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Abstract. Imitation learning algorithms have been interpreted as variants of di-
vergence minimization problems. The ability to compare occupancy measures
between experts and learners is crucial in their effectiveness in learning from
demonstrations. In this paper, we present tractable solutions by formulating im-
itation learning as minimization of the Sinkhorn distance between occupancy
measures. The formulation combines the valuable properties of optimal transport
metrics in comparing non-overlapping distributions with a cosine distance cost
defined in an adversarially learned feature space. This leads to a highly discrimi-
native critic network and optimal transport plan that subsequently guide imitation
learning. We evaluate the proposed approach using both the reward metric and
the Sinkhorn distance metric on a number of MuJoCo experiments. For the im-
plementation and reproducing results please refer to the following repository
https://github.com/gpapagiannis/sinkhorn-imitation.

1 Introduction

Recent developments in reinforcement learning (RL) have allowed agents to achieve
state-of-the-art performance on complex tasks from learning to play games [33,38,18]
to dexterous manipulation [24], provided with well defined reward functions. However,
crafting such a reward function in practical scenarios to encapsulate the desired objective
is often non-trivial. Imitation learning (IL) [20] aims to address this issue by formu-
lating the problem of learning behavior through expert demonstration and has shown
promises on various application domains including autonomous driving and surgical
task automation [2,21,43,23,13].

The main approaches to imitation learning include that of behavioral cloning (BC)
and inverse reinforcement learning (IRL). BC mimics the expert’s behavior by converting
the task into a supervised regression problem [23,30]. While simple to implement, it is
known to suffer from low sample efficiency and poor generalization performance due to
covariate shift and high sample correlations in the expert’s trajectory [27,26]. Algorithms
such as Dataset Aggregation (DAgger) [26] and Disturbances for Augmenting Robot
Trajectories (DART) [17] alleviate this issue. However, they require constantly querying
an expert for the correct actions.

Inverse reinforcement learning instead aims to recover a reward function which is
subsequently used to train the learner’s policy [42,19]. IRL approaches have shown
significantly better results [2,5,40,22,1,16] including being sample efficient in terms of
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expert demonstration. However, IRL itself is an ill-posed problem - multiple reward
functions can characterize a specific expert behavior, therefore additional constraints
need to be imposed to recover a unique solution [19,42,41]. In addition, the alternating
optimization procedure between reward recovery and policy training leads to increased
computational cost.

Adversarial imitation learning, on the other hand, bypasses the step of explicit reward
inference as in IRL and directly learns a policy that matches that of an expert. Gener-
ative adversarial imitation learning (GAIL) [11] minimizes the Jensen-Shannon (JS)
divergence between the learner’s and expert’s occupancy measures through a generative
adversarial networks (GANs)-based training process. GAIL was developed as a variant
of the reward regularized maximum entropy IRL framework [42], where different reward
regularizers lead to different IL methods. GAIL has been extended by various other
methods aiming to improve its sample efficiency in regard to environment interaction
through off-policy RL [31,4,36,15,14]. Recent development [9] provides a unified prob-
abilistic perspective to interpret different imitation learning methods as f -divergence
minimization problems and showed that the state-marginal matching objective of IRL
approaches is what contributes the most to their superior performance compared to BC.
While these methods have shown empirical success, they inherit the same issues from
f -divergence and adversarial training, such as training instability in GAN-based training
[10] and mode-covering behavior in the JS and Kullback-Leibler (KL) divergences
[9,12].

An alternative approach is to utilize optimal transport-based metrics to formulate the
imitation learning problem. The optimal transport (OT) theory [37] provides a flexible
and powerful tool to compare probability distributions through coupling of distributions
based on the metric in the underlying spaces. The Wasserstein adversarial imitation
learning (WAIL) [39] was proposed to minimize the dual form of the Wasserstein
distance between the learner’s and expert’s occupancy measures, similar to the training
of the Wasserstein GAN [3]. The geometric property of the Wasserstein distance leads to
numerical stability in training and robustness to disjoint measures. However, the solution
to the dual formulation is intractable; approximations are needed in the implementation
of neural networks to impose the required Lipschitz condition [28]. [7] introduced Primal
Wasserstein imitation learning (PWIL), that uses a reward proxy derived based on an
upper bound to the Wasserstein distance between the state-action distributions of the
learner and the expert. While PWIL leads to successful imitation, it is unclear how it
inherits the theoretical properties of OT, since the transport map between occupancy
measures is suboptimal, based on a greedy coupling strategy whose approximation error
is difficult to quantify.

In this paper we present Sinkhorn imitation learning (SIL), a tractable solution to
optimal transport-based imitation learning by leveraging the coupling of occupancy
measures and the computational efficiency of the Sinkhorn distance [6], that inherits
the theoretical properties of OT. Our main contributions include: (i) We propose and
justify an imitation learning training pipeline that minimizes the Sinkhorn distance
between occupancy measures of the expert and the learner; (ii) We derive a reward proxy
using a set of trainable and highly discriminative optimal transport ground metrics; (iii)
We demonstrate through experiments on the MuJoCo simulator [35] that SIL obtains
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comparable results with the state-of-the-art, outperforming the baselines on a number of
experiment settings in regard to both the commonly used reward metric and the Sinkhorn
distance.

The rest of this paper is organized as follows. In Section 2 we provide the necessary
background for this work. Section 3 introduces the proposed Sinkhorn Imitation Learning
(SIL) framework. Section 4 provides details of experiments to evaluate the performance
of SIL on a number of MuJoCo environments. We conclude the paper and discuss future
research directions in Section 5.

2 Background

2.1 Imitation Learning

Notation. We consider a Markov Decision Process (MDP) which is defined as a tuple
{S,A,P, r, γ}, where S is a set of states, A is a set of possible actions an agent can
take on the environment, P : S ×A× S → [0, 1] is a transition probability matrix, r :
S×A → R is a reward function and γ ∈ (0, 1) is a discount factor. The agent’s behavior
is defined by a stochastic policy π : S → Prob(A) and Π is the set of all such policies.
We use πE , π ∈ Π to refer to the expert and learner policy respectively. The performance
measure of policy π is defined as J = Eπ[r(s, a)] = E[

∑∞
t=0 γ

tr(st, at)|P, π] where
st ∈ S is a state observed by the agent at time step t. With a slight abuse of notations, we
also use r((s, a)π) to denote explicitly that (s, a)π ∼ π. τE and τπ denote the set of state-
action pairs sampled by an expert and a learner policy respectively during interaction
with the environment, also referred to as trajectories. The distribution of state-action pairs
generated by policy π through environment interaction, also known as the occupancy

measure ρπ : S × A → R, is defined as ρπ(s, a) = (1 − γ)π(a|s)
∞∑
t=0

γtPπ[st = s]

where Pπ[st = s] denotes the probability of a state being s at time step t following
policy π.

Generative Adversarial Imitation Learning. Ho and Ermon [11] extended the framework
of MaxEnt IRL by introducing a reward regularizer ψ(r) : S ×A → R:

IRLψ(πE) := argmax
r
−ψ(r)+min

π∈Π

(
−Hcausal(π)−Eπ[r(s, a)]

)
+EπE [r(s, a)] , (1)

where Hcausal(π) := Eρπ [− log π(a|s)]/(1 − γ) [41]. The process of RL following
IRL can be formulated as that of occupancy measure matching [11]:

RL ◦ IRLψ(πE) := argmin
π∈Π

−Hcausal(π) + ψ∗(ρπ − ρE) , (2)

where ψ∗ corresponds to the convex conjugate of the reward regularizer ψ(r). The
regularized MaxEnt IRL framework bypasses the expensive step of reward inference and
learns how to imitate an expert by matching its occupancy measure. Different realizations
of the reward regularizer lead to different IL frameworks. A specific choice of the regu-
larizer leads to the Generative Adversarial Imitation Learning (GAIL) framework that
minimizes the Jensen-Shannon divergence between the learner’s and expert’s occupancy
measures [11].
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f-Divergence MaxEnt IRL. Recently, Ghasemipour et al. [9] showed that training a
learner policy π to minimize the distance between two occupancy measures can be
generalised to minimize any f -divergence between ρE and ρπ denoted as Df (ρE ‖ ρπ).
Different choices of f yield different divergence minimization IL algorithms [9] and can
be computed as:

max
Tω

E(s,a)∼ρE [Tω(s, a)]− E(s,a)∼ρπ [f
∗(Tω(s, a)))] , (3)

where Tω : S × A → R and f∗ is the convex conjugate of the selected f -divergence.
The learner’s policy is optimized with respect to the reward proxy f∗(Tω(s, a)).

2.2 Optimal Transport

While divergence minimization methods have enjoyed empirical success, they are still
difficult to evaluate in high dimensions [34], due to the sensitivity to different hyper-
parameters and difficulty in training depending on the distributions that are evaluated
[28]. The optimal transport (OT) theory [37] provides effective methods to compare
degenerate distributions by accounting for the underlying metric space. Consider Pk(Γ )
to be the set of Borel probability measures on a Polish metric space (Γ, d) with finite
k-th moment. Given two probability measures p, q ∈ Pk(Γ ), the k-Wasserstein metric
is defined as [37]:

Wk(p, q)c =
(

inf
ζ∈Ω(p,q)

∫
Γ

c(x, y)kdζ(x, y)
) 1
k

, (4)

where Ω(p, q) denotes the set of joint probability distributions whose marginals are p
and q, respectively. c(x, y) denotes the cost of transporting sample x ∼ p to y ∼ q.
The joint distribution ζ that minimizes the total transportation cost is referred to as the
optimal transport plan.

Sinkhorn Distances. The solution to Equation (4) is generally intractable for high dimen-
sional distributions in practice. A regularized form of the optimal transport formulation
was proposed by Cuturi [6] that can efficiently compute the Wasserstein metric. The
Sinkhorn distanceWβ

s (p, q)c between p and q is defined as:

Wβ
s (p, q)c = inf

ζβ∈Ωβ(p,q)
Ex,y∼ζβ [c(x, y)] , (5)

where Ωβ(p, q) denotes the set of all joint distributions in Ω(p, q) with entropy of at
leastH(p) +H(q)− β andH(·) computes the entropy of a distribution. The distance is
evaluated on two distributions p and q where in the context of adversarial IL correspond
to the state-action distributions of the learner and the expert policies.

3 SIL: Sinkhorn Imitation Learning

We consider the problem of training a learner policy π to imitate an expert, by matching
its state-action distribution ρE in terms of minimizing their Sinkhorn distance. To
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facilitate the development of the learning pipeline, we begin by discussing how the
Sinkhorn distance is used to evaluate similarity between occupancy measures.

Consider the case of a learner π interacting with an environment and generating
a trajectory of state-action pairs τπ ∼ π that characterizes its occupancy measure. A
trajectory of expert demonstrations τE ∼ πE is also available as the expert trajectories.
The optimal transport plan ζβ between the samples of τπ and τE can be obtained via the
Sinkhorn algorithm [6]. Following Equation (5) we can evaluate the Sinkhorn distance
of τπ and τE as follows:

Wβ
s (τπ, τE)c =

∑
(s,a)π∈τπ

∑
(s,a)πE∈τE

c
(
(s, a)π, (s, a)πE

)
ζβ

(
(s, a)π, (s, a)πE

)
. (6)

Reward Proxy. We now introduce a reward proxy suitable for training a learner policy
that minimizesWβ

s (τπ, τE)c in order to match the expert’s occupancy measure.
The reward function vc((s, a)π) for each sample (s, a)π in the learner’s trajectory is

defined as:

vc((s, a)π) := −
∑

(s,a)πE∈τE

c
(
(s, a)π, (s, a)πE

)
ζβ

(
(s, a)π, (s, a)πE

)
. (7)

The optimization objective of the learner policy J = Eπ[r((s, a)π)] under r((s, a)π) :=
vc((s, a)π) corresponds to minimizing the Sinkhorn distance between the learner’s and
expert’s trajectories defined in Equation (6). Hence, by maximizing the optimization ob-
jective J with reward vc((s, a)π), a learner is trained to minimize the Sinkhorn distance
between the occupancy measures of the learner and the expert demonstrator.

Adversarial reward proxy. The reward specified in Equation (7) can only be ob-
tained after the learner has generated a complete trajectory. The optimal transport
plan ζβ

(
(s, a)π, (s, a)πE

)
then weighs the transport cost of each sample (s, a)π ∈ τπ

according to the samples present in τπ and τE . The dependence of vc((s, a)π) to all
state-action pairs in τπ and τE can potentially result in the same state-action pair being
assigned significantly different rewards depending on the trajectory that it is sampled
from. Such dependence can lead to difficulty in maximizing the optimization objective J
(and equivalently in minimizing the Sinkhorn distance between the occupancy measures
from the learner and the expert). Empirical evidence is provided in the ablation study in
Section 4.

In order to provide a discriminative signal to the learner’s policy and aid the op-
timization process, we consider adversarially training a critic to penalize non-expert
state-action pairs by increasing their transport cost to the expert’s distribution, drawing
inspiration from the adversarially trained transport ground metric in the OT-GAN frame-
work [29]. The critic cw((s, a)π, (s, a)πE ) parameterized by w is defined as follows:

cw((s, a)π, (s, a)πE ) = 1− fw((s, a)π) · fw((s, a)πE )
||fw((s, a)π)||2||fw((s, a)πE )||2

, (8)

where · denotes the inner product between two vectors. fw(·) : S × A → Rd maps
the environment’s observation space S × A to an adversarially learned feature space
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Algorithm 1: Sinkhorn imitation learning (SIL)
Input: Set of expert trajectories {τE} ∼ πE , Sinkhorn regularization parameter β, initial

learner’s policy parameters θ0, initial critic network parameters w0, number of
training iterations K

1: for iteration k = 0 to K do
2: Sample a set of trajectories {τπθk }k ∼ πθk .
3: Create a set of trajectory pairs {(τπθk , τE)}k by randomly

matching trajectories from the learner’s set to the expert’s.
4: For each pair in {(τπθk , τE)}k, calculateWβ

s (τπθk , τE)cw using the Sinkhorn
algorithm (Equation (5)) and transport cost as in Equation (8), in order to update the
reward proxy vcwk ((s, a)πθk ) for each state action pair.

5: Update wk to maximizeWβ
s (τπθk , τE)cw using gradient ascent with the gradient:

∇wk
1

m

∑
{(τπθk

,τE)}k

Wβ
s (τπθk , τE)cw , (10)

where m is the number of trajectory pairs.
6: Update policy parameter θk using TRPO and reward vcwk ((s, a)πθk ) updated in Step 4.
7: end for

Output: Learned policy πθk .

Rd where d is the feature dimension. The adversarial reward proxy vcw((s, a)π) is
obtained by substituting the transport cost c(·, ·) in Equation (7) with cw(·, ·) defined by
Equation (8). SIL learns π by solving the following minimax optimization problem:

argmin
π

max
w
Wβ
s (ρπ, ρE)cw . (9)

Remark 1. For SIL, the adversarial training part of the transport cost is not part of the
approximation procedure of the distance metric, as in GAIL [11] and WAIL [39]. The
Sinkhorn distance is computed directly via the Sinkhorn iterative procedure [6] with the
transport cost defined in Equation (8).

Algorithm. The pseudocode for the proposed Sinkhorn imitation learning (SIL) frame-
work is presented in Algorithm 1. In each iteration we randomly match each of the
learner’s generated trajectories to one of the expert’s and obtain their Sinkhorn distance.
The reason behind this implementation choice is to maintain a constant computational
complexity with respect to a potentially increasing number of demonstrations. We then
alternate between one step of updating a critic network cw to maximize the Sinkhorn
distance between the learner’s and expert’s trajectories and a policy update step to mini-
mize the distance between occupancy measures with the learned reward proxy. As SIL
depends on complete environment trajectories to compute the Sinkhorn distance, it is
inherently an on-policy method. Hence, to train our imitator policy we use Trust Region
Policy Optimization (TRPO) [32] for our experiments.
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3.1 Connection to regularized MaxEnt IRL.

We now show how SIL can be interpreted as a variant of the regularized MaxEnt IRL
framework [11] given a specific choice of ψ(r).

Definition 1. Consider a learner’s policy and expert’s demonstrations, as well as their
induced occupancy measures ρπ and ρE . We define the following reward regularizer:

ψW(r) := −Wβ
s (ρπ, ρE)cw + Eρπ [r(s, a)]− EρE [r(s, a)] . (11)

Proposition 1. The reward regularizer ψW(r) defined in Equation (11) leads to an
entropy regularized MaxEnt IRL algorithm. When r((s, a)π) = vcw((s, a)π),

RL ◦ IRLψW (πE) = argmin
π∈Π

−Hcausal(π) + sup
w
Wβ
s (ρπ, ρE)cw . (12)

Equation (12) corresponds to the process of updating a critic network to maximize
the Sinkhorn distance between the learner’s and expert’s occupancy measures, followed
by the process of finding a policy π to minimize it. The added termHcausal(π) is treated
as a regularization parameter.

Proof. Consider the set of possible rewardsR := {r : S×A → R} in finite state-action
space as in [11] and [9]. The joint state-action distributions ρπ and ρE are represented
as vectors in [0, 1]S×A.

Define ψW(r) := −Wβ
s (ρπ, ρE)+Eρπ [r(s, a)]−EρE [r(s, a)], whereWβ

s (ρπ, ρE)
is obtained with the transport cost cw defined in Equation (8). Given r(s, a) = vcw(s, a)
and recall that the convex conjugate of a function g is g∗(y) = supx∈dom(g)(y

Tx−g(x)),
we obtain

ψ∗W(ρπ − ρE) = sup
r∈R

[(ρπ − ρE)T r − ψW(r)] = sup
r∈R

[
∑
S×A

(ρπ(s, a)− ρE(s, a)) · r(s, a)

+Wβ
s (ρπ, ρE)−

∑
S×A

(ρπ(s, a)− ρE(s, a)) · r(s, a)] =

sup
r∈R

Wβ
s (ρπ, ρE) = sup

vcw∈R
Wβ
s (ρπ, ρE) = sup

w
Wβ
s (ρπ, ρE) .

(13)

From Equation (2),

RL ◦ IRLψ(πE) = argmin
π∈Π

−Hcausal(π) + ψ∗W(ρπ − ρE)

= argmin
π∈Π

−Hcausal(π) + sup
w
Wβ
s (ρπ, ρE) . (14)
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4 Experiments

To empirically evaluate the Sinkhorn imitation learning (SIL) algorithm, we benchmark
SIL against BC in the four MuJoCo [35] environments studied in [9], namely Hopper-v2,
Walker2d-v2, Ant-v2 and HalfCheetah-v2, as well as the Humanoid-v2 environment.
Given that SIL is an on-policy method due to the requirement of complete trajectories,
two on-policy adversarial IL algorithms, namely GAIL [11] and AIRL [8], are also
included as baselines. All algorithms are evaluated against the true reward metric ob-
tained through environment interaction, in addition to the Sinkhorn distance between the
samples from the learned policy and the expert demonstrations.

Initially we train policies using TRPO [32] to obtain expert performance. The
expert policies are used to generate sets of expert demonstrations. The performance
of the obtained expert policies can be found in Table 1. To study the robustness of
SIL in learning from various lengths of trajectory sets we train the algorithms on
sets of {2, 4, 8, 16, 32} and for Humanoid-v2 for {8, 16, 32} sets. All trajectories are
subsampled by a factor of 20 starting from a random offset, a common practice found
in [11,9,8]. SIL, GAIL and AIRL are trained for 250 iterations allowing approximately
50, 000 environment interactions per iteration. For Humanoid-v2 we train the algorithms
for 350 iterations. All reported results correspond to performance metrics obtained after
testing the learner policies on 50 episodes.

Environments Expert Performance

Hopper-v2 3354.74± 1.87

HalfCheetah-v2 4726.53± 133.12

Walker2d-v2 3496.44± 8.79

Ant-v2 5063.11± 337.50

Humanoid-v2 6303.36± 97.71

Table 1: Performance of expert policies providing the demonstrations trained using TRPO.

4.1 Implementation Details

Adversarial Critic. The critic network consists of a 2-layer MLP architecture with 128
units each with ReLU activations. For each experiment we report the best performing
result after training the critic with the following learning rates {0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009} and output dimensions {5, 10, 30}. Although different choices
of the critic network output dimension may yield better results for the proposed SIL
algorithm in different environments, no further attempt was made to fine-tune the output
for the critic. We note that for most experiment settings a critic output dimension of 30
and learning rate of 0.0005 among the pool of candidate values yield the best results.
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Reward Proxy. After obtaining the value of vcw as defined in Equations (7) and (8), we
add a value of 2

L where L is the trajectory length and scale the reward by 2. By doing so
we set the range of vcw to be 0 ≤ vcw ≤ 4 which proved to be effective for environments
requiring a survival bonus. We keep track of a running standard deviation to normalize
rewards.

Policy Architecture & Training. For both the expert and learner policies, we use
the same architecture comprised of a 2-layer MLP architecture each with 128 units
with ReLU activations. The same architecture is used amongst all imitation learning
algorithms. For all adversarial IL algorithms, as well as obtaining expert performance,
we train the policies using Trust Region Policy Optimization [32]. Finally, we normalize
environment observations by keeping track of the running mean and standard deviation.

GAIL & AIRL. To aid the performance of the benchmarks algorithms GAIL and
AIRL in the HalfCheetah-v2 environment, we initialize the policies with that from
behavioural cloning.

Computational Resource. The experiments were run on a computer with an Intel
(R) Xeon (R) Gold 5218 CPU 2.3 GHz and 16GB of RAM, and a RTX 6000 graphic
card with 22GB memories.

4.2 Results

Sinkhorn metric. We begin by evaluating performance amongst IL methods using the
Sinkhorn metric. Since our goal is to assess how well imitation learning algorithms
match the expert’s occupancy measure, the Sinkhorn distance offers a valid metric of
similarity between learner’s and expert’s trajectories compared to the reward metric
which is also often unavailable in practical scenarios. We report the Sinkhorn distance
between occupancy measures computed with a fixed cosine distance-based transport
cost during testing and evaluation:

c((s, a)π, (s, a)πE ) = 1− [s, a]π · [s, a]πE
||[s, a]π||2||[s, a]πE ||2

, (15)

where [s, a]π denotes the concatenated vector of state-action of policy π and || · ||2
computes the L2 norm. Table 2 reports the Sinkhorn metric evaluated between the trajec-
tories generated by the learned policies with the demonstrations provided by the expert.
A smaller Sinkhorn distance corresponds to higher similarity between the learner’s and
expert’s generated trajectories. SIL, AIRL and GAIL obtain comparable performance
in most of the environments. The proposed SIL algorithm outperforms the baselines in
almost all experiments on the environments of HalfCheetah-v2 and Ant-v2, while AIRL
achieves superior performance on the environments of Hopper-v2 and Walker2d-v2.
GAIL on the other hand obtains relatively poor performance with regard to the Sinkhorn
distance when provided with only 2 expert trajectories on the environments of Hopper-v2,
HalfCheetah-v2 and Ant-v2. As expected, behavioral cloning fails to obtain competitive
performance in almost all experiment settings especially when provided with a small
number of expert demonstrations.
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Fig. 1: Mean and standard deviation of the Sinkhorn distance evaluated during training of SIL
using a fixed cosine transport cost by stochastically sampling an action from the learner’s policy.

Environments Trajectories BC GAIL AIRL SIL

2 0.467± 0.009 0.098± 0.003 0.069± 0.001 0.073± 0.001

Hopper-v2 4 0.408± 0.080 0.120± 0.010 0.066± 0.009 0.082± 0.010

8 0.300± 0.029 0.074± 0.004 0.068± 0.006 0.071± 0.005

16 0.182± 0.042 0.106± 0.008 0.074± 0.010 0.078± 0.012

32 0.157± 0.084 0.071± 0.008 0.072± 0.009 0.089± 0.008

2 1.043± 0.058 0.940± 0.181 0.577± 0.157 0.546± 0.138

HalfCheetah-v2 4 0.791± 0.096 0.633± 0.095 0.630± 0.091 0.620± 0.101

8 0.841± 0.071 0.702± 0.095 0.708± 0.054 0.700± 0.052

16 0.764± 0.166 0.670± 0.128 0.671± 0.112 0.688± 0.131

32 0.717± 0.129 0.695± 0.113 0.699± 0.091 0.685± 0.083

2 0.474± 0.023 0.067± 0.008 0.034± 0.005 0.080± 0.004

Walker2d-v2 4 0.694± 0.011 0.067± 0.006 0.036± 0002 0.079± 0.005

8 0.335± 0.004 0.069± 0.005 0.036± 0.003 0.063± 0.003

16 0.199± 0.013 0.061± 0.004 0.037± 0.005 0.102± 0.007

32 0.196± 0.098 0.052± 0.003 0.042± 0.004 0.147± 0.003

2 0.843± 0.033 0.344± 0.068 0.164± 0.006 0.158± 0.008

Ant-v2 4 0.684± 0.159 0.165± 0.119 0.163± 0.008 0.157± 0.014

8 0.996± 0.029 0.159± 0.016 0.164± 0.019 0.155± 0.012

16 0.724± 0.149 0.225± 0.106 0.173± 0.062 0.165± 0.022

32 0.452± 0094 0.176± 0.029 0.172± 0.020 0.173± 0.018

8 0.336± 0.089 0.386± 0.011 1.015± 0.015 0.379± 0.296

Humanoid-v2 16 0.290± 0.086 0.428± 0.027 1.034± 0.017 0.182± 0.011

32 0.182± 0.028 0.162± 0.144 1.026± 0.015 0.250± 0.180

Table 2: Mean and standard deviation of the Sinkhorn distance between the expert demonstrations
and samples from imitator policies for BC, GAIL, AIRL and SIL. A fixed cosine transport cost is
used only for evaluation (Smaller distance denotes better performance).

In addition, SIL outperforms GAIL and AIRL on the Humanoid-v2 environment
when provided with 8 and 16 trajectories, where SIL demonstrates significantly improved
sample efficiency in terms of both expert demonstrations and environment interactions.
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Environments Trajectories BC GAIL AIRL SIL

2 391.38± 42.98 3341.27± 38.96 3353.33± 2.05 3376.70± 2.45

4 659.51± 166.32 3206.85± 1.56 3353.75± 1.67 3325.66± 4.24

Hopper-v2 8 1094.39± 145.93 3216.93± 3.08 3369.17± 3.04 3335.31± 2.66

16 2003.71± 655.85 3380.97± 2.16 3338.07± 2.14 3376.55± 2.65

32 2330.82± 1013.71 3333.93± 1.47 3361.56± 1.93 3326.52± 3.62

2 −60.80± 23.12 764.91± 546.47 4467.83± 61.13 4664.65± 91.73

4 1018.68± 236.13 5183.67± 118.74 4578.84± 102.92 4505.88± 130.50

HalfCheetah-v2 8 1590.73± 279.05 4902.46± 721.43 4686.22± 147.89 4818.82± 251.27

16 2434.30± 733.29 4519.49± 157.99 4783.79± 197.27 4492.37± 134.35

32 3598.98± 558.70 4661.17± 147.21 4633.48± 116.89 4795.68± 191.90

2 591.92± 32.77 3509.37± 8.08 3497.80± 9.64 3566.32± 16.11

4 314.77± 9.21 3537.63± 4.14 3496.61± 10.94 3523.73± 21.91

Walker2d-v2 8 808.37± 5.28 3394.15± 4.74 3488.68± 10.67 3420.13± 16.38

16 1281.80± 81.11 3444.96± 23.99 3459.84± 8.25 3557.51± 11.67

32 1804.74± 1154.36 3427.61± 9.79 3495.04± 17.18 3203.32± 23.65

2 845.14± 172.37 3443.87± 716.61 5190.89± 67.94 4981.70± 50.89

4 897.54± 2.14 4912.92± 606.99 5182.42± 65.70 5020.71± 89.74

Ant-v2 8 991.92± 2.92 5112.21± 102.23 5083.30± 77.48 5112.55± 62.87

16 1014.14± 447.66 4854.87± 895.63 5034.80± 331.64 4935.33± 87.15

32 2197.20± 487.00 5009.60± 247.43 5013.36± 119.12 4581.27± 123.75

8 1462.47± 1139.19 1249.26± 187.71 3897.47± 1047.03 4456.09± 2707.92

Humanoid-v2 16 2100.93± 1116.79 496.11± 113.28 4396.01± 433.63 6380.37± 40.35

32 4807.86± 1903.08 6252.73± 570.72 1884.92± 764.89 5593.19± 1967.86

Table 3: Mean and standard deviation of the reward metric performance of imitator policies for
BC, GAIL, AIRL and SIL.

GAIL outperforms the rest when trained with 32 trajectories on the Humanoid-v2 envi-
ronment. Interestingly, BC obtains superior performance with regard to the Sinkhorn
distance on the Humanoid-v2 environment when provided with 8 trajectories, but low
performance regarding the reward metric as shown in Table 3.

Reward metric. To better understand how performance changes in terms of the Sinkhorn
distance metric translates to the true reward, Table 3 shows the reward obtained with
the learned policies in the same experiments reported in Table 2. While all adversarial
imitation learning algorithms exhibit similar reward values compared to the expert poli-
cies, we observe that SIL generally obtains lower reward compared to AIRL on Ant-v2.
In addition, AIRL obtains lower reward compared to SIL and GAIL on Walker2d-v2.
However, both SIL and AIRL yield superior performance in these environments when
evaluated using the Sinkhorn distance as shown in Table 2. The result suggests that
evaluating the performance of imitation learning algorithms with a true similarity metric,
such as the Sinkhorn distance, can be more reliable since our objective is to match
state-action distributions.

Training Stability. Table 2 showcases that SIL consistently minimizes the Sinkhorn
distance while being robust to varying lengths of expert demonstrations. Figure 1 depicts
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Fig. 2: Ablation Study. Mean and standard deviation of the Sinkhorn distance during training of
SIL for three sets of varying number of trajectories. The critic network update has been replaced
with a fixed cosine transport cost defined in Equation (15).

Environments Metric 2 8 32

Hopper-v2 Reward 264.72± 1.28 520.88± 29.83 9.44± 0.31

Sinkhorn 0.036± 0.007 0.552± 0.008 0.777± 0.007

HalfCheetah-v2 Reward −1643.98± 198.31 −844.52± 267.42 −1220.92± 217.86

Sinkhorn 0.670± 0.141 0.841± 0.035 0.424± 0.031

Walker2d-v2 Reward 60.64± 7.92 −2.39± 14.05 −11.38± 1.22

Sinkhorn 0.538± 0.006 0.487± 0.005 0.466± 0.009

Ant-v2 Reward 1482.03± 480.99 607.87± 87.09 114.22± 123.24

Sinkhorn 0.398± 0.090 0.419± 0.025 0.424± 0.031

8 16 32

Humanoid-v2 Reward 447.87± 31.26 505.47± 67.62 335.48± 65.14

Sinkhorn 0.760± 0.011 0.789± 0.013 0.835± 0.012

Table 4: Mean and standard deviation of the reward and Sinkhorn metric performance after
re-training SIL with a fixed cosine transport cost defined in Equation (15).

the evolution of the Sinkhorn distance between occupancy measures of the learner and
the expert in the training process of SIL. In spite of the training instability observed on
Walker2d-v2 with 2 or 32 expert trajectories on the Humanoid-v2 environment, SIL still
successfully learns to imitate the expert demonstrator. We speculate that training stability
could be improved in these settings with further hyperparameter tuning as discussed in
Section 5 which we leave for future work. Training stability of SIL is evident on the
Hopper-v2, Ant-v2 and HalfCheetah-v2 environments.

Ablation study. To study the effect of minimizing the Sinkhorn distance between
occupancy measures using a fixed transport cost, we repeat our experiments on the
environments Hopper-v2, HalfCheetah-v2, Walker2d-v2 and Ant-v2 with {2, 8, 32}
trajectory sets. For Humanoid-v2 we conduct the experiments on sets of {8, 16, 32}. In
this ablation study, instead of training a critic network in an adversarially learned feature
space, we assign a reward proxy defined by Equation (7) with a fixed cosine transport
cost introduced in Equation (15).
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Figure 2 depicts the evolution of the Sinkhorn distance between occupancy measures
during training of SIL, after replacing the adversarial objective of the critic network with
a fixed transport cost. While the training process is more stable, it fails to achieve good
performance in terms both of the Sinkhorn distance metric (Figures 1 and 2) and reward
metric (see Table 4). The result suggests that the training objective of the critic network
has been a crucial part of the proposed algorithm in providing sufficiently strong signals
to the learner policy to match the expert’s state-action distribution.

5 Conclusion

In this work we presented Sinkhorn imitation learning (SIL), a solution to optimal
transport based imitation learning, by formulating the problem of matching an expert’s
state-action distribution as minimization of their Sinkhorn distance. We utilized an
adversarially trained critic that maps the state-action observations to an adversarially
learned feature space. The use of the critic provides a discriminative signal to the learner
policy to facilitate the imitation of an expert demonstrator’s behavior. Experiments on 5
MuJoCo environments demonstrate that SIL exhibits competitive performance compared
to the baselines.

The Sinkhorn imitation learning framework can be extended in several directions
to address current limitations which we aim to study in future work. Currently, SIL’s
formulation makes it compatible with only on-policy RL methods as computing the
Sinkhorn distance necessitates complete trajectories. While SIL is efficient compared to
other on-policy adversarial IL benchmarks, it still requires more environment interactions
to learn compared to off-policy adversarial IL methods. Hence, it is an interesting future
direction to extend SIL to be compatible with off-policy RL algorithms, in line with
previous work [7,14,15,25] to yield a method that both inherits the theoretical benefits
of OT while being sample efficient. Additionally, performance of SIL was reported with
a fixed critic network structure in all studied experiments. Hence, it is unclear what is
the effect of the network architecture in guiding imitation learning. It will be of practical
significance to investigate the impact of different critic network architectures on training
stability and computational efficiency, as well as its relationship to the dimension of
state-action space. Another interesting research area is to extend the current framework to
incorporate the temporal dependence of the trajectory in the construction of the optimal
transport coupling and subsequently the reward proxy. We anticipate that this will be a
promising direction for improving the sample efficiency and generalization performance
of the optimal transport-based adversarial imitation learning framework.
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