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ABSTRACT

Particle-based fluid simulations have emerged as a powerful tool for solving the
Navier-Stokes equations, especially in cases that include intricate physics and free
surfaces. The recent addition of machine learning methods to the toolbox for
solving such problems is pushing the boundary of the quality vs. speed trade-
off of such numerical simulations. In this work, we lead the way to Lagrangian
fluid simulators compatible with deep learning frameworks, and propose JAX-
SPH – a Smoothed Particle Hydrodynamics (SPH) framework implemented in
JAX. JAX-SPH builds on the code for dataset generation from the LagrangeBench
project (Toshev et al., 2024a) and extends this code in multiple ways: (a) inte-
gration of further key SPH algorithms, (b) restructuring the code toward a Python
package, (c) verification of the gradients through the solver, and (d) demonstration
of the utility of the gradients for solving inverse problems as well as a Solver-in-
the-Loop application. Our code is available at https://github.com/tumaer/jax-sph.

1 INTRODUCTION

Partial differential equations (PDEs) are the mathematical tools developed to describe natural phe-
nomena ranging from engineering and physics to social sciences. Various numerical methods have
been developed to solve these PDEs, as analytical solutions are only available for toy examples, with
the most recent class of PDE solvers being the machine learning-based ones (Thuerey et al., 2021;
Brunton & Kutz, 2023). One particular class of machine learning (ML) approaches called hybrid
solvers refers to combining ideas (or full algorithmic blocks) from classical numerical solvers and
machine learning (Schenck & Fox, 2018; Um et al., 2020; Kochkov et al., 2021; Jagtap et al., 2022;
Lienen & Günnemann, 2022; Karlbauer et al., 2022; Li & Farimani, 2022; Toshev et al., 2023b).

This has been one of the main reasons for the development of differentiable fluid mechanics solvers
like PhiFlow (Holl et al., 2020), JAX-CFD (Kochkov et al., 2021), and JAX-Fluids (Bezgin et al.,
2022). However, these three frameworks implement Eulerian, i.e., grid-based, solvers, and we lead
the way to a JAX-based Lagrangian CFD solver. Eulerian solvers refer to numerical methods that
discretize space into static volume elements and then track the evolution of the fluid properties at
these positions, while Lagrangian solvers discretize individual material elements, which are then
shifted in space following the local velocity field.

Algorithmically, grid-based and particle-based methods are very different. While grid-based
solvers rely on stencils akin to kernels in Convolutional Neural Networks (CNNs) (Lecun et al.,
1998), particle-based solvers rely on kernel approximations akin to Graph Neural Networks
(GNNs) (Scarselli et al., 2008; Battaglia et al., 2018) operating on a radial distance-based graph.
The main overhead of Lagrangian over Eulerian approaches is updating the connectivity between
discretization elements at every autoregressive solver step. Even if an Eulerian scheme operates on
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an irregular mesh, the connectivity prescribed by this mesh can be precomputed, while by moving
particles in space in Lagrangian methods, their neighbors constantly vary in time.

As SPH techniques advance, various software packages have arisen in the past few years. However,
most of them are designed for high-performance computing (HPC) applications and are typically
implemented in low-level languages like C++ or Fortran (Crespo et al., 2015; Koschier et al., 2019;
Zhang et al., 2021), with two notable exceptions: PySPH (Ramachandran et al., 2021) in Python
and juSPH (Luo et al., 2022) in Julia. Nevertheless, hardly an SPH implementation exists which
is out-of-the-box compatible with modern deep learning frameworks like TensorFlow (Abadi et al.,
2015), PyTorch1 (Paszke et al., 2019) or JAX (Bradbury et al., 2018), i.e., leverages automatic
differentiation to power differentiable solvers like PhiFlow (Holl et al., 2020). Upon identifying the
lack of an ML-ready SPH solver, we choose JAX for the framework implementation for two reasons:
(a) JAX tends to be faster for operations on graphs even after PyTorch 2.0 has been introduced (see
Appendix F in Toshev et al. (2024a)), and (b) we can use the cell list-based neighbor search routine
of the JAX-MD library (Schoenholz & Cubuk, 2020). We note that with our solver, we target the
easier integration of SPH with ML workflows rather than developing a parallel HPC code, and we
exclusively use the AD routine grad by JAX. We leave the implementation of better custom adjoints
along the lines of Ma et al. (2021); Kidger (2022); Nadarajah & Jameson (2000) to future work.

In this work, we significantly extend the codebase used for dataset generation within La-
grangeBench2 (Toshev et al., 2024a) and demonstrate the utility of the obtained gradients in multiple
ways. Our contributions are:

• The addition and validation of Transport Velocity (Adami et al., 2013), Riemann
SPH (Zhang et al., 2017b), and thermal diffusion effects (Cleary, 1998).

• Validating the accuracy of the automatic differentiation-based gradients (Griewank &
Walther, 2008) over 5 solver steps.

• An open-source Python package at pypi.org/project/jax-sph.
• A demonstration of how to use these gradients on (a) an inverse problem over 100 SPH

solver steps, and (b) using the SPH solver in a Solver-in-the-Loop fashion (Um et al.,
2020).

2 SPH SOLVER

In this section, we introduce the components included in our solver code. The validation of these
can be found in Appendix A, for which we include various solver validation cases.

Weakly compressible SPH. We follow the weakly compressible SPH approach (Monaghan, 1994;
Morris et al., 1997) to evolve the dynamics of incompressible fluids. The equations governing such
systems are the mass and momentum conservation equations

d

dt
(ρ) = −ρ (∇ · u) , (1)

d

dt
(u) = −1

ρ
∇p︸ ︷︷ ︸

pressure

+
1

Re
∇2u︸ ︷︷ ︸

viscosity

+ f︸︷︷︸
ext. force

, (2)

with density ρ, velocity u, pressure p, Reynolds number Re, and external force f . To numerically
solve these equations, SPH applies a distance-based kernel W that averages over the properties of
the fluid. The default kernel in our codebase is the Quintic spline (Morris et al., 1997), but we also
include the 5th order Wendland kernel (Wendland, 1995).

The preferred way of estimating the density (Monaghan, 2005) is through density summation
ρi =

∑
j mjW (rij |h), with mj being the mass of the adjacent particles j, h the smoothing length

of the kernel, and rij the interparticle distance. However, this approach leads to unphysically low

1For similar work in progress, we refer the reader to TorchSPH https://github.com/wi-re/pytorchSPH. Com-
pared to our JAX-SPH, this code uses PyTorch, different SPH algorithms, different experiments, and does not
validate the solver or the gradients.

2https://github.com/tumaer/lagrangebench/blob/main/notebooks/data gen.ipynb.
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densities at free surfaces, forcing the use of density evolution, i.e., numerically integrating the mass
conservation Eq. 1. We also implement a density field reinitialization method (Zhang et al., 2017a)
to mitigate errors arising from density evolution (Colagrossi & Landrini, 2003). In weakly com-
pressible SPH, the pressure is defined as a function of density through an equation of state, and in
our code, we choose the formulation by Monaghan (1994) for standard and transport velocity for-
mulation SPH. The equation of state used for the Riemann SPH formulation is the one proposed
by Zhang et al. (2017b).

Transport velocity. The observation that tensile instabilities in standard SPH can cause particle
clumping and void regions (Price, 2012) has led to the development of advanced shifting schemes
like the transport velocity formulation of SPH (Adami et al., 2013; Zhang et al., 2017a). We add the
shifting velocity proposed by Adami et al. (2013) as an optional feature in our codebase.

Riemann SPH. We also add the Riemann SPH solver formulation by Zhang et al. (2017b), which
is based on the idea of introducing a simple low dissipation limiter to a classical Riemann solver,
resulting in decreased numerical dissipation. We construct a one-dimensional linear inter-particle
Riemann problem along a unit vector pointing from particle i to particle j, which implicitly regular-
izes both the momentum equation and the mass conservation. We implement the dissipation limiter
as proposed by Zhang et al. (2017b).

Wall boundaries. We follow the generalized wall boundary condition approach by Adami et al.
(2012) to enforce different boundary conditions for the standard SPH and the transport velocity SPH
formulation. This approach, in essence, implements two physical constraints: (a) impermeability
of walls and (b) viscous effects at walls. For impermeability, the pressure of the adjacent fluid
particles is assigned to the dummy wall particles, which leads to a zero pressure gradient in the wall-
normal direction at the wall surface, and, thus prevents the penetration of fluid particles into the wall.
Regarding viscosity, there are two cases to distinguish: (b1) no-slip enforces the no-slip boundary
condition, i.e., the fluid must have zero velocity directly at the wall surface, and (b2) free-slip, i.e.,
the fluid must have a zero velocity normal to a wall, but might have any velocity tangentially. These
two conditions are implemented by assigning the inverted velocity of the fluid to the wall particles,
either fully for (b1) or only in the wall-normal direction for (b2). See Adami et al. (2012) for more
details.

For the Riemann SPH wall boundary implementation, we solve a one-sided Riemann problem as
proposed by Zhang et al. (2017b). Unlike the generalized wall boundary condition, this method
avoids interpolating and then extrapolating the fluid states for the wall boundary particles. Here,
these wall particles are assigned the individual Riemann states depending on the current particle-
particle interaction. For a more in-depth explanation, see (Zhang et al., 2017b; Yang et al., 2020).

Thermal diffusion. Thermal diffusion in weakly compressible SPH involves the transfer of heat
between neighboring particles governed by Fourier’s law of heat (Cleary, 1998). This diffusion
smoothens the temperature field by applying an SPH kernel interpolation over adjacent particles to
compute the rate of temperature change. As we deal with incompressible fluids, the dynamics are
not influenced by thermal effects, and the pressure or velocity fields do not directly influence the
temperature field. Thus, the addition of temperature does not interfere with the previously presented
SPH algorithms and allows us to study thermal effects which are governed by diffusion (by our
explicit diffusion modeling) and convection (as Lagrangian particles are shifted in space). For an
example of a channel flow with a hot wall, see Appendix C.

3 EXPERIMENTS

Gradient validation. To test the validity of the gradients obtained through our differentiable solver,
we compute analytical solver gradients via automatic differentiation and compare those to numerical
gradients from finite difference schemes (Griewank & Walther, 2008). In our setup, gradients are
accumulated over 5 solver steps, preceded by 10 (forward only) warm-up steps. Epsilon for finite
differences is picked as 0.001dx = 5e − 5, as smaller values lead to instabilities. Fig. 1 shows the
scalar gradients of kinetic energy over position changes dEkin

dr when using 2-dimensional Taylor-
Green vortex (TGV) (Brachet et al., 1983; 1984) and lid-driven cavity (LDC) (Ghia et al., 1982) as
initial states.
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(a) TGV (b) LDC

Figure 1: Gradient magnitudes with JAX Autograd and with finite differences on Taylor-Green
vortex (left) and lid-driven cavity (right).

Inverse problem. Our first application case is an inverse problem, representing the class of inverse
design and flow control problems that are successfully tackled by differentiable solvers (Holl et al.,
2020) as well as differentiable learned solver surrogates (Allen et al., 2022). The scenario involves
a 2D box containing a water cube, discretized by 36 particles, which undergoes acceleration due to
gravity across 100 solver steps. The task is to find the initial coordinates of the cube given its final
state; see Fig. 2.

Figure 2: Inverse problems of finding the initial coordinates (light blue) given the final coordinates
(blue) of a falling water cube simulation spanning 100 SPH steps. The optimization spans 15 gradi-
ent descent steps from orange to red. Free fall case (left) and wall-interactions (right).

The inverse problem is formulated by computing the mean squared error of coordinates between the
target final state and the end of a simulation with randomly placed initial particles. After as few as
15 gradient descent steps, we reach a state closely resembling the original one, up to some loss of
information during the deformation of the water cube while interacting with the wall.

Solver-in-the-loop. As a second experiment to showcase the solver differentiability, we adapt
the popular ”Solver-in-the-Loop” (SitL) (Um et al., 2020) training scheme to SPH. Initially devel-
oped to tackle spatial coarsening on grids, SitL interleaves a solver operating on a coarse spatial
and/or temporal discretization with a learnable correction function. The solver manages coarse,
low-frequency components, while the learnable function adjusts high-frequency details. Due to the
inherent difficulties of spatial coarse-graining in particle systems, our objective is to implement SitL
only for temporal coarsening. This significantly differs from the original application of SitL and
mandates a series of design changes to the original architecture, mainly related to the normalization
and training procedure, see Appendix B.

Fig. 3 shows the time evolution of a 2D reverse Poiseuille flow (RPF) (Fedosov et al., 2008) dataset
similar to the one in Toshev et al. (2024a) but consisting of positions sampled every 20th ground
truth SPH step. Fig. 3 compares only employing the coarse SPH solver with L = 3 intermediate
steps (left), a fully learned GNS model (Sanchez-Gonzalez et al., 2020) without intermediate steps
(middle), and SitL using the same GNS model, but having three intermediate steps of GNS and SPH
(right). More details on the training and quantitative results can be found in Appendix B.2.
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(a) Solver only (L = 3) (b) Learned only (L = 1) (c) SitL (L = 3)

Figure 3: Evolution of the velocity magnitude in reverse Poiseuille flow. The stamps in each image
refer to the respective step of the original SPH simulation, i.e., 500 means 10 000 SPH steps.

4 CONCLUSION

We have developed JAX-SPH, a framework for simulating Lagrangian fluid problems, which can be
easily integrated into design/control problems as well as hybrid solver approaches. By building our
code on the high-performance library JAX and validating the simulation results of our solver, we
offer a fast and reliable SPH solver in Python. With our work, we hope to accelerate the develop-
ment of more hybrid Lagrangian solvers, e.g., Toshev et al. (2024b), and we leave the addition of
more SPH algorithms and simulation cases to future work. One particularly exciting future direc-
tion is developing foundation models for PDEs that can operate on both Eulerian and Lagrangian
data (Alkin et al., 2024), potentially combined with encoded symmetries (Toshev et al., 2023a).
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A SOLVER VALIDATION

A.1 TAYLOR GREEN VORTEX 2D

Fig. 4 shows the absolute velocities of each particle at the start and at the end of the Taylor Green
vortex (Brachet et al., 1983; 1984) simulation at Re = 100. Here, the transport velocity SPH
formulation is used. In Fig. 5, one can see the decay of the maximum velocity and the kinetic energy
over time for the different methods, standard SPH (SPH), transport velocity formulation SPH (SPH
+ tvf), and Riemann SPH (Riemann).

(a) t = 0 (b) t = 5

Figure 4: 2D Taylor Green vortex velocity magnitudes at the start of the simulation (left) and at
t = 5 (right), calculated using transport velocity formulation SPH.

(a) umax (b) Ekin

Figure 5: 2D Taylor Green vortex SPH method comparison for umax (left) and Ekin (right) between
standard SPH, transport velocity formulation SPH, and Riemann SPH at dx = 0.02 and dx = 0.01.

A.2 LID-DRIVEN CAVITY 2D

The following figures compare the different methods for a 2D lid-driven cavity (Ghia et al., 1982)
simulation at Re = 100. The reference data for the velocity profiles, i.e., black dots for U (velocity
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in x direction at a vertical cut through the middle of the cavity) and black squares for V (velocity in
y direction at a horizontal cut through the middle of the cavity), are from Ghia et al. (1982).

(a) absolute velocities (b) velocity profiles

Figure 6: Lid-driven cavity with dx = 0.02 showing absolute particle velocities of the Riemann
solver (left) and velocity profiles of each SPH method at the midsection for U and V (right)

(a) absolute velocities (b) velocity profiles

Figure 7: Lid-driven cavity with dx = 0.01 showing absolute particle velocities of the Riemann
solver (left) and velocity profiles of each SPH method at the midsection for U and V (right)

A.3 DAM BREAK 2D

The following Fig. 8 shows the nondimensionalized pressure of a Riemann SPH (Zhang et al.,
2017b) dam break (Colagrossi & Landrini, 2003) simulation at different time stamps. The fluid
flows from the initial state on the left to the right side, interacts with the wall, and reflects a wave
backward throughout the domain. A similar validation plot for the standard SPH formulation of our
solver is presented in Appendix B of Toshev et al. (2024a).
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Figure 8: Dam break simulation with dx = 0.02 using Riemann SPH at different time stamps T,
visualizing the nondimensionalized pressure

A.4 TAYLOR-GREEN VORTEX 3D

Fig. 9 shows the comparison between the different SPH methods on the 3D TGV, similar to Fig. 5
for 2D. Again, the Reynolds number is set to Re = 100, and the number of particles in the unit
cube is 203, 323, and 503, leading to dx = 0.314, dx = 0.196, and dx = 0.126, respectively. The
reference solution is obtained using JAX-Fluids Bezgin et al. (2022) with a 1283 grid.

(a) dE/dt (b) Ekin

Figure 9: 3D Taylor Green vortex comparison for dE/dt (left) and Ekin (right) between standard
SPH, transport velocity formulation SPH, and Riemann SPH with dx = 0.314, dx = 0.196, and
dx = 0.126
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B SOLVER-IN-THE-LOOP

B.1 IMPLEMENTATION DETAILS

To compute velocities, we apply a finite difference approximation of positions as

u(i+1)M = x(i+1)M − xiM , (3)

aiM = u(i+1)M − uiM . (4)

These properties have normalization statistics over the dataset as σuM and σaM (for brevity here,
assuming that everything is zero-centered, but we center the data in our code). The values entering
and exiting the SitL model should be in normalized space.

Given the number of temporal coarsening steps M and the number of SitL calls n sitl, each call
accounts for M

n sitl actual timesteps. This results in two distinct time steps (dt), necessitating the
transformation of input properties to the SitL physical space.

1 def sitl_forward(self, r, u_M_norm, dt, M, n_sitl, sigma_uM, sigma_aM):
2 """Solver-in-the-loop forward call.
3

4 Args:
5 r: current coordinates
6 u_M_norm: normalized position difference between M SPH steps.
7 dt: physical dt from CFL condition
8 M: level of temporal coarsening
9 n_sitl: number of Solver-in-the-Loop steps

10 sigma_uM: std of u_M over the dataset (= std_dx_M)
11 sigma_aM: std of a_M over the dataset (= std_ddx_M)
12 """
13 # transform initial states
14 u_phys = u_M_norm * sigma_uM / (dt * M) # to physical space
15 nbrs_GNN = self.nbrs_GNN_update(r) # GNN neighbor list
16 nbrs_SPH = self.nbrs_SPH_update(r) # SPH neighbor list
17 r0, u0, r_new = r.copy(), u_phys.copy(), r
18

19 for l in range(n_sitl):
20 # SPH solver call
21 a_SPH = self.SPH(u_phys, nbrs_SPH)
22

23 # learned correction
24 a_GNN = self.GNN(u_M_norm, nbrs_GNN)
25 a_GNN_phys = a_GNN * sigma_aM / (dt * M) ** 2 # to physical
26

27 # add accelerations (in physical space) and integrate
28 a_final = a_SPH + a_GNN_phys
29 u_phys += (dt * M) / n_sitl * a_final
30 r_new += (dt * M) / n_sitl * u_phys
31

32 # update neighbors to new positions
33 nbrs_SPH = self.nbrs_SPH_update(r_new)
34 nbrs_GNN = self.nbrs_GNN_update(r_new)
35

36 # normalize updated velocity for next GNN input
37 u_M_norm = u_phys * (dt * M) / sigma_uM # to normalized
38

39 # finite difference to get M-step effective quantities
40 dx_M = r_new - r0
41 dx_M_norm = dx_M / sigma_uM
42 ddx_M = dx_M - u0 * (dt * M)
43 ddx_M_norm = ddx_M / sigma_aM
44

45 return {"acc": ddx_M_norm, "vel": dx_M_norm}

Listing 1: Solver-in-the-Loop forward algorithm
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B.2 TRAINING AND RESULTS

Solver-in-the-Loop was trained with LagrangeBench (Toshev et al., 2024a), with a custom RPF 2D
dataset with 20-step temporal coarsening. For SitL, n sitl=3. Both the corrector model and the
reference GNS (Sanchez-Gonzalez et al., 2020) are message-passing networks with 10 layers and
64 latent dimensions. The starting learning rate is set to 1e − 3 for both, and noise std is set to
1e − 5 for SitL and to 1e − 3 for GNS. Table 1 shows the LagrangeBench performance metrics on
these models. Best models are picked based on the MSE20 loss on the validation set.

Metric Solver only GNS SitL
MSE5 1.7e− 7 6.7e− 9 3.3e− 9

MSE20 7.9e− 6 1.9e− 7 1.3e− 7

MSEEkin
0.13 2.8e− 4 7.4e− 5

Sinkhorn 3.4e− 7 3.7e− 8 9.3e− 9

Table 1: LagrangeBench metrics on the RPF 2D dataset over 20 steps.

C THERMAL DIFFUSION EXAMPLE
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Figure 10: Simulation of channel flow with hot bottom wall using standard SPH and thermal diffu-
sion. The plots show the non-dimensional temperature at different time steps of an SPH simulation.
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