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ABSTRACT

Long-separated research has been conducted on two highly correlated tracks: traffic and
incidents. Traffic track witnesses complicating deep learning models, e.g., to push the
prediction a few percent more accurate, and the incident track only studies the incidents
alone, e.g., to infer the incident risk. We, for the first time, spatiotemporally aligned the
two tracks in a large-scale region (16,972 traffic nodes) over the whole year of 2023: our
XTraffic dataset includes traffic, i.e., time-series indexes on traffic flow, lane occupancy,
and average vehicle speed, and incidents, whose records are spatiotemporally-aligned
with traffic data, with seven different incident classes. Additionally, each node includes
detailed physical and policy-level meta-attributes of lanes. Our data can revolutionalize
traditional traffic-related tasks towards higher interpretability and practice: instead of
traditional prediction or classification tasks, we conduct: (1) post-incident traffic forecasting
to quantify the impact of different incidents on traffic indexes; (2) incident classification
using traffic indexes to determine the incidents types for precautions measures; (3) global
causal analysis among the traffic indexes, meta-attributes, and incidents to give high-level
guidance of the interrelations of various factors; (4) local causal analysis within road nodes
to examine how different incidents affect the road segments’ relations. The dataset is
available at https://anonymous.4open.science/r/XTraffic-E069.

1 INTRODUCTION

In today’s era of deep learning, a technological foundation has been laid for intelligent transportation systems
(Yu et al., 2018; Zheng et al., 2020; Liu et al., 2022a). Primarily, conducting myriad traffic analysis relies
on two types of data: traffic and incident data. Traffic data encompasses the traffic state-related time-series,
e.g., volume, speed, and occupancy rate on the road network over time. This continuous stream of data is
essential for forecasting the future volume, understanding peak usage times, and optimizing traffic signals
and routes (Guo et al., 2021; Li et al., 2022). Real-time traffic data allows for dynamic adjustments to be
made, enhancing the efficiency of traffic flow and reducing overall travel times. On the other hand, incident
data includes information about traffic accidents, road closures, and unexpected events that can significantly
affect traffic flow. This data helps in understanding the impact of such incidents on traffic congestion and
travel time, facilitating more accurate predictions and enabling timely responses from traffic management
systems (Li et al., 2018a; Lin & Li, 2020). By analyzing patterns and frequencies of incidents, predictive
models can also be developed to foresee potential hotspots and prevent future occurrences.

However, current research has been conducting the two tracks of traffic and incident separately, ignoring
the inseparable relation of traffic and incident. For example, abundant works (Shao et al., 2022; Lan et al.,
2022; Fang et al., 2021; Zhu et al., 2021) have been using various traffic-only datasets such as PEMS (Song
et al., 2020), META-LA (Song et al., 2020), LargeST (Liu et al., 2024) for traffic forecasting. They achieved
relatively high accuracy because, under normal circumstances, traffic flow generally follows a strong regular
temporal pattern. However, they ignore that unexpected incidents will cause abnormal and irregular patterns
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Figure 1: Our XTraffic contains (a) traffic data with road-level meta features, (b) incident data, and (c) their
essential yet neglected relations

in traffic flows. On the contrary, in the incident-only data (Andersen & Torp, 2018; Moosavi et al., 2019),
studies have been done on offering descriptive analysis on the incident patterns (Li et al., 2013; Alsahfi, 2024),
predicting the accident risk (Shi et al., 2021), time-to-accident (Anjum et al., 2022), or next incident (Huang
et al., 2023), yet there is very limited research using the traffic time-series to identify and explain the incidents
and their causal relations with the traffic systems and roads. Moreover, existing open-source accident datasets
(Department, 2024; of Motor Vehicles, 2023; of Transport, 2016; Huang et al., 2023) are quite constrained:
they only include features related to accidents and lack traffic data for corresponding areas. Additionally,
the data granularity is large, and there is no specific location information, such as coordinates or absolute
postmile (Abs PM) markers. These factors make conducting related research particularly challenging. Some
traffic studies that incorporate incident data use datasets that have not been aggregated or made open source,
making it difficult to use them as a standard for evaluating new methods. Additionally, due to the issue of
large granularity, it’s impossible to analyze the specific impact of accidents on precise road segments. Instead,
incident data can only be used to predict general volume within a certain area.

Contributions. To address the research gaps, we introduce the XTraffic dataset. This dataset not only includes
three distinct types of traffic time series data for the entire year of 2023 (in Fig. 1(a)), but also encompasses
comprehensive incident data (in Fig. 1(b)) and meta-features of roads closely related to traffic flow. The
contributions of this dataset can be summarized as follows: (1) We provide a comprehensive collection of
multi-type incident records with 476,766 samples, enabling the training and evaluation of traffic forecasting
models across various scenarios/incidents. This also supports tasks such as incident discovery and traffic
anomaly detection by providing ground truth data. (2) We offer a rich collection of physical and policy-level
road meta-features. These features are instrumental for causal analysis of traffic and support the increasingly
popular field of interpretable deep learning models. By incorporating these detailed attributes, researchers
can delve deeper into the underlying mechanisms that influence traffic behaviors and model predictions. As
shown in Fig. 1(c), our XTraffic helps not only Incident → Traffic: e.g., to analyze how incidents affect the
traffic states (with our post-incident traffic forecasting in Sec. 4.2) and traffic node relations (local causal
analysis in Sec. 4.5), but also Traffic → Incident: e.g., to identify the incidents (incident classification in
Sec. 4.3) and explain the incident with other factors from the system (global causal analysis in Sec. 4.4).

To our knowledge, our XTraffic is the most recent in terms of the collection period and contains the largest
number of sensors, covering three distinct types of traffic volume. This ensures the timeliness of traffic
research, providing a robust foundation for studies aiming to capture and explain traffic dynamics, causation,
and interrelations. XTraffic serves as a rigid testing bed and empirical support to justify model effectiveness
and interoperability in deep learning and traffic community.
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2 RELATED WORK
2.1 RELATED WORK OF TRAFFIC AND INCIDENT DATASETS

Traffic Dataset. Traffic dataset are commonly used in traffic analysis and forecasting as experimental
benchmarks. We introduce the existing four public datasets widely leveraged in traffic forecasting experiments.
The PeMSD7(M) and PeMSD7(L) are proposed by (Yu et al., 2018). METR-LA and PEMS-BAY(Li et al.,
2018b) covered similar regions in California with multiple traffic. However, these datasets are limited to one
collection region, our XTraffic instead covers the majority of Metropolitan regions of California including
greater San Francisco, San Jose, and Greater Los Angeles. The PEMS03,04,07 and 08 are proposed by
(Song et al., 2020). This dataset encompasses four different regions, with data collected using the same rules,
supporting multi-region research for traffic analysis and forecasting. Compared to previous datasets, LargeST
(Liu et al., 2024) extends both temporally and spatially and includes some basic meta-features. However,
these datasets still lack important features such as incidents that significantly impact traffic, as well as road
meta-features related to physics and policy. Our XTraffic is the first dataset as such that spatiotemporally align
traffic dynamics and traffic incidents, enabling uncomparable potentials for explainable and interpretable
traffic management tasks.

Incident Dataset. Incident datasets support the traffic analysis, like the incident impact on traffic, and incident
detection. (Huang et al., 2023) proposes a dataset that includes accident data with accident relative features,
like accident reason. (Yeddula et al., 2023) also leverages a large accident dataset including various types for
accident hotspot prediction. However, limited to the absence of traffic time series, it is hard to do a deeper
impact analysis of accidents on traffic based on these datasets. (Lin & Li, 2020) leverages a dataset that
includes 13,338 accident records with the traffic flow. However, the dataset is small and non-public. (Zhu
et al., 2021) proposes a new accident prediction model based on a dataset with accidents and traffic flow.
However, the dataset is not public, either.

2.2 TRAFFIC AND INCIDENT ANALYSIS

Traffic Forecasting with Incidents Considered. A large number of works, e.g., STGCN (Yu et al., 2018),
STGODE (Choi et al., 2022), DSTAGNN(Lan et al., 2022), are proposed to improve the prediction accuracy
based on GNN (Wu et al., 2020) and RNN (Ramakrishnan & Soni, 2018) models. However, these works
only consider historical traffic for future traffic, yet other critical impacts, e.g., incidents and meta-features
are ignored ((Yuan & Li, 2021; Jiang & Luo, 2022; Tan et al., 2023; Liu et al., 2024) offer detailed reviews
in traffic forecasting). There are a few works that have considered incidents when predicting, whose main
design is incorporating incident-related embedding as auxiliary information into traditional spatiotemporal
prediction framework (Xie et al., 2020; Golze et al., 2021; Liu et al., 2022b; Hong et al., 2024). For example,
DIGC-Net (Xie et al., 2020) inputs the type and duration of the incident to predict the affected speed. Yet, the
dataset only brings one week of incident data (17-24 Apr 2019) from a small district, being spatiotemporal
limited; STCL (Liu et al., 2022b) introduced two-month New York City Vehicle incident data as one-hot
accident embedding into the prediction of the Taxi and Bike data. Like what we have observed in most works
that analyze traffic with incidents (Liu et al., 2022b; Hong et al., 2024), the transport modes of traffic
data and that of incident data are NOT seamlessly matched; thus, it will be less convincing to analyze
vehicle incidents’ impact on bike traffic (bike lane is separated from vehicle lane) or on taxi traffic (taxi is
only a subset mode of the whole vehicle). Our XTraffic is the first and only dataset that is (1) spatially and
temporally large-scale, (2) that modes in traffic and incident are seamlessly matched (all vehicles), which
guarantees unbiased analysis between the traffic and incident.

Incident Classification. It is a crucial task in analyzing non-recurrent congestion (Li et al., 2018a). Recently,
several studies have utilized traffic flow data for incident classification (Lin & Li, 2020; Zhu et al., 2021).
However, these studies often face at least one of the following three challenges: (1) Small Data Size (Lin
& Li, 2020): Many studies suffer from limited datasets that fail to capture the diversity and complexity of
traffic patterns, affecting model reliability and generalizability. (2) Limited Dimensionality without Traffic
Volume Data (Huang et al., 2023; Yeddula et al., 2023): The absence of critical data dimensions, such as
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traffic volume, restricts the depth and accuracy of incident classification models. (3) Experiments Based
on Non-Public Dataset (Zhu et al., 2021; Lin & Li, 2020): Reliance on proprietary datasets impedes the
ability of the broader research community to verify, replicate, or enhance the findings, limiting collaborative
advancements.

Traffic Causal Analysis. This task aims to learn the causal structures among different entities in a traffic
system. Usually, the causal structures are formulated as Bayesian networks or DAGs (Zheng et al., 2018),
where a directed edge denotes the causal link. In the traffic domain, given the traffic indexes are time-series
and others can be scalers (e.g., static meta-features), a special DAG structure learning based on heterogeneous
data is needed (Lan et al., 2023; 2024). To learn the global relation of various factors, e.g., traffic flow,
meta-attributes, weather, etc., where each DAG node is a factor to be considered, MultiFun-DAG (Lan et al.,
2024) views multivariate time-series in traffic as a multi-function and formulate the structure learning as a
“self-expression problem”, i.e., X = WX+ Z, based on function-to-function regression and the directed
acyclic regularization on the coefficients W (Zheng et al., 2018), a DAG is constructed based on W. MM-
DAG (Lan et al., 2023) further consider multi-location at the same time. To learn local causal relation
among different locations, where each DAG node is a spacial location, DBGCN (Luan et al., 2022) and
DCGCN (Lin et al., 2023) combines DAG with GCN, DCGCN further considers the causal links across the
time, i.e., node 1 at t1 affects the node 2 at t3, and the dynamics of DAG changing over time. The preliminary
of these four intended tasks are introduced in Appendix A.4.

3 XTRAFFIC DATACUBE

3.1 COMPARISON WITH EXISTING DATASETS

Table 1: The comparison of Existing Traffic Dataset and
XTraffic. Each row represents the largest subset within the
corresponding dataset.

Dataset Nodes Edges Slot
(Min)

Location Context Physics Policy Granules Incdt.

PeMSD7(L) 1,026 14,534 5 ✓ ✓ - - Road
METR-LA 207 1,515 5 ✓ - - - Road -
PEMS-BAY 325 2,369 5 ✓ - - - Road -

PEMS07 883 865 5 - - - - Road -
CA 8,600 201,363 15 ✓ ✓ - - Road -

XTraffic 16,972 870,100 5 ✓ ✓ ✓ ✓ Lane ✓

Table 2: The comparison of Incidents Dataset
and XTraffic. We are the only ones who combine
traffic with incidents.

Dataset Incident Granules Volume Speed Occupancy
CTC (Department, 2024) 1 Point - - -

NYC Col (of Motor Vehicles, 2023) 1 Road - - -
NYS Crashes (Department, 2022) 1 Point - - -

UKA (of Transport, 2016) 1 Point - - -
TAP (Huang et al., 2023) 1 Road - - -

TAA (Bedane, 2020) 1 Road - - -

XTraffic 7 Point ✓ ✓ ✓

(1) Base Features Comparison. In Table 1, we introduce the existing four public datasets widely leveraged
in traffic analysis. The PeMSD7(M) and PeMSD7(L) are proposed by (Yu et al., 2018). The PEMS03,04,07
and 08 are proposed by (Song et al., 2020). The large-scale traffic dataset LargeST which includes CA, GLA,
GBA, and SD subdatasets are proposed by (Liu et al., 2024). We compared the datasets from 7 aspects:
Scale (Number of Sensors/Nodes and Neighbors/Edges), Location (Latitude, Longitude, Abs PM), Context
(Road Name, City, County), Physics Meta Feature (Road Width, Terrain, Surface Material, etc.), Policy meta
feature (Design Speed Limit, Population, Functional Class etc.), Granularity (timer interval, sensor level) and
Incident features. As shown in Table 1, our XTraffic is larger than the existing datasets, with 16,972 nodes
and 870,100 edges. Compared to other datasets, we include two types of meta features: physics meta feature
and policy meta feature. The physics meta feature details the tangible, structural characteristics of a road, and
the policy meta feature is fundamental for the operational and planning purposes of a road. These features
provide strong support for constructing interpretable traffic forecasting and traffic causal analysis.

In Table 2, there are 6 famous existing datasets for incident analysis. Compared with them, our XTraffic
includes multiple incident categories besides accidents. The category feature provides fundamental support for
studying the impact of different incidents on traffic and also offers ground truth for detecting incidents beyond
accidents. Also, XTraffic includes three kinds of traffic time series: traffic volume, road occupancy rate,
and vehicle average speed. Such an integration significantly broadens the scope of analyzing post-incident
impacts.
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(2) Comprehensive Road Meta Features in Multiple Aspects. As shown in Table 4, XTraffic dataset
includes a wide range of road meta-features, categorized into context, location, policy, and physics-related
features. Context features include attributes like district and county, which help understand traffic patterns
within different administrative or urban contexts. Location features provide precise spatial attributes such as
road coordinates and segment information. Policy features cover regulatory aspects like speed limits, while
physics features address road characteristics such as terrain type. This diverse set of meta-features allows for
a holistic analysis of how various factors influence traffic behavior.

(3) The Bridge between Traffic and Incidents. XTraffic bridges the gap between traffic and incident data by
integrating detailed traffic flow metrics (such as lane-level flow, speed, and occupancy) with comprehensive
incident records (including various types of accidents). From Traffic View. As shown in Table 1, the existing
datasets often lack incident data and have insufficient road-level granularity to effectively study the impact of
incidents on traffic. For example, the effect of a traffic incident on one side of the road might be significantly
different from the impact on the other side. XTraffic offers lane-level traffic flow, speed, and occupancy data
with incident features, allowing for detailed analysis of traffic patterns under incident impact at a micro level.
Also, the high resolution supports the identification of specific traffic bottlenecks, congestion patterns, and
variations in traffic behavior that aggregate or road-level datasets might obscure. Researchers can perform
fine-grained analysis to understand traffic dynamics under different incident impacts with greater precision.
From Incident View. Compared to the existing opensource incidents dataset, as shown in Table 2, XTraffic
has two advantages: (a)Not like other datasets only include accident type incidents, XTraffic covers 7 specific
incident types, such as hazzards and road closures. (b)XTraffic includes three traffic time series (flow, speed,
occupancy) more than other public datasets, even more than some non-public datasets (Lin & Li, 2020; Zhu
et al., 2021). This allows for sophisticated analyses of how various incidents impact traffic conditions across
different regions and times. Researchers can study patterns like the frequency and severity of incidents,
their spatial distribution, and their temporal effects on traffic flow, providing a nuanced understanding of
incident impacts that single-dataset approaches might miss. By combining incident data with detailed traffic
metrics, our dataset facilitates advanced causal analysis, enabling researchers to determine how specific
incidents influence traffic behavior over time. This capability supports the development of more effective
traffic management strategies and predictive models that account for the immediate and long-term effects of
incidents on traffic conditions.

3.2 COLLECTION AND CONSTRUCTION

Both incident and traffic data are collected from Caltrans Performance Measurement System (PEMS). We
started our collection on April 20, 2024, and ended on May 10, 2024. The time span of the data covers the
entire year of 2023. For traffic data, we removed the sensor with less than 50% observations of traffic volume
and reserved the data of 16,972 sensors with meta-features. These sensors are located in 42 different cities
and counties. We also collected comprehensive meta-features of these sensors. After excluding the features
with the same value and features unrelated to traffic, 26 meta-features are reserved. These meta-features can
be divided into 5 types as shown in Table 1. Full meta-features are in Table 6, Appx. A.3. As most methods
in traffic forecasting are graph-based, the adjacency matrix is a key component for the model to learn spatial
dependency. The construction of adjacency matrix is introduced in Appendix A.6.
For incident data, we removed repeated incident records and the records without absolute postmile (indi-
cating the position and date-time). As the source and CA PM (we have Abs PM to locate the incident) are
relatively redundant in the traffic analysis, thus also being removed. The reserved incident data includes
476,766 samples with 9 features. Identifying which nodes are impacted by an incident is crucial for leveraging
incident records in traffic analysis. To facilitate this, we use a method that combines the freeway name and
absolute postmile (Abs PM) markers to pinpoint sensors that might be affected by the incident. We provide
two methods for this matching process: (1) involves matching only the nearest sensor on the same freeway as
the incident, (2) involves setting a distance threshold and incorporating all sensors within this specified range.
Data imputation is also a crucial aspect of dataset application. However, Considering that different re-
searchers may prefer different data cleaning methods (for example, to handle missing data, some may prefer
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Time
(a) Traffic time series variation on weekday

Time
(b) Traffic time series variation on weekend

07:45 07:45 07:45 07:45 07:45 07:45 07:45 07:45

District

(c) Morning peak time and peak flow
District

(d) Afternoon peak time and peak flow

Figure 2: (a) and (b) represent the average traffic variation of all sensors on weekdays and weekends,
respectively. (c) and (d) represent the average peak flow and the peak time in different districts. The peak
flow is calculated based on all sensors in the specific district. Deeper green indicates the highest peak flow.

zero filling for tasks such as classification, while some may avoid zero filling and prefer linear interpolation if
the task is imputation so that they don’t mix the ground-truth zero value and missing value). Thus, we believe
providing the raw data we collected is better. In the experiments mentioned in Sections 4.2 and 4.3, we used
zero-filling to address missing values in the traffic series features. More data imputation methods applications
are discussed in Appendix A.5.

4 EXPERIMENTS
4.1 DESCRIPTIVE ANALYSIS OF XTRAFFIC

To demonstrate the correlations between traffic conditions and incidents across various spatial and temporal
dimensions, we conducted separate analyses for both traffic data and incident data.

4.1.1 TRAFFIC TRENDING AND PEAK HOUR ANALYSIS

Traffic Time Series Variation Patterns. We defined weekdays as Monday through Friday and weekends as
Saturday and Sunday. Within each group, we averaged traffic data from all sensors for the same time interval
and normalized the data within each traffic category for visualization. As shown in Fig. 2(a) and (b), the
results reveal a distinct evening peak in traffic between 4:00-5:00 PM on weekends. In contrast, weekdays
exhibit both morning and evening peaks, with high traffic levels sustained throughout the day. Additionally,
the statistical analysis shows an inverse relationship between speed and occupancy rate, as well as flow.
Traffic Peak Hour Analysis. We define the morning peak hour as between 6:00 and 10:00 and the evening
peak hour as between 15:00 and 20:00. We calculated the average flow for each time interval across all sensors
in different districts during peak hours and identified the peak flow values along with their corresponding
peak times. As shown in Fig. 2(c) and (d), the peak times in the morning are consistent across districts, with
similar traffic flow patterns. In the afternoon, however, two distinct peak times are observed: 15:40 and 17:15.
Since our flow data is recorded by time intervals, 15:40 and 17:15 represent the time intervals 15:40-15:45
and 17:15-17:20, respectively.
4.1.2 INCIDENTS ANALYSIS ON HUB AND FRINGE NODES

At first, we summarize the distribution of incident durations and types. Fig. 2(a) reveals a long-tail distribution
where most incidents are relatively short, but a few incidents last for an extended period. It also demonstrates
the geographical distribution of incidents, with higher concentrations in urban areas. The pie chart in Fig. 3(b)
shows hazards constitute the majority (52.2%). Next, we aim to further explore the frequency of incidents
occurring on road segments under different levels of congestion. In the road network, each sensor can be
considered as a node on a specific road. The hub node represents busy intersections and main roads, while the
fringe node represents roads in remote areas or branch roads. Two cases for hub node and fringe node are
shown in Fig. 3(c). Then, we conduct the following two analyses to reveal the relationship between different
types of roads and incidents. (Details in Appendix A.7).
The Frequency of Different Types of Incidents Next to Hub and Fringe Nodes. We tally the total number
of various types of incidents occurring next to hub nodes and fringe nodes. Fig. 3(d) shows that hazards and
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Figure 3: Descriptive analysis of Incidents.(a) and (b) are calculated based on all incident records. (c)-(h) are
calculated based on the incidents happening on hub/fringe nodes.

accidents are significantly more frequent on busy roads. In contrast, incidents related to fires and hazards
caused by animals are more common on remote and less-traveled roads. This may be attributed to the higher
activity of animals in less frequented areas and the increased risk of fire in remote areas due to reduced human
attention. Based on the observations above, we find that the incident patterns for hub nodes and fringe nodes
differ significantly. We are now curious about whether there are also differences in incidents between these
two types of nodes in terms of time.
Incident Temporal Patterns on Hub and Fringe Nodes. Firstly, we analyze the distribution of incidents
for two types of nodes throughout the week. Without considering incident types, we aggregated incidents
by the day of the week. As shown in Fig. 3(e), there is a significant difference between hub nodes and
fringe nodes. For hub nodes, the proportion of incidents on weekdays is higher than on weekends. This is
expected, as downtown areas experience greater traffic volumes and are more prone to accidents on weekdays
due to the high traffic flow in main roads and densely populated areas. On weekends, many people move
to rural areas, reducing traffic pressure and leading to fewer incidents. In contrast, for fringe nodes, we
can observe a reversed trend: there is a slight increase in the number of incidents on weekends compared
to weekdays: this might be because the residents are moving back to rural areas for the weekends, thus
bringing higher possibility of incidents. Interestingly, both types of nodes experience a peak in incidents
on Fridays. Such a "Friday mood" will universally increase the incident risk regardless hub nodes or fringe
nodes. Moreover, we conducted further analysis on the 30-minute variation of incidents. To analyze the
differences in incident patterns between weekdays, Fridays (the day with the highest number of incidents),
and weekends, we examined the variation in incident numbers throughout the day for both hub nodes and
fringe nodes. The results, shown in Fig. 3(f), (g), and (h), reveal that the number of incidents on hub nodes
and fringe nodes varies significantly on weekdays. Incidents typically occur during morning and evening
peak hours. Compared to other weekdays, incidents on Fridays show greater fluctuations, likely due to Friday
being a transitional day between weekdays and weekends.

4.2 TRAFFIC FORECASTING AFTER INCIDENTS

The existing models are effective in general traffic forecasting tasks. However, their performance under
irregular volumes caused by incidents has not been thoroughly discussed. To assess these models’ response in
such conditions, we conduct irregular traffic forecasting based on XTraffic.
Experiment Setting: We selected prediction samples from the test set that one incident occurred within a
5-minute window. Due to the large volume of data, we chose to conduct experiments using traffic volume data
from the San Bernardino (561 mainline sensors) within the XTraffic dataset for the first 3 months. All of the
baselines are state-of-the-art in the spatial-temporal forecasting or traffic forecasting domain. Our forecasting
experiments were implemented within the same software framework employed by (Liu et al., 2024).
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Table 4: Performance among the SOTA time series classification methods across the datasets, with the top 1
in grey, 2nd in boldface, and 3rd underlined.

Methods
speed channel-only occupancy channel-only flow channel-only All channels Mixed

Acc Precision Recall Acc Precision Recall Acc Precision Recall Acc Precision Recall

DT 41.6% 41.5% 41.5% 40.4% 40.2% 40.2% 39.4% 39.3% 39.3% 41.6% 41.4% 41.5%
TS2Vec 36.6% 36.2% 36.2% 36.6% 36.5% 36.4% 37.3% 37.0% 37.0% 37.3% 37.0% 37.0%
gMLP 41.3% 41.2% 41.1% 38.4% 38.3% 38.3% 37.3% 37.2% 37.2% 41.6% 41.5% 41.5%

Sequencer 35.8% 35.8% 35.6% 35.6% 35.3% 35.2% 34.1% 33.9% 33.9% 40.3% 40.2% 40.2%
OmniScaleCNN 35.7% 35.1% 35.1% 36.9% 36.3% 36.3% 37.0% 36.8% 36.8% 40.9% 40.8% 40.8%

PatchTST 38.3% 38.1% 38.1% 39.0% 38.6% 38.7% 39.5% 39.3% 39.3% 39.4% 39.4% 39.3%
FormerTime 35.9% 31.0% 33.4% 41.0% 41.1% 40.8% 37.8% 38.2% 37.3% 40.5% 40.5% 40.1%

Table 3: The results in different horizons in Monterey (D5 Area). ‘Gen-
eral’ shows the performance of the model across all samples in the test
set, while ‘Incident’ is on samples after an incident has occurred, with
the top 1 in grey, 2nd in boldface, and 3rd underlined.

Test Model 5 Mins (t=1) 15 Mins (t=3) 30 Mins (t=6)

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

General

LSTM 12.58 11.81 21.45 15.41 14.21 26.29 18.68 18.03 31.54
ASTGCN 12.45 13.11 20.90 14.59 13.66 23.10 16.03 15.56 27.82
DCRNN 11.90 11.82 20.47 13.41 12.92 23.79 14.84 14.32 26.74
AGCRN 12.54 12.56 22.65 13.55 13.18 25.27 14.62 14.24 27.92
GWNET 11.99 11.85 20.30 13.53 12.87 23.44 14.88 14.15 26.05
STGODE 12.75 13.26 21.66 14.12 14.57 24.64 15.50 16.34 27.43

DSTAGNN 13.18 12.15 21.93 16.37 18.82 27.41 19.99 19.97 33.73
D2STGNN 12.18 12.00 21.30 13.48 13.20 24.30 14.90 14.27 27.28

Incident

LSTM 14.17 10.13 23.75 17.41 15.38 29.43 20.93 14.33 34.05
ASTGCN 14.06 10.55 23.22 16.42 15.06 27.63 18.40 12.59 30.48
DCRNN 13.62 9.86 23.04 15.36 14.35 26.73 16.92 11.69 29.38
AGCRN 14.48 10.98 25.41 15.96 14.78 28.78 17.21 11.78 31.42
GWNET 13.73 10.44 22.90 15.60 14.50 26.73 17.15 11.49 29.07
STGODE 14.50 10.71 24.49 16.20 15.19 27.69 17.55 12.29 30.17

DSTAGNN 14.79 10.57 24.22 18.24 17.91 30.48 21.95 15.38 35.67
D2STGNN 13.73 10.05 23.30 15.51 14.22 27.29 17.03 11.46 30.23

Results. As shown in Table 3, all base-
lines perform significantly better in
predicting on the general test dataset
compared to the incident test dataset,
since incidents added irregularity into the
traffic systems. This suggests that inves-
tigating how to improve the performance
of forecasting models on time series pre-
diction following an incident is worth-
while and warrants further research and
discussion. More details in Appx. A.8.

4.3 INCIDENT CLASSIFICATION

Since traffic incidents typically affect the
traffic on roads, it is viable to deduce the
traffic conditions based on the dynamics
of the parameters. In this work, a time
series classification task is designed on XTraffic, which involves inferring incident categories based on the
traffic during particular time slots detected by the sensors.
Experimental setting. Since traffic sensors are not always available at the site of an incident, we start by
identifying the nearest sensor affected by each incident according to the distance (i.e., the ABS PM in Table
6). Then, we extract recorded indexes (traffic speed, lane occupancy, and traffic flow) in these sensors during a
time window when the incident occurs. Augmented with normal data, these form the basis for characterizing
traffic parameters, which fall into three categories: “accidents”, “hazards”, and “normal”. According to Fig.
3(b), we standardize the duration length as the 95th percentile, i.e., 2 hours (w=24). The task is defined as a
multivariate time series classification which uses three-channel time series to infer the situations of the traffic.
We selected representative baselines from various families including statistical learning, contrastive learning,
sequential models and Transformer-based models. More details of experiments in Appx. A.9.

Performance Evaluation. From Table 4: (1) The best classification can achieve 41% accuracy, indicating
classifying traffic conditions based on traffic indexes is feasible (better than random guess). Among
the datasets with different inputted features, DT and PatchTST always outperform the baselines. gMLP also
shows strong performance, notably achieving top ranks in several categories and particularly excelling in the
mixed channels. (2) Variability across channels. Different methods exhibit varying degrees of effectiveness
depending on the channel used, e.g., Sequencer performing better with speed and worse with flow, and
OmniScaleCNN opposite. Thus, selecting appropriate features can guarantee the model effectiveness.(3)
Integrating multiple features often leads to better classification. However, the performance gain is
method-dependent. DT and gMLP show improvement, while TS2Vec and OmniScaleCNN benefit less.
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(a) Causal networks generated by MM-DAG. Thick 
solid arrows indicate strong causal relations, thin solid 
arrows for regular causal relations, and thin dashed 
arrows for weak relations.

(b) The average values and 95% confidence interval of outcome Y under 
different factor levels X in a causal relationship 𝑋	 → 	𝑌	, where 𝑋	 →
	𝑌	can be: (b1) Time → Hazard; (b2) Weather → UnknInj; (b3) Surface 
→ Hazard; (b4) Terrain → NoInj.

Meta-features

(a1) (a2)

(a3) (a4)

(b1) (b2)

(b3) (b4)

Figure 5: Global causal: (a) The learned DAG among meta-features, incidents, and traffic indexes. (b) The
factual explanation for selected edges.

(a) t-SNE visualization of three classes using flow only

(b) Three classes with 
furthest embeddings

(c) Three classes with 
closest embeddings

Figure 4: Visualization of the representation of
the time series on the dataset, extracted from the
last hidden layer of OmniScaleCNN.

Fig. 4(a) visualizes the extracted feature from OmniScaleCNN
by t-SNE (Van der Maaten & Hinton, 2008) using flow data.The
selected furthest embeddings (in Fig. 4(b)) shows clear distinct
flows between the three classes, yet the closest embeddings
(Fig. 4(c)) not. (1) There are distinct and separated patterns
in the embeddings of traffic incidents located in corner and
center areas, which facilitates classification, causing better
performance than random guess. (2) Not all incidents impact
traffic indices largely. As car fires and accidents with no
injuries are short-lived, these hard cases confuse the classifier
since the traffic patterns do not change significantly.

4.4 GLOBAL TRAFFIC CAUSAL ANALYSIS

Experiment Setting. In our XTraffic dataset, we have static variables, e.g., road information, represented
as scalar and vector, and dynamic variables, e.g., accidents and traffic flow, represented as functional data.
Considering the multimodal nature of the variables, we employ MM-DAG (Lan et al., 2023) to construct the
causal network in different districts. We collect data on 17 variables across four districts with the highest
incident rates throughout 2023. These variables fall into three categories: (1) meta-feature variables, e.g.,
temporal, environmental, road structural information; (2) incident variables, i.e., the occurrence of incidents;
and (3) traffic statistics, which reflect traffic conditions. (Details in Table 7, Appx. A.10). We consider the
data collected at each road node for each day as a single sample, using a granularity of one hour.
Results. Fig. 5(a) illustrates the four causal networks derived by MM-DAG. (1) Certain static variables are
essential; such as road surface, terrain, and road width, they exert significant influences on the incidence of
traffic events and the overall traffic conditions. (2) The static variables’ impacts are consistent: Across
various districts, due to their inherent properties, these underlying attributes consistently influence road and
traffic dynamics across different regions. (3) Dynamic variables like time, weather, and visibility also
affect traffic incidents, though their causal relationships appear to be weaker and vary by district. Like,
causal links from events to fire and to hazards show variability and weaker connections in different districts.
We further explain four significant edges. In Fig. 5(b1), the probability of encountering hazards is higher
during the early morning (5 AM to 8 AM) and late afternoon (after 3 PM) on weekdays compared to weekends,
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likely due to increased traffic flow during peak commuting hours. In Fig. 5(b2), rain increases the probability
of accidents compared to dry conditions, but the amount of rainfall does not significantly affect the accident
rate. In Fig. 5(b3), bridges and road surfaces with a base thickness of >7 inches have a lower probability of
hazards compared to concrete surfaces. This may be due to the enhanced durability and grip provided by
thicker road surfaces and bridge constructions. In Fig. 5(b4), flat terrain is associated with higher average
speeds compared to rolling terrains. The tendency for higher speeds on flat terrains is likely due to the reduced
need for vehicles to decelerate for climbs or curves, allowing for more consistent and faster travel.

4.5 LOCAL CAUSAL ANALYSIS FOR ROAD RELATIONS

To demonstrate the value of our XTraffic dataset in revealing the causal relations among the roads, we
conduct local causal analysis on a real case from XTraffic. We employ the PCMCI+ (Runge, 2020) algorithm
for causal structure learning. Since the underlying ground truth of causal dependencies is unknown, the
hyperparameters, e.g., significance level and maximum time lag, are set for better interpretability.

𝑿𝟒

𝑿𝟐

𝑿𝟏

Incident: 
1141

𝑿𝟏

𝑿𝟐

𝑿𝟑

(a1) Road Network (a2) Traffic Flow Series

Time

𝑿𝟑

𝑿𝟒

Post-IncidentPre-Incident

(b1) Pre-Incident Graph (b2) Post-Incident Graph

(a) Demonstration of Demonstration of the Selected Case. (a1) Road network 
with four selected traffic nodes, i.e., four sensors recording traffic flow data. 
An incident coded 1141 occurred very close to 𝑋!. This incident indicates 
that a traffic collision has occurred and that there are potential injuries 
requiring a medical response. (a2) Traffic flow series of the selected nodes.

(b) Causal process graph learned by PCMCI+. (b1) Pre-incident causal graph. 
(b2) Post-incident causal graph. Node and link colors depict the strength of 
auto-dependencies or cross-dependencies, respectively.

Figure 6: Case of Local Causal Analysis

Experiment Setting. In Fig. 6, we select the road network
near an interchange in Novato, California. On the evening of
February 11, 2023, a traffic incident “1141” occurred at the
eastbound exit of the interchange. This incident indicates that a
traffic collision occurred and that there were potential injuries
requiring a medical response. We then select four traffic nodes,
represented by their traffic flow indexes, {X1, X2, X3, X4},
that might be affected by the traffic incident. We see from
Fig. 6 (a2) that the decrease in traffic flow of X3, which is the
node closest to the incident, significantly accelerated after the
incident occurred.
Results. The causal graphs learned by PCMCI+ are in Fig. 6
(b), where the colors depict the strength of causal dependencies
and the label of a link represents the time lag of causal depen-
dencies. The pre-incident causal structure matches the common
understanding about traffic propagation, indicating that traffic
flow propagates from X2 through X3 to X4. Compared to the
pre-incident graph, the post-incident graph has two additional

lagged causal links X3 lag 1−→ X2 and X4 lag 1−→ X1. In such a
complicated dynamic traffic system, explaining the change of
causal dependencies is challenging and we endeavour to pro-
vide some conjectures for reference. Due to the traffic collision

between X2 and X3, congestion likely occurred near X3, reducing the traffic flow at each time slot. However,
the traffic demand from X2 to X3 did not decrease in the short term, causing the congestion to gradually
spread to X2. The congestion at the eastbound exit of the interchange led to a decrease in traffic demand
from X1 to X4. Fewer vehicles chose to slow down to enter the ramp, causing increased speed and higher
traffic flow at X1. (Details in Appx. A.11.)

5 CONCLUSION

We propose a pioneering traffic and incident dataset XTraffic. It integrates traffic flow data with incident
records and road comprehensive meta-features, filling a significant gap in traffic analysis and Incident analysis.
XTraffic lays a solid groundwork for research focused on understanding traffic dynamics, causality, and
interrelationships. Through four groups of experiments, we demonstrate that our dataset offers expanded
possibilities for research in traffic forecasting, incident classification, and detection, as well as causal analysis.
Limitations and future work are discussed in Appendix A.12.
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A APPENDIX

In this Appendix, we will introduce the data sheet of XTraffic, the statement of responsibility, more details
of XTraffic data, related work of the 4 traffic tasks, and the experiment settings of the Post-Incident Traffic
Forecasting, Incident Classification, Global Causal Analysis, and Local Causal Analysis.

A.1 DATA SHEET OF XTRAFFIC

In this section, we follow the datasheet format (?) to answer the critical questions to a standard dataset.

A.1.1 MOTIVATION

• For what purpose was the dataset created? The XTraffic is the most recent in terms of the
collection period and contains the largest number of sensors, covering three distinct types of traffic
volume. This ensures the timeliness of traffic research, providing a robust foundation for studies
aiming to capture and explain traffic dynamics, causation, and interrelations. XTraffic serves as a
rigid testing bed and empirical support to justify model effectiveness and interoperability in deep
learning and the traffic community.

• Who created the dataset? The Machine Intelligence and kNowledge Engineering (MINE) lab.

• Who funded the creation of the dataset? The creation of the dataset and research reported in
this paper was supported by funding from King Abdullah University of Science and Technology
(KAUST).

A.1.2 COMPOSITION

• What do the instances that comprise the dataset represent. See the Section 3 Data Introduction.

• How many instances are there in total? For traffic time series data, the total number of instances
is 105120 (Time Slots Number) × 16,972 (Sensor Number) × 3 (Feature Number). For incidents,
the instances is 476,766.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? All possible instances excluding the sensors with a large number of
missing values.

• What data does each instance consist of? See the Section 3 Data Introduction.

• Is there a label or target associated with each instance? See the Section 3 Data Introduction.

• Is any information missing from individual instances? Raw data missing.

• Are relationships between individual instances made explicit Yes, they are connected by time,
location, and sensor ID.

• Are there recommended data splits? For Traffic forecasting, we recommend the ratio of 6:2:2 for
training, valid, and test dataset. It is a common setting (Shao et al., 2022; Guo et al., 2019).

• Are there any errors, sources of noise, or redundancies in the dataset? Yes. The traffic time
series are collected from sensors, and it may not count all of the passing vehicles.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources? No.

• Does the dataset contain data that might be considered confidential? No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.
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A.1.3 COLLECTION PROCESS

• How was the data associated with each instance acquired? The data is directly observable.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? We use the PeMS data
table corresponding URLs to collect the data.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? Not fit.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g.,how much were crowdworkers paid)? No person is involved
in the collection process.

• Over what timeframe was the data collected? The data was collected from April 20, 2024, to
May 10, 2024. The dataset covers the entire year of 2023.

• Were any ethical review processes conducted (e.g., by an institutional review board)? No.

A.1.4 PREPROCESSING/CLEANING/LABELING

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)?Yes. We construct the adjacency matrix for sensors in the road network.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? Yes.

• Is the software that was used to preprocess/clean/label the data available? The code is released
in our GitHub repository https://anonymous.4open.science/r/XTraffic-E069

A.1.5 USES

• Has the dataset been used for any tasks already? No.

• Is there a repository that links to any or all papers or systems that use the dataset? No.

• What (other) tasks could the dataset be used for? Interpretable traffic forecasting, incident
classification, incident duration prediction, and traffic causal analysis.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? The adjacency matrix is generated based
on a threshold. It could be revised based on the task requirement.

• Are there tasks for which the dataset should not be used? No.

A.1.6 DISTRIBUTION

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Kaggle Dataset.

• When will the dataset be distributed? June 11, 2024.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? Yes. Please see the section 4.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? Yes. Please see the section 4.
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• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? Yes. The use of data is required to satisfy the Caltrans Terms of Use of PeMS.

A.1.7 MAINTENANCE

• Who will be supporting/hosting/maintaining the dataset? The first author of the dataset paper.
• How can the owner/curator/manager of the dataset be contacted? After accepting, we will

release the email of the owner.
• Is there an erratum? No.
• Will the dataset be updated? Anual. If someone reports the error to us via GitHub, Kaggle or

Email, we will check the data and fix the errors.
• If the dataset relates to people, are there applicable limits on the retention of the data associated

with the instances (e.g., were the individuals in question told that their data would be retained
for a fixed period of time and then deleted)? There is no person information included in XTraffic.

• Will older versions of the dataset continue to be supported/hosted/maintained? Yes. The largest
difference between the old version and the new version is the time, and it’s not hard to maintain the
old versions. we will fix the errors reported.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? No. We don’t have enough resources to verify the external contributions.

A.2 STATEMENT OF RESPONSIBILITY

According to the Ownership section in Caltrans Terms of Use of PeMS1, we can collect and construct a
dataset from the source and distribute it. We collected all of the data before 17/05/2024. More details and
the introduction of the dataset can be found in the supplementary material. Our XTraffic is released under a
CC BY-NC 4.0 International License2. The code for the experiments is released under an MIT License3. We
claim that we are responsible for the data release and collection.

A.3 DETAILS OF XTRAFFIC

Licence. According to the Ownership section in Caltrans Terms of Use of PEMS, we can collect and construct
a dataset from the source and distribute it. We collected all of the data before 17/05/2024. More details and
the introduction of the dataset are clarified in the Appendix A.3. Our XTraffic is released under a CC BY-NC
4.0 International License. The code for the experiments is released under a MIT License.

Meta data. The meta data for the XTraffic dataset can be accessed at the https://anonymous.4open.
science/r/XTraffic-E069/xtraffic-metadata.json.

1https://pems.dot.ca.gov/?view=tou
2https://creativecommons.org/licenses/by-nc/4.0
3https://opensource.org/licenses/MIT
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Incidents. The details of incident data features are shown in Table 5.

Table 5: Meta Feature Introduction

Feature Type Description

Incident ID Integer Unique identifier for each recorded traffic incident.
Duration Integer Length of the incident measured in minutes from start to resolution.
Abs PM Float Point of the incident in absolute postmile notation along the road.

Fwy String The freeway name where the incident occurred.
AREA String The city or town where the incident took place.

DESCRIPTION String A brief narrative describing the specifics of the incident.
LOCATION String The exact address on the freeway where the incident happened.

Type String Category of the incident, such as accident, hazard, or road closure.
dt DateTime Timestamp indicating when the incident was first reported.
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Lane meta features. The details of the lane meta features are in Table 6,

Table 6: Meta Feature Introduction

Feature Type Description

Sensor ID String Unique identifier for each traffic sensor.
Inner Shoulder Width Float Width in meters of the inner shoulder on the lane.
Outer Shoulder Width Float Width in meters of the outer shoulder on the lane.

Functional Class String Classification of roads based on the function they provide.
Inner Median Type String Type of median on the inner side of the road.
Inner Median Width Float Width in meters of the median on the inner side of the road.

Road Width Float Total width in meters from one side to the other.
Lane Width Float Width in meters of each traffic lane on the road.

Design Speed Limit Integer Maximum speed limit designed for the road in kilometers per hour.
Terrain String Physical features and shape of a landscape, e.g., flat, mountainous.

Population String Type of terrain surrounding the road, e.g., urban, rural.
Barrier String Description of any barriers along the road, e.g., guardrail, none.
Surface String Road surface type, e.g., asphalt, concrete.

Roadway Use String Primary use of the road, e.g., commercial, residential.
Length Integer The total length of the lane on the road.

Latitude Float Geographical latitude of the road’s location.
Longitude Float Geographical longitude of the road’s location.
Abs PM Float Point of measurement in absolute postmile notation along the road.
Direction String The direction of the lane, e.g., East, North.

Fwy String The name of the freeway where the sensor is located in.
District Integer The district ID, e.g..
County String The county where the sensor is located in, e.g., Orange, Los Angeles.

City String The city where the sensor is located in, e.g., Marina, Oakland.
Sensor Type String The sensor cateogry, e.g., radars, magnetometers.

Type String The level of the road, e.g., mainline, On Ramp.
HOV String Whether it is HOV lane or not
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A.4 PRELIMINARY OF FOUR INTENDED TASKS

Traffic Forecasting is to predict traffic indexes at nodes within a road network based on historical data
collected by sensors at each node. Consider a traffic road network represented as a graph G = (V,E),
where V denotes the set of N traffic nodes, with |V | = N , and E represents the set of undirected edges.
An edge Eij = 1 indicates a physical connection between nodes i and j in the road network; otherwise,
Eij = 0. Traffic volume data is recorded by sensors in evenly spaced time intervals and can be represented as
a sequence of matrices (X1,X2, ...,XT ) ∈ RN×T , where Xt is the matrix of volume signals (xt

1, x
t
2, ..., x

t
N )

at time slot t for all N nodes.

The goal in traffic flow forecasting is to devise a function F1 that uses the observed traffic data from
T1 time slots to predict the traffic volumes for the subsequent T2 time slots: (Xt−T1+1, ...,Xt)

F1→
(X̂t+1, ..., X̂t+T2), where X̂t+1 represents the prediction at time t + 1, and a general loss function is
defined as: min 1

T2

∑T2

i=1 L1(X̂
i,Xi).

Incident Classification is to identify traffic incidents using traffic indexes. Since traffic sensors are not
always available at the site of an incident, for brevity, we associate the parameters in the nearest single
sensor to classify an incident, rather than aggregating data from multiple neighboring sensors. For the i-th
paired sample (Xi, yi) in the dataset D, Xc

i ∈ RC×w is the input and yi represents its corresponding label,
where C denotes the number of multivariate feature channels (e.g., speed and flow) and w indicates the time
window at the post-incident timing t. There is Xc

i = {xt,xt+1, ...,xt+w−1} and the j-th entity xt+j ∈ RC .
The classification task is: ŷi = F2(X

c
i ; Θ), where ŷi is the predicted result, F2 is the classifier, and Θ is

trainable parameters. The overall objective is to minimize the classification loss L2 (e.g., cross-entropy) on
D: minΘ

1
|D|

∑|D|
i=1 L2(F2(X

c
i ; Θ), yi).

Causal Analysis and Directed Acyclic Graph (DAG) In causal analysis, the primary objective is to elucidate
the causal relationship, which is represented in a dynamic acyclic graph (DAG). Within a DAG, each node
corresponds to a variable, and each directed edge delineates a causal relationship between two variables. The
causal structural model enables the representation of a node’s distribution wi through wi = fi(wpai

, ei),
where wpai

denotes the set of all parents of node wi, and ei represents the exogenous noise associated with
node wi. We consider two subtasks:
(1) Global Causal Analysis for The Whole System. In global causal analysis, we focus on the problem that
macro-level phenomena influence each other, such as the impact of weather on accident rates. Therefore,
each node within the graph represents distinct variables like weather conditions, traffic accidents, or overall
traffic statistics. This approach helps in understanding the broader implications of various environmental and
systematic factors on traffic dynamics.
(2) Local Causal Analysis for Road Relations. In local causal analysis, we focus on the temporal dependency
structure underlying the complex traffic road network. We aim to find a graph G where the nodes are the
variables representing traffic nodes at different lag-times and the links represent lagged or contemporaneous
causal dependencies between traffic nodes. This approach helps in understanding how topologic of the road
network affects traffic conditions.

A.5 DATA CLEANING

Besides filling zero and linear interpolation, there are also some specific filling models for traffic data.
For example, ST-MVL[6] combined several empirical statistical models with user-based and item-based
collaborative filtering to collectively fill in missing values in geo-sensory time series data. However, the model
suffers from overlooking the global correlations of data. The [7] regards the raw data as a tensor and models
the data recovery as a low-rank robust tensor completion via leveraging the inherent low-rank structure to
address the issue. On the other hand, to discover the anomaly/dirty/outlier data, the [8] leverages DBSCAN
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to discover the outlier points in spatio-temporal data. Furthermore, it’s necessary to repair the discovered
dirty data. [9] proposes a metric to evaluate the dissimilarity between the raw dataset and the repaired one.
Then it utilizes space- and time-distortion rules and employs a hybrid simulated-annealing approach to avoid
local minima during the repair process. We will add the discussion of potential data cleaning methods in the
final paper or on the dataset project website. Exploring better data-filling techniques to mitigate the impact of
data gaps is an excellent direction for future research.

A.6 CONSTRUCTION OF ADJACENCY MATRIX

Typically, the adjacency matrix is constructed based on distance (Liu et al., 2024). In order to get the real travel
distance, we set up an open-source rooting machine engine (Luxen & Vetter, 2011) based on OpenStreetMap,
and calculate the shortest travel distance between two sensors based on the coordinate. One more precise
adjacency matrix is constructed based on the direction of the lanes and the coordinates of two sensors A and
B.

A.7 DEFINITION OF HUB AND FRINGE NODES

We calculate the degree of each node using the adjacency matrix described in the paper. Nodes with the 500
highest degrees are classified as hub nodes, and those with the 500 lowest degrees are classified as fringe
nodes. We match all incidents with the closest node/sensor and also remove the incident samples that the
distance between the incident and its closest sensor is larger than 0.05 mile. We count the incident number of
the hub nodes and fringe nodes, respectively.

A.8 EXPERIMENT DETAILS ON POST-INCIDENT TRAFFIC FORECASTING

Baselines. The baselines we selected to do the forecasting experiments are typical models in traffic forecasting
domain.

• LSTM(Hochreiter & Schmidhuber, 1997): A basic model focusing solely on the temporal relation-
ships within traffic data.

• ASTGCN(Guo et al., 2019): Enhances the STGCN by incorporating an attention mechanism to
better capture node correlations.

• DCRNN(Li et al., 2018b): An RNN-based model that utilizes diffusion convolution to model traffic
flows.

• AGCRN(Bai et al., 2020): An adaptive model that combines RNN architecture with an attention
mechanism to focus on spatial correlations.

• GWNET(Wu et al., 2019): Utilizes a gated mechanism in a TCN framework to filter out irrelevant
information effectively.

• STGODE(Fang et al., 2021): Uses ordinary differential equations to dynamically model relationships
among traffic nodes.

• DSTAGNN(Lan et al., 2022): Designed to dynamically capture changing correlations among traffic
sensors.

• D2STGNN(Shao et al., 2022): A dual-layer spatial-temporal GNN that addresses hidden correlations
in traffic data for forecasting.

Implementation Details. We adhered to the identical experimental settings outlined within the work. We
divided all the data into training, validation, and test sets in a 6:2:2 ratio. We set the batch size as 24 for
DSTAGNN and 64 for all of other models. The learning rate is set as 0.001. Other hyperparameters of models
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are set as the same as the original settings. Our baselines follow the optimal settings from their sources. For
the batch size in the training set, we used different settings to ensure that the model converges as quickly as
possible during training. The batch size settings are mentioned in Section 4.2. For LSTM, the hidden layer
dimension is set as 64, the last linear layer dimension is set as 512. For ASTGCN, the dimension of the
attention layer is as 64. For DCRNN, the number of RNN layers is set as 2, and the dimension for each RNN
layer is 64. For AGCRN, the hidden dimension is set as 64 for all cells and the embedding dimension is set
as 10. For GWNET, the dimension of input and output linear layer are set as 32 and 512, respectively. The
dimension of hidden layers is set as 256. For STGODE, the regular hyperparameter α is set as 0.8. The
thresholds σ and ϵ of spatial adjacency matrix (AM) are set to 10 and 0.5 respectively, and the threshold ϵ
of the semantic AM is set to 0.6. For DSTAGNN, the attention dimension is set as 32, and the number of
attention heads is set as 3. For D2STGNN, the hidden dimension is set as 32.

A.9 EXPERIMENT DETAILS ON INCIDENT CLASSIFICATION

Baselines. We adopt the following representative time series classification baselines.

• Decision Tree (DT): We tailor the canonical decision tree algorithm for the task, recursively
partitioning data based on feature values to create a tree-like model that makes classifications at its
leaf nodes.

• TS2Vec (Yue et al., 2022): It is a universal framework for learning robust and flexible time series
representations using hierarchical contrastive learning over augmented context views, making the
classification by a linear classifier.

• gMLP (Liu et al., 2021): It is a simple network architecture based solely on MLPs with gating,
which performs as well as Transformers in key language and vision applications.

• Sequencer (Tatsunami & Taki, 2022): It models long-range dependencies using LSTMs without
self-attention layers, which enhances performance by reducing the sequence length and creating
spatially meaningful receptive fields.

• OmniScaleCNN (Tang et al., 2021): It is a 1D-CNN architecture that utilizes a set of prime number-
based kernel sizes to efficiently capture optimal receptive field sizes without scale tuning across
diverse time series classification tasks.

• PatchTST (Nie et al., 2022): It incorporates patching of time series into subseries-level patches
and channel-independence to improve long-term forecasting accuracy based on the Transformer
backbone.

• FormerTime (Cheng et al., 2023): It employs a hierarchical Transformer-based architecture to learn
multi-scale feature maps and introduces an efficient temporal reduction attention mechanism and a
context-aware positional encoding generator for multivariate time series classification.

Implementation Details. We randomly sampled 9,000 examples to experiment, 3,000 samples per category.
The data is divided into training and testing sets in a 7:3 split.

We set the hyperparameters based on the recommended values in the original method and adjust them around
those values, taking the parameter values corresponding to the best results as the final result. Specifically, the
hyperparameters for each method are as follows:

For the Decision Tree, the minimum number of samples required for a leaf node is set to 1, and for splitting
an internal node, it is set to 2. In TS2Vec, the pretraining stage has an output dimension of 320 and a hidden
dimension of 64. The model is trained for 100 epochs with a batch size of 16, and the linear layer is chosen
as the downstream classification module with 1e−3 learning rate. For FormerTime, the model is configured
with 3 stages, each having 2 layers with a hidden size of 64. The number of slices per stage is 4, 2, 2, with
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Figure 7: Critical difference diagram over the mean ranks of the compared methods

a stride of 4, 2, 2. The model is trained for 100 epochs with 1e−3 learning rate. In PatchTST, the patch
length is set to 16, the stride to 8, the number of encoder layers to 2, the number of heads to 8, and the model
dimension to 512. gMLP is configured with a patch size of 1, a model dimension of 256, a fully forward
network dimension of 512, and a depth of 6. PatchTST, TSSequencer, OmniScaleCNN, and gMLP are
trained for 100 epochs with a batch size of 128, and the learning rate of them is set as 3e−4.

More Results. Fig. 7 reports the critical difference diagram as presented in (Demšar, 2006), which compares
the mean ranks of the baseline methods on the four datasets (three channel-only and all mixed) in the
classification task. The thick horizontal lines in the diagram denote groups of methods whose performance
differences are not statistically significant within the critical difference (CD) threshold. It can be seen that DT,
gMLP, and PatchTST are among the top-performing methods with the lowest mean ranks, indicating their
superior performance. Although DT, gMLP, and PatchTST are highlighted as top performers, the differences
among the top five methods are not statistically significant since they are in a group, suggesting comparable
effectiveness in this task.

A.10 EXPERIMENT DETAILS ON GLOBAL CAUSAL ANALYSIS

The introduction of MM-DAG. MM-DAG is a score-based causal discovery algorithm. It learns multiple
DAGs with multimodal data where their consensus and consistency are maximized. For multimodal data, it
proposes a multi-modal regression for linear causal relationship description of different variables by functional
principal component analysis. For multitask learning, it uses causal difference to ensure the consistency. The
overall optimization problem can be represented as:

Ĉ(1), ..., Ĉ(L) = argmin
C(1),...,C(L)

L∑
l=1

1

2Nl
∥A(l) −A(l)C(l)∥2F

+ ρ
∑
l1,l2

sl1,l2DCD(W(l1),W(l2)) + λ

L∑
l=1

∥C(l)∥1

s.t. h(W(l)) = tr(eW(l))− Pl = 0,∀l

where A is variables after FPCA, C are causal matrix and W(l)ij = ∥C(l)ij∥2F . sl1,l2 is the given constant
reflecting the similarity between tasks l1 and l2, ρ controls the penalty of the difference in causal orders,
where larger ρ means less tolerance of difference. λ controls the L1-norm penalty of causal matrix which
guarantees that edges are sparse. In our setting, we set λ = 0.001, ρ = 1 and sl1,l2 = 1,∀l1, l2.

Explaination of the nodes: The details of the nodes in the global causal graph in listed in Table 7.
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Constraints of the experiment:In learning DAG, two constraints are placed: (1) edges are not allowed
to point toward meta-feature variables since meta-feature variables generally describe environmental and
infrastructural contexts that inherently influence other variables rather than being influenced by them. (2)
traffic statistics variables are restricted from directing edges towards other nodes since these statistics
fundamentally represent outcomes or states of the traffic system, typically influenced by both high-level
environmental conditions and specific incidents, rather than serving as direct causes themselves.

Table 7: The description and types of the variables used in traffic causal analysis

Category Name Type Description

high-level variables

Time Scalar Day type indicator: = 1 if the day is a weekend; = 0 otherwise.
Event Scalar Public holiday indicator: = 1 if the day is a public holiday; = 0 otherwise.

Visibility Functional An integer ranged from 0 to 16 to indicate the visibility of the road in the district.
Surface Vector Attributes describing road material, e.g., concrete, bridge deck.
Terrain Vector Characteristics of the terrain surrounding the road, e.g., flat, rolling.
Width Scalar The width of the road.

Weather Functional An integer ranged from 0 (No rain) to 3 (Heavy rain).

incident variables

Hazard Functional Details of any hazards present, e.g., obstacles, spillage.
NoInj Functional Records of accidents with no injuries.

UnknInj Functional Records of accidents with unknown injury statuses.
1141 Functional Records of accidents needing an emergency response (coded 1141).
Fire Functional Incidents involving vehicle fires or roadside fires.

AHazard Functional Presence of animals on the road that could cause hazards.
CarFire Functional Specific incidents involving car fires.

traffic statistics
Flow Functional Measures of traffic flow, typically in vehicles per hour.

Occupancy Functional Percentage of the road occupied by vehicles at a given time.
Speed Functional Average speed of traffic flow.

A.11 EXPERIMENT DETAILS ON LOCAL CAUSAL ANALYSIS

In local causal analysis, We employ the PCMCI+ algorithm to discover the causal relations in traffic data,
which utilizes momentary conditional independence (MCI) test to determine the existence of causal links.
Typically, the lagged and contemporaneous causal relations are displayed in a dynamic Bayesian network
(DBN) as shown in Fig. 8 (a). In this work, to simplify the visualization, we choose to use the process graph
as shown in Fig. 8 (b) to aggregate the information in the DBN. In both DBN and process graph, the link
color denotes the magnitude of the causal effect measured by the MCI test statistic (e.g., the partial correlation
coefficient). The label of a link lists all significant lags of cross-dependencies in process graph. Since we are
more interested in the causal links between different traffic nodes, the links denoting auto-dependencies in
DBN are summarized into node colors in process graph and the auto-dependency lags are omitted.

The choice of causal structure learning method influences the results of local causal analysis. Ideally, we
would like to perform analysis on real cases or datasets with known underlying ground truth of causal
dependencies. However, such cases or datasets are rare especially in complex dynamic scenarios such as
traffic. To enhance the credibility of the learned causal structure, we use different causal discovery methods
and verify the consistency of the results obtained by the different methods. Fig. 9 shows the pre-incident
causal graphs of case I learned by score-based method DyNotears (Pamfil et al., 2020) and constrained-based
method PCMCI+ (Runge, 2020). The graph structures learned by both methods are similar, but the time lag
of the link X3 → X4 is different, which is greatly influenced by the sampling frequency of traffic data. Due
to the limited number of samples affected by the incidents, we use PCMCI+ to discover post-incident causal
structure for its robustness with small sample size and high dimensionality.
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Figure 8: Examples of causal graphs for time series variables. (a) Dynamic Bayesian network (DBN). (b) Process
graph which summarizes the information in DBN. Process graph aggregates the information in the DBN to simplify the
causal structure visualization. While the process graph is nicer to look at, the time series graph better represents the
spatio-temporal dependency structure from which causal pathways can be read off. In both graphs, link colors depict the
magnitude of the cross-node causal effects as measured by the MCI test statistics. In process graph, node colors depict
auto-dependency strength.

Figure 9: Pre-Incident Causal Graphs for Local Causal Analysis Case Learned by Different Methods. (a)
Process Graph Learned by DyNotears. (b) Process Graph Learned by PCMCI+.
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The primary Hyperparameters of PCMCI+ are the maximum time delay τmax and the significance threshold
for the MCI test αPC . The maximum time delay should be determined based on the specific application,
reflecting the maximum expected causal time lag in the scenario under investigation. To identify this maximum
time lag, we plot the results of the bivariate lagged conditional independence test. The significance threshold
αPC is adjusted on a case-by-case basis to ensure the derived causal structure is reasonable for the analysis.
Further details about PCMCI+ implementation and parameter tuning can be found in the public causal
discovery tutorials 4

A.12 LIMITATIONS AND FUTURE WORK

Our dataset currently faces three limitations. (1) Although we integrate weather features into XTraffic, the
weather data are not available to release. Our dataset lacks public well-integrated weather information for use.
(2) Lack of incident precisely location. As shown in Fig. 6(a), The incident precisely latitude and longitude
could be calculated based on the abs PM and the closest sensor location. We will release the location of
incidents in the second version of XTraffic. (3) XTraffic is insufficient for cross-year seasonal analysis. We
are currently collecting and organizing data from additional years. Based on the comprehensive January data
we have gathered over multiple years, we conducted analyses, and the results are presented in Appendix A.13.

A.13 EXTEND MULTI-YEAR DATA ANALYSIS

Currently, we have collected data for January 2021 and 2022 and we conducted two statistical analyses and
two case studies.

We analyze the weekday and weekend daily trending variation in January based on all sensors excluding
those not deployed sensors in 2021. Also, we compared the average flow on the hub road and fringe road
during weekdays and weekends.

Year-on-Year Trending on Weekday and Weekday in January. Through year-on-year change analysis
and observation, we identified unusual variations in traffic across different years. Due to data limitations, we
conducted the analysis only for January data. We divided January traffic data from all sensors into two groups:
weekdays and weekends. We then calculated the average traffic for each group, resulting in two distinct traffic
change trends. To enhance visualization, we normalized the data by using three types of traffic as baselines
and dividing the data from other years by these baselines. The analysis results are illustrated in Fig. 10(a) and
(b).

In comparison to 2021, traffic flow increased in 2022, while the average speed decreased in line with the rise
in traffic flow. However, in 2023, despite a decrease in traffic flow, traffic speed also declined, which may be
attributed to the significant natural disasters in California that persisted until mid-January 2023.

Case Study on Hub Road and Fringe Road. To further explore traffic patterns, we selected a sensor located
on a high-traffic segment to observe its daily traffic flow variations. We used the adjacency matrix described
in Section 3.2 to compute the degree of each sensor and chose from the top 500 sensors with the highest
degrees and no missing data for this analysis. We selected the sensor 717123 as shown in Fig. 11. Similar
to the previous analysis, we categorized the traffic flow data from this sensor into weekday and weekend
groups. Within each group, we averaged the data across three years. The results, illustrated in Fig. 12,
reveal that for weekdays, 2023 still exhibited peak-hour trends. However, for weekends, there is a noticeable
decline in traffic flow in 2023 compared to the other two years. This suggests that even under adverse weather
conditions, a significant number of people continued to travel to their workplaces.

4https://github.com/jakobrunge/tigramite/blob/master/tutorials/causal_discovery/
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(a) Normalized Traffic on Weekday (b) Normalized Traffic on Weekend

Figure 10: (a) and (b) show the year-on-year change trending on Weekday and Weekend, respectively. The
time series is normalized for visualization. In 2023, California suffered a long-term natural hazard including
blood and storms. Although the traffic flow goes down, the occupancy increases.

717123

Figure 11: The location of the selected sensor for the case study. the sensor without missing traffic flow data
and with the largest 500 degree among 16,145 sensors.

(a) Traffic flow Variation on Weekday (b) Traffic flow Variation on Weekend

Figure 12: (a) and (b) show the variation of traffic flow in one day on Weekday and Weekend, respectively.
The color represents the traffic flow in different years.
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