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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated remarkable performance in
various graph-based machine learning tasks, yet evaluating the importance of
neighbors of testing nodes remains largely unexplored due to the challenge of
assessing data importance without test labels. To address this gap, we propose
Shapley-Guided Utility Learning (SGUL), a novel framework for graph inference
data valuation. SGUL innovatively combines transferable data-specific and model-
specific features to approximate test accuracy without relying on ground truth
labels. By incorporating Shapley values as a preprocessing step and using fea-
ture Shapley values as input, our method enables direct optimization of Shapley
value prediction while reducing computational demands. SGUL overcomes key
limitations of existing methods, including poor generalization to unseen test-time
structures and indirect optimization. Experiments on diverse graph datasets demon-
strate that SGUL consistently outperforms existing baselines in both inductive and
transductive settings. SGUL offers an effective, efficient, and interpretable approach
for quantifying the value of test-time neighbors.

1 INTRODUCTION

Data valuation, the task of quantifying the value of individual data points for machine learning
(ML) tasks, has gained significant attention in recent years. As ML models and datasets continue
to grow in scale and complexity, understanding the contribution of each data point becomes crucial
for fair compensation, dataset curation, and business strategy-making (Pei, 2020; Sim et al., 2022;
DalleMule & Davenport, 2017). Concurrently, Graph Neural Networks (GNNs) (Kipf & Welling,
2016; Veličković et al., 2017; Wu et al., 2019; Klicpera et al., 2018) have demonstrated remarkable
performance in various graph-based machine learning tasks, including social network analysis (Fan
et al., 2019b; Goldenberg, 2021), recommendation systems (Fan et al., 2019a; Xu et al., 2020), and
molecular property prediction (Li et al., 2022; Wu et al., 2023). Notably, the success of GNNs, like
other ML methods, heavily relies on informative data.

Unlike Euclidean data, graph data is characterized by its non-independent and identically distributed
(non-IID) nature, where nodes influence each other according to the graph structure. This property
necessitates specialized data valuation methods for graph data. Addressing this necessity, recent work
has extended data valuation methods to graph data, introducing the concept of graph data valuation
to assess the contribution of graph structures (Chi et al., 2024a). For general data valuation, game
theoretic approaches (Ghorbani & Zou, 2019; Kwon & Zou, 2021; Wang & Jia, 2023; Chi et al.,
2024a) have been widely adopted. As with other game theoretic methods, the value of a graph
structure is derived from its marginal contributions to different subsets of the dataset. These marginal
contributions are quantified by a utility function, which measures how the model’s performance
changes with or without a particular graph structure. Specifically, the utility function maps from a set
of players (training graph structures) to their joint contribution to the model’s performance, typically
measured using accuracy on labeled validation nodes. Data values are then computed based on how
the utility function’s results change across different subsets of graph structures.

Part of this work was done while the first author was an intern at AT&T CDO.
Code is released at https://github.com/frankhlchi/infer_data_valuation.
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Importantly, graph structures can contribute not only during training but also during inference, thus
possessing inherent value. Recent work (Yang et al., 2023) has further emphasized the importance of
graph structures at test-time, demonstrating that utilizing only testing graph information can achieve
performance comparable to full GNNs. In real-world applications, such as GNN-based recommender
systems, real-time recommendations often rely on dynamic graphs derived from social networks or
item interactions. In these scenarios, assessing the value of inference-time graph data is crucial for
optimizing user experience. While evaluating inference-time graph data is key for GNN performance
improvement and real-world applications, most existing methods focus on training data valuation,
leaving the value of inference graph structures, especially test node neighbors, largely unexplored.

However, designing data valuation methods for graph inference structures faces fundamental chal-
lenges: 1. Lack of test labels: Traditional game-theoretic approaches rely on labeled validation
data as a proxy for model performance on testing data. In the case of graph inference data valuation,
accuracy on test nodes directly represents model performance. However, the ground truth labels are
unavailable for test nodes. 2. Limitations of existing utility learning methods: While surrogate
models could potentially approximate utility functions for test-time structures, current methods
(Wang et al., 2021) are inadequate for graph inference data valuation due to two primary issues: (a)
Inapplicability to unseen test-time structures: Existing models are typically trained on mappings
from training data subsets to validation accuracy. This approach fails when applied to a different set
of players, such as test node neighbors. (b) Indirect and inefficient optimization: Current methods
often use accuracy as the utility learning objective. This approach does not directly optimize the fitted
Shapley values against ground truth Shapley values, which is the ultimate goal of data valuation. Fur-
thermore, this indirect approach necessitates processing and storing large amounts of accuracy-level
data, leading to increased memory requirements. This inefficiency becomes particularly problematic
when dealing with large-scale graphs.

To address these challenges and enable effective graph inference data valuation, we propose Shapley-
Guided Utility Learning (SGUL), a novel interpretable and efficient framework for estimating graph
inference data value without relying on test labels. Our key contributions are as follows:

• We are the first to formulate the graph inference data valuation problem. This addresses a significant
gap in the field, where the importance of test-time graph structures has been recognized but not
quantified through data valuation methods.

• We propose SGUL, a novel utility-learning framework for graph inference data valuation that
addresses the challenge of valuation without test labels. Our approach introduces a transferable
feature extraction method that transforms player-dependent inputs into general features.

• We develop a Shapley-guided optimization method that enables direct optimization of Shapley
values, improving computational efficiency and model effectiveness.

• We conduct extensive experiments on various graph datasets, demonstrating that SGUL consistently
outperforms baseline methods in graph inference data valuation tasks.

2 PRELIMINARY STUDY

2.1 GAME-THEORETIC DATA VALUATION

Data valuation, the task of quantifying the contribution of individual data points to machine learning
(ML) tasks, has gained significant attention in recent years. Game-theoretic approaches, particularly
those based on cooperative game theory, have emerged as a prominent framework for data valuation
(Ghorbani & Zou, 2019; Kwon & Zou, 2021; Wang & Jia, 2023). In this context, i.i.d training data
points are treated as players in a cooperative game, where they can form coalitions to contribute
collectively to model performance.

The Shapley value, a solution concept from cooperative game theory, has been widely adopted for fair
allocation of value among players. For a player i in a set of players D, its Shapley value is defined as:
ϕi(D, U) = 1

|Π(D)|
∑

π∈Π(D) [U (Dπ
i ∪ {i})− U (Dπ

i )] where Π(D) is the set of all permutations
of D, Dπ

i is the set of players that appear before i in permutation π, and U is the utility function.
The Shapley value ϕi(D, U) represents the average marginal contribution of data point i across all
possible coalitions. In practice, to reduce computational complexity, we often estimate Shapley values
by sampling a subset of permutations rather than considering all possible permutations (Ghorbani &
Zou, 2019; Jia et al., 2019). Central to these approaches is the utility function, which quantifies the
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contribution of a subset of players to the overall performance. Formally, we can define the utility
function as: U : 2D → R where 2D represents the power set of D. For any subset S ⊆ D, U(S)
measures the performance achieved by this subset.

The representative work of Data Shapley (Ghorbani & Zou, 2019) first introduced Shapley value for
data valuation. In this framework, as well as in subsequent game-theoretic approaches (Kwon & Zou,
2021; Wang & Jia, 2023), training samples are treated as players, and the utility function is typically
defined based on the model’s performance on a validation set: U(S) = Acc(fS ,Dval) where S ⊆ Dtr
is a subset of the training dataset, fS denotes a model trained on subset S, and Dval is a validation set
used to evaluate the model’s performance. This formulation allows us to quantify the contribution of
different subsets of training data to the model’s predictive accuracy.

2.2 GRAPH DATA VALUATION

While Data Shapley and subsequent methods (Ghorbani & Zou, 2019; Kwon & Zou, 2021; Wang
& Jia, 2023) have been effective for i.i.d. data, they face significant challenges when applied to
graph-structured data. A key challenge is capturing the hierarchical and dependent relationships
among graph elements. In GNNs, a node’s contribution to model performance is intricately linked to
its position within the computation tree and its relationships with other nodes. Traditional Shapley
value calculations, which treat all players (nodes) independently, fail to account for these crucial
dependencies, potentially leading to inaccurate valuations. To address these challenges, recent
work has proposed a more granular approach to graph data valuation (Chi et al., 2024a). This
approach introduces two key constraints to the Shapley value calculation: the Level Constraint and
the Precedence Constraint. These constraints capture the hierarchical and dependent relationships
among graph elements. For a detailed discussion of these constraints, please refer to Appendix D.2.

3 METHODOLOGY

3.1 GRAPH INFERENCE DATA VALUATION PROBLEM

GNNs have demonstrated remarkable performance across various real-world applications, where
the k-hop neighbors of key nodes provide essential context for predictions. For example, in protein-
protein interaction networks, traffic systems, and social networks, neighboring nodes play vital roles
in predicting properties of nodes of interests (Jha et al., 2022; Wang et al., 2022; Liu et al., 2021).
Therefore, quantifying the importance of test-time neighboring structures becomes a critical challenge
for improving GNN performance, particularly for applications requiring real-time inference.

Given these considerations, we formally introduce the graph inference data valuation problem:

Input Setup: (1) Training graph GTr = (VTr, ETr,XTr) with labeled nodes V l
Tr ⊂ VTr and labels YTr,

and a fixed trained GNN model f(·); (2) Validation graph GVal = (VVal, EVal,XVal) with labeled nodes
V l

Val and labels YVal; (3) Test graph GTe = (VTe, ETe,XTe) with target nodes Vt but no labels.

With this setup, we define the graph inference data valuation problem as follows:
Definition 1 (Graph Inference Data Valuation). Given a set of target test nodes Vt ⊂ VTe, their
neighborhood N (Vt), and a downstream task T , the goal of graph inference data valuation is to
learn a value-assignment function ϕ : N (Vt)→ R that assigns scores to the neighbors of Vt based
on their contribution to the performance of f(·) on task T .

Graph inference data valuation problem primarily focuses on Nk(Vt), the k-hop neighborhood of
target nodes Vt, where k typically equals the number of GNN layers L. This choice naturally aligns
with GNNs’ message passing mechanism, ensuring we capture all nodes that influence target nodes’
predictions through the network’s receptive field.

3.2 STRUCTURE-AWARE SHAPLEY VALUES FOR GRAPH INFERENCE DATA VALUATION

To address the graph inference data valuation problem, we adopt the Structure-Aware Shapley value
formulation with connectivity constraints (Chi et al., 2024a). Unlike PC-Winter (Chi et al., 2024a)
which defines players as individual nodes in computation trees, our test-time valuation focuses solely
on test node neighbors. This fundamental difference in player definition naturally leads us to use only
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the Precedence constraint, which ensures connectivity between added nodes during value calculation,
as the Level constraint from training-time valuation becomes inapplicable to our setting.

Formally, given a set of target test nodes Vt ⊂ VTe and their collective neighborhood N (Vt), we
define the Structure-Aware Shapley value for each neighbor as follows:

ϕi(N (Vt), U) =
1

|Ω(N (Vt))|
∑

π∈Ω(N (Vt))

[U (N π
i (Vt) ∪ {i})− U (N π

i (Vt))] (1)

where U : 2N (Vt) → R is a utility function mapping from the power set of N (Vt) (all possible
subsets of neighbors) to real numbers, Ω(N (Vt)) is the set of all permissible permutations that
satisfy the graph connectivity constraints, and N π

i (Vt) is the set of neighbors that appear before i in
permutation π.

As shown above, the utility function U(·) is the most critical input for data value formulation. In
traditional data valuation scenarios, as discussed in Section 2.1, the utility function typically maps
subsets of training data to their performance on a validation set. For instance, U(S) = Acc(fS ,Dval),
where fS is a model trained on subset S, and Dval is a validation set. In our graph inference
data valuation context, the utility function should ideally map subsets of test neighbors to their
collective contribution to the GNN’s performance on target nodes. While this formulation provides a
theoretically sound approach to graph inference data valuation, we face a significant challenge: for
test nodes, the absence of ground truth labels makes it impossible to directly measure accuracy and
define an appropriate utility function.

4 SHAPLEY-GUIDED UTILITY LEARNING (SGUL)

As shown in the prior section, the critical challenge in solving the graph inference data valuation
problem lies in obtaining an appropriate utility function without testing labels. To address this issue,
we propose an approach to learn the utility function that can effectively value test node neighbors.

4.1 UTILITY LEARNING IN DATA VALUATION

Despite the crucial role of utility functions in data valuation, as introduced in Section 2.1, accessing
these functions can often be costly or even impossible. For instance, the utility function we previ-
ously discussed for training data valuation requires model retraining, which can be computationally
expensive for large datasets. To address this challenge, utility learning methods have been introduced.

Utility learning aims to approximate the true utility function in a data-driven way. The general
formulation of utility learning can be expressed as: Û(S) = h(g(S)) where S is a subset of data
points, g(·) is a feature extractor that captures relevant characteristics of the subset, and h(·) is a
learnable function that maps these characteristics to an estimated utility value. This approach differs
from the original utility function by avoiding direct model retraining for each subset, instead learning
to predict utility based on subset features. To train this approximation function, we construct a dataset
of utility samples. Each sample consists of a subset of data points and its corresponding true utility
value, obtained by evaluating the original utility function on a limited number of subsets.

A notable instance of utility learning is the approach for training data valuation proposed by Wang
et al. (2021). This method efficiently estimates model performance on various subsets of the training
data without repeated model retraining. It represents subsets as binary vectors as g(S), where each
element corresponds to a specific data point in the training set, indicating its presence or absence. The
method uses a regression model Ûtrain to approximate the ground truth utility function U : 2Dtr → R,
where U(S) = Acc(fS ,Dval). Here, fS denotes a model trained on the subset S ⊆ Dtr, and Dval
is the validation set. The regression model is trained on a set of utility samples to minimize the
difference between predicted and true utility values.

While this approach is effective for training data, it faces significant challenges when applied to
graph inference data valuation: 1. Player Dependence: The input of Ûtrain, using player-specific
dummy variables, is tied to a specific set of players (data points) and cannot be directly transferred to
new player sets or games. In the context of graph inference data valuation, this limitation becomes
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particularly problematic. While we have access to the labels of the validation graph GVal, allowing
us to compute the validation accuracy for different subsets of neighbor nodes on labeled validation
nodes, the utility function learned on S ⊆ N (V l

Val) ∈ GVal cannot be directly applied to test nodes
in GTe. This is because the test nodes represent a new set of players from N (Vt), which were not
present during the utility function learning process. 2. Indirect optimization: As discussed in
Section 2.1, the utility function is a crucial input for data valuation solutions. Following this logic,
current utility learning approaches employ a two-stage process: learning the utility function with
sampled training subsets and corresponding validation accuracy, then estimating Shapley values with
the fixed learned utility. This indirect method has two main drawbacks: (a) it requires handling
computationally expensive accuracy-level data, and (b) optimizing for accuracy prediction doesn’t
necessarily lead to optimal Shapley value estimation.

4.2 SHAPLEY-GUIDED UTILITY LEARNING

To address the challenges of player dependence and indirect optimization in graph inference data
valuation, we propose Shapley-Guided Transferable Utility Learning (SGUL). This novel approach
focuses on two key aspects: (1) Transferable Feature Extraction: We introduce a method that
transforms player-dependent inputs into transferable, performance-related features. These features
capture both graph structure and model behavior without relying on test labels, enabling our utility
learning model to generalize across different player sets and graphs. (2) Shapley-guided Optimization:
We develop a method that enables direct optimization of Shapley values, addressing the limitations of
indirect optimization approaches.

4.2.1 TRANSFERABLE FEATURE EXTRACTION

As mentioned in Section 4.1, traditional utility learning approaches often use player-specific binary
vectors as input (Wang et al., 2021). While effective for training data, this method faces limitations
when applied to graph inference data valuation, particularly due to its inability to transfer to new
player sets. To overcome the limitations of traditional utility learning approaches, we propose a novel
feature extraction method that transforms player-dependent inputs into transferable, performance-
related features. This approach builds upon the general utility learning formulation introduced in
Equation (4.1), focusing on designing a transferable feature extractor g(S). Specifically, our proposed
g(S) aims to capture both structural and model-specific characteristics of the graph data. The input
S is a set of neighboring nodes of target test nodes. As discussed in Section 2.2, we also employ a
permutation sampling process for estimating Structure-Aware Shapley value. During this process, we
incrementally add neighboring nodes to target test nodes following permissible permutations. This
generates a series of test subgraphs Gsub = (Vsub, Esub,Xsub), each including the added neighboring
nodes and target test nodes. The function g(·) maps the current neighbor node set S ∈ Vsub to a
d-dimensional feature vector x ∈ Rd, which encapsulates the characteristics of the subgraph induced
by S as derived from the permutation. These features serve as proxies for model accuracy, capturing
both graph structure and GNN behavior without relying on true labels.

Our feature vector x comprises two main categories: data-specific and model-specific features.
Data-specific features capture graph structure and test node relationships to the training set, including
edge cosine similarity, representation distance, and classwise representation distance. Model-specific
features assess prediction confidence and uncertainty using the GNN model’s output. These include
maximum predicted confidence, target class confidence, propagated confidence measures, negative
entropy, and confidence gap. By combining these features, we create a comprehensive representation
of GNN performance on test subgraphs without relying on true labels. This approach allows us to
estimate the utility function effectively, even in the absence of ground truth information for test nodes.
A detailed description and mathematical formulation of each feature is provided in Appendix A.

4.2.2 SGUL-ACCURACY AND ITS LEARNING PROCESS

With our transferable feature extraction approach, we can adapt traditional utility learning methods to
create an accuracy-oriented variant of our method. Following (Wang et al., 2021), we can apply these
features directly in a standard regression framework. This base model, termed SGUL-Accuracy,
serves as an important comparison point for our proposed Shapley-guided method in Section 4.2.3.
For a detailed description of SGUL-Accuracy training process, please refer to Appendix B.
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4.2.3 SHAPLEY-GUIDED UTILITY LEARNING (SGUL)

Having established our transferable utility learning framework and selected features, we now address
the challenge of efficiently optimizing our utility function. Traditional accuracy-based approaches
we seen in Section 4.1 employ a two-stage optimization process: first learning a utility function to
predict model accuracy, then using this function to estimate Shapley values. However, this indirect
accuracy-based method has significant limitations. It is computationally expensive due to the large
amount of accuracy-level data required, especially for large-scale graphs. More importantly, the
optimization process in these accuracy-oriented methods is misaligned with the ultimate goal of data
valuation. While the first stage focuses on accurately predicting model accuracy, it doesn’t directly
minimize the difference between predicted Shapley values (derived from the learned utility function)
and true Shapley values (calculated using actual accuracy). Our aim is to develop a method that
directly optimizes for accurate Shapley value prediction, ensuring that the learned utility function
could produce Shapley values that closely match those derived from true accuracy measurements.

Through theoretical analysis of the Shapley value definition, we discover a key insight: the Shapley
value calculation is a deterministic linear transformation of the utility function. This insight is
formalized in the following theorem:
Theorem 1 (Shapley Value Decomposition). Given a linear utility function U(S) = w⊤x(S), where
w ∈ Rd is a parameter vector and x(S) ∈ Rd is a feature vector representing subset S, the Shapley
value of player i with respect to U can be expressed as a linear combination of Feature Shapley
Values:

ϕi(U) = w⊤ψi (2)

where ψi = [ϕi(U1), ϕi(U2), . . . , ϕi(Ud)]
⊤ is the vector of Feature Shapley Values, and Uk(S) =

xk(S) is the utility function considering only the k-th feature.

The proof of this theorem is provided in Appendix C. This theorem establishes a direct link be-
tween learnable parameters and fitted Shapley values: ϕ̂i(U) = w⊤ψi, where ϕ̂i(U) is the fit-
ted Shapley value for i, w is our learnable parameter vector, and ψi is the Feature Shapley vec-
tor for i. Unlike previous decoupled accuracy-oriented optimization that solve ϕ̂i(Û) subject to
Û(S) = argminL(Û(S), U(S)) (L is the loss), our approach directly optimizes the fitted Shapley
values from learned utility function with the help of this theorem.

Building on this, we propose Shapley-Guided Transferable Utility Learning (SGUL), which integrates
our transferable utility learning framework with a Shapley-guided optimization method. To learn the
optimal parameter vector w, we formulate the following optimization problem:

min
w

∑
i∈N (VVal)

(ϕi(U)−w⊤ψi)
2 + λ∥w∥1 (3)

Here, VVal represents the set of labeled validation nodes, and N (·) denotes the set of neighbors for a
given node set. The regularization parameter λ controls the trade-off between fitting the data and
model complexity. This optimization problem is designed to find the optimal weight vector w that
quantifies the importance of each feature in the utility function. The input features are the Feature
Shapley Values ψi for each neighbor i, computed as a preprocessing step. The target variable is the
true Shapley value ϕi(U), which we can compute using the known accuracy on the validation set.

By solving this optimization problem, we obtain the optimal parameter vector w∗ that minimizes the
difference between predicted and true Shapley values across all validation nodes and their neighbors.
This direct optimization approach contrasts with traditional methods that focus on predicting accuracy
rather than Shapley values. The inclusion of L1 regularization (∥w∥1) in the objective function
promotes sparsity in the learned weights, effectively identifying the most relevant features for
Shapley value estimation and helping prevent overfitting. Importantly, the learned coefficients are
interpretable, as our proposed features are theoretically positively correlated with accuracy. To ensure
this interpretability, we constrain the parameters to be non-negative during the learning process. Once
we have obtained the optimal parameter vector w∗, we can apply SGUL to estimate Shapley values
for neighbors of test nodes. When comparing our proposed methods with different optimization
protocols, we refer to the one optimized using our Shapley-guided method as SGUL-Shapley,
which differs from SGUL-Accuracy, optimized for accuracy as mentioned in Subsection 4.2.2.
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5 RELATED WORK

Data Valuation Methods. Data valuation approaches based on cooperative game theory, including
Data Shapley (Ghorbani & Zou, 2019) and its variants (Kwon & Zou, 2021; Wang & Jia, 2023), have
established effective frameworks for quantifying individual data contributions. Recent innovations
include learning-agnostic frameworks (Just et al., 2023) and training-free methods (Nohyun et al.,
2022). For graph-specific valuation, Winter value-based methods (Chi et al., 2024a) and task-agnostic
frameworks (Falahati & Amiri, 2024) address the unique challenges of interconnected data. Data
utility learning (Wang et al., 2021) enhances valuation efficiency by predicting model performance
on data subsets without repeated training, improving methods like Shapley value calculations.

Graph Neural Networks. Graph Neural Networks (GNNs) have revolutionized graph-structured
data analysis since the introduction of spectral convolutions (Bruna et al., 2013), with architectures
like Graph Convolutional Networks (GCN) (Kipf & Welling, 2016) and attention-based variants
(Veličković et al., 2017) gaining wide adoption. Central to GNNs’ success is the message-passing
mechanism (Xu et al., 2018), enabling effective information propagation across the graph. While
traditionally viewed as crucial for both training and inference, recent research highlights its particular
importance during testing. The introduction of PMLPs (Yang et al., 2023), which are identical to
standard MLPs in training but adopt GNN’s architecture with message passing in testing, reveals the
critical role of testing-time structure in graph-based models’ performance.

Model Evaluation Without Labels. Several approaches have been developed for model evaluation
without test labels. Label-free model evaluation methods (see Appendix D.4) estimate model accuracy
through confidence scores and distribution metrics. ATC (Garg et al., 2022) learns confidence
thresholds and DoC (Guillory et al., 2021) measures confidence shifts between validation and test
sets. These methods have been extended to graph domain through GNNEvaluator (Zheng et al.,
2024b), which uses discrepancy attributes to train a GCN regressor for accuracy prediction. However,
these methods focus on single-accuracy estimation rather than data value assessment. Recently,
retraining-based approaches (see Appendix D.5) have emerged as an alternative strategy. Projection
Norm (Yu et al., 2022) predicts performance by analyzing parameter changes after pseudo-label
retraining, which has been adapted to graphs through LEBED (Zheng et al., 2024a). However, their
computational demands make them impractical for evaluating multiple subgraph configurations
required in our setting. While test-time adaptation methods (see Appendix D.6) such as GTRANS
(Jin et al., 2022b) and IGT3 (Pi et al.) also operate on unlabeled test data, they focus on the one-time
performance maximization through graph transformation or parameter adaptation. For the graph-
inference data valuation problem requiring evaluation across numerous subgraph configurations, only
non-retraining label-free model evaluation methods serve as suitable surrogate utility functions, as
they enable efficient prediction across multiple subgraphs.

For a more detailed discussion on related work, please refer to Appendix D.

6 EXPERIMENTS

6.1 DATASETS AND EXPERIMENTAL SETUP

We evaluated our proposed SGUL framework on seven diverse real-world graph datasets, covering
both homophily and heterophily scenarios. Our experiments focus primarily on the inductive node
classification task, with additional evaluations in the transductive setting. We employed different
fixed GNN models for each setting to highlight the importance of testing structures. For a detailed
description of the datasets and experimental setup, please refer to Appendix E.

6.2 EVALUATION PROCESS AND METRICS

To evaluate our proposed SGUL framework, we design a comprehensive assessment protocol con-
sisting of utility learning and data valuation phases. During utility learning, we follow the process
detailed in Algorithm 1, which involves generating permutations on the validation graph to learn our
utility function. This standardized process is applied identically across all methods to ensure fair
comparison. In the data valuation phase, we apply the learned utility functions to the test graph GTe to
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predict accuracies for target nodes Vt. These predicted accuracies serve as utility function outputs
U(·) for calculating Shapley values following Algorithm 2.

To assess the quality of data values produced by SGUL, we employ a node dropping experiments that
targets high-value nodes in the graph. This experiment is one of the most common and widely used
evaluation methods in data valuation research (Ghorbani & Zou, 2019; Jiang et al., 2023; Kwon & Zou,
2023; Chi et al., 2024a). By sequentially removing nodes ranked according to their assessed values,
we can observe a node dropping performance curve, which visually represents how the model’s
performance degrades as important nodes are removed. A good data valuation method should result
in a curve that shows a rapid and sharp decline in model performance. This corresponds to identifying
a crucial data subset, whose removal would significantly affect performance. Moreover, the decrease
in performance caused by our method should not only be substantial but also persistent throughout
the node-dropping process, ensuring that the importance identification is highly consistent (Ghorbani
& Zou, 2019; Jiang et al., 2023; Chi et al., 2024a). To quantify the effectiveness of a valuation
method, we use the Area Under the Curve (AUC) metric of these node dropping performance curves.
The AUC provides a single numerical value that captures the overall behavior of the node dropping
process, reflecting both the initial rapid decline and the sustained performance drop. A lower AUC
indicates a better valuation method, as it represents a more rapid and sustained decline in model
accuracy when high-value nodes are removed. For detailed implementation of this evaluation protocol,
please refer to Algorithm 3.

6.3 BASELINES

To evaluate the effectiveness of our proposed SGUL framework, we compare it with several alternative
utility learning methods. All these baselines aim to approximate the true utility function for graph
inference data valuation, but differ in their specific techniques. The baselines we consider are: i.
Average Thresholded Confidence (ATC): ATC (Garg et al., 2022) estimates accuracy by learning
a threshold on the model’s confidence scores. We implement two variants: ATC-MC (Maximum
Confidence) and ATC-NE (Negative Entropy). ii. Difference of Confidence (DoC): DoC (Guillory
et al., 2021) measures the difference in average confidence between the validation and test sets to
predict accuracy change. iii. GNNEvaluator: GNNEvaluator (Zheng et al., 2024b) is a novel method
designed to assess GNN performance on unseen graphs without labels. iv. Natural Confidence-
Based Baselines: We also include two straightforward confidence-based baselines: (a) Maximum
Confidence: This uses the highest confidence score across all nodes and classes in the subgraph.
(b) Class Confidence: This calculates the average confidence score of the predicted class for
each test node, using the full test graph as input. We ensure a fair comparison by using the same
overall framework for all methods, including identical sampling procedures for validation and test
permutations. For a complete description of those methods and corresponding training process, please
see Appendix D.3 and Appendix B respectively.

6.4 MAIN RESULTS AND ANALYSIS

To evaluate the effectiveness of our proposed SGUL framework, we conducted comprehensive
experiments on various graph datasets using both SGC and GCN models in the inductive and
Transductive setting. Our analysis focuses on two key aspects: the detailed behavior of node removal
across different datasets and the overall performance of SGUL compared to baselines.

6.4.1 INDUCTIVE NODE REMOVAL ANALYSIS

To provide a nuanced understanding of how different methods perform as nodes are progressively
removed, we present accuracy curves for node dropping experiments. Figures 1 and 2 show these
curves for SGC and GCN models, respectively, across various datasets. Figure 1 illustrates the
accuracy curves for node dropping experiments using SGC models across various datasets. These
results reveal two key characteristics of our SGUL method. Firstly, SGUL consistently demonstrates a
steeper initial drop in accuracy when removing the first few nodes, particularly evident in datasets
like Cora and Citeseer. This rapid initial decline indicates SGUL’s superior ability to identify the
most critical nodes in the graph structure. Secondly, as more nodes are removed, SGUL maintains
a more stable accuracy curve compared to other methods. This long-term stability is especially
pronounced in larger datasets such as CS and Physics, suggesting a more robust and consistent
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Figure 1: Accuracy curves for node dropping experiments using the SGC model on various datasets in the
inductive setting. Our proposed SGUL method consistently maintains higher accuracy as nodes are removed,
indicating its effectiveness in identifying important nodes. Note that GNNEvaluator is not shown for the larger
datasets due to Out of Memory (OOM) errors.

ranking of node importance throughout the removal process. The performance of SGUL varies across
datasets, showcasing its adaptability to different graph structures. For instance, in the Cora dataset,
SGUL exhibits a clear advantage throughout the entire node removal process. In the Amazon-ratings
dataset, which presents a more challenging heterophily scenario, SGUL consistently outperforms
other methods, particularly in the latter stages of node removal. Similar performance patterns are
observed when using GCN models, demonstrating that SGUL’s effectiveness is not limited to a
specific GNN architecture. For detailed results of the GCN experiments, please refer to Appendix F.
Additionally, to demonstrate scalability on much larger graphs, we conducted experiments on the
ogbn-arxiv dataset, with results showing consistent improvements over baselines (see Appendix L).

6.4.2 TRANSDUCTIVE NODE REMOVAL ANALYSIS

To further validate the effectiveness of our SGUL framework, we extended our evaluation to the
transductive setting using the Cora, Citeseer, and Pubmed datasets. This setting allows us to assess
how our method performs when the entire graph structure is known during both training and inference.
Our results show that SGUL consistently maintains higher accuracy as nodes are removed across all
datasets for both SGC and GCN models. This performance is particularly notable in the Pubmed
dataset, where SGUL shows a significant advantage over other methods throughout the node removal
process. For a detailed analysis of the transductive setting experiments, including accuracy curves for
node dropping experiments and AUC results, please refer to Appendix G.

6.5 ABLATION STUDIES

To further validate the effectiveness of our proposed Shapley-guided approach and to provide deeper
insights into its performance, we conducted a series of ablation studies. These studies aim to compare
our Shapley-guided method (SGUL-Shapley) with an accuracy-based optimization approach
(SGUL-Accuracy) across different aspects of performance and efficiency.

6.5.1 IN-SAMPLE ERROR COMPARISON OF SHAPLEY AND ACCURACY OPTIMIZATION

To empirically validate our theoretical arguments from Section 4.2.3, we compared the perfor-
mance of Shapley-guided optimization (SGUL-Shapley) against accuracy-based optimization
(SGUL-Accuracy). We conducted in-sample Mean Squared Error (MSE) comparisons across
various datasets in the inductive setting with the SGC model. Our results show that SGUL-Shapley
consistently achieves lower MSE across all datasets, with statistically significant differences (p <
0.05). These findings provide strong empirical support for our theoretical analysis, demonstrating
that directly optimizing for Shapley values leads to more accurate estimation of data value compared
to the accuracy-based approach. For a detailed description of the experimental setup and full results,
please refer to Appendix I.
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6.5.2 DROPPING NODE COMPARISON OF OPTIMIZATION OBJECTIVES

We conducted an ablation study comparing Shapley value optimization (SGUL-Shapley) and
accuracy-based optimization (SGUL-Accuracy) in node dropping experiments. Our results show
that SGUL-Shapley generally outperforms SGUL-Accuracy across most datasets and models,
achieving better results in 10 out of 14 dataset-model combinations. The improvement is particularly
noticeable for larger and more complex datasets such as CS, Physics, and Amazon-ratings. These
findings demonstrate that directly optimizing for Shapley values leads to more accurate and robust
inference data valuation. For detailed experimental setup and full results, please refer to Appendix J.

6.5.3 EFFICIENCY ANALYSIS OF SHAPLEY AND ACCURACY OPTIMIZATION

To complement our effectiveness analysis, we also evaluated the computational efficiency
of Shapley value optimization (SGUL-Shapley) compared to accuracy-based optimization
(SGUL-Accuracy). This analysis helps validate the practical applicability of our method, es-
pecially for large-scale graph applications. We recorded the fitting time and memory usage for both
methods under the OLS setting described in the In-Sample Error Comparison. The implementation
used PyTorch with a learning rate of 0.001 for both methods. We ran each fitting process 10 times
and averaged the results, with each run consisting of 1000 epochs. Table 1 summarizes our findings:

Setting Dataset Shapley Optimization Accuracy Optimization
Time (s) Memory (MB) Time (s) Memory (MB)

Inductive

Cora 0.63 16.28 0.66 29.58
Citeseer 0.64 16.28 1.54 28.59
Pubmed 0.56 16.49 0.67 87.60
CS 0.52 16.53 0.50 44.19
Physics 0.44 16.71 0.55 39.05
Amazon-ratings 0.64 16.59 0.67 115.62
Roman-empire 0.53 16.37 0.65 50.25

Transductive
Cora 0.59 16.35 0.75 65.77
Citeseer 0.51 16.35 0.59 61.28
Pubmed 0.53 16.81 0.67 72.22

Table 1: Comparison of training time and peak memory usage between Shapley-guided (SGUL-Shapley)
and accuracy-based (SGUL-Accuracy) optimization approaches using the SGC model.

The results demonstrate that SGUL-Shapley consistently outperforms SGUL-Accuracy in terms
of computational efficiency. SGUL-Shapley achieves faster training times for most datasets,
with notable improvements for larger datasets like Citeseer and Pubmed. More significantly,
SGUL-Shapley shows a substantial reduction in memory usage across all datasets, often using
less than half the memory required by SGUL-Accuracy. This efficiency advantage is particularly
pronounced for larger datasets such as Amazon-ratings, where SGUL-Shapley uses only about
14% of the memory consumed by SGUL-Accuracy.

These findings indicate that SGUL-Shapley not only provides more accurate node importance
estimations but also offers significant computational benefits. The reduced memory footprint and
faster training times make SGUL-Shapley particularly suitable for large-scale graph applications
where resource efficiency is crucial. This combination of effectiveness and efficiency underscores the
practical value of our Shapley-guided approach in real-world graph inference data valuation tasks.

7 CONCLUSION

This paper introduces Shapley-Guided Utility Learning (SGUL), a pioneering framework for valuing
graph inference data without test labels. SGUL uniquely integrates transferable feature extraction
with Shapley-guided optimization, addressing the challenges of generalization to unseen structures
and computational efficiency in graph data valuation. Our comprehensive experiments across diverse
datasets consistently demonstrate SGUL’s superiority over existing methods in both inductive and
transductive settings.
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A SELECTED FEATURES FOR ACCURACY PREDICTION

When performing Graph Inference Data Valuation, we incrementally add neighboring nodes to the
target test nodes following permissible permutations. This process generates a series of test subgraphs.
Let Gsub = (Vsub, Esub,Xsub) denote the current sub-test graph , which includes the added neighboring
nodes and target test nodes. Our goal is to identify features that reflect the performance of the fixed
GNN model on Gsub without relying on true labels. To this end, we propose a set of data-specific and
model-specific features that correlate with GNN performance. These features are designed to capture
both the structural properties of the graph and the behavior of the GNN model on the test nodes.

Data-specific features: Our data-specific features focus on graph homophily and distance measures:

1. Edge Cosine Similarity (s̄e): This feature measures the homophily level of the current
subgraph. For graph neural networks, it is recognized that performance is strongly correlated
with the graph’s homophily level, where connected nodes tend to share similar characteristics
(Zhu et al., 2020a; Li et al., 2024). A higher homophily level often leads to better GNN
performance.

s̄e =
1

|Esub|
∑

(i,j)∈Esub

cos(xi,xj)

where xi and xj are the feature vectors of nodes i and j, respectively, and Esub is the
set of edges in the current subgraph. This measure accurately captures the average cosine
similarity between connected nodes, reflecting the homophily of the subgraph structure.

2. Representation Distance (drep): This feature quantifies the overall dissimilarity between
test nodes and the training set, which has been shown to be related to GNN performance
(Ma et al., 2021). A smaller feature distance typically indicates that the test nodes are more
similar to the training data, which often correlates with better GNN performance on these
test nodes.

drep =
1

|Vt|
∑
v∈Vt

cos(hv, h̄train)

where hv is the aggregated feature vector of the target test node v, and h̄train is the mean
aggregated feature vector of all training nodes.

3. Classwise Representation Distance (dclass): This feature provides a more fine-grained
measure of the distance between test nodes and training data, by considering class-specific
prototypes. It captures how well the test nodes align with the class representations learned
from the training data.

dclass =
1

|Vt|
∑
v∈Vt

min
c∈C

cos(hv, h̄c)

where C is the set of classes, h̄c is the mean aggregated feature vector of training nodes
in class c, and Vt is the set of target test nodes. This feature complements the overall
representation distance by providing class-specific information, which can be particularly
useful in multi-class classification tasks.

Model-specific features: Our model-specific features leverage the output of the fixed GNN model
f(·) to compute confidence scores and uncertainty measures:

4. Maximum Predicted Confidence (cmax): The confidence of model predictions has been
shown to be strongly correlated with model accuracy (Guo et al., 2017; Guillory et al., 2021;
Garg et al., 2022). This feature captures the average maximum confidence score for target
test nodes when the current subgraph is input to the fixed GNN model.

cmax =
1

|Vt|
∑
v∈Vt

max
y∈Y

fy(Gsub)v
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5. Target Class Confidence (ctarget): To mitigate the impact of changing predictions as we add
nodes to the test subgraph, we fix the predicted label for each node based on the full test
graph. This feature represents the average confidence score of these fixed predicted classes
for the target test nodes.

ctarget =
1

|Vt|
∑
v∈Vt

fŷv (Gsub)v

where ŷv = argmaxy∈Y fy(GTe)v is the predicted class for node v using the full test graph
GTe.

6. Propagated Maximum Confidence (cprop_max): Label propagation (Zhu & Ghahramani,
2002) has proven effective in graph-based classification tasks. We first predict a distribution
for each node in the current subgraph using only their features, then propagate these
distributions over the graph structure.

cprop_max =
1

|Vt|
∑
v∈Vt

max
y∈Y

f̃y(Gsub)v

where f̃y(Gsub)v = LP(fy(G∅sub))v, G∅sub = (Vsub, ∅,Xsub) is the subgraph with empty edge
set, fy(G∅sub)v is the initial prediction for node v using only its features, and LP(·) denotes
the label propagation operation on Gsub.

7. Propagated Target Confidence (cprop_target): This feature captures the average confidence
of the fixed predicted class after label propagation, using the same process as in Propagated
Maximum Confidence.

cprop_target =
1

|Vt|
∑
v∈Vt

f̃ŷv (Gsub)v

where ŷv is the predicted class for node v using the full test graph, as defined earlier, and
f̃ŷv (Gsub)v is the propagated probability for class ŷv of node v.

8. Negative Entropy (Hneg): Recent research has shown that negative entropy effectively
measures uncertainty in machine learning models and is highly correlated with accuracy
(Sensoy et al., 2018; Garg et al., 2022). Higher negative entropy indicates more certain
predictions.

Hneg = − 1

|Vt|
∑
v∈Vt

∑
y∈Y

fy(Gsub)v log fy(Gsub)v

9. Confidence Gap (∆c): This feature measures the average difference between the highest
and second-highest confidence scores for the target test nodes. It can be viewed as another
uncertainty measure, where a larger confidence gap suggests more certain predictions and
potentially higher accuracy.

∆c =
1

|Vt|
∑
v∈Vt

(
max
y∈Y

fy(Gsub)v − max
y′∈Y\{ŷv}

fy′(Gsub)v

)
where ŷv = argmaxy∈Y fy(Gsub)v is the predicted class for node v.

These model-specific features, combined with the previously described data-specific features, provide
a comprehensive representation of the GNN’s performance on the sub-test graph Gsub without relying
on true labels. By capturing various aspects of model confidence and uncertainty, these features serve
as effective proxies for model accuracy in our utility learning framework.

B SGUL-ACCURACY AND BASELINE MODEL TRAINING PROCESS

Our proposed transferable feature extraction method SGUL-Accuracy addresses the challenge of
lacking test labels by providing a set of proxy features that capture both graph structure and model
behavior. To implement this approach in the context of utility learning for graph inference data
valuation, we follow a general procedure:

16



Published as a conference paper at ICLR 2025

1. Generate permutations: We create a set of permutations on the validation graph GVal,
following the structure-aware Shapley value formulation (Equation (1)). Each permutation
results in a series of subgraphs as neighboring nodes are incrementally added.

2. Extract features: For each subgraph, we apply our feature extractor g(S) to obtain the
transferable, performance-related features x ∈ Rd.

3. Obtain ground truth utilities: We input these validation subgraphs into the fixed GNN
model f(·) to obtain ground truth accuracy scores. These scores serve as the target values
for our utility learning method.

4. Learn utility function: Traditional approaches typically use the feature-utility pairs ob-
tained from steps 2 and 3 to train a model that minimizes the difference between predicted
and true utility values (or accuracies). This is often formulated as a regression problem:

min
θ

∑
S

(U(S)− hθ(g(S)))2

where U(S) is the ground truth utility (accuracy) for subgraph S, g(S) is our feature
extractor, and hθ is a learnable function parameterized by θ.

This procedure allows us to create a dataset of feature-utility pairs, which can be used to learn a utility
function that generalizes to unseen test structures. It’s worth noting that this general framework can
accommodate various transferable feature extraction methods. While we have proposed a specific
design for our feature extractor g(S), other approaches could potentially be integrated into this
framework, as long as they produce transferable, performance-related features x ∈ Rd.

Interestingly, this training procedure can be identically applied to label-free model evaluation methods
(Garg et al., 2022; Guillory et al., 2021; Zheng et al., 2024b) which serve as baselines in our
experimental part. These methods aim to assess model performance on unlabeled data by leveraging
various proxy metrics or transferable features. The key difference lies in the ultimate goal: while
label-free model evaluation methods focus on estimating overall model performance, our approach
extends this concept to the more granular task of valuing individual graph elements for inference.

C PROOF OF SHAPLEY VALUE DECOMPOSITION THEOREM

Here we provide the proof for the Shapley Value Decomposition Theorem stated in Section 4.2.3.

Theorem 2 (Shapley Value Decomposition). Given a linear utility function U(S) = w⊤x(S), where
w ∈ Rd is a parameter vector and x(S) ∈ Rd is a feature vector representing subset S, the Shapley
value of player i with respect to U can be expressed as a linear combination of Feature Shapley
Values:

ϕi(U) = w⊤ψi

where ψi = [ϕi(U1), ϕi(U2), . . . , ϕi(Ud)]
⊤ is the vector of Feature Shapley Values, and Uk(S) =

xk(S) is the utility function considering only the k-th feature.

Proof. We begin by recalling the definition of the Shapley value for a player i with respect to a utility
function U :

ϕi(U) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[U(S ∪ {i})− U(S)]

where N is the set of all players and n = |N |.
Given the linear utility function U(S) = w⊤x(S), we can substitute this into the Shapley value
definition:
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ϕi(U) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[w⊤x(S ∪ {i})−w⊤x(S)]

=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
w⊤[x(S ∪ {i})− x(S)]

= w⊤
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[x(S ∪ {i})− x(S)]

Now, let’s consider the k-th component of the feature vector x(S), which we denote as xk(S). We
can define a utility function Uk(S) = xk(S) that considers only this k-th feature. The Shapley value
for player i with respect to Uk is:

ϕi(Uk) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
[xk(S ∪ {i})− xk(S)]

Comparing this with the last line of our previous derivation, we can see that:

ϕi(U) = w⊤[ϕi(U1), ϕi(U2), . . . , ϕi(Ud)]
⊤ = w⊤ψi

where ψi = [ϕi(U1), ϕi(U2), . . . , ϕi(Ud)]
⊤ is the vector of Feature Shapley Values.

This completes the proof of the Shapley Value Decomposition Theorem.

This theorem demonstrates that for a linear utility function, the Shapley value can be decomposed into
a linear combination of Feature Shapley Values derived from Appendix A. This decomposition forms
the theoretical foundation for our Shapley-Guided Generalizable Utility Learning (SGUL) method,
allowing us to efficiently learn utility function parameters by optimizing for Shapley values directly.

D EXTENDED RELATED WORK

D.1 DATA-EFFICIENT LEARNING ON GRAPHS

Data-efficient learning on graphs primarily uses two approaches to address limited labeled data.
Graph self-supervised learning develops representations without labels, where contrastive learning
methods like Deep Graph Infomax (Velickovic et al., 2019) and GRACE (Zhu et al., 2020b) contrast
different graph views, while non-contrastive methods such as BGRL (Thakoor et al., 2021) and Graph
Barlow Twins (Bielak et al., 2022) achieve strong performance without negative samples. Recent
works address sampling bias (Zhao et al., 2021; Xia et al., 2022) and develop feature augmentation
techniques Zhang et al. (2022; 2023). Chi & Ma (2024) enhance contrastive learning through node
similarity while Ma et al. (Ma et al., 2024) establish comprehensive benchmarks for evaluation. Mean-
while, graph active learning optimizes node selection for labeling, with methods like AGE (Cai et al.,
2017) combining multiple selection metrics, GPA (Hu et al., 2020a) using sequential decision-making,
and GRAIN (Zhang et al., 2021c)/RIM (Zhang et al., 2021b) reformulating selection as influence max-
imization. Advanced techniques include LSCALE (Liu et al., 2022) exploiting labeled and unlabeled
representations, ALG (Zhang et al., 2021a) considering both representativeness and informativeness,
and GALclean (Chi et al., 2024b) addressing active learning for graphs with noisy structures. Recent
works have also explored uncertainty quantification on graphs, with JuryGCN (Kang et al., 2022)
providing deterministic uncertainty estimates through jackknife confidence intervals and Fuchsgruber
et al. (2024) establishing principled approaches to uncertainty sampling for active learning on graphs.
Another promising direction is graph condensation, which aims to distill large graphs into smaller
synthetic versions that preserve training performance. Jin et al. (2021) introduce this problem by
matching GNN training trajectories through gradient matching, while their follow-up work (Jin
et al., 2022a) accelerates the process with one-step gradient matching. Recent advances by Gong
et al. (Gong et al., 2025) address scalability challenges for evolving graph data through class-wise
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clustering on aggregated features, achieving significant speedups while maintaining comparable
performance. These data-efficient approaches complement graph inference data valuation, extending
efficiency principles from training to the test-time inference phase.

D.2 GRAPH TRAINING DATA VALUATION

While Data Shapley and subsequent methods (Ghorbani & Zou, 2019; Kwon & Zou, 2021; Wang &
Jia, 2023) have been effective for i.i.d. data, they face significant challenges when applied to graph-
structured data. A key challenge is capturing the hierarchical and dependent relationships among
graph elements. In Graph Neural Networks (GNNs), a node’s contribution to model performance is
intricately linked to its position within the computation tree and its relationships with other nodes.
Traditional Shapley value calculations, which treat all players (nodes) independently, fail to account
for these crucial dependencies, potentially leading to inaccurate valuations.

To address these challenges, Chi et al. (2024a) proposed a more granular approach to graph data
valuation. This approach considers individual nodes within the computation tree as the basic units for
valuation, allowing for a more nuanced assessment of each element’s contribution to GNN perfor-
mance. Building upon the Shapley value formulation, this method introduces two key constraints to
the set of permutations Π(D):
Level Constraint: This constraint ensures that nodes within the same subtree of the computation
graph are grouped together in the permutation. Formally, for a node v in the computation tree and its
descendants D(v), the constraint can be expressed as:

|π[i]− π[j]| ≤ |D(v)|, ∀i, j ∈ D(v) ∪ {v}

where π[i] denotes the position of node i in permutation π. This preserves the hierarchical structure
of the computational graph and prevents evaluation bias that could occur when players from the same
group are placed at widely separated positions in the permutation.

Precedence Constraint: This constraint guarantees that a node appears in the permutation only after
its ancestors. For a node v and its ancestor set A(v), the constraint can be formulated as:

π[a] < π[v], ∀a ∈ A(v)

This reflects the dependency structure in GNNs, where a node’s contribution is contingent on the
presence of its ancestors in the computation tree.

These constraints allow for a more accurate valuation of graph data by respecting the inherent
structure and dependencies within GNNs.

D.2.1 DISCUSSION ON THE DIFFERENCE BETWEEN PC-WINTER AND SGUL

While PC-Winter pioneered the exploration of graph data valuation by introducing constraints to
capture hierarchical dependencies, our work focuses specifically on the challenging scenario of
test-time graph inference valuation, where ground truth labels are unavailable. Specifically, PC-
Winter addresses training data valuation by defining hierarchical elements within computation trees
as the data valuation objects (players), applying both Level and Precedence Constraints to capture
structural dependencies. In contrast, our work (Section 4.2.3) focuses on quantifying the importance
of neighbors for test nodes during inference time. We adopt the Precedence Constraint from PC-
Winter while omitting the Level Constraint, as explained in Section 3.2. This design choice reflects
the distinct nature of test-time neighbor relationships, which lack the clear hierarchical groupings
present in training data computation trees. The Precedence Constraint proves valuable in capturing
the dependencies between nodes in the message-passing process during inference.

A key technical distinction lies in our approach to utility function design. While PC-Winter leverages
validation accuracy as their utility measure, the absence of test labels in our setting necessitates a
novel solution. As detailed in Section 4, we introduce transferable data-specific and model-specific
features that can effectively approximate model performance without ground truth labels. This
innovation enables the evaluation of neighbor importance during inference time.

Our work complements PC-Winter by extending graph data valuation to test-time scenarios, partic-
ularly crucial for applications like real-time recommendation systems and dynamic graphs where
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Table 2: Comparison between PC-Winter and our Structure-aware Shapley Value with SGUL

Aspect PC-Winter Structure-aware Shapley with SGUL
Valuation Target Training graph elements Test-time neighbors
Constraints Used Level and Precedence Constraints Precedence only
Primary Challenge Hierarchical dependencies No test labels
Utility Function Validation accuracy Learned test accuracy

test-time structure evaluation is essential. Table 2 highlights the key differences between our work
and PC-Winter:

In our experimental analysis, we further demonstrate the effectiveness of our approach in identifying
influential test-time graph structures. Through comprehensive node-dropping experiments (Section 6),
we show that our method consistently outperforms baselines in terms of Area Under the Curve
(AUC) scores and accuracy curve characteristics across various datasets and model architectures.
These results validate the practical value of our test-time graph inference valuation framework,
complementing the contributions of PC-Winter in the training data valuation setting.

D.3 LABEL FREE MODEL EVALUATION BASELINES

In this section, we provide detailed descriptions of the baselines used for comparison in our study.
These baselines represent state-of-the-art methods for label-free model evaluation, which is crucial
for assessing model performance on unseen data without access to ground truth labels. The baselines
we consider are:

D.3.1 AVERAGE THRESHOLDED CONFIDENCE (ATC)

ATC, introduced by Garg et al. (2022), estimates accuracy by learning a threshold on the model’s
confidence scores. We implement two variants:

(a) ATC-MC (Maximum Confidence):

ATC-MC =
1

|Vtest|
∑

v∈Vtest

I
[
max
c∈C

fθ(Gtest)v,c > t

]
This equation counts the fraction of test nodes where the maximum confidence exceeds a
threshold t. Here, fθ(Gtest)v,c is the confidence score for class c on test node v, and t is
determined using the validation set.

(b) ATC-NE (Negative Entropy):

ATC-NE =
1

|Vtest|
∑

v∈Vtest

I

[
−
∑
c∈C

fθ(Gtest)v,c log fθ(Gtest)v,c > t

]

This variant uses negative entropy of predicted probabilities as the confidence measure,
counting nodes where it exceeds the threshold.

D.3.2 DIFFERENCE OF CONFIDENCE (DOC)

DoC, proposed by Guillory et al. (2021), measures the difference in average confidence between the
validation and test sets to predict accuracy change:

DoC = Acc(f,GVal) + β · (c̄Te − c̄Val)

where c̄Val = 1
|VVal|

∑
v∈VVal

maxc∈C f(v)c and c̄Te = 1
|VTe|

∑
v∈VTe

maxc∈C f(v)c are the average
maximum confidences on validation and test sets respectively, Acc(f,GVal) is the accuracy on the
validation graph, and β is learned through linear regression on the validation set.
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D.3.3 GNNEVALUATOR

GNNEvaluator, introduced by Zheng et al. (2024b), is designed to assess GNN performance on
unseen graphs without labels. It employs a two-stage approach:

1. It constructs a DiscGraph set, leveraging validation subgraphs from sample permutations as meta-
graphs. For each meta-graph, it computes discrepancy attributes by comparing GNN embeddings and
predictions between the meta-graph and original training graph.

2. A two-layer GCN regressor is trained on the DiscGraph set to estimate node classification accuracy.
The regressor learns to map the discrepancy attributes to expected model performance.

For inference, GNNEvaluator computes discrepancy attributes for the unseen test graph using the
fixed pre-trained GNN, then applies the trained regressor to estimate accuracy without requiring
labels.

D.3.4 NATURAL CONFIDENCE-BASED BASELINES

We also include two straightforward confidence-based baselines:

(a) Maximum Confidence: This uses the highest confidence score across all nodes and classes
in the subgraph.

(b) Class Confidence: This calculates the average confidence score of the predicted class for
each test node, using the full test graph as input.

We ensure a fair comparison by using the same overall framework for all methods, including identical
sampling procedures for validation and test permutations.

D.4 BASELINE METHODS AND THEIR DISTINCTIONS TO SGUL

Recent advances in label-free model evaluation have produced several notable approaches. Average
Thresholded Confidence (ATC) (Garg et al., 2022) estimates model accuracy by learning appropriate
thresholds on confidence scores. The method operates by computing the fraction of examples where
model confidence exceeds a learned threshold, with variants utilizing either maximum confidence
(ATC-MC) or negative entropy (ATC-NE) as the underlying metric. Difference of Confidence (DoC)
(Guillory et al., 2021) takes a comparative approach, measuring the discrepancy in average confidence
between validation and test sets to predict accuracy changes. This method leverages the observation
that shifts in model confidence often correlate with performance degradation. GNNEvaluator (Zheng
et al., 2024b) introduces a more sophisticated framework specifically designed for graph neural
networks, employing a two-stage approach that first constructs a DiscGraph set to capture distribution
discrepancies and then trains a GCN regressor to estimate node classification accuracy without
requiring labels.

While these methods represent significant advances in label-free model evaluation area, they funda-
mentally differ from our graph inference data valuation framework in both objectives and operational
mechanisms. The primary distinction lies in the granularity and scope of evaluation. Traditional
label-free methods focus on estimating overall model performance on a fixed test graph, essentially
treating the evaluation as a single-point estimation problem. In contrast, SGUL performs fine-grained
analysis by evaluating numerous subgraph configurations to quantify each structural component
contribution to model performance. This decomposition-based approach enables us to understand
not just how well a model performs, but also which graph structures are crucial for that perfor-
mance. The computational demands of our approach also create unique challenges - while methods
like GNNEvaluator work well for one-time evaluation, they become computationally prohibitive
when applied to the many subgraph permutations required for Shapley value computation, often
encountering memory limitations on medium-sized datasets. Our SGUL framework addresses these
challenges through specialized optimization techniques and efficient feature extraction methods that
enable scalable evaluation across multiple subgraph configurations. Furthermore, the architecture of
existing methods is not optimized for repeated utility assessment across permutations, as they were
designed for single-pass evaluation rather than the iterative valuation process required for computing
structure-aware Shapley values. Through our experimental validation, we demonstrate that SGUL not
only provides more detailed structural insights but also achieves superior accuracy in estimating the
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importance of individual graph components, outperforming these adapted baseline methods in the
specific context of graph inference data valuation.

D.5 RETRAINING-BASED LABEL-FREE MODEL EVALUATION METHODS

Notably, recent label-free model evaluation researches for predicting model test performance have
explored retraining-based approaches, which offer novel perspectives but face limitations in our
graph inference data valuation context. Projection Norm (Yu et al., 2022) predicts out-of-distribution
performance by analyzing model parameter changes after retraining with pseudo-labels generated
from test samples. The method demonstrates strong theoretical guarantees for linear models by
measuring the distance between original and retrained model parameters as an indicator of distribution
shift. Simultaneously, LEBED (Zheng et al., 2024a) approaches test-time graph distribution shifts
by quantifying discrepancies in learning behaviors between training and test graphs through a GNN
retraining strategy with parameter-free optimality criteria that capture both node prediction and
structure reconstruction aspects.

While these methods present innovative solutions for general test accuracy prediction, they encounter
fundamental constraints in our graph inference data valuation framework. The primary challenge
stems from our need to evaluate |Ω(N(Vt))| × |N(Vt)| different subgraphs for computing structure-
aware Shapley values. Each subgraph configuration would demand a separate retraining process
under these approaches, rendering them computationally infeasible at scale. Moreover, methods
like LEBED require access to the original training graph for comparative analysis - an assumption
that may not hold in practical deployment scenarios where training data access is restricted due to
privacy concerns. These inherent limitations motivate our adoption of more computationally efficient
approaches that can evaluate subgraph utilities without model retraining, as detailed in Section D.3.

D.6 TEST-TIME TRAINING AND AUGMENTATION METHODS

Recent works have explored various test-time adaptation techniques for graph neural networks to
address distribution shifts and OOD generalization. These methods can be broadly categorized based
on their core mechanisms and objectives: GTRANS (Jin et al., 2022b) takes a data-centric approach by
performing test-time graph transformation through unsupervised feature and structure augmentation.
While also focusing on data adaptation, GTRANS aims to find a single optimal modified test graph
that maximizes model performance, rather than evaluating the importance of individual elements.
This fundamentally differs from our objective of quantifying each node’s marginal contribution
through structure-aware Shapley values. GOODAT (Wang et al., 2024) addresses test-time graph
OOD detection as a binary classification problem by determining whether subgraphs align with the
training distribution. The method employs a graph masker to compress informative subgraphs for
distinguishing ID and OOD samples. However, GOODAT focuses solely on detecting OOD graphs
without considering the contributions of individual nodes to model performance. IGT3 (Pi et al.)
proposes a two-stage training paradigm that combines test-time training with invariant graph learning
to improve OOD generalization. The method adapts model parameters through multi-level graph
contrastive learning while preserving graph structure information. In contrast to our data-centric
valuation framework, IGT3 modifies the model itself to adapt to distribution shifts.

While these methods present innovative solutions for improving test-time performance and OOD
generalization, they differ fundamentally from our graph inference data valuation framework in both
objectives and mechanisms. Our framework maintains fixed model parameters while systematically
evaluating the contribution of individual nodes, enabling flexible value-based data selection for
various downstream applications from performance maximization to denoising. This generality and
composability of data values distinguish our approach from methods focused solely on improving
overall model performance through data or model adaptation.

E DETAILED DATASETS AND EXPERIMENTAL SETUP

E.1 DATASETS

To evaluate the effectiveness of our proposed Shapley-Guided Utility Learning (SGUL) framework,
we conducted extensive experiments on seven diverse real-world graph datasets. These datasets
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include Cora, Citeseer, Pubmed (Sen et al., 2008), Coauthor-CS, Coauthor-Physics (Shchur et al.,
2018), Roman-empire, and Amazon-ratings (Platonov et al., 2023). Our dataset provides excellent
coverage of both homophily and heterophily in graphs. The first four datasets are characterized by
homophily, where connected nodes tend to share similar features or labels. In contrast, Roman-empire
and Amazon-ratings exhibit heterophily, presenting a more challenging scenario where connected
nodes often have different characteristics.

E.2 EXPERIMENTAL SETUP

Our experiments primarily focus on the inductive node classification task, which more closely
resembles real-world applications where models must generalize to unseen graph structures (Hamilton
et al., 2017; Van Belle et al., 2022). In this setting, we partition each dataset into three distinct graph
structures: Training Graph, Validation Graph, and Testing Graph.

To provide a comprehensive evaluation, we also extend our experiments to the transductive setting,
where the entire graph structure is known during training, but only a subset of training and validation
nodes has labeled data. This allows us to compare the performance of our method across different
learning paradigms.

To better highlight the importance of testing structures, we employ different fixed GNN models for
inductive and transductive settings:

• Inductive Setting: We utilize Parameterized MLPs (PMLPs) (Yang et al., 2023), which
train as standard MLPs but adopt GNN-like message passing during inference. This ap-
proach emphasizes the crucial role of testing-time graph structures in model performance.
During inference, PMLPs employ either Simplified Graph Convolutions (SGCs) or Graph
Convolutional Networks (GCNs) (Kipf & Welling, 2016) (Wu et al., 2019) for message
passing, allowing us to evaluate the impact of different aggregation schemes on our graph
inference data valuation task.

• Transductive Setting: We use full Graph Neural Network (GNN) models, specifically
GCNs and SGCs, leveraging the complete graph structure available during both training and
inference. This setting allows us to assess our method’s performance when the entire graph
topology is known and utilized throughout the learning process.

F GCN MODEL INDUCTIVE SETTING RESULTS

In addition to the SGC model results presented in the main text, we also conducted experiments
using Graph Convolutional Network (GCN) models. Figure 2 shows the accuracy curves for node
dropping experiments using GCN models across various datasets. The results for GCN models closely
mirror those observed for SGC models. SGUL consistently outperforms other methods across various
datasets, demonstrating both a steeper initial accuracy drop and better long-term stability. This
consistency across different GNN architectures further validates the robustness and wide applicability
of our Shapley-Guided Utility Learning framework in graph inference data valuation tasks.

G TRANSDUCTIVE SETTING RESULT ANALYSIS

To provide a comprehensive evaluation of our SGUL framework, we extended our experiments to
the transductive setting using the Cora, Citeseer, and Pubmed datasets. In this setting, the entire
graph structure is known during both training and inference, allowing us to assess our method’s
performance when the full graph topology is utilized throughout the learning process.

G.1 EXPERIMENTAL SETUP

For the transductive setting, we used full Graph Neural Network (GNN) models, specifically Graph
Convolutional Networks (GCNs) and Simplified Graph Convolutions (SGCs). These models leverage
the complete graph structure available during both training and inference.
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Figure 2: Accuracy curves for node dropping experiments using the GCN model on various datasets
in the inductive setting. Similar to the SGC results, our proposed SGUL method demonstrates superior
performance in maintaining higher accuracy as nodes are removed. Note that GNNEvaluator is not
shown for the larger datasets due to Out of Memory (OOM) errors.
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Figure 3: Accuracy curves for node dropping experiments using the SGC (above) and GCN models
(below) in the transductive setting.

G.2 NODE DROPPING EXPERIMENTS

We conducted node dropping experiments similar to those in the inductive setting. Figures 3 show
the accuracy curves for node dropping experiments using SGC and GCN models respectively in the
transductive setting.

According to these figures, our SGUL method consistently maintains higher accuracy as nodes are
removed across all datasets for both SGC and GCN models. This performance is particularly notable
in the Pubmed dataset, where SGUL shows a significant advantage over other methods throughout the
node removal process.

For a more detailed quantitative analysis, including Area Under the Curve (AUC) results for both
inductive and transductive settings, please refer to Appendix H.
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H DETAILED QUANTITATIVE ANALYSIS

To provide a more comprehensive evaluation of our SGUL method, we present here a detailed
quantitative analysis using the Area Under the Curve (AUC) metric for the node dropping process.
A lower AUC score indicates superior performance, representing a more rapid decline in model
accuracy when high-value nodes are removed.

H.1 INDUCTIVE SETTING RESULTS

Table 3 presents the AUC results for node dropping experiments in the inductive setting, comparing
our SGUL method with several baselines across different datasets and models.

Table 3: AUC results for node dropping experiments in the inductive setting. Our proposed Shap
Lasso method consistently delivers competitive performance across various datasets and models.
OOM refers to Out of Memory error.

Dataset Model ATC-MC ATC-NE DoC GNNEvaluator Max Confidence Class Confidence SGUL

Cora SGC 382.87 399.23 393.73 393.83 384.35 374.22 368.46
GCN 377.29 384.54 397.35 389.21 384.83 365.48 361.19

Citeseer SGC 269.84 270.44 273.14 271.21 269.17 262.43 257.55
GCN 262.94 266.65 269.02 267.00 265.05 258.69 253.29

Pubmed SGC 3098.02 3112.55 3136.04 3139.11 3118.71 3111.39 3068.07
GCN 3109.80 3104.37 3147.28 3184.00 3121.70 3131.80 3080.99

CS SGC 3879.30 3937.35 4023.95 OOM 3690.63 3694.78 3605.92
GCN 4041.18 4134.89 4329.54 OOM 3984.78 3926.17 3896.88

Physics SGC 8007.06 8138.48 7802.27 OOM 7802.27 7817.30 7797.74
GCN 8085.59 8149.07 8328.46 OOM 7818.78 7800.91 7735.92

Amazon-ratings SGC 2513.36 2577.81 2557.59 OOM 2557.58 2466.70 2401.77
GCN 2508.83 2562.55 2551.39 OOM 2458.66 2368.02 2352.09

Roman-empire SGC 927.38 944.23 907.65 OOM 907.65 1023.01 851.98
GCN 985.70 997.63 978.04 OOM 978.04 1061.69 935.10

As evident from Table 3, our proposed SGUL method consistently achieves competitive performance
across different datasets and models. In many cases, it outperforms the baseline methods, particularly
for datasets with heterophily such as Amazon-ratings and Roman-empire. This quantitative compari-
son aligns with our observations from the accuracy curves, further demonstrating the effectiveness
of our Shapley-Guided Utility Learning approach in capturing the importance of nodes in graph
structures, even in challenging scenarios where connected nodes may have different characteristics.
The superior performance of SGUL, as reflected in both the accuracy curves and AUC scores, can
be attributed to its ability to capture the complex interactions and dependencies among nodes in the
graph, leveraging the Shapley value concept to assign importance scores. By incorporating both
graph structure and node features, SGUL provides a more comprehensive and accurate assessment of
node importance compared to the baselines, which rely on simpler metrics such as confidence scores
or average differences.

H.2 TRANSDUCTIVE SETTING RESULTS

Table 4 presents the AUC results for node dropping experiments in the transductive setting.

In the transductive setting, SGUL consistently outperforms all baseline methods across all datasets
and models. The performance gap is even more pronounced compared to the inductive setting,
particularly for larger datasets like Pubmed. These results further corroborate the effectiveness of our
approach across different experimental settings.
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Table 4: AUC results for node dropping experiments in the transductive setting

Dataset Model ATC-MC ATC-NE DoC GNNEvaluator Max Confidence Class Confidence SGUL

Cora SGC 1219.90 1237.21 1251.55 1235.32 1237.00 1207.45 1180.11
GCN 1216.45 1238.17 1261.80 1246.09 1228.15 1207.03 1180.95

Citeseer SGC 1157.87 1165.03 1172.98 1157.19 1155.54 1127.22 1123.12
GCN 1201.37 1213.33 1241.40 1221.27 1213.03 1197.15 1171.49

Pubmed SGC 10271.50 10495.00 10622.11 10450.98 10302.39 10217.91 9894.75
GCN 9959.40 10262.38 10500.21 10417.29 9814.49 9648.27 9547.61

I IN-SAMPLE ERROR COMPARISON OF SHAPLEY AND ACCURACY
OPTIMIZATION

To empirically validate our theoretical arguments from Section 4.2.3, we compared the perfor-
mance of Shapley-guided optimization (SGUL-Shapley) against accuracy-based optimization
(SGUL-Accuracy). We used identical validation permutation data for both methods, as described
in Section 2.2. To isolate the effect of the optimization objective, we employed an Ordinary Least
Squares (OLS) setting, excluding regularization terms and cross-validation. All other aspects, includ-
ing the feature set, remained constant between approaches.

We fitted both models using 10 permutations as an observation for in-sample Mean Squared Er-
ror (MSE) comparison. A Wilcoxon signed-rank test was conducted to assess the statistical sig-
nificance of the difference in MSE for Shapley value prediction between SGUL-Shapley and
SGUL-Accuracy.

Table 5 presents the mean in-sample MSE on the validation set for both approaches across various
datasets in the inductive setting, using the SGC model.

Table 5: In-sample validation MSE comparison between SGUL-Shapley and SGUL-Accuracy
across datasets using the SGC model in the inductive setting.

Dataset SGUL-Shapley MSE SGUL-Accuracy MSE p-value

Cora 1.35× 10−6 1.40× 10−6 1.00× 10−12

Citeseer 6.08× 10−7 6.47× 10−7 1.00× 10−12

Pubmed 2.70× 10−8 2.73× 10−8 9.31× 10−7

CS 5.48× 10−8 5.67× 10−8 9.77× 10−4

Physics 1.95× 10−8 2.02× 10−8 3.13× 10−2

Amazon-ratings 3.22× 10−8 3.26× 10−8 9.31× 10−7

Roman-empire 7.59× 10−8 7.66× 10−8 9.31× 10−7

The results in Table 5 show that SGUL-Shapley consistently achieves lower MSE across all
datasets, with statistically significant differences (p < 0.05) as determined by the Wilcoxon signed-
rank test. The performance gap is particularly notable for larger datasets like CS and Physics,
demonstrating SGUL-Shapley’s scalability and effectiveness across various graph structures.

These findings provide strong empirical support for our theoretical analysis in Section 4.2.3. They
demonstrate that directly optimizing for Shapley values leads to more accurate estimation of node
importance compared to the accuracy-based approach.

J DROPPING NODE COMPARISON OF OPTIMIZATION OBJECTIVES

To further evaluate the effectiveness of our proposed Shapley-guided optimization approach, we
conducted an ablation study comparing two different objective functions: Shapley value optimization
(SGUL-Shapley) and accuracy-based optimization (SGUL-Accuracy). This experiment repli-
cates our main experimental setting and goals, as described in Section 4.2.3, but with a key difference
in the optimization target for SGUL-Accuracy. For SGUL-Accuracy, we used the same form
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as our proposed method but fitted it on accuracy-level data from all validation permutations. We
then used this model to perform node dropping experiments, following the same procedure as in
our main experiments. It’s worth noting that this comparison may be influenced by factors such as
cross-validation and the specific characteristics of accuracy-level data, which could introduce some
variability in the results. Table 6 presents the AUC results for node dropping experiments using both
methods across various datasets and models in the inductive setting.

Table 6: Comparison of AUC results for SGUL-Shapley and SGUL-Accuracy in the inductive
setting. Lower AUC indicates better performance, and our proposed Shapley-guided optimization
(SGUL-Shapley) generally outperforms the accuracy-based optimization (SGUL-Accuracy) in
terms of AUC results across most datasets.

Cora Citeseer Pubmed CS Physics Amazon-ratings Roman-empire

SGC GCN SGC GCN SGC GCN SGC GCN SGC GCN SGC GCN SGC GCN

SGUL-Shapley 368.46 361.19 257.55 253.29 3068.07 3080.99 3605.92 3896.88 7797.74 7735.92 2401.77 2352.09 851.98 935.10
SGUL-Accuracy 369.74 362.66 257.66 252.87 3078.77 3090.29 3651.12 4140.17 7980.06 7707.45 2405.30 2463.65 852.29 924.64

The results show that SGUL-Shapley generally outperforms SGUL-Accuracy across most
datasets and models. Specifically, SGUL-Shapley achieves better results in 10 out of 14 dataset-
model combinations. The improvement is particularly noticeable for larger and more complex
datasets such as CS, Physics, and Amazon-ratings. This suggests that the Shapley-guided approach is
more effective at identifying critical nodes in the graph structure, especially for datasets with more
intricate relationships between nodes. These findings align with our theoretical expectations and
earlier in-sample error comparisons. They demonstrate that directly optimizing for Shapley values
leads to more accurate and robust inference data valuation.

Table 7: Feature importance coefficients for data-specific features across datasets and models

Feature Name Dataset GCN SGC

Edge Cosine Similarity

Cora 0 0
Citeseer 0.007 0
Pubmed 0 0.002
CS 0.031 0.061
Physics 0.003 0.068
Amazon-ratings 0.025 0
Roman-empire 0 0

Representation Distance

Cora 0.174 0.316
Citeseer 0 0
Pubmed 0 0.040
CS 0 0
Physics 0 0
Amazon-ratings 0.285 0.032
Roman-empire 0 0

Classwise Rep. Distance

Cora 0 0
Citeseer 0 0.128
Pubmed 0.548 0.383
CS 0.195 0
Physics 0 0
Amazon-ratings 0 0
Roman-empire 0 0

K ABLATION STUDY ON FEATURE CONTRIBUTIONS

To investigate the separate contributions of data-specific and model-specific features, we performed
a comprehensive analysis of feature importance across different datasets and model architectures
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Table 8: Feature importance coefficients for model-specific features across datasets and models

Feature Name Dataset GCN SGC

Maximum Predicted Confidence

Cora 0 0
Citeseer 0.452 0.291
Pubmed 0 0
CS 0.027 0.465
Physics 0 0
Amazon-ratings 0 0
Roman-empire 0.221 0.273

Target Class Confidence

Cora 0.464 0.159
Citeseer 0.193 0.230
Pubmed 0.179 0.227
CS 0.236 0.033
Physics 0.738 0.626
Amazon-ratings 0.298 0.606
Roman-empire 0 0

Negative Entropy

Cora 0.194 0.114
Citeseer 0.343 0.271
Pubmed 0.147 0.176
CS 0.147 0.183
Physics 0.252 0.222
Amazon-ratings 0.166 0.361
Roman-empire 0.227 0.191

Propagated Maximum Confidence

Cora 0.168 0
Citeseer 0.005 0.079
Pubmed 0.110 0.173
CS 0.216 0.258
Physics 0 0.083
Amazon-ratings 0.133 0
Roman-empire 0.553 0.477

Confidence Gap

Cora 0 0.057
Citeseer 0 0
Pubmed 0 0
CS 0.148 0
Physics 0.007 0
Amazon-ratings 0.092 0
Roman-empire 0 0.059

(GCN and SGC on inductive setting). Our feature coefficients were obtained through L1-regularized
optimization, where each coefficient represents the feature’s contribution to the utility function. To
ensure fair comparison, we normalized these coefficients within each dataset-model combination so
they sum to 1, allowing us to compare relative importance across different settings.

The detailed results for data-specific features are presented in Table 7 and the detailed results for
model-specific features are shown in Table 8.

To quantify the overall feature importance, we further examine the feature selection frequency. For
each feature, we count its appearance (non-zero coefficient) across datasets and normalize by the
total number of datasets, providing insight into how consistently each feature is selected by our
L1-regularized optimization. The summary of feature selection frequencies is presented in Table 9.

The analysis reveals several key patterns in feature importance. Model-specific features exhibit
higher and more consistent selection rates across datasets, with Negative Entropy being selected in
all datasets and Target Class Confidence appearing in 85.7% of datasets for both architectures. This
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Table 9: Feature selection frequency across datasets for GCN and SGC models

Feature Type Feature Name GCN SGC

Data-specific
Edge Cosine Similarity 0.429 0.429
Representation Distance 0.286 0.429
Classwise Rep. Distance 0.286 0.286

Model-specific

Maximum Predicted Confidence 0.429 0.429
Target Class Confidence 0.857 0.857
Negative Entropy 1.000 1.000
Propagated Maximum Confidence 0.714 0.714
Confidence Gap 0.429 0.286

suggests that model-specific features capture fundamental aspects of model behavior independent of
dataset characteristics.

On the other hand, data-specific features show more selective usage, with frequencies ranging from
0.286 to 0.429, indicating that they may be more dataset-dependent. The varying selection patterns
suggest that data-specific features capture dataset-specific characteristics that complement the more
universal model-specific features.

Interestingly, the selection patterns are remarkably consistent between GCN and SGC architectures,
with only minor differences in selection frequencies. This consistency across architectures suggests
that our feature design successfully captures fundamental aspects of graph inference quality rather
than architecture-specific characteristics.

These findings support our feature design choices and demonstrate the complementary roles of
data-specific and model-specific features in utility estimation. While model-specific features provide
a universal basis for assessing model performance, data-specific features allow the utility learning
model to adapt to the unique characteristics of each dataset. Notably, even for heterophilous graphs
where GNNs typically perform worse, data-specific features like edge cosine similarity can still be
selected, as shown in the ablation study tables for the Amazon-ratings. This highlights the ability of
our utility learning framework to capture the nuanced relationship between graph homophily and test
accuracy.

L LARGE-SCALE EVALUATION ON OGB-ARXIV

To demonstrate the scalability and effectiveness of our SGUL framework on large-scale graph datasets,
we conducted additional experiments on the ogbn-arxiv dataset (Hu et al., 2020b). This dataset
represents a citation network consisting of 169,343 nodes and 1,166,243 edges, where each node
represents an arXiv paper and each directed edge indicates a citation.

L.1 EXPERIMENTAL SETUP

For this experiment, we randomly sampled 10% nodes from each original train/val/test split and
used 50 permutations for utility learning and 5 permutations for testing valuation. This resulted in a
substantial evaluation set of over 27,000 testing neighbor nodes - to the best of our knowledge, this
represents the first attempt at graph data valuation of this magnitude.

L.2 NODE DROPPING RESULTS

Following the same evaluation protocol described in Section 6, we conducted node dropping experi-
ments on the ogbn-arxiv dataset. The results are shown in Figure 4 and Table 10.

Table 10 presents the performance at key points during the node dropping process:

The results demonstrate SGUL’s superior performance on large-scale graphs. It achieves the lowest
AUC score (12834.35), significantly outperforming traditional approaches like ATC-MC (12989.56)
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Figure 4: Accuracy curves for node dropping experiments on the ogbn-arxiv dataset using the SGC
model in the inductive setting. Our proposed SGUL method demonstrates superior performance,
achieving a steeper decline in accuracy as high-value nodes are removed.

Table 10: Performance across the node dropping process on ogbn-arxiv dataset

Method Start (idx 0) 5K nodes 10K nodes 15K nodes 20K nodes End (idx 27421) AUC

ATC-MC 0.4832 0.4760 0.4748 0.4730 0.4726 0.4672 12989.56
ATC-NE 0.4832 0.4776 0.4755 0.4738 0.4731 0.4672 13013.93
DoC 0.4832 0.4730 0.4710 0.4708 0.4704 0.4672 12923.52
Max Confidence 0.4832 0.4730 0.4710 0.4708 0.4704 0.4672 12923.55
Class Confidence 0.4832 0.4705 0.4690 0.4684 0.4684 0.4672 12864.68
SGUL 0.4832 0.4698 0.4680 0.4678 0.4668 0.4672 12834.35

and ATC-NE (13013.93). Note that GNNEvaluator encounters Out-of-Memory (OOM) errors on this
large dataset, further highlighting the efficiency advantage of our approach.

M DETAILED ALGORITHM DESCRIPTION AND EVALUATION PROTOCOL

To provide a comprehensive understanding of our framework’s implementation and evaluation, we
present a detailed description through three key components: (1) Shapley-Guided Utility Learning
(SGUL) for learning utility functions from validation data, (2) Test-time Structure Value Estimation
for inference without ground truth labels, and (3) Node Dropping Evaluation Protocol for empirical
validation. These components collectively implement and evaluate the methodology introduced in
Section 4 of our paper.

M.1 TRAINING PHASE: SHAPLEY-GUIDED UTILITY LEARNING

Algorithm 1 implements our end-to-end optimization framework for graph inference data valuation.
The algorithm takes as input a validation graph GV al, a training graph GTr, a fixed trained GNN
model f(·), the number of permutations M , and a regularization parameter λ. As introduced in
Section 4.1, the framework begins by initializing data structures Ψ and Φ to store Feature Shapley
vectors and true Shapley values respectively, enabling systematic accumulation of value estimates
across validation nodes.
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Algorithm 1 Shapley-Guided Utility Learning (SGUL)
Input: Validation graph GV al = (VV al, EV al, XV al), Training graph GTr, Fixed trained GNN
model f(·), Number of permutations M , Regularization parameter λ
Output: Optimal parameter vector w∗

1: Initialize:
2: Ψ← ∅ ▷ Feature Shapley matrix
3: Φ← ∅ ▷ True Shapley values
4: for each node i ∈ N(VV al) do
5: Generate M valid permutations {πm}Mm=1 ∈ Ω(N(VV al))
6: for each permutation πm do
7: Construct subgraph sequence {Gsub(πm, t)}Tt=1
8: Extract features x(S) for each subgraph
9: Compute utility values U(S) using validation accuracy

10: Compute feature Shapley vector ψi:
11: for each feature k do
12: ϕi(Uk)← 1

M

∑M
m=1

[
Uk(N

πm
i ∪ {i})− Uk(N

πm
i )

]
13: ψi ← [ϕi(U1), ϕi(U2), . . . , ϕi(Ud)]

⊤

14: Compute true Shapley value ϕi(U)
15: Ψ← Ψ ∪ {ψi}
16: Φ← Φ ∪ {ϕi(U)}
17: Optimize parameter vector:
18: w∗ ← argminw

∑
i∈N(VV al)

(ϕi(U)−w⊤ψi)
2 + λ∥w∥1

19: Return w∗

he core computation occurs in Step 2, implementing the feature extraction and value computation
process detailed in Section 4.2.1. For each node i in the validation graph neighborhood N(VV al),
the algorithm generates M valid permutations through Algorithm 4 that respect graph connectivity
constraints. Each permutation πm produces a sequence of subgraphs {Gsub(πm, t)}Tt=1 through
incremental node addition. For each subgraph, we extract comprehensive features x(S) spanning
both data-specific measures (edge cosine similarity, representation distance) and model-specific
measures (confidence scores, entropy values), with validation accuracy establishing ground truth
utility values U(S).

Following Section 4.2.2, the algorithm constructs Feature Shapley vectors ψi by computing individual
Shapley values ϕi(Uk) for each feature type k. This process captures each node’s contribution
across multiple utility metrics, creating a rich representation incorporating both graph topology and
model behavior. The framework concludes with the optimization step described in Section 4.2.3,
where parameter vector w is optimized through our objective function to directly minimize Shapley
prediction error while promoting sparsity through L1 regularization.

M.2 INFERENCE PHASE: TEST-TIME STRUCTURE VALUE ESTIMATION

Algorithm 2 demonstrates our test-time structure valuation process. Given a test graph GTe, target
nodes Vt, and the learned parameter vector w∗ from Algorithm 1, we estimate Structure-aware
Shapley values for test neighbor nodes without requiring ground truth labels.

The test-time algorithm follows a similar permutation sampling and feature extraction pipeline as
training, but crucially operates without access to ground truth labels. For each neighbor node i ∈
N(Vt), we generate valid permutations using Algorithm 4 respecting graph connectivity and construct
corresponding subgraph sequences. We extract the same transferable features established in the
training phase, computing predicted utility Û(S) through the learned linear combination w∗⊤x(S).
These predicted utilities enable Structure-aware Shapley value estimation through permutation
sampling, effectively quantifying each neighbor’s contribution during inference.

Together, these algorithms form a complete framework for graph inference data valuation, enabling
both efficient training of the utility function and rapid value estimation during test time. The
framework’s key innovation lies in its ability to learn utility functions without test labels while
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maintaining computational efficiency through structured feature extraction and direct Shapley value
optimization.

Algorithm 2 Test-time Structure Value Estimation
Input: Test graph GTe = (VTe, ETe, XTe), Target nodes Vt ⊂ VTe, Learned parameter vector w∗,
Number of permutations M , Fixed trained GNN model f(·)
Output: Estimated Structure-Aware Shapley values {ϕ̂i}i∈N(Vt) for test neighbor nodes

1: Initialize:
2: Φ̂← ∅ ▷ Estimated Structure-Aware Shapley values set
3: for each node i ∈ N(Vt) do
4: Generate M valid permutations {πm}Mm=1 ∈ Ω(N(Vt))
5: for each permutation πm do
6: Construct subgraph sequence {Gsub(πm, t)}Tt=1
7: Extract transferable features x(S)
8: Compute predicted accuracy Û(S) = w⊤x(S)

9: Estimate Structure-Aware Shapley value:
10: ϕ̂i =

1
M

∑M
m=1

[
Û(Nπm

i ∪ {i})− Û(Nπm
i )

]
11: Φ̂← Φ̂ ∪ {ϕ̂i}
12: Return Φ̂

M.3 NODE DROPPING EVALUATION PROTOCOL

To empirically validate the effectiveness of our structure-aware Shapley values, we conduct com-
prehensive node dropping experiments. This evaluation protocol measures how model performance
degrades as we sequentially remove nodes ranked by their estimated importance, providing a direct
assessment of our valuation framework’s ability to identify critical graph structures.

Algorithm 3 outlines the node dropping evaluation process. Given a test graph GTe, target nodes Vt,
and the Structure-aware Shapley values {ϕ̂i}i∈N(Vt) computed using Algorithm 2, we rank the nodes
in descending order of their estimated importance. We then iteratively remove nodes following this
ranking and measure the model’s prediction accuracy after each removal. The accuracy curve and
Area Under the Curve (AUC) metric are used to quantify the effectiveness of our valuation method.

A lower AUC score indicates superior performance, as it represents a more rapid and sustained decline
in model accuracy when high-value nodes are removed. This aligns with our goal of accurately
identifying influential graph structures - removing truly important nodes should significantly impact
model performance. As demonstrated in Section 6.4, SGUL consistently achieves lower AUC scores
compared to baseline methods, validating its effectiveness in identifying critical graph structures.

Furthermore, the shape of the accuracy curve provides additional insights into our method’s behavior.
An ideal curve should show a sharp initial drop, indicating the removal of highly influential nodes,
followed by a consistent downward trend, suggesting stable and reliable importance rankings. Our
experimental results in Section 6.4 demonstrate that SGUL’s node dropping curves exhibit these
desirable characteristics across various datasets and model architectures.

M.4 SAMPLING PERMISSIVE PERMUTATIONS

The structure-aware Shapley value in our framework is formally defined as:

ϕi(N(Vt), U) =
1

|Ω(N(Vt))|
∑

π∈Ω(N(Vt))

[U(Nπ
i (Vt) ∪ {i})− U(Nπ

i (Vt))]

This can be viewed as an expectation that we approximate through Monte Carlo sampling under
precedence constraints. Specifically, we approximate the Shapley value using M random permuta-
tions:
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Algorithm 3 Node Dropping Evaluation
Input: Test graph GTe = (VTe, ETe, XTe), Target nodes Vt ⊂ VTe, Structure-aware Shapley values
{ϕ̂i}i∈N(Vt), Fixed trained GNN model f(·)
Output: Accuracy curve {Acck}Kk=1, Area Under the Curve (AUC)

1: Rank nodes in N(Vt) by {ϕ̂i}i∈N(Vt) in descending order
2: K ← |N(Vt)|
3: for k = 1 to K do
4: Remove top-k ranked nodes from GTe to obtain Gk

5: Compute accuracy: Acck = 1
|Vt|

∑
v∈Vt

I(f(Gk)(v) = yv)

6: Compute AUC: AUC = 1
K

∑K
k=1Acck

7: Return {Acck}Kk=1, AUC

ϕ̂i(N(Vt), U) =
1

M

M∑
m=1

[U(Nπm
i (Vt) ∪ {i})− U(Nπm

i (Vt))]

To implement this approximation while respecting graph structure constraints, we employ Algorithm
4.

Algorithm 4 Precedence-Constrained Permutation Sampling
Input: Test graph G = (V, E ,X), Target nodes Vt ⊂ V , Number of samples M , Number of hops k
Output: Set of valid permutations {πm}Mm=1

1: for m = 1 to M do
2: Initialize: Vvisited ← Vt
3: Vactive ← {v ∈ N1(Vt) | v /∈ Vvisited}
4: while |Vactive| > 0 and |Vvisited| < k do
5: Sample v from Vactive
6: Update Vvisited ← Vvisited ∪ {v}
7: Vnew ← {u ∈ N1(v) | u /∈ Vvisited}
8: Vactive ← Vactive ∪ Vnew \ {v}
9: Return {πm}Mm=1

This algorithm ensures each sampled permutation π satisfies the precedence constraint by maintaining
connectivity. Starting from target nodes Vt, we iteratively sample nodes from their active neighbors
(those not yet visited) while preserving graph connectivity. This sampling process guarantees that
each permutation respects the structural dependencies inherent in the message-passing process, as
demonstrated through our comprehensive experimental results in Section 6.
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