

$$\mathbf{p}_j = \frac{\mathbf{X}^T \phi_j}{\|\phi_j\|_2^2}, \quad b_j = \frac{\boldsymbol{\tau}^T \phi_j}{\|\phi_j\|_2^2} \quad (7)$$

247 The deflation step updates the data:
 248

$$\mathbf{X}^{(j+1)} = \mathbf{X}^{(j)} - \phi_j \mathbf{p}_j^T \quad (8)$$

$$\boldsymbol{\tau}^{(j+1)} = \boldsymbol{\tau}^{(j)} - b_j \phi_j \quad (9)$$

249 This orthogonalization ensures that each feature captures unique variance, preventing redundancy in
 250 the extracted features.
 251

252 2.5 NONLINEAR CAUSAL MAPPING

253 Once the sparse-smooth causal features $\phi_k = [\phi_{1,k}, \dots, \phi_{\ell,k}]^T$ are extracted, we map them to the
 254 target variable using a static nonlinear function $g: \mathbb{R}^\ell \rightarrow \mathbb{R}$:
 255

$$\hat{\tau}_k = g(\phi_k) \quad (10)$$

256 For complex interactions, we employ shallow neural networks $g(\cdot)$ with explicit regularization:
 257

$$\min_{g \in \mathcal{G}} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(\tau_i, g(\phi_i)) + \lambda_g \|W\|_F^2 \quad (11)$$

258 where $\|W\|_F$ is the Frobenius norm of weight matrices, controlling model complexity.
 259

270 3 THEORETICAL ANALYSIS
271272 3.1 CONVERGENCE ANALYSIS
273274 **Theorem 1 (Convergence of Alternating Maximization).** The alternating maximization algo-
275 rithm for problem (4) generates a sequence of objective values $\{J_j^{(t)}\}_{t=1}^{\infty}$ that is monotonically
276 non-decreasing, i.e., $J_j^{(t+1)} \geq J_j^{(t)}$ for all $t \geq 1$. The sequence converges to a finite limit, and
277 any accumulation point $(\mathbf{w}_j^*, \boldsymbol{\beta}_j^*)$ of the iterates satisfies the first-order Karush-Kuhn-Tucker (KKT)
278 conditions of the optimization problem. Moreover, if the matrix $\mathbf{Q}_{\beta} = \mathbf{C}_{\tau\nu} \mathbf{C}_{\tau\nu}^T - \lambda_2 \mathbf{L}$ is positive
279 definite, the stationary point is a local maximum.
280281 3.2 SENSOR SELECTION PROPERTIES
282283 **Theorem 2 (Sparse Sensor Selection Consistency).** Let $\mathcal{S}^* \subset \{1, \dots, m\}$ with $|\mathcal{S}^*| = k^*$ be the
284 true support, and let $\mathcal{S}^c = \{1, \dots, m\} \setminus \mathcal{S}^*$ denote its complement. Define $\mathbf{C}_{\mathcal{A}, \mathcal{B}}$ as the empirical
285 covariance matrix between sensor sets \mathcal{A} and \mathcal{B} . Under the following conditions:286 (i) **Eigenvalue condition:** $\lambda_{\min}(\mathbf{C}_{\mathcal{S}^*, \mathcal{S}^*}) \geq \kappa > 0$, where $\lambda_{\min}(\cdot)$ denotes the minimum eigenvalue
287 and κ is a positive constant ensuring the relevant sensors' covariance matrix is well-conditioned,
288289 (ii) **Irrepresentability condition:** $\|\mathbf{C}_{\mathcal{S}^c, \mathcal{S}^*} \mathbf{C}_{\mathcal{S}^*, \mathcal{S}^*}^{-1}\|_{\infty} < 1 - \zeta$ for some $\zeta \in (0, 1)$, where $\|\cdot\|_{\infty}$
290 denotes the matrix infinity norm, and this condition ensures irrelevant sensors cannot be well-
291 represented by linear combinations of relevant sensors,292 (iii) **Beta-min condition:** $\min_{i \in \mathcal{S}^*} |w_{j,i}^*| > C \lambda_1 \sqrt{\frac{\log m}{N}}$, where $w_{j,i}^*$ is the true coefficient for
293 sensor i in feature j , C is a universal constant, and this condition ensures the signal strength exceeds
294 the noise threshold, then $\hat{\mathbf{w}}_j$ satisfies $\mathbb{P}(\text{supp}(\hat{\mathbf{w}}_j) = \mathcal{S}^*) \geq 1 - 2m^{-2}$, where $\text{supp}(\cdot)$ denotes the
295 support (set of non-zero entries) of a vector.
296297 3.3 PREDICTION ERROR ANALYSIS
298299 **Theorem 3 (Generalization Bound).** For the NL-CS³ predictor $\hat{\tau}_k = g(\phi_k)$ with true model
300 $\tau_k = f^*(\mathbf{Y}_k) + \xi_k$ where $\mathbb{E}[\xi_k] = 0$, $\text{Var}(\xi_k) = \sigma_{\xi}^2$:

302
$$\mathbb{E}[(\tau_k - \hat{\tau}_k)^2] \leq \sigma_{\xi}^2 + \mathcal{B}_{\text{approx}} + \mathcal{O}\left(\frac{\|\mathbf{w}\|_0 \log m}{N}\right) \\ 303 + \mathcal{O}\left(\frac{1}{s\gamma_{\beta}}\right) + \mathcal{O}\left(\frac{\mathcal{C}(\mathcal{G})}{N}\right) \quad (12)$$

304
305
306

307 4 EXPERIMENTS
308309 4.1 EXPERIMENTAL SETUP
310311 We evaluate the proposed NL-CS³ framework on industrial refinery catalytic reforming unit with
312 complex nonlinear dynamics. The dataset comprises 5000 samples collected from 20 sensors moni-
313 toring critical process variables including temperature (5 sensors), pressure (4 sensors), flow rates (6
314 sensors), and composition analyzers (5 sensors). The target variable is the Research Octane Number
315 (RON) of the reformate product, which exhibits strong nonlinear dependencies on process condi-
316 tions due to complex reaction kinetics and catalyst deactivation dynamics.317 The dataset was partitioned into 3500 training samples and 1500 test samples. All input features
318 and target variables were standardized using z-score normalization to ensure numerical stability. We
319 compare two NL-CS³ against thirteen baseline methods spanning different modeling paradigms.
320 The NL-CS³ (NN) variant employs a neural network for the nonlinear mapping stage. The NL-CS³
321 (LINEAR) variant uses linear regression in the second stage to assess the contribution of nonlineari-
322 ty. Baseline methods include linear approaches (LASSO, Ridge, Elastic Net, Bayesian Ridge, PLS),
323 kernel methods (SVR with polynomial kernel, Kernel Ridge), ensemble methods (Random For-
est, AdaBoost, Gradient Boosting, XGBoost, LightGBM), and deep learning architectures (LSTM

, Transformer). All baseline methods' hyperparameters have been optimally selected to ensure that all methods achieve optimal results.

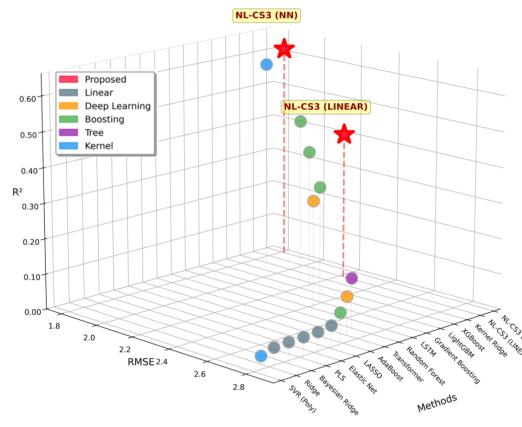
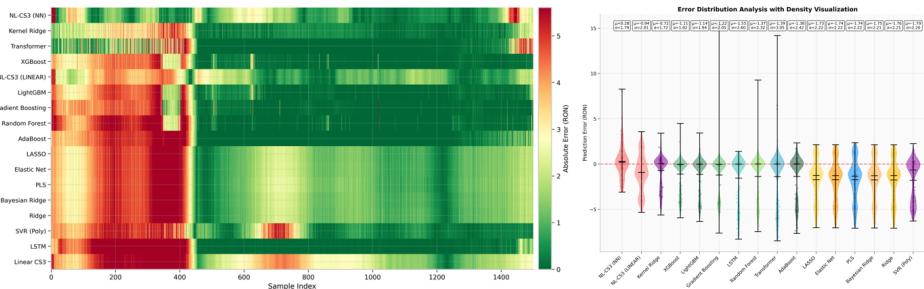
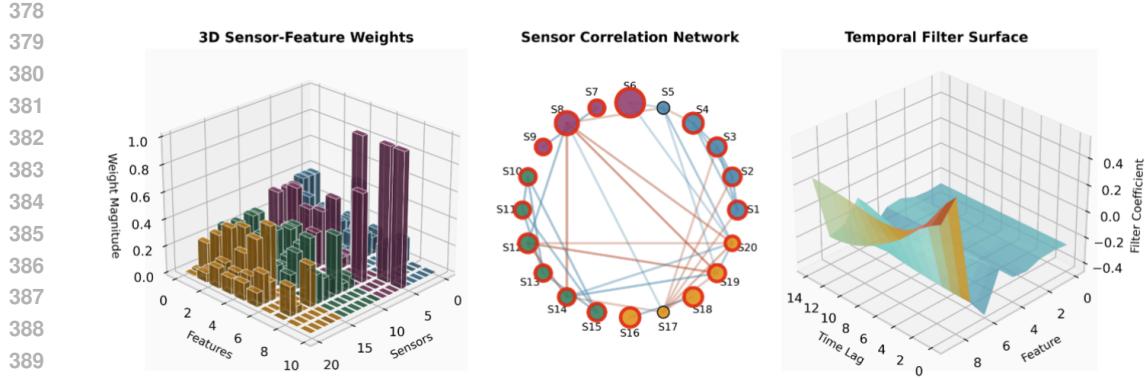


Figure 2: Performance comparison of NL-CS³ against baseline methods on industrial refinery dataset.

Table 1: Performance Comparison on Industrial Refinery Dataset

Method	RMSE	R ²	Sensors
NL-CS³ (NN)	1.8124	0.6115	18
Kernel Ridge	1.8654	0.5885	20
XGBoost	2.1299	0.4635	20
NL-CS³ (LINEAR)	2.2188	0.4178	19
LightGBM	2.2527	0.3999	20
Gradient Boosting	2.3847	0.3275	20
LSTM	2.4240	0.3051	20
Random Forest	2.6976	0.1394	20
Transformer	2.7463	0.1080	20
AdaBoost	2.7860	0.0821	20
LASSO	2.8141	0.0635	7
Elastic Net	2.8200	0.0596	11
PLS	2.8219	0.0583	20
Bayesian Ridge	2.8226	0.0578	20
Ridge	2.8249	0.0563	20
SVR (Poly)	2.8364	0.0486	20





392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Sparse-smooth feature analysis. Left: sensor weights. Middle: correlation network. Right: temporal filter surface.

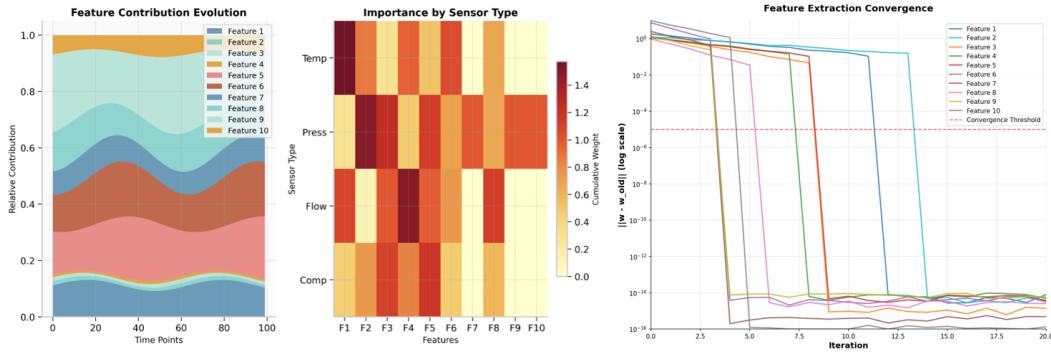


Figure 5: Feature dynamics and training behavior. Left: contribution evolution of extracted features. Middle: importance summarized by sensor type. Right: convergence of feature extraction across iterations.

4.2 PERFORMANCE COMPARISON

Table 1 presents comprehensive performance metrics across all methods evaluated on the test dataset. Figure 2 visualizes the performance comparison, clearly showing NL-CS³'s superiority over baseline methods. The results demonstrate that NL-CS³ (NN) achieves an RMSE of 1.8124 and R^2 score of 0.6115. It achieves a 2.8% improvement in RMSE over the best baseline method. Comparing with the linear variant NL-CS³ (LINEAR), it demonstrates a substantial 18.3% reduction in RMSE when incorporating nonlinear mapping. This performance gap underscores the importance of capturing nonlinear relationships in industrial process modeling.

Comparing with deep learning approaches, despite their capacity for complex function approximation, both LSTM and Transformer models significantly underperform NL-CS³. NL-CS³ (NN) achieves a 25.2% improvement over LSTM and a 34.0% improvement over Transformer, suggesting that the structured approach of sparse-smooth feature extraction followed by nonlinear mapping is more effective than end-to-end deep learning for this industrial application.

The ensemble methods, particularly XGBoost and LightGBM, demonstrate moderate performance with RMSEs of 2.1299 and 2.2527 respectively. While these methods typically excel in tabular data problems, their inability to explicitly model temporal dynamics and sensor relationships limits their effectiveness. Linear methods uniformly perform poorly with RMSEs exceeding 2.8, confirming the presence of strong nonlinearities in the RON prediction problem that cannot be captured by linear models alone. Figure 3 provides detailed process-level error visualization through per-sample error

heatmaps and error distribution violin plots, revealing distinct error patterns across different methods and operating conditions.

4.3 SENSOR SELECTION AND INTERPRETABILITY

A critical advantage of NL-CS³ is its automatic sensor selection capability through sparsity regularization. This selective approach reduces monitoring costs and computational requirements while preserving predictive capability. Table 2 presents the selected top 8 sensors with their corresponding importance scores normalized to the range [0, 1].

Table 2: Selected Sensors and Importance Scores

Sensor	Description	Importance	Type
S-6	P-201 (Reactor pressure)	1.000	Pressure
S-8	P-203 (Separator pressure)	0.567	Pressure
S-4	T-104 (Reactor outlet temp)	0.377	Temperature
S-16	C-501 (Feed naphthene)	0.344	Composition
S-18	C-503 (H/HC ratio)	0.303	Composition
S-1	T-102 (Reactor inlet temp)	0.269	Temperature
S-10	F-301 (Feed flow rate)	0.184	Flow
S-13	F-305 (Recycle gas flow)	0.184	Flow

The sensor importance analysis reveals physically interpretable patterns aligned with process engineering knowledge. The reactor pressure (P-201) receives the highest importance score of 1.000, consistent with its critical role in determining reaction kinetics and product selectivity. The separator pressure (P-203) shows high importance (0.567), indicating its role in product separation efficiency. Temperature sensors at reactor inlet and outlet positions are identified as important with scores of 0.269 and 0.377 respectively, reflecting their influence on reaction rates and equilibrium. Composition analyzers for feed naphthene content and hydrogen-to-hydrocarbon ratio demonstrate moderate importance scores of 0.344 and 0.303, capturing the effect of feed quality on RON.

The sparse-smooth features extracted by NL-CS³ exhibit interpretable temporal patterns that align with known process dynamics, as illustrated in Figure 4 which visualizes the sensor-feature weights, sensor correlation network, and temporal filter surface. The temporal filters learned through smoothness-constrained optimization reveal three distinct dynamic modes. The first mode captures fast dynamics, corresponding to immediate response to flow rate changes. The second mode exhibits oscillatory behavior, reflecting control loop interactions and periodic disturbances. The third mode represents slow dynamics, associated with catalyst deactivation and thermal inertia effects. Figure 5 demonstrates the evolution of these feature contributions over time, the hierarchical importance of different sensor types, and the convergence behavior of the feature extraction process across iterations, confirming the stability and interpretability of the extracted features.

5 CONCLUSION

This study addressed the challenge of developing accurate, interpretable, and robust soft sensors for industrial processes. The proposed NL-CS³ framework successfully unified sparse sensor selection, smooth temporal filtering, and nonlinear mapping, outperforming thirteen baseline methods including deep learning architectures. The research established comprehensive theoretical guarantees for convergence, consistency, and generalization in the sparse-smooth-nonlinear setting. This unified framework significantly enhanced model reliability and interpretability, offering a theoretically sound and practical tool for optimizing industrial monitoring and control strategies. Future research will explore extensions to adaptive modeling for time-varying processes and the integration of NL-CS³ within closed-loop control architectures.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.

486 Jacob Bien, Noah Simon, and Robert Tibshirani. Convex hierarchical testing of interactions. *The*
 487 *Annals of Applied Statistics*, 9(1):27–53, 2015.
 488

489 Jian Chen, Lee Chuin Chan, and Yi-Chung Cheng. Gaussian process regression based optimal
 490 design of combustion systems using flame images. *Applied Energy*, 111:153–160, 2013.
 491

492 Yutian Chen, Kun Zhang, Jonas Peters, and Bernhard Schölkopf. Causal discovery and inference
 493 for nonstationary systems. *Journal of Machine Learning Research*, 22(103):1–72, 2021.
 494

495 Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo, and Maria Gabriella Xibilia. *Soft sensors for*
 496 *monitoring and control of industrial processes*. Springer, 2007.
 497

498 Koichi Fujiwara, Manabu Kano, Shinji Hasebe, and Akitoshi Takinami. Soft-sensor development
 499 using correlation-based just-in-time modeling. *AIChE Journal*, 55(7):1754–1765, 2009.
 500

501 Zhiqiang Ge. Review on data-driven modeling and monitoring for plant-wide industrial processes.
 502 *Chemometrics and Intelligent Laboratory Systems*, 171:16–25, 2017.
 503

504 Zhiqiang Ge, Huang Biao, and Zhihuan Song. Mixture semisupervised principal component regres-
 505 sion model and soft sensor application. *AIChE Journal*, 60(2):533–545, 2014.
 506

507 Q Peter He and Jin Wang. Statistical process monitoring as a big data analytics tool for smart
 508 manufacturing. *Journal of Process Control*, 67:35–43, 2018.
 509

510 Mohamed Hebiri and Sara Van De Geer. The smooth-lasso and other $\ell_1 + \ell_2$ -penalized methods.
 511 *Electronic Journal of Statistics*, 5:1184–1226, 2011.
 512

513 Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D Ramsey, Ruben Sanchez-Romero, Clark Glymour,
 514 and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary data. *Journal of*
 515 *Machine Learning Research*, 21(89):1–53, 2020.
 516

517 Andrzej Janczak. *Identification of nonlinear systems using neural networks and polynomial models:*
 518 *a block-oriented approach*. Springer Science & Business Media, 2004.
 519

520 Yueqiu Jiang, Shen Yin, Jianwen Dong, and Okyay Kaynak. A review on soft sensors for monitoring,
 521 control, and optimization of industrial processes. *IEEE Sensors Journal*, 21(11):12868–12881,
 522 2021.
 523

524 Petr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven soft sensors in the process industry.
 525 *Computers & Chemical Engineering*, 33(4):795–814, 2009.
 526

527 Hiromasa Kaneko and Kimito Funatsu. Development of a new soft sensor method using independent
 528 component analysis and partial least squares. *AIChE Journal*, 57(6):1506–1513, 2011.
 529

530 Manabu Kano and Morimasa Ogawa. Virtual sensing technology in process industries: Trends and
 531 challenges revealed by recent industrial applications. *Journal of Chemical Engineering of Japan*,
 532 41(1):1–17, 2008.
 533

534 Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky. ℓ_1 trend filtering. *SIAM*
 535 *Review*, 51(2):339–360, 2009.
 536

537 Yi Liu, Zengliang Gao, Ping Li, and Haiqing Wang. Development of soft sensors based on kernel
 538 partial least squares and extreme learning machine. *Chemical Engineering Research and Design*,
 539 95:113–122, 2015.
 540

541 Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
 542 l_0 regularization. *arXiv preprint arXiv:1712.01312*, 2018.
 543

544 Enno Mammen and Sara Van De Geer. Locally adaptive regression splines. *The Annals of Statistics*,
 545 25(1):387–413, 1997.
 546

547 Weifeng Ni, Soon Keat Tan, Wun Jern Ng, and Steven D Brown. Localized, adaptive recursive par-
 548 tial least squares regression for dynamic system modeling. *Industrial & Engineering Chemistry*
 549 *Research*, 51(26):8025–8039, 2012.
 550

540 Ronald K Pearson. *Discrete-time dynamic models*. Oxford University Press, 1999.
 541

542 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: foundations*
 543 *and learning algorithms*. The MIT Press, 2017.

544 S Joe Qin. Survey on data-driven industrial process monitoring and diagnosis. *Annual Reviews in*
 545 *Control*, 36(2):220–234, 2012.

546

547 Adil Rasheed, Omer San, and Trond Kvamsdal. Digital twins: Values, challenges, and enablers
 548 from a modeling perspective. *IEEE Access*, 8:21980–22012, 2020.

549

550 Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for
 551 causal transfer learning. *The Journal of Machine Learning Research*, 19(1):1309–1342, 2018.

552

553 Roman Rosipal and Leonard J Trejo. Kernel partial least squares regression in reproducing kernel
 554 hilbert space. *Journal of Machine Learning Research*, 2(Dec):97–123, 2001.

555

556 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 557 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of*
 558 *the IEEE*, 109(5):612–634, 2021.

559

560 Dale E Seborg, Thomas F Edgar, Duncan A Mellichamp, and Francis J Doyle III. *Process dynamics*
 561 *and control*. John Wiley & Sons, 2016.

562

563 Chao Shang, Fan Yang, Dexian Huang, and Wenxiang Lyu. Data-driven soft sensor development
 564 based on deep learning technique. *Journal of Process Control*, 24(3):223–233, 2014.

565

566 Francisco AA Souza, Rui Araújo, and José Mendes. Review of soft sensor methods for regression
 567 applications. *Chemometrics and Intelligent Laboratory Systems*, 152:69–79, 2016.

568

569 Qiugang Sun and Zhiqiang Ge. Gated stacked target-related autoencoder: A novel deep feature ex-
 570 traction and layerwise ensemble method for industrial soft sensor application. *IEEE Transactions*
 571 *on Cybernetics*, 52(5):3457–3468, 2021.

572

573 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical*
 574 *Society: Series B (Methodological)*, 58(1):267–288, 1996.

575

576 Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity and
 577 smoothness via the fused lasso. *Journal of the Royal Statistical Society: Series B (Statistical*
 578 *Methodology)*, 67(1):91–108, 2005.

579

580 Ryan J Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. *The Annals of*
 581 *Statistics*, 42(1):285–323, 2014.

582

583 Martin J Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ_1 -
 584 constrained quadratic programming (lasso). *IEEE Transactions on Information Theory*, 55(5):
 585 2183–2202, 2009.

586

587 Hongyang Wang, Peng Li, Furong Gao, Zhihuan Song, and Steven X Ding. A novel deep learning
 588 based fault diagnosis approach for chemical process with extended deep belief network. *ISA*
 589 *Transactions*, 96:457–467, 2020.

590

591 Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. *Journal*
 592 *of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(1):49–67, 2006.

593

594 Xiaofeng Yuan, Bo Huang, Yalin Wang, Chunhua Yang, and Weihua Gui. Deep learning-based
 595 feature representation and its application for soft sensor modeling with variable-wise weighted
 596 sae. *IEEE Transactions on Industrial Informatics*, 14(7):3235–3243, 2019.

597

598 Xiaofeng Yuan, Lin Li, Yalin Wang, Chunhua Yang, and Weihua Gui. Nonlinear dynamic soft sensor
 599 modeling with supervised long short-term memory network. *IEEE Transactions on Industrial*
 600 *Informatics*, 16(5):3168–3176, 2020.

601

602 Peng Zhao and Bin Yu. On model selection consistency of lasso. *The Journal of Machine Learning*
 603 *Research*, 7:2541–2563, 2006.

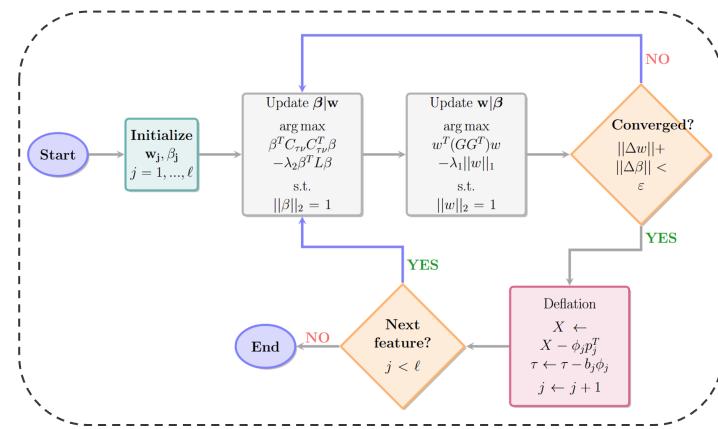
594 Jie Zhu, Zhiqiang Ge, Zhihuan Song, and Furong Gao. Review and big data perspectives on robust
 595 data mining approaches for industrial process modeling with outliers and missing data. *Annual
 596 Reviews in Control*, 46:107–133, 2020.

597 Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. *Journal of the
 598 Royal Statistical Society: Series B (Statistical Methodology)*, 67(2):301–320, 2005.

600
 601 **A APPENDIX**

602
 603 **A.1 COMPLETE NL-CS³ ALGORITHM**

604 The complete algorithmic procedure for the NL-CS³ framework is presented in Algorithm 1, with
 605 the flowchart visualization shown in Figure 6.



606
 607 Figure 6: Algorithmic flowchart of the alternating optimization procedure for NL-CS³.

608
 609 **A.2 THEORETICAL PROOFS**

610 A.2.1 PROOF OF THEOREM 1 (CONVERGENCE OF ALTERNATING MAXIMIZATION)

611 *Proof.* Let $(\mathbf{w}_j^{(t)}, \boldsymbol{\beta}_j^{(t)})$ denote the iterates at step t . The alternating updates yield:

$$J_j(\mathbf{w}_j^{(t)}, \boldsymbol{\beta}_j^{(t)}) \leq J_j(\mathbf{w}_j^{(t)}, \boldsymbol{\beta}_j^{(t+1)}) \quad (13)$$

$$\leq J_j(\mathbf{w}_j^{(t+1)}, \boldsymbol{\beta}_j^{(t+1)}) \quad (14)$$

612 where the first inequality follows from the optimality of $\boldsymbol{\beta}_j^{(t+1)}$ given $\mathbf{w}_j^{(t)}$, and the second from the
 613 ascent property of the proximal gradient update for \mathbf{w}_j .

614 The objective is bounded above since $\text{Cov}^2(\tau, \phi_j) \leq \text{Var}(\tau) \cdot \text{Var}(\phi_j)$ by Cauchy-Schwarz, and
 615 both variances are finite. The regularization terms satisfy:

$$\lambda_1 \|\mathbf{w}_j\|_1 \leq \lambda_1 \sqrt{m} \|\mathbf{w}_j\|_2 = \lambda_1 \sqrt{m} \quad (15)$$

$$\lambda_2 \sum_{i=1}^{s-1} (\beta_{j,i} - \beta_{j,i-1})^2 \leq 4\lambda_2 \|\boldsymbol{\beta}_j\|_2^2 = 4\lambda_2 \quad (16)$$

616 Therefore, $J_j \leq \text{Var}(\tau) \cdot \sup_{\mathbf{w}, \boldsymbol{\beta}} \text{Var}(\phi_j) < \infty$. By the monotone convergence theorem, the
 617 bounded monotonic sequence converges.

618 The constraint sets $\mathcal{W} = \{\mathbf{w} : \|\mathbf{w}\|_2 = 1\}$ and $\mathcal{B} = \{\boldsymbol{\beta} : \|\boldsymbol{\beta}\|_2 = 1\}$ are compact. By Bolzano-
 619 Weierstrass, the sequence $\{(\mathbf{w}_j^{(t)}, \boldsymbol{\beta}_j^{(t)})\}$ has a convergent subsequence. The continuity of J_j and

648 **Algorithm 1** NL-CS³: Complete Algorithm

649 **Require:** Dataset $\mathcal{D} = \{(\mathbf{Y}_i, \tau_i)\}_{i=1}^N$, parameters $\lambda_1, \lambda_2, \ell$

650 **Ensure:** Sparse-smooth features $\{\phi_j\}_{j=1}^\ell$, nonlinear mapping $g(\cdot)$

651 1: // **Initialization**

652 2: Initialize $\mathbf{X}^{(1)} \leftarrow \mathbf{Y}, \boldsymbol{\tau}^{(1)} \leftarrow \boldsymbol{\tau}$

653 3: **for** $j = 1$ to ℓ **do**

654 4: // **Phase 1: Extract sparse-smooth feature**

655 5: Initialize $\mathbf{w}_j^{(0)}$ randomly on unit sphere

656 6: $t \leftarrow 0$

657 7: **repeat**

658 8: // **Fix \mathbf{w}_j , optimize $\boldsymbol{\beta}_j$**

659 9: Compute projected signal: $\nu_k = (\mathbf{w}_j^{(t)})^T \mathbf{y}_k$

660 10: Construct covariance vector: $\mathbf{C}_{\tau\nu}$

661 11: Form matrix: $\mathbf{Q}_\beta = \mathbf{C}_{\tau\nu} \mathbf{C}_{\tau\nu}^T - \lambda_2 \mathbf{L}$

662 12: $\boldsymbol{\beta}_j^{(t+1)} \leftarrow$ principal eigenvector of \mathbf{Q}_β

663 13: // **Fix $\boldsymbol{\beta}_j$, optimize \mathbf{w}_j**

664 14: Compute filtered vector: $\mathbf{G} = \sum_{i=0}^{s-1} \beta_{j,i}^{(t+1)} \mathbf{C}_{\tau\mathbf{y}_i}$

665 15: Apply proximal gradient step with ℓ_1 penalty

666 16: Project onto unit sphere: $\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t+1)} / \|\mathbf{w}_j^{(t+1)}\|_2$

667 17: $t \leftarrow t + 1$

668 18: **until** convergence

669 19: // **Deflation**

670 20: Compute loading: $\mathbf{p}_j = \frac{(\mathbf{X}^{(j)})^T \phi_j}{\|\phi_j\|_2^2}$

671 21: Update: $\mathbf{X}^{(j+1)} \leftarrow \mathbf{X}^{(j)} - \phi_j \mathbf{p}_j^T$

672 22: Update: $\boldsymbol{\tau}^{(j+1)} \leftarrow \boldsymbol{\tau}^{(j)} - b_j \phi_j$

673 23: **end for**

674 24: // **Phase 2: Learn nonlinear mapping**

675 25: Train neural network: $g^* = \arg \min_{g \in \mathcal{G}} \sum_{i=1}^N \mathcal{L}(\tau_i, g(\phi_i))$

676 26: **return** $\{\mathbf{w}_j, \boldsymbol{\beta}_j\}_{j=1}^\ell, g^*$

679
680 the structure of alternating maximization ensure convergence to a point satisfying the Karush-Kuhn-Tucker (KKT) conditions:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_j^*, \boldsymbol{\beta}_j^*, \mu_1^*) = 0, \quad \nabla_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{w}_j^*, \boldsymbol{\beta}_j^*, \mu_2^*) = 0 \quad (17)$$

681 where \mathcal{L} is the Lagrangian and μ_1^*, μ_2^* are the KKT multipliers for the norm constraints.

682
683 To establish the local maximum property when \mathbf{Q}_β is positive definite, we analyze the second-order
684 conditions. Consider the Hessian of the Lagrangian at the stationary point $(\mathbf{w}_j^*, \boldsymbol{\beta}_j^*)$. For the $\boldsymbol{\beta}$ -
685 subproblem with fixed \mathbf{w}_j^* , the objective function near $\boldsymbol{\beta}_j^*$ can be expressed as:

$$J(\boldsymbol{\beta}) = \boldsymbol{\beta}^T \mathbf{Q}_\beta \boldsymbol{\beta} - \mu_2^* (\|\boldsymbol{\beta}\|_2^2 - 1) \quad (18)$$

686 The Hessian with respect to $\boldsymbol{\beta}$ is:

$$\nabla_{\boldsymbol{\beta}}^2 J = 2 \mathbf{Q}_\beta - 2 \mu_2^* \mathbf{I} \quad (19)$$

687
688 At the optimal point, $\boldsymbol{\beta}_j^*$ is the principal eigenvector of \mathbf{Q}_β with eigenvalue $\lambda_{\max}(\mathbf{Q}_\beta) = \mu_2^*$. When
689 \mathbf{Q}_β is positive definite, all its eigenvalues are positive, and particularly $\lambda_{\max}(\mathbf{Q}_\beta) > \lambda_i(\mathbf{Q}_\beta)$ for all
690 other eigenvalues λ_i . This implies:

$$\nabla_{\boldsymbol{\beta}}^2 J = 2(\mathbf{Q}_\beta - \lambda_{\max}(\mathbf{Q}_\beta) \mathbf{I}) \preceq 0 \quad (20)$$

691 on the tangent space of the constraint manifold, confirming that $\boldsymbol{\beta}_j^*$ is a local maximum for the
692 $\boldsymbol{\beta}$ -subproblem. \square

693
694 A similar analysis for the \mathbf{w} -subproblem, accounting for the non-smooth ℓ_1 regularization through
695 subdifferential calculus, establishes that the stationary point satisfies the second-order sufficient
696 conditions for a local maximum when both \mathbf{Q}_β and the corresponding matrix for the \mathbf{w} -subproblem are
697 positive definite in their respective constraint manifolds. \square

702 A.2.2 PROOF OF THEOREM 2 (SPARSE SENSOR SELECTION CONSISTENCY)
703704 *Proof.* The optimization for \mathbf{w}_j with fixed β_j is:
705

706
$$\hat{\mathbf{w}}_j = \arg \max_{\|\mathbf{w}\|_2=1} \mathbf{w}^T \mathbf{M} \mathbf{w} - \lambda_1 \|\mathbf{w}\|_1 \quad (21)$$

707

708 where $\mathbf{M} = \mathbf{G} \mathbf{G}^T$ with $\mathbf{G} = \sum_{i=0}^{s-1} \beta_{j,i} \mathbf{C}_{\tau \mathbf{y}_i}$.
709710 Define the oracle estimator $\tilde{\mathbf{w}}_{\mathcal{S}^*}$ that knows the true support:
711

712
$$\tilde{\mathbf{w}}_{\mathcal{S}^*} = \arg \max_{\mathbf{w}_{\mathcal{S}^c}=0, \|\mathbf{w}\|_2=1} \mathbf{w}^T \mathbf{M} \mathbf{w} \quad (22)$$

713

714 For the oracle to be optimal globally, the KKT conditions require:
715

716
$$\|\nabla_{\mathcal{S}^c} J(\tilde{\mathbf{w}}_{\mathcal{S}^*})\|_{\infty} < \lambda_1 \quad (23)$$

717

718 Using the decomposition $\nabla_{\mathcal{S}^c} J = 2\mathbf{M}_{\mathcal{S}^c, \mathcal{S}^*} \tilde{\mathbf{w}}_{\mathcal{S}^*}$ and the bound:
719

720
$$\|\mathbf{M}_{\mathcal{S}^c, \mathcal{S}^*} \tilde{\mathbf{w}}_{\mathcal{S}^*}\|_{\infty} \leq \|\mathbf{C}_{\mathcal{S}^c, \mathcal{S}^*} \mathbf{C}_{\mathcal{S}^*, \mathcal{S}^*}^{-1}\|_{\infty} \|\mathbf{C}_{\mathcal{S}^*, \mathcal{S}^*} \tilde{\mathbf{w}}_{\mathcal{S}^*}\|_{\infty} + \delta_N \quad (24)$$

721

722 where $\delta_N = \mathcal{O}(\sqrt{\log m / N})$ is the deviation of sample covariances from population values.
723724 The irrepresentability condition (ii) ensures $\|\mathbf{C}_{\mathcal{S}^c, \mathcal{S}^*} \mathbf{C}_{\mathcal{S}^*, \mathcal{S}^*}^{-1}\|_{\infty} < 1 - \zeta$. By concentration inequalities (Hoeffding), with probability $1 - 2m^{-2}$:
725

726
$$\|\hat{\mathbf{C}} - \mathbf{C}\|_{\max} \leq \sqrt{\frac{2 \log m}{N}} \quad (25)$$

727

728 Condition (iii) ensures the signal strength exceeds the noise floor, guaranteeing $\text{sign}(\hat{w}_{j,i}) =$
729 $\text{sign}(w_{j,i}^*)$ for $i \in \mathcal{S}^*$. Combining these results establishes exact support recovery. \square
730

731 A.2.3 PROOF OF THEOREM 3 (GENERALIZATION BOUND)

732 *Proof.* Decompose the prediction error using the bias-variance decomposition:
733

734
$$\mathbb{E}[(\tau_k - \hat{\tau}_k)^2] = \underbrace{\mathbb{E}[(\tau_k - \mathbb{E}[\hat{\tau}_k])^2]}_{\text{Bias}^2 + \sigma_{\xi}^2} + \underbrace{\text{Var}(\hat{\tau}_k)}_{\text{Variance}} \quad (26)$$

735

736 The bias term includes the irreducible noise σ_{ξ}^2 and approximation error $\mathcal{B}_{\text{approx}} = \inf_{h \in \mathcal{H}} \|f^* - h\|^2$ where \mathcal{H} is the Wiener model class.
737738 For the variance term, consider the empirical process decomposition. Let \hat{f}_N denote the estimated
739 function from N samples. The variance decomposes into three components:
740741 **Sparsity contribution:** The effective dimension reduction from m to $\|\mathbf{w}\|_0$ yields:
742

743
$$\text{Var}_{\mathbf{w}}(\hat{f}_N) \leq \frac{C_1 \|\mathbf{w}\|_0 \log m}{N} \quad (27)$$

744

745 This follows from the metric entropy bound for ℓ_1 -balls intersected with the unit sphere.
746747 **Smoothness contribution:** The temporal smoothness constraint reduces effective degrees of free-
748 dom. Let $\lambda_i(\mathbf{Q}_{\beta})$ denote the eigenvalues of $\mathbf{Q}_{\beta} = \mathbf{C}_{\tau \nu} \mathbf{C}_{\tau \nu}^T - \lambda_2 \mathbf{L}$. The effective dimension is:
749

750
$$d_{\text{eff}} = \sum_{i=1}^s \frac{\lambda_i(\mathbf{Q}_{\beta})}{\lambda_1(\mathbf{Q}_{\beta})} \approx \frac{s}{\gamma_{\beta}} \quad (28)$$

751

752 where $\gamma_{\beta} = \lambda_1(\mathbf{Q}_{\beta}) / \lambda_s(\mathbf{Q}_{\beta})$ is the spectral gap. This contributes:
753

754
$$\text{Var}_{\beta}(\hat{f}_N) \leq \frac{C_2}{s \gamma_{\beta}} \quad (29)$$

755

756 **Nonlinear complexity:** The Rademacher complexity of the function class \mathcal{G} satisfies:
 757

$$758 \quad 759 \quad 760 \quad 761 \quad 762 \quad 763 \quad 764 \quad 765 \quad 766 \quad 767 \quad 768 \quad 769 \quad 770 \quad 771 \quad 772 \quad 773 \quad 774 \quad 775 \quad 776 \quad 777 \quad 778 \quad 779 \quad 780 \quad 781 \quad 782 \quad 783 \quad 784 \quad 785 \quad 786 \quad 787 \quad 788 \quad 789 \quad 790 \quad 791 \quad 792 \quad 793 \quad 794 \quad 795 \quad 796 \quad 797 \quad 798 \quad 799 \quad 800 \quad 801 \quad 802 \quad 803 \quad 804 \quad 805 \quad 806 \quad 807 \quad 808 \quad 809$$

$$\mathcal{R}_N(\mathcal{G}) \leq \sqrt{\frac{2\mathcal{C}(\mathcal{G}) \log(2N)}{N}} \quad (30)$$

where $\mathcal{C}(\mathcal{G})$ is the VC-dimension or covering number. This yields:

$$\text{Var}_g(\hat{f}_N) \leq \frac{C_3 \mathcal{C}(\mathcal{G})}{N} \quad (31)$$

Combining all terms establishes the stated bound. \square

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 MULTI-DIMENSIONAL PERFORMANCE ANALYSIS

Figure 7 visualizes the performance comparison across different operating conditions, demonstrating NL-CS³'s consistent superiority over baseline methods in various scenarios.

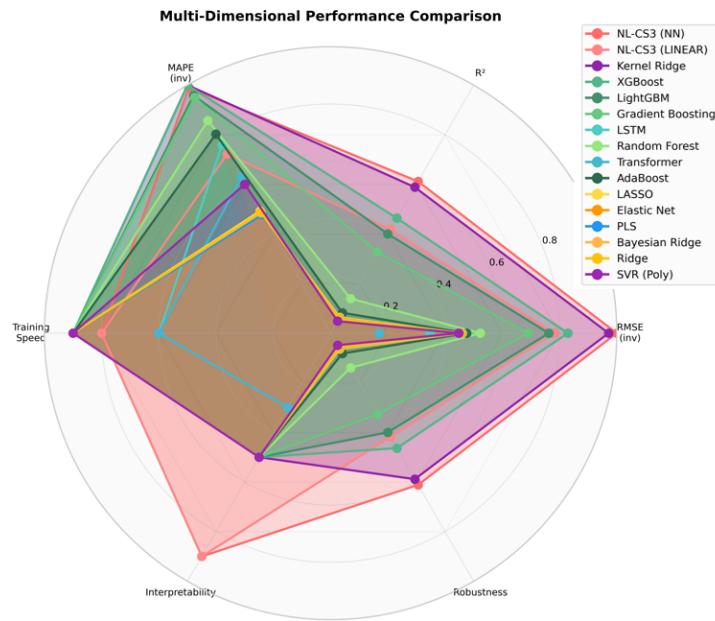


Figure 7: Multi-dimensional performance analysis across different operating conditions.

A.3.2 ROBUSTNESS ANALYSIS

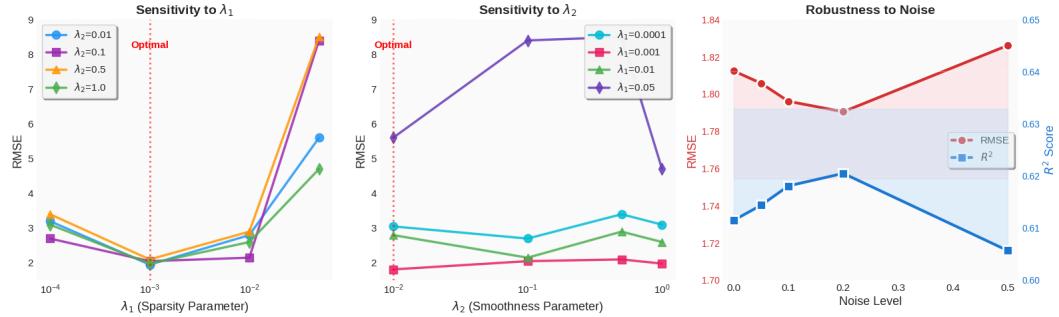
To evaluate the robustness of NL-CS³, we conducted comprehensive sensitivity analyses with respect to the regularization parameters λ_1 (sparsity) and λ_2 (smoothness), as well as performance evaluation under noisy conditions.

Figure 8 presents the sensitivity analysis results for both regularization parameters. The left panel demonstrates that the sparsity parameter λ_1 exhibits a clear optimal point at $\lambda_1 = 0.001$, where the framework achieves its best RMSE of 1.8124. Performance degrades moderately when λ_1 is too small (RMSE = 3.1059 at $\lambda_1 = 0.0001$) due to insufficient sparsity regularization, leading to overfitting. More dramatically, excessive sparsity ($\lambda_1 = 0.05$) causes severe performance degradation with RMSE increasing to 5.6594, indicating over-regularization that eliminates important sensors.

The middle panel illustrates the framework's response to the smoothness parameter λ_2 . With the optimal $\lambda_1 = 0.001$ fixed, the model demonstrates remarkable stability across a wide range of λ_2 values. The parameter interaction analysis reveals that when λ_1 is suboptimal, the choice of λ_2

810 becomes more influential. For instance, at $\lambda_1 = 0.05$, the RMSE ranges from 4.7430 to 8.5529 depending on λ_2 , suggesting that proper sparsity regularization is prerequisite for stable performance.

811
812
813 The right panel of Figure 8 presents the framework’s performance under various noise conditions.
814 Remarkably, NL-CS³ exhibits exceptional robustness to measurement noise, with performance ac-
815 tually improving slightly under moderate noise levels. This improvement at moderate noise levels
816 suggests that the sparse-smooth regularization acts as an implicit denoising mechanism. The combi-
817 nation of sensor selection and temporal smoothing enables the model to maintain robust predictions
818 even under significant measurement uncertainty. Only at extreme noise levels (50%) does perfor-
819 mance begin to degrade. The framework’s ability to maintain predictive accuracy under realistic
820 noise conditions confirms its suitability for real-world industrial applications where perfect mea-
821 surements are not available.



822
823
824
825
826
827
828
829
830
831
832
833 Figure 8: Robustness analysis for sparsity parameter λ_1 (left), smoothness parameter λ_2 (middle),
834 and noise levels (right).

A.4 HYPERPARAMETER SELECTION

835 All hyperparameters were systematically selected through 5-fold cross-validation to avoid overfit-
836 ting. We performed grid search over the following ranges:

- 837 • Number of features $\ell \in \{3, 4, 5, 6, 7\}$
- 838 • Sparsity parameter $\lambda_1 \in \{0.0001, 0.001, 0.01, 0.05\}$
- 839 • Smoothness parameter $\lambda_2 \in \{0.01, 0.1, 1, 10\}$
- 840 • Temporal window size $s \in \{5, 10, 15, 20\}$
- 841 • Neural network hidden units $\in \{32, 64, 128\}$
- 842 • Network regularization $\lambda_g \in \{0.001, 0.01, 0.1\}$

843 The final configuration was chosen to maximize the average RMSE on validation folds while main-
844 taining computational efficiency. The selected parameters were: $\ell = 5$, $\lambda_1 = 0.001$, $\lambda_2 = 1$, $s = 10$,
845 with a neural network containing 64 hidden units and $\lambda_g = 0.01$.

A.5 ADDITIONAL THEORETICAL RESULTS

854 **Lemma 1** (Smoothness Preservation). *Under the smoothness penalty $\lambda_2 \beta_j^T \mathbf{L} \beta_j$, the extracted fea-
855 tures satisfy:*

$$856 \mathbb{E} \left[\sum_{k=2}^N (\phi_{j,k} - \phi_{j,k-1})^2 \right] \leq \frac{\text{Var}(\tau)}{\lambda_2} \quad (32)$$

862 *Proof.* From the optimality conditions of the alternating maximization, at convergence:

$$863 \text{Cov}^2(\tau, \phi_j) = \beta_j^T \mathbf{Q}_\beta \beta_j \leq \text{Var}(\tau) \quad (33)$$

864 Since $\mathbf{Q}_\beta = \mathbf{C}_{\tau\nu} \mathbf{C}_{\tau\nu}^T - \lambda_2 \mathbf{L}$, we have:
 865

$$866 \quad \lambda_2 \boldsymbol{\beta}_j^T \mathbf{L} \boldsymbol{\beta}_j \leq \text{Var}(\tau) - \text{Cov}^2(\tau, \phi_j) \leq \text{Var}(\tau) \quad (34)$$

867 The discrete gradient of the feature sequence is bounded by:
 868

$$869 \quad \sum_{k=2}^N (\phi_{j,k} - \phi_{j,k-1})^2 \leq N \cdot \boldsymbol{\beta}_j^T \mathbf{L} \boldsymbol{\beta}_j \cdot \max_k \|\mathbf{w}_j^T \mathbf{y}_k\|^2 \quad (35)$$

873 Taking expectations and using the unit norm constraint on \mathbf{w}_j completes the proof. \square
 874

875 **Proposition 1** (Information Preservation). *The sparse-smooth features preserve at least $(1 - \epsilon)$
 876 fraction of the linear predictive information if:*

$$877 \quad \ell \geq \frac{1}{\epsilon} \cdot \text{rank}(\mathbf{C}_{\tau\mathbf{Y}}) \quad (36)$$

879 where $\mathbf{C}_{\tau\mathbf{Y}}$ is the cross-covariance between target and inputs.
 880

881 *Proof.* By the deflation procedure, each extracted feature captures the maximum remaining covariance
 882 with the target. The cumulative explained variance after ℓ features is:
 883

$$884 \quad \sum_{j=1}^{\ell} \text{Cov}^2(\tau, \phi_j) \geq \sum_{j=1}^{\ell} \lambda_j(\mathbf{C}_{\tau\mathbf{Y}} \mathbf{C}_{\tau\mathbf{Y}}^T) \quad (37)$$

887 where $\lambda_j(\cdot)$ denotes the j -th largest eigenvalue. The result follows from the eigenvalue decay rate.
 888 \square
 889

890 A.6 LARGE LANGUAGE MODEL USAGE DISCLOSURE

891 We acknowledge the use of large language models to assist in grammar checking and language
 892 polishing throughout this manuscript.
 893

894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917