
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ALGORITHMIC STABILITY BASED GENERALIZATION
BOUNDS FOR ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present a novel stability analysis of adversarial training and prove
generalization upper bounds in terms of an expansiveness property of adversarial
perturbations used during training and used for evaluation. These expansiveness
parameters appear to not only govern the vanishing rate of the generalization error
but also govern its scaling constant. Our bound attributes the robust overfitting
in PGD-based adversarial training to the sign function used in the PGD attack,
resulting in a bad expansiveness parameter. The peculiar choice of sign function
in the PGD attack appears to impact adversarial training both in terms of (inner)
optimization and in terms of generalization, as shown in this work. This aspect
has been largely overlooked to date. Going beyond the sign-function based PGD
attacks, we further show that poor expansiveness properties exist in a wide family
of PGD-like iterative attack algorithms, which may highlight an intrinsic difficulty
in adversarial training.

1 INTRODUCTION

0 25 50 75 100 125 150 175 200
Training epochs of PGD-3 AT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

er
ro

r

PGD-3 (trainset)
PGD-3 (testset)
standard (trainset)
standard (testset)

Figure 1: The learning curve of a
model trained by AT on CIFAR-10
with 3-step PGD. The standard er-
ror as well as the error against the
same 3-step PGD attack are mea-
sured during AT on both the train-
ing and testing sets. The step size
for PGD and the perturbation ra-
dius w.r.t the ∞−norm are respec-
tively set to 7/255 and 8/255. The
learning rate is decayed at the 100th

and the 150th epoch.

Deep neural networks, despite their great success, have been
shown vulnerable to adversarial attacks (Szegedy et al., 2014;
Goodfellow et al., 2015), where carefully constructed small
modifications of the input may cause the network to output a
wrong prediction. A large body of works (Madry et al., 2019;
Zhang et al., 2019; Croce et al., 2020; Shaham et al., 2018; Qin
et al., 2019; Shafahi et al., 2019; Wong et al., 2020) then pro-
pose revised training algorithms to combat adversarial attacks.
These algorithms, usually referred to as adversarial training (or
AT in this paper), among which the dominant approaches, such
as PGD based AT (Madry et al., 2019), involve perturbing the
input in a way similar to adversarial attacks to hopefully max-
imize the loss function within a prescribed radius (referred to
as “inner maximization”). Although these AT algorithms allow
the learned model to defend, to some extent, against adversar-
ial attacks, significant challenges remain.

First, generalization for such training algorithms is much more
difficult, a phenomenon known as “robust overfitting”(Rice
et al., 2020). Specifically, Rice et al. (2020) shows that on the
CIFAR-10 dataset (Krizhevsky et al., 2009), the model trained
by AT using 10-step PGD attack is still vulnerable to the same
10-step PGD attack on the testing set. Our additional experi-
ments (e.g., Figure 1) suggests that this is quite common. In Figure 1, we perform AT with a 3-step
PGD and measure the error of the model against 3-step PGD attack as well as its standard error in
the training process. We observe that the model trained with 3-step PGD is still vulnerable to the
same PGD attack on the testing set. After the first learning rate decay (the 100th epoch), the testing
error w.r.t the 3-step PGD starts to rise, similar to the observations in Rice et al. (2020).

Second, it is much more difficult to develop theoretical understanding of the generalization behavior
for models obtained from AT, comparing with those from standard training. In that direction, some

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

theoretical works consider the setting where the inner maximization is perfectly solved, e.g., in Yin
et al. (2018); Awasthi et al. (2020). However, such settings are invalid for more complex neural
networks, where the closed-form solution for the inner maximization is unavailable. Another line of
works use uniform stability to analyze the generalization of AT. In Xing et al. (2021), the adversarial
loss is assumed convex and non-smooth and AT is regarded as standard SGD on this loss, whereby
an existing generic bound for non-smooth loss in Bassily et al. (2020) is invoked for analysis. As
pointed out in Xiao et al. (2022b), the bound obtained in Xing et al. (2021) is independent of the
specific choice of loss function used for training and insufficient to reflect the difference between
AT and SGD observed in practice. The work of Xiao et al. (2022b) argues that the adversarial loss
is approximately smooth and derive bounds based on the stability framework of SGD in Hardt et al.
(2016). The work of Wang et al. (2024), built upon Xiao et al. (2022b), extends the analysis of AT to
the data-dependent stability framework in Kuzborskij & Lampert (2018). But the bounds obtained
in both Xiao et al. (2022b) and Wang et al. (2024) do not vanish with sample size.

To overcome these limitations and shed new light in understanding robust overfitting, we present in
this work novel stability analysis for the generalization of models learned using an arbitrary AT al-
gorithm. Specifically, we isolate two aspects in the problem scope. The first is the loss function used
for performance evaluation (on both testing and training sets), which can in general be considered as
a modification of the standard loss to a version induced by a perturbation map J and which reduces
to the adversarial loss when J is specialized to a particular form J∗ and to the standard loss when J
is specialized to the trivial identity map J id. The second is the perturbation map π used during AT,
corresponding to the solution heuristics used for solving the inner maximization problem. When
allowing π to potentially deviate from the perturbation J∗, we include in our study the case where
the inner maximization is not solved exactly. Additionally, considering π = J allows us to study
robust overfitting as examplified in Figure 1 where training using a particular attack results in poor
generalization when evaluation on the testing set is under the same attack.

In this setting, we carry out a stability analysis and present novel generalization bounds for models
trained using AT with an arbitrary adversarial perturbation π and evaluated on a loss induced by
an arbitrary perturbation J . At the heart of our analysis is the introduction of a notion of “expan-
siveness” for the perturbation maps (J and π), which governs the behavior of the derived bounds.
Specifically, we show that whenever the expansiveness parameter of J is strictly bounded, our gen-
eralization bounds vanish with sample size n as O(1/n) and a small expansiveness parameter of π
further helps generalization. On the other hand, when the J-loss (i.e., the loss induced by perturba-
tion J) is defined with J taken as the sign-PGD perturbation, the expansiveness parameter of J is no
longer bounded. In this case, our bound reveals an intrinsic tension between the stability parameter,
and the perturbation radius, and the ambient data dimension, in their respective roles on generaliza-
tion – specifically, the bound converges to a constant. When considering π = J , this helps to explain
the robust overfitting phenomenon of sign-PGD AT as shown in Figure 1. Additional advantages of
our bounds include the following. Our generic bound (Theorem 4.2) is applicable to AT algorithms
based on any form of adversarial perturbations. Our bounds do not rely on any assumption on the
adversarial loss directly, since we only make assumptions on the standard loss and all properties
of the adversarial loss are induced via perturbation map J . Finally, varying the form of J poten-
tially enables this framework to be applicable to settings where generalization on other performance
metrics is of interest.

We zoom into models trained with multi-step PGD, and further demonstrate that the sign func-
tion used in the perturbation is an important cause of robust overfitting for such AT methods.
We experimentally replace the sign function in PGD with a smooth approximation tanhγ , where
tanhγ(x) = tanh(γx) and the parameter γ controls the smoothness of the function and hence the
expansiveness of the PGD perturbation (decreasing γ decreases the expansiveness). Our experiments
show that reducing γ results in smaller generalization gaps. These results validate our bound and
its implication on generalization. Interestingly our experiments also reveal that sign-PGD appears
as a stronger attack than tanhγ-PGD and the raw gradient (RG)-PGD attack, even on the train-
ing set. Performing AT with tanhγ-PGD and RG-PGD may be inadequate for defending against
the sign-PGD attacks on the training set. Our observations suggest that sign-function, a building
block of PGD-based AT, appears to play a peculiar role: comparing with the tanhγ counter-part, the
sign function helps to better solve the inner maximization problem but at the same time cause the
perturbation π to suffer from bad expansiveness and results in poor generalization. This aspect of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sign-PGD has been largely overlooked to date, since most theoretical analysis of PGD removes the
sign function in their consideration (i.e., studying RG-PGD instead).

In this work, we also recognize sign-PGD as an iterative method for solving the inner maximization
problem where each step is principled by a locally linear approximation of the loss function. Based
on this principle, we extend sign-PGD to a wider family of perturbations. We show theoretically that
every member in this family suffers from poor expansiveness. This result seems to point to certain
intrinsic difficulty in training models adversarially.

2 OTHER RELATED WORKS

Robust generalization Beyond investigations via algorithmic stability perspectives (e.g., Xing
et al. (2021); Xiao et al. (2022b); Wang et al. (2024)), robust generalization has also been studied
under the uniform convergence framework with conventional statistical learning tools such as VC
dimension (Montasser et al., 2019), Rademacher complexity (Khim & Loh, 2019; Yin et al., 2018;
Awasthi et al., 2020; Xiao et al., 2022a; Attias et al., 2018) and other PAC learning frameworks
(Cullina et al., 2018; Diochnos et al., 2019). Moreover, robust generalization has been investigated
via the curvature of the local minima of the loss landscape: AT is observed to have a tendency to
reach sharper minima (Liu et al., 2020), and flatter minima usually results in better generalization
(Wu et al., 2020). The work of Chen et al. (2020) observes that robust overfitting can be alleviated
by smoothing the model prediction via knowledge distillation. The difficulty of achieving robust
generalization has also been attributed to the inadequate expressive power of practical deep learning
models (Li et al., 2022), insufficient sample size for models to generalize (Schmidt et al., 2018) as
well as and the model’s tendency to interpolate “hard training instances” (Liu et al., 2021).

Uniform stability Uniform stability was first introduced by the landmark work of Bousquet &
Elisseeff (2002). An influential work by Hardt et al. (2016) adapts this framework to analyze the
uniform stability of SGD with smooth loss functions, explaining the effectiveness of SGD in training
neural networks. Since then, many studies have built upon Hardt et al. (2016) to develop stability
bounds for SGD with non-smooth losses (e.g., Bassily et al. (2020); Lei & Ying (2020)). Data-
dependency in stability analysis is introduced in Kuzborskij & Lampert (2018), and uniform stability
for more sophisticated variants of SGD is also studied (e.g., Mou et al. (2018); Chen et al. (2018)).
Additionally, works such as Farnia & Ozdaglar (2021); Lei et al. (2021) have explored algorith-
mic stability in general minimax problems. These studies are more closely related to generative
adversarial networks (GANs), rather distant from the standard settings of adversarial training.

3 PROBLEM SETUP AND PRELIMINARIES

Over any real vector space, we will use ∥ · ∥p to denote the p-norm and abbreviate the Euclidean
norm (i.e., 2-norm) as ∥ · ∥. For a vector x ∈ Rd, x[i] denotes the ith coordinate of x.

We consider the standard setting of supervised learning, where the training samples are instance-
label pairs, (xi, yi)’s, drawn i.i.d from an underlying data distribution D over X ×Y . Here the input
space X is Rd and the label space Y is a finite. We restrict to parameterized models, e.g., neural
networks, in which the model parameter w lives in a subset W of some real vector space. We use
f(w, x, y) to denote the loss value of (x, y) under model parameter w, where a standard choice of
loss function (e.g. 0-1 loss, cross-entropy loss, etc.) is absorbed in f . For example, f(w, x, y) can
be the cross-entropy loss of the a neural network with parameter w on sample (x, y).

The central object of this study is adversarial training, which allows the learned model to resist
adversarial attacks. Each adversarial attack (or adversarial perturbation) on input x is assumed to
live in an ∞-norm ball B∞(x, ϵ) := {t ∈ Rd : ∥t− x∥∞ ≤ ϵ} with radius ϵ and centered at x.

Perturbation induced loss Let J be a function mapping W×X ×Y to X satisfying J(x; y, w) ∈
B∞(x, ϵ). Then J(x; y, w) may be regarded as a perturbation of x by a magnitude of up to ϵ (under
∞-norm). We then define the perturbation J induced loss or simply J-loss by

fJ(w, x, y) := f (w, J(x; y, w), y) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Let J∗(x; y, w) := argmaxx̂∈B(x,ϵ) f(w, x̂, y), and J id(x; y, w) := x. Then it is easy to verify that
when J = J∗, fJ(w, x, y) is the adversarial loss maxx̂∈B(x,ϵ) f (w; x̂, y) —for which reason, we
will denote the adversarial loss fJ∗ by f∗ for simplicity —and when J = J id, fJ(w, x, y) is the
standard loss f(w, x, y). We will soon encounter other forms of J-loss.

Generalization w.r.t the induced loss Let the training set S = {(xi, yi)}ni=1 be drawn from
Dn. Consider a learning algorithm A, which when applied on S gives rise to a learned model
parameter w = A(S). Notably w entails randomness, due to the random sampling of S and the
possible intrinsic randomness in A. The population risk and empirical risk w.r.t J-loss are defined
respectively as:

RD[A(S); J] := E(x,y)∼D [fJ(A(S), x, y)] and RS [A(S); J] :=
1

n

n∑
i=1

fJ(A(S), xi, yi) (2)

Note that RD[A(S); J] and RS [A(S); J] are both random variables. The expected generalization
gap w.r.t the J-loss is then

GGn(J,A) := ES,A [RD[A(S); J]−RS [A(S); J]] (3)

where expectation over A refers to averaging over the intrinsic randomness in A. Specially, we
will call GGn(J

id, A) and GGn(J
∗, A) respectively the standard generalization gap and the robust

generalization gap of the algorithm A.

The generalization gap can be analyzed by exploiting the tool of uniform stability (Bousquet &
Elisseeff, 2002). We say that the algorithm A is ρ−uniformly stable w.r.t J-loss, if

∆n(J,A) := sup
S≃S′

sup
(x,y)∈X×Y

EA[fJ (A(S), x, y)− fJ (A(S′), x, y)] ≤ ρ (4)

Here S ≃ S′ denotes two datasets that each contains n samples but differ in at most one. It is shown
in Hardt et al. (2016) that uniform stability implies generalization in expectation, namely,
Lemma 3.1 (Hardt et al. (2016)). For any perturbation J and any algorithm A,

GGn(J,A) ≤ ∆n(J,A) (5)

The lemma is due to that the analysis Hardt et al. (2016) applies to arbitrary loss functions, including
the J−loss defined above. In our work, we will consider the family of f that are Lipschitz and
gradient-Lipschitz with respect to both x and w in the following sense: there exist positive constants
LX , LW , ΓX and β such that for any y ∈ Y , any x, x′ ∈ X and any w,w′ ∈ W

|f(w′, x′, y)− f(w, x, y)| ≤ LX ∥x− x′∥+ LW∥w − w′∥ (6)

∥∇w′f(w′, x′, y)−∇wf(w, x, y)∥ ≤ ΓX ∥x− x′∥+ β∥w − w′∥ (7)

Similar Lipschitzness and smoothness assumptions are also used in other stability analysis literature,
as in Hardt et al. (2016); Farnia & Ozdaglar (2021); Xiao et al. (2022b); Wang et al. (2024).

With the Lipschitz condition of f , the uniform stability w.r.t fJ can be related with the notion
of the uniform argument stability (UAS), a notion coined in Bassily et al. (2020), as well as an
“expansiveness” property of J , which we will soon define. Specifically the UAS parameter of A is

δn(A) := sup
S≃S′

EA∥A(S)−A(S′)∥ (8)

and for any given c ≥ 0, we define the c-expansiveness of perturbation J as

qc(J) := sup
(x,y)

sup
w,w′:∥w−w′∥>c

∥J(x; y, w)− J(x; y, w′)∥
∥w − w′∥

(9)

We note that such a notion of expansiveness reduces to a Lipschitz condition when c = 0. It
measures the sensitivity of an operator to the perturbation of its input, sharing similarity with the
Lipschitz condition but provide extra benefit when analyzing operators whose Lipschitz constant
is unbounded. When taking c > 0, this expansiveness, however, excludes measuring sensitivity
for perturbation with magnitude lower than c. This consideration is motivated by the fact that in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

practice, extremely small perturbation do not arise. Additionally, this expansiveness behaves nicely,
i.e., being bounded, even for non-continuous operators, such as those defined via the sign function,
to arise later in this paper.

For any given S and S′ differing by only one element and every c∗ ≥ 0, let Q(S, S′; c∗) denote the
probability (under the probability measure induced by the randomness in A) that ∥A(S)−A(S′)∥ <
c∗. Specifically, let S∗ and S′

∗ denote two training sets with S∗ ≃ S′
∗ which achieve the supremum

in the definition of ∆n(J,A) in (4). We write Q(c∗) in place of Q(S∗, S
′
∗; c

∗) for simplicity.
Lemma 3.2. If the loss function f satisfies the Lipschitz condition (6), then for any c∗ ≥ 0,

∆n(J,A) ≤ (LW + qc∗(J)LX)δn(A) + LXQ(c∗) · 2ϵ
√
d (10)

The proof of this lemma is deferred to Appendix A. In the remainder of this paper, we will use this
bound to analyze the generalization of adversarial training (AT) algorithms. We will show, for most
cases, that this bound vanishes with sample size n by choosing a judicious choice of c∗. The only
case in which a vanishing bound is not attainable is sign-PGD based AT, where the bound converges
to a constant. This may reveal some intrinsic difficulty in generalization for such AT algorithm.

4 UNIFORM STABILITY OF ADVERSARIAL TRAINING

Lemma 3.2 suggests that the expansiveness of the perturbation J , which is used to define the J-loss
fJ , plays a role in generalization. We now take A as an adversarial training (AT) algorithm where
we will show that the expansiveness of the perturbation used in the AT training algorithm A plays
another role by impacting the UAS parameter δn(A).

AT algorithms We consider the following iterative AT algorithm. At each iteration of AT, it first
draw a training sample (xit , yit) ∈ S and then updates the model parameter wt according to

xadv
t = π(xit ; yit , wt) (11)

wt+1 = wt − τt∇wtf(wt, x
adv
t , yit) (12)

Here τt ∈ R+ denotes the step size of the gradient descend at the iteration t, it ∈ {1, · · · , n} is
drawn uniformly and independently (across t) from {1, 2, . . . , n}, and π(xit ; yit , wt) denotes per-
turbation of xit within B∞(xit , ϵ). We note that ideally π should be J∗(xit ; yit , wt) but in practice
it is only an approximation of it due to the difficulty in acquiring the exact solution. Additionally
and more critically, we note that, despite that both π and J refer to perturbations, the two notions
in this paper may be completely different. Specifically, J induces the J-loss, which is used as a
performance metric (evaluated either on the training set or on the testing set), whereas π denotes
the perturbation operation applied during adversarial training. Although in some cases π is J or is
related to J , there are scenarios in which π and J are completely decoupled, for example, when
we perform adversarial training but choose to evaluate the model using the standard loss, i.e., using
J id-loss. In a later section, we will see more cases in which J and π are completely different. As
a minor comment, we note that when the perturbation π in (11) is chosen as the identity map J id,
the AT algorithm reduces to the standard stochastic gradient descend (SGD) algorithm. Finally, as
we may look into various choices of π in AT algorithms, we use Aπ to denote an AT algorithm,
emphasizing its dependence on π. Under such notations, we may even consider ”mis-matched gen-
eralization gap”, namely, GGn(J,Aπ) with J ̸= π, for example, J = J id and π is a particular
adversarial perturbation.

Note that although xadv
t is also a function of wt, the derivative operator in (12) does not go through

π, an option consistent with the standard AT implementation as in Madry et al. (2019); Rice et al.
(2020).

We now present an upper bound for the UAS of AT.
Theorem 4.1. Suppose that f satisfies the conditions (6) and (7). If we run Aπ for T steps with step
sizes τt ≤ 1

β , there exists a constant c > 0 such that we have

δn(Aπ) ≤
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t (13)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We defer the proof of the theorem to Appendix A. With the upper bound of the UAS, an upper
bound for the mismatched generalization gap can be immediately derived according to (5) and (10)
as below:
Theorem 4.2. Under the condition of Theorem 4.1, for any c∗ ≥ 0, there exists a constant c > 0,
such that

GGn(J,Aπ) ≤ (LX qc∗(J) + LW)
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t + LXQ(c∗) · 2ϵ
√
d (14)

The bound in (14) also includes as a special case the “matched” generalization gap GGn(J,AJ),
where the perturbation used in adversarial training is identical to that defining performance metric,
as is typical in the adversarial training literature. Beyond the Lipschitz and smoothness conditions
of f , the expansiveness parameters of π and J turn out to also influence the generalization of AT
algorithms, as suggested in the generalization bound (14). This has been overlooked by the previous
stability analysis as in Xing et al. (2021); Xiao et al. (2022b); Wang et al. (2024).

The behavior of the bound in (14) clearly depends on Q(c∗). We now show that with additional
conditions, one can choose a c∗ to either remove the term containing Q(c∗) or make Q(c∗) also
vanish with n.

For example, if the perturbation J has bounded Lipschitz constant q∗, that is qc∗(J) ≤ q∗ < ∞ for
any c∗ ≥ 0 , then taking c∗ = 0 simply results in the following bound that vanishes as O(1/n).

GGn(J,Aπ) ≤ (LX q∗ + LW)
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t (15)

On the other hand, if the second moment of the random variable ∥A(S∗) − A(S′
∗)∥ has a fast

vanishing rate with n, one can choose c∗ to decay with n at a judicious choice of rate, pushing
Q(c∗) to vanish faster than 1/n, resulting in the bound in the following form

GGn(J,Aπ) ≤ (LX qc∗(J) + LW)
2LW

nβ

T∑
t=0

(2 + qc(π)ΓX /β)t + o(1/n) (16)

We defer the proof of (16) to Appendix A.

Convex loss and strongly convex loss When f is further assumed to be convex or strongly convex,
a tighter UAS upper bound can be attained.
Theorem 4.3. Suppose that f(·, x, y) is convex for any (x, y) ∈ X ×Y and satisfies the conditions
(6) and (7). If we run Aπ for T steps with step sizes τt ≤ 1

β , we have

δn(Aπ) ≤
2LW

nβ

T∑
t=0

(1 + qc(π)ΓX /β)t (17)

If we further assume f(·, x, y) is µ−strongly convex, we have

δn(Aπ) ≤
2LW

nβ

T∑
t=0

(
1− µ

2β
+ ΓX qc(π)/β

)t

(18)

As shown, performing AT using convex loss functions results in a tighter upper bound compared to
the non-convex functions. When f is strongly convex, the bound can be tightened again. In fact, in
the strongly convex case, if qc(π) is small enough, the UAS upper bound can be made independent
with the number of iteration T .
Corollary 4.4. Suppose that f is µ−strongly convex and satisfies the conditions (6) and (7). Sup-
pose that qc(π) < µ/(2ΓX) and we run Aπ for T steps with step sizes τt ≤ 1

β , we have

δn(Aπ) ≤
4LW

n(µ− 2qc(π)ΓX)
(19)

The proofs of Theorem 4.3 and Corollary 4.4 are deferred to Appendix A. Notably, when π is chosen
as the identity map, we have qc(π) = 0 and Aπ reduces to the standard SGD algorithm. In this case,
our UAS upper bounds matches the bounds in Hardt et al. (2016) up to constants.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Comparison with existing UAS bounds for AT The work in Farnia & Ozdaglar (2021) derives
UAS bounds for the AT-like algorithm (refer to as GDmax in their paper) under the assumption
that f is strongly concave in X . Our work goes beyond this restricted setting and derive UAS
bounds without this assumption. In Xing et al. (2021), the stability of AT is analyzed by treating
AT as standard SGD with an adversarial loss (i.e., f∗) and invoke the generic bound in Bassily
et al. (2020) for non-smooth losses, while assuming f∗ to be non-smooth. The source of the non-
smoothness is however not explained in their work; additionally since the bound in Bassily et al.
(2020) is developed for SGD with any non-smooth convex functions, it fails to explain the notable
difference between SGD and AT observed in practice. The UAS bounds proposed in Xiao et al.
(2022b), as well as the bound in Wang et al. (2024), include terms that do not vanish with increasing
sample size. Our bounds overcome this limitation, vanishing with the sample size.

5 REVISIT OF PGD-BASED AT

We now discuss the AT algorithm Aπ when π is taken as the PGD perturbation (Madry et al., 2019),
which we denote by πPGD. To begin, associated with any (x, y) and any weight parameter w, we
define and one-step PGD map Tx,y,w by

Tx,y,w(x
′) = ΠB∞(x,ϵ) [x

′ + λG (∇x′f(w, x′, y))] (20)

Here x′ is any point in Rd, G is a mapping from Rd to Rd, possibly taking various forms, which
we will specify momentarily, λ is another step size, and ΠB∞(x,ϵ) : Rd → B∞(x, ϵ) denotes the
projection onto the set B∞(x, ϵ), namely, ΠB∞(x,ϵ)(x

′) = argminx̃∈B∞(x,ϵ) ∥x̃−x′∥2. The K-step
PGD perturbation πPGD is then defined as the K-fold compositions of the (same) mapping Tx,y,w:

πPGD(x; y, w) := TK
x,y,w(x) :=

Tx,y,w ◦ Tx,y,w ◦ . . . Tx,y,w︸ ︷︷ ︸
K times

 (x) (21)

In the well-known PGD attack (Madry et al., 2019), the mapping G is taken as the sign function and
is applied element-wisely on the gradients(see Wong et al. (2020); Andriushchenko & Flammarion
(2020); Wang et al. (2021); Rice et al. (2020); Dong et al. (2021); Wu et al. (2020)), Theoretical
analyses of PGD (as in Deng et al. (2020); Fu & Wang (2023); Bubeck et al. (2015)) often considers
the “raw-gradient” version, namely taking G as the identity map. In our work, we will show that the
choice of G, this peculiar and largely overlooked building block in PGD, in fact has non-negligible
impact on the generalization performance of PGD-based AT.

To begin, we assume that the gradient ∇xf is Lipschitz, namely, that there exist positive constants
η and ΓW such that for any y ∈ Y , any x, x′ ∈ X and any w,w′ ∈ W

∥∇x′f(w′, x′, y)−∇xf(w, x, y)∥ ≤ η∥x− x′∥+ ΓW∥w − w′∥ (22)
Lemma 5.1. (Expansiveness of PGD) Suppose that f satisfies the condition (22) and the mapping
G is α− Lipschitz.

qc(π
PGD) ≤ min

(
K−1∑
i=0

µiν,
2
√
dϵ

c

)
(23)

where ν = λαΓW and µ = 1 + λαη.

We defer the proof to Appendix A.

For all J-losses for which qc(J) is uniformly bounded by q∗, plugging this bound to (15) immedi-
ately gives a generalization bound that vanishes as O(1/n). However, one of the most important
J-loss, the one defined using sign-PGD attack, fails to satisfy this boundedness condition and the
bound (15) does not apply.

To carefully study such a setting, let J sign−PGD := πsign−PGD, where πsign−PGD is πPGD with
function G taken as the sign function. We have the following results.
Corollary 5.2. Let J = J sign−PGD. Suppose that for any S and S′ with S ≃ S′, ∥A(S)−A(S′)∥ <
B with probability 1. Under the condition of Theorem 4.1, for any ρ > 0, there exists some N
(depending on ρ), such that when n > N ,

GGn(J,Aπ) < (1− δn(Aπ)/B)LX · 2ϵ
√
d+ ρ. (24)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The proof is left in Appendix A. Note that for J sign−PGD-loss and without additional information
on ∥A(S)−A(S′)∥, it appears difficult to arrive at a generalization bound that vanishes with n and
the bound given here converges to a constant. Although this may not mean that AT with J sign−PGD-
loss does not have a vanishing generalization error, it nonetheless reveals certain intrinsic difficulty
of generalization for this setting. Specifically, for large n, the perturbation radius (that defines the
J-loss) and the input dimension appear to fight against the UAS parameter δn(Aπ); when UAS pa-
rameter decreases – which pushes towards better generalization, ϵ

√
d is amplified more significantly

– causing poorer generalization.

To investigate how the expansiveness property affects generalization, we consider a smooth approx-
imation of the sign function by a tanh function, i.e., sgn(x) ≈ tanhγ(x) := tanh(γx). Notably, the
approximation error here vanishes with increase γ. By replacing sgn(x) in PGD AT with tanhγ(x),
we may control the expansiveness of πPGD.

Experiments We conduct experiment for PGD-AT when G is chosen as tanhγ as well as the
identity map. Specially, for πPGD with different choice of G, we refer to it as “sign-PGD” when
G(x) = sgn(x), as “tanhγ-PGD” when G(x) = tanhγ(x) and as “raw gradient (RG)-PGD” when
G(x) = x. In all the experiments, we primarily consider the J-loss defined in (1) as our evaluation
metric, with the loss function in f taken as the 0-1 loss and refer to this metric as J-(0-1) loss. We
mainly use J from {tanhγ-PGD, sign-PGD, J id}. The experiments are conducted on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and SVHN(Netzer et al., 2011). Our experimental setting is
elaborated in Appendix B, which follows from the setting in Rice et al. (2020).

100 101 102 103 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss J = J id (trainset)
J = J id (testset)
J = tanh PGD (trainset)
J = tanh PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

0 25 50 75 100 125 150 175 200
Training epochs of tanh PGD AT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss
 (

J=
ta

nh
PG

D)

= 10 (trainset)
= 10 (testset)
= 105 (trainset)
= 105 (testset)

(b)

0 25 50 75 100 125 150 175 200
Training epochs of RG-PGD AT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss J=RG-PGD (trainset)
J=RG-PGD (testset)
J = J id (trainset)
J = J id (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(c)

Figure 2: Experiments on CIFAR-10. (a) Models trained with tanhγ-PGD AT with different γ and
evaluated by J-(0-1) loss on the training and testing set. (b) J-(0-1) loss with J = tanhγ-PGD
measured along the training trajectories of two sets of tanhγ-PGD AT. (c) J-(0-1) loss measured
along the trajectory of the RG-PGD AT with different choice of J .

Figure 2 (a) presents the results of experiments conducted on CIFAR10, where the models are trained
using tanhγ-PGD AT (i.e., Aπ with π = tanhγ-PGD) with various γ values. Each model is trained
for 200 epochs and is evaluated using the J-(0-1) loss for J ∈ {tanhγ-PGD, sign-PGD, J id} (dis-
tinguished by colors), where γ matches the corresponding value in π. We use star-shaped dots and
circle-shaped dots to respectively denote the J-(0-1) loss measured on the training set and the testing
set. The gaps between each pairs of curves in the same color category then represents the gener-
alization gap of the trained models evaluated by different J-(0-1) loss. By decreasing γ in π, the
generalization gaps reduce, as shown by the narrowing gaps across all pairs of the curves in the same
color. The observed experimental results demonstrate that AT with less expansive π tends to achieve
a smaller generalization gap, consistent with the generalization bound of (14). Similar trends are
also observed on SVHN and CIFAR100 (see Appendix D Figure 4).

Due to the mismatch between π and J , the model trained by the algorithm Aπ may still have a large
empirical risk E[RS [Aπ(S), J]], which in turn results in a high population risk E[RD[Aπ(S), J]]
even if the generalization gap GGn(J,Aπ) is small. This is illustrated in Figure 2 (a) as the blue
star-shaped curve consistently stays higher than the green star-shaped curve with a notably large gap.
As γ increases, the tanhγ function gradually approaches the sign function, leading to an intersection
of the green and the blue curves. This indicates that sign-PGD is a stronger perturbation compare to
the tanhγ-PGD, as the model trained with tanhγ-PGD AT can still be vulnerable to the sign-PGD
attack on the training set.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The seminal work by Tsipras et al. (2018) found that AT can negatively impact standard generaliza-
tion. They constructed specific data models to demonstrate that achieving robustness and standard
generalization can be inherently conflicting, suggesting an unavoidable trade-off between these two
goals. This phenomenon has been extensively studied in subsequent research (Zhang et al., 2020;
2019; Yang et al., 2020; Raghunathan et al., 2020; Javanmard et al., 2020; Pang et al., 2022). Our
experimental results offer further insights into this phenomenon from the perspective of algorithmic
stability. Specifically, we find that the decline in standard generalization performance caused by AT
can be attributed to the poor expansiveness condition of the sign-PGD method employed in AT. As
shown by the trend of the red circle-shaped curve in Figure 2 (a), AT does not always harm standard
generalization; a reduction in the J id-(0-1) loss is observed as γ decreases. This suggests that the
trade-off identified by Tsipras et al. (2018) might be a side effect of the sign-PGD AT and is not
necessarily unavoidable.

Figure 2 (b) plots the J-(0-1) loss with J = π evaluated along the trajectory of the tanhγ-PGD
AT with γ = 10 (the solid curves) and γ = 105 (the dashed curves). The dashed curves exhibit
a phenomenon similar to robust overfitting observed in Rice et al. (2020): after the first learning
rate decay (the 100th epoch), as the training loss continuously decreases, the testing loss starts to
elevate. This phenomenon does not appear in the AT with γ = 10, as shown in the trend of the
solid curves. We conduct additional experiments for RG-PGD AT. As shown in Figure 2 (c), the
generalization gap remains small across all groups of J-(0-1) loss throughout the training. Similar
to the previous results, the model trained by this AT variant exhibits notable vulnerability to the
sign-PGD perturbation, as indicated by the consistently high values of the orange and blue curves.
These findings demonstrate that removing or altering the sign function in PGD leads to a non-
negligible influence on both robust generalization and resistance to perturbations on the training set.
This highlights the crucial role of the sign function in PGD-AT, which deserves a more careful and
further in-depth investigation.

6 REVISIT OF SIGN FUNCTION IN PGD

For simplicity, we write f(w, x, y) as f(x) hereafter. The sign-PGD perturbation can be
treated as an iterative optimization algorithm for solving the constrained optimization problem
maxx̂∈B∞(x,ϵ) f(x̂). It is related to the sign gradient methods, which has been used for different
purposes, such as for training neural networks (e.g., Riedmiller & Braun (1992)) and for gradient
compression (e.g., Bernstein et al. (2018)).

We now show that the sign gradient method can be viewed as a Steepest Descend (or ascend in
our context) Method (SDM) w.r.t a ∞−norm ball (e.g., see Chapter 9.4 in Boyd & Vandenberghe
(2004)). Specifically, for the loss f(xk) at the kth iteration in SDM, it updates xk by finding a
steepest ascend direction v within a small neighborhood of xk such that the loss f(xk+1) with
xk+1 = xk + v is locally maximized. Such a neighborhood can be chosen as a p−norm ball around
xk (i.e., Bp(x

k, λp)) with a small radius λp. Finding v introduces a new optimization problem:
maxv∈Bp(xk,λp) f(x

k+v), which is then approximately solved by replacing f(xk+v) with its linear
approximation around xk, namely, solving maxv∈Bp(xk,λp) f(x

k) +∇f(xk)T v which is equivalent
to solving maxv∈Bp(xk,λp) ∇f(xk)T v whose closed form solution is

v∗ = λpGp(∇f(xk)), where Gp(∇f(xk)) :=
sgn(∇f(xk))⊙ |∇f(xk)|q−1

∥∇f(xk)∥q−1
q

(25)

where we require 1/p + 1/q = 1. The operator ⊙ denotes the element-wise product. The closed
form (25) then gives the following updating rule of SDM as

xk+1 = xk + λGp(∇f(xk)) (26)
As a special case, when p = 1 with q = ∞, SMD turns into the coordinate gradient method
with G1(∇f(xk)) = sgn(maxi ∇f(xk)[i])ei and i = argmaxj |∇f(xk)[j]|, where ei denotes the
standard basis vector. When p = q = 2, we have G2(∇f(xk)) = ∇f(xk)/∥∇f(xk)∥2
When p = ∞ with q = 1, the mapping G∞ reduces to the sign function, indicating that the sign-
PGD is indeed a (projected) SDM w.r.t B∞(xk, λ∞). It is then curious to investigate the general-
ization performance of the model trained by AT using the Gp−PGD with p ̸= ∞.1. We conduct

1Note that in the Gp−PGD we still consider projecting onto B∞(x, ϵ) when p is taken other than ∞.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 1.1 1.3 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = Gp PGD (gap)
J = Gp PGD (trainset)
J = Gp PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

0 25 50 75 100 125 150 175 200
Training epochs of Gp PGD AT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss
 (

J=
G

p
PG

D)

p = 1 (trainset)
p = 1 (testset)
p = 2 (trainset)
p = 2 (testset)
p = 6 (trainset)
p = 6 (testset)

(b)

1 1.1 1.3 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = J id (trainset)
J = J id (testset)
J = Gp PGD (trainset)
J = Gp PGD (testset)

(c)

Figure 3: Experiments for Gp-PGD AT: (a) Model trained with various p values and evaluated by
J-(0-1) loss with J = π and J = sign-PGD. (b) Training curves of the AT with various p values.
(c) Standard generalization performance of the models trained by the AT, where the green curves are
copied from (a) for a clearer presentation.

experiments for the Gp-PGD-based AT following the same experimental setting as in the previous
section, except that λp is adjusted to maintain the same volume of the balls Bp(0, λp) across dif-
ferent p values (details in Appendix C). Figure 3 (a) presents the experimental results on CIFAR10
(results on the other datasets are in Appendix D Figure 5 and 6). The models are trained by Aπ

with π = Gp-PGD for various p and are evaluated by the J-(0-1) loss with J = π (green curves) as
well as J =sign-PGD (blue curves). The yellow curve represents the generalization gap for models
trained with Gp-PGD. As shown, a larger p tends to result in larger generalization gaps. Indeed,
nearly all Gp-PGD with p ≥ 1.3 cause notably overfitting in AT with generalization gaps exceeding
30%. The consistently higher position of blue star-shaped curves over the green star-shaped curve
also suggests that sign-PGD is the strongest perturbations among the Gp-PGD. Figure 3 (b) further
exhibits the overfitting in Gp-PGD AT by plotting training curves for p = {1, 2, 6}, where continued
training causes a rise of the testing errors (the blue and green curves), in contrast with the red curves,
which demonstrate a good generalization. Figure 3 (c) shows how the Gp-PGD AT affect standard
generalization where the red curves deontes the J-(0-1) loss with J = J id and the green curves are
copied from Figure 3 (a) for a clearer comparison. An enlarging standard generalization gap is also
observed in Gp-PGD AT with larger p.

The observed overfitting caused by the Gp−PGD family is potentially attributed to that nearly all
the members in {Gp : p ∈ [1,∞]} have a poor Lipschitzness, as shown in the following lemma,
which leads to a bad expansiveness of Gp-PGD.

Lemma 6.1. Consider the mapping Gp : Rd → Rd specified in (25) with p ∈ [1,∞]. Let I :=
{1, · · · , d}. If Gp is αp−Lipschitz over the set H(r) ⊆ Rd with H(r) := {x ∈ Rd : mini∈I |x[i]| ≥
r} for some r > 0, then we have

αp ≥ 1

rd
1
p

(27)

We defer the proof in Appendix A. This lower bound also implies that αp is unbounded in Rd, noting
that the lower bound approaches infinity as r → 0. Except for this extreme case, it is reasonable to
assume that the gradients ∇xf(x) lies in a set H(r) with sufficiently small r where all the members
in {Gp : p ∈ [1,∞]} have a bounded but large Lipschitz constant. Noteworthy, the lower bound
increases, as p ranges from 1 to infinity, suggesting that the increased generalization gap in Figure 3
(a) is attributed to the increasing expansiveness of Gp−PGD caused by the rise in αp.

7 LIMITATIONS

The main limitation of this work is that we have only developed an upper bound for the general-
ization of AT algorithms. Like all up-bound based theoretical results, such an approach is adequate
for understanding performance guarantees but may be inadequte to explain poor generalization.
Nonetheless, our experimental results have suggested that our upper bound may well explain robust
overfitting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
training. Advances in Neural Information Processing Systems, 33:16048–16059, 2020.

Idan Attias, Aryeh Kontorovich, and Yishay Mansour. Improved generalization bounds for robust
learning. CoRR, abs/1810.02180, 2018. URL http://arxiv.org/abs/1810.02180.

Pranjal Awasthi, Natalie Frank, and Mehryar Mohri. Adversarial learning guarantees for linear
hypotheses and neural networks. CoRR, abs/2004.13617, 2020. URL https://arxiv.org/
abs/2004.13617.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:
4381–4391, 2020.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2020.

Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative optimization
algorithms. arXiv preprint arXiv:1804.01619, 2018.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of evasion
adversaries, 2018.

Zhun Deng, Hangfeng He, Jiaoyang Huang, and Weijie Su. Towards understanding the dynamics
of the first-order adversaries. In International Conference on Machine Learning, pp. 2484–2493.
PMLR, 2020.

Dimitrios I. Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Lower bounds for adversar-
ially robust PAC learning. CoRR, abs/1906.05815, 2019. URL http://arxiv.org/abs/
1906.05815.

Yinpeng Dong, Ke Xu, Xiao Yang, Tianyu Pang, Zhijie Deng, Hang Su, and Jun Zhu. Exploring
memorization in adversarial training. arXiv preprint arXiv:2106.01606, 2021.

Farzan Farnia and Asuman Ozdaglar. Train simultaneously, generalize better: Stability of gradient-
based minimax learners. In International Conference on Machine Learning, pp. 3174–3185.
PMLR, 2021.

Shaopeng Fu and Di Wang. Theoretical analysis of robust overfitting for wide dnns: An ntk ap-
proach. arXiv preprint arXiv:2310.06112, 2023.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2015.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

11

http://arxiv.org/abs/1810.02180
https://arxiv.org/abs/2004.13617
https://arxiv.org/abs/2004.13617
http://arxiv.org/abs/1906.05815
http://arxiv.org/abs/1906.05815

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. CoRR, abs/1603.05027, 2016. URL http://arxiv.org/abs/1603.05027.

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training
for linear regression. In Conference on Learning Theory, pp. 2034–2078. PMLR, 2020.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via function transformation, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
International Conference on Machine Learning, pp. 2815–2824. PMLR, 2018.

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
gradient descent. In International Conference on Machine Learning, pp. 5809–5819. PMLR,
2020.

Yunwen Lei, Zhenhuan Yang, Tianbao Yang, and Yiming Ying. Stability and generalization of
stochastic gradient methods for minimax problems. In International Conference on Machine
Learning, pp. 6175–6186. PMLR, 2021.

Binghui Li, Jikai Jin, Han Zhong, John Hopcroft, and Liwei Wang. Why robust generalization
in deep learning is difficult: Perspective of expressive power. Advances in Neural Information
Processing Systems, 35:4370–4384, 2022.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss landscape
of adversarial training: Identifying challenges and how to overcome them. Advances in Neural
Information Processing Systems, 33:21476–21487, 2020.

Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, and Sabine Süsstrunk. On the impact of
hard adversarial instances on overfitting in adversarial training. arXiv preprint arXiv:2112.07324,
2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2019.

Omar Montasser, Steve Hanneke, and Nathan Srebro. VC classes are adversarially robustly learn-
able, but only improperly. CoRR, abs/1902.04217, 2019. URL http://arxiv.org/abs/
1902.04217.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng. Generalization bounds of sgld for non-
convex learning: Two theoretical viewpoints. In Conference on Learning Theory, pp. 605–638.
PMLR, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could
be reconcilable by (proper) definition. In International Conference on Machine Learning, pp.
17258–17277. PMLR, 2022.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein
Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local
linearization. Advances in neural information processing systems, 32, 2019.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang. Understanding
and mitigating the tradeoff between robustness and accuracy. arXiv preprint arXiv:2002.10716,
2020.

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning. CoRR,
abs/2002.11569, 2020. URL https://arxiv.org/abs/2002.11569.

Martin Riedmiller and Heinrich Braun. Rprop: a fast adaptive learning algorithm. In Proc. of the
Int. Symposium on Computer and Information Science VII, 1992.

12

http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1902.04217
http://arxiv.org/abs/1902.04217
https://arxiv.org/abs/2002.11569

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Ad-
versarially robust generalization requires more data. Advances in neural information processing
systems, 31, 2018.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Ad-
vances in neural information processing systems, 32, 2019.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial training: Increasing
local stability of supervised models through robust optimization. Neurocomputing, 307:195–204,
2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2014.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Yihan Wang, Shuang Liu, and Xiao-Shan Gao. Data-dependent stability analysis of adversarial
training. arXiv preprint arXiv:2401.03156, 2024.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
models further improve adversarial training. In International Conference on Machine Learning
(ICML), 2023.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

Dongxian Wu, Yisen Wang, and Shutao Xia. Revisiting loss landscape for adversarial robustness.
CoRR, abs/2004.05884, 2020. URL https://arxiv.org/abs/2004.05884.

Jiancong Xiao, Yanbo Fan, Ruoyu Sun, and Zhi-Quan Luo. Adversarial rademacher complexity of
deep neural networks, 2022a.

Jiancong Xiao, Yanbo Fan, Ruoyu Sun, Jue Wang, and Zhi-Quan Luo. Stability analysis and gen-
eralization bounds of adversarial training. Advances in Neural Information Processing Systems,
35:15446–15459, 2022b.

Yue Xing, Qifan Song, and Guang Cheng. On the algorithmic stability of adversarial training.
Advances in neural information processing systems, 34:26523–26535, 2021.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kamalika Chaud-
huri. Adversarial robustness through local lipschitzness. CoRR, abs/2003.02460, 2020. URL
https://arxiv.org/abs/2003.02460.

Dong Yin, Kannan Ramchandran, and Peter L. Bartlett. Rademacher complexity for adversarially
robust generalization. CoRR, abs/1810.11914, 2018. URL http://arxiv.org/abs/1810.
11914.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pp. 7472–7482. PMLR, 2019.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan S.
Kankanhalli. Attacks which do not kill training make adversarial learning stronger. CoRR,
abs/2002.11242, 2020. URL https://arxiv.org/abs/2002.11242.

13

https://arxiv.org/abs/2004.05884
https://arxiv.org/abs/2003.02460
http://arxiv.org/abs/1810.11914
http://arxiv.org/abs/1810.11914
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/2002.11242

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

Proof of Lemma 3.2

∆n(A, fJ) = sup
S≃S′

sup
(x,y)∈X×Y

EA[f (A(S), J(x; y,A(S)), y)− f (A(S′); J(x; y,A(S′)), y)]

(28)

= sup
(x,y)∈X×Y

EA[f (A(S∗), J(x; y,A(S∗)), y)− f (A(S′
∗); J(x; y,A(S

′
∗)), y)] (29)

≤ sup
(x,y)∈X×Y

EA[LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥+ LW∥A(S∗)−A(S′

∗)∥]

(30)

= sup
(x,y)∈X×Y

EALX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥+ LWEA∥A(S∗)−A(S′

∗)∥

(31)

≤ sup
(x,y)∈X×Y

EALX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥+ LW sup

S≃S′
EA∥A(S)−A(S′)∥

(32)

The inequality (30) is derived based on the condition (6). We now deal with the first term in (32).

For shorter notation, let D(S∗, S
′
∗) := ∥A(S∗) − A(S′

∗)∥. For any number c∗ ≥ 0, let
Q(S∗, S

′
∗; c

∗) := Pr(D(S∗, S
′
∗) < c∗). For any x, y we have

EA[LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥] (33)

=(1−Q(S∗, S
′
∗; c

∗))EA [LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥ | D(S∗, S

′
∗) ≥ c∗] (34)

+Q(S∗, S
′
∗; c

∗)EA[LX ∥J(x; y,A(S∗))− J(x; y,A(S′
∗))∥ | D(S∗, S

′
∗) < c∗] (35)

≤(1−Q(S∗, S
′
∗; c

∗))EA[qc∗(J)LXD(S∗, S
′
∗) | D(S∗, S

′
∗) ≥ c∗] +Q(S∗, S

′
∗; c

∗)LX 2ϵ
√
d (36)

≤qc∗(J)LXEAD(S∗, S
′
∗) +Q(S∗, S

′
∗; c

∗)LX 2ϵ
√
d (37)

≤qc∗(J)LX sup
S≃S′

EAD(S, S′) +Q(S∗, S
′
∗; c

∗)LX 2ϵ
√
d (38)

The derivation above start by splitting the expectation into two conditional expectations conditioned
on two complementary events (see the terms (34) and (35)) and then utilize the c−expansiveness
property of J as well as the condition that J(x, y, w) ∈ B∞(x, ϵ) to individually derive the first and
second terms in (36). Plug the final expression above back in (32), the lemma is proved. □

Proof of the Theorem 4.1 Consider the AT algorithm specified in (11) and (12). For two datasets
S and S′ differing in only one sample and respectively containing n samples, let {wt}Tt=1 and
{w′

t}Tt=1 respectively denote the sequences of model parameters generated by running AT on S and
S′ for T iterations. Let c denote the smallest non-zero value of ∥wt − w′

t∥ across t and across the
randomness of A when running AT algorithm A on S and S′. (Note that such a choice of c may be
overly pessimistic, but it suffices to obtain the desired rate of vanishing of the generalization bound
in this theorem). For arbitrary iteration t ∈ {1, · · · , T − 1}, we have

E∥wt+1 − w′
t+1∥

≤E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′
t
f (w′

t, π(x; y, wt), y)− w′
t∥

+ E∥τt∇w′
t
f (w′

t, π(x
′; y′, w′

t), y
′)− τt∇w′

t
f (w′

t, π(x; y, wt), y) ∥ (39)

Here the expectation is taken over all the randomness in wt and w′
t. We use (x, y) and (x′, y′)

respectively to denote the samples selected by the AT algorithm from S and S′ at the iteration t.
Inequality (39) is derived by adding and subtracting the term τt∇w′

t
f (w′

t, π(x; y, wt), y) and then
applying the triangle inequality. For the first term in (39), we have that

E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′
t
f (w′

t, π(x; y, wt), y)− w′
t∥

≤ E∥wt − w′
t∥+ τtβE∥wt − w′

t∥ (40)

by utilizing the triangle inequality and the condition (7). To deal with the second term in (39), we
consider that at each iteration, with probability 1 − 1/n the samples selected by AT respectively

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

from S and S′ are the same. We have

E∥τt∇w′
t
f (w′

t, π(x
′; y′, w′

t), y
′)− τt∇w′

t
f (w′

t, π(x; y, wt), y) ∥

≤
(
1− 1

n

)
τtΓXE∥π(x; y, w′

t)− π(x; y, wt)∥+
2τtLW

n
(41)

≤
(
1− 1

n

)
τtΓX qc(π)E∥wt − w′

t∥+
2τtLW

n
(42)

The first term in (41) and (43) make use of the condition (7) and then the expansiveness condition
of π. Since f is LW− Lipschitz w.r.t W , we have ∥∇wf(w;x, y)∥ ≤ LW for ∀x, y, w. The second
term in (41) then follows.

Putting together and considering the step sizes τt ≤ 1
β , we have

E∥wt+1 − w′
t+1∥

≤ (1 + βτt + (1− 1/n)ΓX qc(π)τt)E∥wt − w′
t∥+

2τtLW

n
(43)

≤ (1 + βτt + ΓX qc(π)τt)E∥wt − w′
t∥+

2τtLW

n
(44)

≤ (2 + ΓX qc(π)/β)E∥wt − w′
t∥+

2LW

nβ
(45)

Unravelling the recursion, we have

E∥wT − w′
T ∥ ≤ 2LW

nβ

T∑
t=0

ζt (46)

where we take ζ = 2 + ΓX qc(π)/β. □

Proof of (16) Let a > 2 be a constant. For shorter notation let Z = ∥Aπ(S∗) − Aπ(S
′
∗)∥. We

will show that if the second moment EZ2 = O(1
na) , we can take c∗ = EZ − t with t = Ω(1

nb) and
b ∈ (1, a/2), such that the probability Q(c∗) decay at the rate of 1

na−2b . This is due to that

Q(c∗) = Pr [Z ≤ c∗] (47)
= Pr [Z ≤ EZ − t] (48)
≤ Pr [t ≤ |Z − EZ|] (49)

≤ Var(Z)

t2
(50)

≤ EZ2

t2
(51)

≤ O
(

1/na

1/n2b

)
= O

(
1

na−2b

)
(52)

where the inequality (50) is based on the Chebyshev’s inequality. Note that such a choice of t will
guarantee that c∗ > 0 such that the derivation above is nontrivial. This is because Theorem 4.1
implies that EZ ≤ δn(Aπ) = O(1n) and therefore c∗ = O(1n − 1

nb). Taking b > 1 guarantees that
c∗ > 0.

Proof of the Theorem 4.3 and Corollary 4.4 The proof is based on a slight modification of the
proof in Theorem 4.1. We start from the inequality (39). For the first term in (39), since that the
loss function f is convex and τt ≤ 1/β < 2/β, according to Lemma 3.7.2 in Hardt et al. (2016), we
have

E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′
t
f (w′

t, π(x; y, wt), y)− w′
t∥

≤ E∥wt − w′
t∥ (53)

When f is further assumed to be µ− strongly convex, we have that µ ≤ β since f is also β−smooth,
implying that τt ≤ 1

β ≤ 2
β+µ . According to Lemma 3.7.3 in Hardt et al. (2016), we have inequality

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(54) as
E∥wt − τt∇wtf (wt, π(x; y, wt), y) + τt∇w′

t
f (w′

t, π(x; y, wt), y)− w′
t∥

≤
(
1− βµτt

β + µ

)
E∥wt − w′

t∥ (54)

≤
(
1− 1

2
τtµ

)
E∥wt − w′

t∥ (55)

In fact, since µ ≤ β, we also have 1 ≤ 2β
β+µ and thus τtµ ≤ 2τtµβ

β+µ with τtµ ≤ 1. The inequality
(54) can be further simplified as (55).

The second term in (39) follows the same derivation as in the proof of Theorem 4.1. Putting together,
when f is convex, we have

E∥wt+1 − w′
t+1∥

≤ (1 + ΓX qc(π)τt)E∥wt − w′
t∥+

2τtLW

n
(56)

≤ (1 + ΓX qc(π)/β)E∥wt − w′
t∥+

2LW

nβ
(57)

when f is µ− strongly convex, we have
E∥wt+1 − w′

t+1∥

≤
(
1− 1

2
τtµ+ ΓX qc(π)τt

)
E∥wt − w′

t∥+
2τtLW

n
(58)

≤
(
1− µ

2β
+ ΓX qc(π)/β

)
E∥wt − w′

t∥+
2LW

nβ
(59)

Unravelling the recursion, we have

E∥wT − w′
T ∥ ≤ 2LW

nβ

T∑
t=0

ζt (60)

with ζ = 1 + ΓX qc(π)/β when f is convex and ζ = 1− µ
2β + ΓX qc(π)/β when f is µ− strongly

convex. For the strongly convex case, if we let qc(π) < µ
2ΓX

, we have ζ < 1. In this case, the

geometric series
∑T

t=0 ζ
t converges as T → ∞ and entails a closed form. The bound in (60) can

therefore be further simplified as

E∥wT − w′
T ∥ ≤ 2LW

nβ

T∑
t=0

ζt

≤ 2LW

nβ

∞∑
t=0

ζt (61)

=
2LW

nβ

1

1− ζ
(62)

=
4LW

n(µ− 2qc(π)ΓX)
(63)

This derives the bound in Corollary 4.4. □

Proof of Lemma 5.1 To establish the proof, we first discuss the expansive property of the one step
PGD perturbation T . For arbitrary x̂ ∈ X , we have

∥Tx,y(x̂;w)− Tx,y(x̂;w
′)∥ (64)

=
∥∥ΠB∞(x,ϵ) [x̂+ λG (∇x̂f(w, x̂, y))]−ΠB∞(x,ϵ) [x̂+ λG (∇x̂f(w

′, x̂, y))]
∥∥ (65)

≤λ ∥G (∇x̂f(w, x̂, y))−G (∇x̂f(w
′, x̂, y))∥ (66)

≤λα ∥∇x̂f(w, x̂, y)−∇x̂f(w
′, x̂, y)∥ (67)

≤λαΓW∥w − w′∥ (68)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The inequality (66) is due to that the projection operation ΠB∞(x,ϵ) is 1-expansive. The inequalities
(67) and (68) are derived based on the Lipschitz condition of G and ∇xf .

For fixed w ∈ W , we have for arbitrary x′, x′′ ∈ X

∥Tx,y(x
′;w)− Tx,y(x

′′;w)∥ (69)

=
∥∥ΠB∞(x,ϵ) [x

′ + λG (∇x′f(w, x′, y))]−ΠB∞(x,ϵ) [x
′′ + λG (∇x′′f(w, x′′, y))]

∥∥ (70)

≤∥x′ + λG (∇x′f(w, x′, y))− x′′ + λG (∇x′′f(w, x′′, y))∥ (71)

≤∥x′ − x′′∥+ λα ∥∇x′f(w, x′, y)−∇x′′f(w, x′′, y)∥ (72)

≤(1 + λαη)∥x′ − x′′∥ (73)

The derivation here follows the similar idea as above, utilizing the 1-expansiveness condition of
ΠB∞(x,ϵ) as well as the Lipschitz condition of G and the smoothness condition of f w.r.t X .

We now derive the upper bound for the expansiveness of πPGD. With a little abuse of notation,
let xK = TK

x,y(x;w) and similarly x′
K = TK

x,y(x;w
′). For shorter notation, let ν = λαΓW and

µ = 1 + λαη

∥πPGD(x; y, w)− πPGD(x; y, w′)∥ (74)

=∥TK
x,y(x;w)− TK

x,y(x;w
′)∥ (75)

=∥Tx,y(xK−1;w)− Tx,y(x
′
K−1;w

′)∥ (76)

≤∥Tx,y(xK−1;w)− Tx,y(xK−1;w
′)∥+ ∥Tx,y(xK−1;w

′)− Tx,y(x
′
K−1;w

′)∥ (77)

≤π∥w − w′∥+ µ∥xK−1 − x′
K−1∥ (78)

=π∥w − w′∥+ µ∥Tx,y(xK−2;w)− Tx,y(x
′
K−2;w

′)∥ (79)

≤
K−1∑
i=0

µiν∥w − w′∥ (80)

Note that the bound (80) holds for any choice of w,w′. On the other hand, using the condition that
Tx,y(x̂;w) ∈ B∞(x, ϵ), we can derive that for any w,w′ ∈ W with ∥w − w′∥ > c,

∥Tx,y(x̂;w)− Tx,y(x̂;w
′)∥ ≤ 2

√
dϵ =

2
√
dϵ

∥w − w′∥
∥w − w′∥ ≤ 2

√
dϵ

c
∥w − w′∥ (81)

Putting together, we have

qc(π
PGD) ≤ min

(
K−1∑
i=0

µiν,
2
√
dϵ

c

)
(82)

This completes the proof. □

Proof of Corollary 5.2 We first establish the following result.

For any non-negative random variable Z bounded below B and any c∗ > 0,

Pr[Z ≤ c∗] ≤ B − E(Z)

B − c∗
(83)

This result simply follows from Pr[Z ≤ c∗] = Pr[B − Z ≥ B − c∗] and applying the Markov
Inequality to random variable B − Z.

Now let Z = A(S) − A(S′) and c∗ = Bn−1/2 in Theorem 4.2. The second term in bound
of Theorem 4.2 then reduces to

(
1− supS≃S′ E∥A(S)−A(S′)∥

B(1−n−1/2)

)
LX · 2ϵ

√
d, which converges to(

1− supS≃S′ E∥A(S)−A(S′)∥
B

)
LX · 2ϵ

√
d with n. It can be verified that the first term in the bound

of Theorem 4.2 vanishes with n (as n−1/2). The corollary then follows. □.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof of Lemma 6.1 The proof is established by noticing that all members in the set H̃(r) :=

{x ∈ Rd : |x[i]| = r, ∀i ∈ I} achieves 1/(rd
1
p)−Lipschitz and thus the Lipschitz constant over

H(r) is greater than it. Specifically, for any x, x̂ ∈ H̃(r) with x ̸= x̂, let I− := {i ∈ I : sgn(x[i]) ̸=
sgn(x̂[i])} and I+ := I − I−. We have

∥G(x)−G(x̂)∥2 (84)

=

∥∥∥∥ sgn(x)⊙ |x|q−1

∥x∥q−1
q

− sgn(x̂)⊙ |x̂|q−1

∥x̂∥q−1
q

∥∥∥∥
2

(85)

=

(
d∑

i=1

∣∣∣∣ sgn(x[i])|x[i]|q−1

∥x∥q−1
q

− sgn(x̂[i])|x̂[i]|q−1

∥x̂∥q−1
q

∣∣∣∣2
) 1

2

(86)

=

∑
j∈I+

∣∣∣∣ sgn(x[j])|x[j]|q−1

∥x∥q−1
q

− sgn(x̂[j])|x̂[j]|q−1

∥x̂∥q−1
q

∣∣∣∣2 + ∑
k∈I−

∣∣∣∣ sgn(x[k])|x[k]|q−1

∥x∥q−1
q

− sgn(x̂[k])|x̂[k]|q−1

∥x̂∥q−1
q

∣∣∣∣2
 1

2

(87)

=

∑
k∈I−

∣∣∣∣ 2rq−1

rq−1d
1
p

∣∣∣∣2
 1

2

(88)

=
√
|I−|

2

d
1
p

(89)

where |I−| denotes the cardinality of the set I−. The equality (88) is derived by noting that the first
term in (87) is zero since |x[j]| = |x̂[j]| and sgn(|x[j]|) = sgn(|x̂[j]|) for each j ∈ I+ and noting
that ∥x∥q = rd

1
q for any x ∈ H̃(r). The power term q−1

q is replaced by 1
p since 1/q+1/p = 1. We

also have

∥x− x̂∥2 (90)

=

(
d∑

i=1

|x[i]− x̂[i]|2
) 1

2

(91)

=

∑
j∈I+

|x[j]− x̂[j]|2 +
∑
k∈I−

|x[k]− x̂[k]|2
 1

2

(92)

=

∑
k∈I−

|2r|2
 1

2

(93)

=2r
√
|I−| (94)

Putting together, we have that for any x, x̂ ∈ H̃(r) with x ̸= x̂,

∥G(x)−G(x̂)∥2
∥x− x̂∥2

=
1

rd
1
p

≤ sup
x′,x′′∈Q(r)

x′ ̸=x′′

∥G(x′)−G(x′′)∥2
∥x′ − x′′∥2

= αp (95)

This completes the proof. □

B HYPER-PARAMETER SETTINGS FOR THE EXPERIMENTS

In our experiments, we follow the settings in Rice et al. (2020): The perturbation radius is set to
be ϵ = 8/255 w.r.t the ∞−norm for the three datasets. The pre-activation ResNet 18 (PRN-18)
model (He et al., 2016) is used for CIFAR-10 and SVHN. The Wide ResNet 34 (WRN-34) model
(Zagoruyko & Komodakis, 2016) is used for CIFAR-100. We set K = 10 for all the PGD variants
with λ = 2/255 on CIFAR-10 and CIFAR-100, and set λ = 1/255 for SVHN. The initial learning

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

rate of AT is set to be 0.1 for CIFAR-10 and CIFAR-100 and set to be 0.01 for SVHN. The learning
rate is decayed by 0.1 at the 100th and the 150th epoch of the training. The batch size is set to be 128
and a weight decay of 5 × 10−4 is used for all the experiments. The experiments are conducted on
our internal GPU clusters. Training PRN-18 on CIFAR-10 and SVHN for 200 epochs spends around
18 hours with two NVIDIA V100 GPUs, and training WRN-34 on CIFAR-100 requires around three
days to complete with the same computing resources.

C COMPUTING λp

The volume of Bp(0, λp) is computed by

vol (Bp(0, λp)) =

(
2Γ
(

1
p + 1

))d
Γ
(

d
p + 1

) λd
p (96)

Here Γ(·) denotes the Euler’s gamma function. For p other than ∞, to make vol (Bp(0, λp)) =
vol (B∞(0, λ∞)), we have

λp = exp

{
1

d
ln Γ(

d

p
+ 1) + ln

λ∞

Γ(1p + 1)

}
(97)

In the experiments, the value of λ∞ (i.e., the step size for the sign-PGD) is set to be the same as in
Section 5 and values for other λp is computed from (97).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D OMITTED FIGURES

100 101 102 103 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = J id (trainset)
J = J id (testset)
J = tanh PGD (trainset)
J = tanh PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

100 101 102 103 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss J = J id (trainset)
J = J id (testset)
J = tanh PGD (trainset)
J = tanh PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(b)

Figure 4: Experiments in Figure 2 reproduced on SVHN and CIFAR-100.

1 1.1 1.3 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = Gp PGD (gap)
J = Gp PGD (trainset)
J = Gp PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

1 1.1 1.3 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = J id (trainset)
J = J id (testset)
J = Gp PGD (trainset)
J = Gp PGD (testset)

(b)

Figure 5: Experiments in Figure 3 reproduced on SVHN.

1 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss J = Gp PGD (gap)
J = Gp PGD (trainset)
J = Gp PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

1 1.5 2 4 6 8
p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = J id (trainset)
J = J id (testset)
J = Gp PGD (trainset)
J = Gp PGD (testset)

(b)

Figure 6: Experiments in Figure 3 reproduced on CIFAR-100.

E ADDITIONAL RESULTS FOR REBUTTAL

This section has been temporarily added to present the experimental results or additional theoretical
analysis requested by the reviewers during the rebuttal period. We will integrate selected results into
the final version of the paper at the end of the discussion period.

E.1 FOR REVIEWER E9T9

Regarding your question “Have you tried larger γs? γ = 105 seems to be very far from sign-PGD
in Figure 2 (b)”, we would like to clarify that γ = 105 is indeed sufficiently larger for the tanhγ
function to closely approximate the sign function.

To illustrate this, we have reproduced Figure 2 (b) as Figure 7 (a), including the training trajectory
of sign-PGD AT (plotted as yellow and blue dotted curves). It is observed that the dotted curves

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

almost entirely overlap with the dashed curves, indicating that the behavior of sign-PGD AT is
almost identical to that of the tanhγ-PGD AT with γ = 105.

Furthermore, in Figure 7 (b), we compare the sign function with the tanhγ function for γ = 10 and
105. The plot clearly demonstrates that when γ = 105, the tanhγ function closely approximate the
sign function.

0 25 50 75 100 125 150 175 200
Training epochs of tanh and sign PGD AT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss
 (

J=
)

= 10 (trainset)
= 10 (testset)
= 105 (trainset)
= 105 (testset)

sign-PGD (trainset)
sign-PGD (testset)

(a)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Fu
nc

tio
n

va
lu

e

Comparison of tanh and sign(x)
 Values and sign(x)

= 10
= 100000.0

sign(x)

(b)

Figure 7: (a) Reproduction of Figure 2 where we include the trajectory of sign-PGD AT as compar-
ison. (b) Comparison of the tanhγ function and the sign function.

Regarding your next question “Can you construct an experiment where the dependence on n is
displayed?”, we have conducted AT experiments using various fraction of the training set from
CIFAR-10 and SVHN. The experimental results are presented in Figure 8 (a) and (b).

For each dataset, we perform tanhγ−PGD AT with γ = 10 and 1000. The generalization gaps for
each AT setups are measured by the J-(0-1) loss, where J is taken as the same tanhγ−PGD attack
used during the respective training processes. The results clearly show that the generalization gap
decreases as the size of the training data increases.

Additionally, we oberve that tanhγ−PGD AT with smaller γ consistently achieves smaller gener-
alization gaps, as evidenced by the red curve being consistently lower than the green curve in each
figure. These results align well with our theoretical analysis.

1000 2000 5000 10000 20000 50000
Number of training samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ge
ne

ra
liz

at
io

n
ga

ps

= 10
= 1000

(a) CIFAR-10

2000 5000 10000 20000 40000 73257
Number of training samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ge
ne

ra
liz

at
io

n
ga

ps

= 10
= 1000

(b) SVHN

Figure 8: Generalization gaps of tanhγ−PGD AT using different number of training data for
CIFAR-10 and SVHN.

E.2 FOR REVIEWER FPBQ

Reply to concern (1) Regarding your concern “While the paper considers the algorithmic sta-
bility of PGD attack, a missing component is the convergence of PGD attack...”, we here present a
convergence analysis for the PGD attacks defined in (21).

Specifically, we consider PGD attacks with the mapping G that satisfies the following condition:
∇xf(w, x, y)

TG(∇xf(w, x, y)) > 0 (98)
for any (x, y) ∈ X × Y and any w ∈ W . Note that this condition simply requires the direction of
the modified gradient G(∇xf(w, x, y)) to align near the direction of the original gradient, within 90
degree angle.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Lemma E.1 (Convergence of PGD). Suppose that f(w, x, y) satisfies the condition (22). Let x∗ =
J∗(x; y, w) and suppose that ∇xf(w, x

∗, y) = 0. Suppose ∥G(∇xf(w, x, y))∥2 ≤ C for any
(w, x, y). For any mapping G that satisfies the condition (98), performing the K−step PGD (21)
with step size λ = 1√

K
results in

f(w, x∗, y)− 1

K

K∑
k=1

f(w, xk, y) ≤ (2C + d∗)

2K
+

d∗(η2 + η + 1)

2
(99)

where d∗ = max
k∈{1,··· ,K}

∥xk − x∗∥2 and xk := T k
x,y(x;w) denotes the perturbed instance generated

by the k−step PGD with k ≤ K.

We defer the proof of this lemma to the subsection E.2.1. The lemma upper bounds the difference
between the maximal loss f(w, x∗, y) and the average of the losses achieved by K-step PGD (av-
eraged over the K steps). If the achieved loss f(w, xk, y) increases over the K steps, the bound
becomes

f(w, x∗, y)− f(w, xK , y) ≤ (2C + d∗)

2K
+

d∗(η2 + η + 1)

2

Notably this upper bound decays with K, but converges to a positive constant. This should come as
no surprise since without stronger conditions or knowledge on f (e.g., concavity), it is hopeless to
have PGD attacks to reach the true maximal loss value f(w, x∗, y).

If we further assume loss functions f(w, x, y) to be concave in x and consider the “raw-gradient
(RG)”-PGD where the mapping G is taken as the identity map, we have the following convergence
upper bound for PGD by directly adapting the Theorem 3.7 in Bubeck et al. (2015):
Lemma E.2 (Convergence of RG-PGD with concave functions). Suppose that f(w, x, y) satisfies
the condition (22) and is concave in x. Let the mapping G in (20) be the identity map. Then the K−
step PGD (21) with step size λ = 1

η satisfies

f(w, x∗, y)− f(w, xK , y) ≤ 3η∥x− x∗∥2 + f(w, x∗, y)− f(w, x, y)

K
(100)

where x∗ = J∗(x; y, w) and xK := TK
x,y(x;w).

The bound obviously vanishes with K.

Trade-off between robustness and generalization We here rewrite the notation in (21) as

πPGD
K (x; y, w) := TK

x,y(x;w) (101)

to emphasize its dependency on K in the PGD attack.

We define the (expected) robustness gap (on training set) as

RG(J∗, π) := ES,A [RS [Aπ(S), J
∗]−RS [Aπ(S), π]] (102)

This term characterizes the robustness of a model on the training set against J∗ when it is trained by
AT using some other adversarial perturbation π.

For shorter notation, let w = Aπ(S) and consider RG(J∗, πPGD
K). We have

RG(J∗, πPGD
K)

=ES,A

[
1

n

n∑
i=1

f(w, J∗(xi; yi, w), yi)− f(w, πPGD
K (xi; yi, w), yi)

]
(103)

≤ sup
(x,y,w)

[
f(w, J∗(x; y, w), y)− f(w, πPGD

K (x; y, w), y)
]

(104)

= sup
(x,y,w)

[
f(w, x∗, y)− f(w, xK , y)

]
(105)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where x∗ = J∗(x; y, w) and xK := πPGD
K (x; y, w). Since the results in Lemma E.1 and E.2

apply for arbitrary choice of (w, x, y), they suggest that a smaller robustness gap RG(J∗, π) can be
achieved for πPGD

K with larger K.

However, Lemma 5.1 on the other hand suggests that πPGD
K with smaller K tends to achieve

a smaller expansiveness parameter qc(π
PGD
K) and therefore the corresponding generalization gap

GGn(J
∗, Aπ) with π = πPGD

K tends to be smaller for smaller K.

In summary, the theoretical analysis in this section characterizes the potential trade-off between
generalization and the “effectiveness of PGD attack” (measured by RG(J∗, πPGD

K)) as was brought
up in your comments – We thank you for this pointer, which has helped improve this paper.

Reply to concern (3) Regarding your concern that “ Please consider using some SOTA methods
from RobustBench, e.g., leveraging synthetic data in adv training, to conduct the experiments.”, we
have conducted additional experiments on the CIFAR-10 dataset following the AT framework in
Wang et al. (2023) where the model is trained to minimize the TRADES loss proposed in Zhang
et al. (2019) and an additional 1M synthetic dataset is used in the training. We will simply call the
AT method used in Wang et al. (2023) and Zhang et al. (2019) as TRADES.

For completeness, we here briefly introduce the TRADES method.

TRADES At each iteration of TRADES, it first draws a training sample (xit , yit) ∈ S and then
updates the model parameter wt according to

xadv
t = π(xit ; yit , wt) (106)

wt+1 = wt − τt∇wtF (wt, xit , x
adv
t , yit) (107)

where the loss function F is the TRADES loss, consisting of the standard loss and a KL-divergence
regularization term:

F (w, x, x′, y) := f(w, x, y) + βKL(hw(x)||hw(x
′)) (108)

where h : X → R|Y| is a classifier with parameter w. Here we consider f(w, x, y) in the form of
f(w, x, y) = ℓ(hw(x), y) where ℓ is the cross-entropy loss. The regularization coefficient β > 0 is
a hyper-parameter.

We consider the following variant of the one-step PGD mapping, defined as

T̃x,w(x
′) = ΠB∞(x,ϵ) [x

′ + λG (∇x′KL(hw(x)||hw(x
′)))] (109)

where the only difference with the PGD attack in (20) is that the perturbation is generated according
to the KL divergence term in (108) rather than the standard loss f . Note that using the KL divergence
loss makes the perturbation mapping unrelated to the label y.

Its K− step variant π̃PGD is then

π̃PGD(x;w) := T̃K
x,w(x) (110)

In TRADES, the perturbation in (106) is taken as π̃PGD rather than πPGD, and the mapping G in
(109) is taken as the sign function as in Wang et al. (2023).

We conduct experiments to observe if replacing the sign function with the tanhγ function would
affect the generalization performance of TRADES. We follow the same setup and hyper-parameter
settings in Wang et al. (2023) and perform TRADES with G = tanhγ for γ = {1, 10, 100, 103, 105}.
Specially, we call this type of TRADES as the tanhγ−TRADES.

Models in each experiments are trained for 200 epochs. The trained models are then evaluated by
the J-(0-1) loss with J taken from {tanhγ-PGD, sign-PGD, J id}. We would like to note that when
evaluating the model, we use the PGD attacks defined in (20) rather than (109) for the J-(0-1) loss.

Experimental results are presented in Figure 9 (a) where a phenomenon similar to that in Figure 2
(a) is observed. When model is trained by tanhγ-TRADES with smaller γ, reduced generalization
gaps are observed (indicated by the reduced gaps between the dot-shaped and star-shaped curves
within each color category).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

100 101 102 103 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss

J = J id (trainset)
J = J id (testset)
J = tanh PGD (trainset)
J = tanh PGD (testset)
J=sign-PGD (trainset)
J=sign-PGD (testset)

(a)

0 25 50 75 100 125 150 175 200
Training epochs of tanh AT (TRADES)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
 (0

-1
)lo

ss
 (

J=
ta

nh
PG

D)

= 10 (trainset)
= 10 (testset)
= 103 (trainset)
= 103 (testset)

(b)

Figure 9: (a) Models trained with tanhγ-TRADES for different γ and evaluated by the J-(0-1) loss
on the training and testing set. (b) J-(0-1) loss with J = tanhγ-PGD measured along the training
trajectories of two sets of tanhγ-TRADES.

Comparing Figure 2 (a) with 9 (a), one may notice that for larger γ, the generalization gaps of
tanhγ-TRADES appears to be smaller than those of tanhγ-PGD-AT. This difference is likely due
to the additional 1M synthetic data used in tanhγ-TRADES while our PGD-AT experiments only
utilize the original training dataset which contains far less number of training examples.

We have also measured the J-(0-1) loss with J taken as the tanhγ-PGD along the training trajec-
tories of tanhγ-TRADES on both the training and the testing sets. The results, shown in Figure 9
(b), use different colors to distinguish tanhγ-TRADES with different γ values. Solid and dashed
curves respectively represent the J-(0-1) loss on the training and the testing set. It shows that the
solid curves drops faster than the dashed curves, indicating that J-(0-1) loss decreases more rapidly
for the tanhγ-TRADES with smaller γ.

In summary, the experimental results indicate that, similar to PGD-AT, the choice of perturbation
operators in TRADES also affects its training and generalization performance. On the other hand, we
also note that the current analysis in this paper does not fully address the impact of the sign function
in other adversarial training frameworks, particularly those involving delicate regularization terms,
such TRADES. The key difference between TRADES and our set up is in the form of perturbation:
our set up restricts the perturbation to a transformation of the gradient of the standard loss, whereas in
TRADES alike approaches, the perturbation is a transformation of the gradient of other quantities.
Nevertheless, we expect that the general methodology presented in this paper can be adapted to
broader families of adversarial training frameworks. – We sincerely thank the reviewer for bringing
up this question, and we will make an effort in that direction.

E.2.1 PROOF OF LEMMA E.1

Since the following proof does not depend on the choice of w and y, for simplicity we will write
f(w, x, y) as f(x) and ∇xf(w, x, y) as ∇f(x) hereafter.

To establish the proof of Lemma E.1, we first present and prove the following intermediate result.
Lemma E.3. Suppose that the gradients of f(x) satisfies the Lipschitz condition (22) and the map-
ping G in the PGD attack satisfies the condition (98). We have

f(x′)−f(x)−λG(∇f(x))T (x′−x) ≤ η + 1

2
∥x′−x∥2+ 1

2
∥∇f(x)∥2+ λ2

2
∥G(∇f(x))∥2 (111)

for any x′ and x.

Proof. By the fundamental theorem of calculus, we have

f(x′)− f(x) =

∫ 1

0

d

dt
f(x+ t(x′ − x))dt (112)

=

∫ 1

0

∇f(x+ t(x′ − x))T (x′ − x)dt (113)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We therefore have

f(x′)− f(x)− λG(∇f(x))T (x′ − x)

=

∫ 1

0

[∇f(x+ t(x′ − x))− λG(∇f(x))]
T
(x′ − x)dt (114)

=

∫ 1

0

[∇f(x+ t(x′ − x))−∇f(x)]
T
(x′ − x)dt+ [∇f(x)− λG(∇f(x))]

T
(x′ − x) (115)

For the first term in (115), we have∫ 1

0

[∇f(x+ t(x′ − x))−∇f(x)]
T
(x′ − x)dt

≤
∫ 1

0

∥∇f(x+ t(x′ − x))−∇f(x)∥∥x′ − x∥dt (116)

≤
∫ 1

0

η∥t(x′ − x)∥∥x′ − x∥dt (117)

=
η

2
∥x′ − x∥2 (118)

where inequality (116) follows from the Cauchy−Schwarz inequality and inequality (117) is due to
that the gradient of f is η−Lipschitz (i.e., condition (22)).

For the second term in (115), we have
[∇f(x)− λG(∇f(x))]

T
(x′ − x)

≤1

2
∥∇f(x)− λG(∇f(x))∥2 + 1

2
∥x′ − x∥2 (119)

=
1

2
∥∇f(x)∥2 + 1

2
∥λG(∇f(x))∥2 − 2λG(∇f(x))T∇f(x) +

1

2
∥x′ − x∥2 (120)

≤1

2
∥∇f(x)∥2 + 1

2
∥λG(∇f(x))∥2 + 1

2
∥x′ − x∥2 (121)

Inequality (119) is due to that for any vector a and b we have aT b ≤ 1
2∥a∥

2 + 1
2∥b∥

2. Inequality
(121) is derived based on the condition (98) that G(∇f(x))T∇f(x) > 0.

The proof is completed by combining (118) and (121) together.

We now present the proof for Lemma E.1.

Proof. For simplicity, we write f(w, x∗, y) as f(x∗). Let xk := T k
x,y(x;w). Additionally, let

x̃k+1 = xk + λG(∇f(xk)) and we therefore have xk+1 = ΠB∞(x,ϵ)(x̃
k+1).

According to Lemma E.3, we have that for any k ≤ K

f(x∗)− f(xk)

≤λG(∇f(xk))T (x∗ − xk) +
η + 1

2
∥x∗ − xk∥2 + 1

2
∥∇f(xk)∥2 + λ2

2
∥G(∇f(xk))∥2 (122)

For the first term in (122), we have that
λG(∇f(xk))T (x∗ − xk)

=(x̃k+1 − xk)T (x∗ − xk) (123)

=
1

2

(
∥x̃k+1 − xk∥2 + ∥x∗ − xk∥2 − ∥x̃k+1 − x∗∥2

)
(124)

≤1

2

(
∥x̃k+1 − xk∥2 + ∥x∗ − xk∥2 − ∥xk+1 − x∗∥2

)
(125)

=
1

2

(
∥λG(∇f(xk))∥2 + ∥x∗ − xk∥2 − ∥xk+1 − x∗∥2

)
(126)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where equality (124) is due to that for any vector a and b, we have 2aT b = ∥a∥2 + ∥b∥2 − ∥a −
b∥2. Inequality (125) follows from the fact that since x∗ ∈ B∞(x, ϵ), we have ∥x̃k+1 − x∗∥2 ≤
∥ΠB∞(x,ϵ)(x̃

k+1)− x∗∥2 = ∥xk+1 − x∗∥2

For the other terms in (122), we have that

η + 1

2
∥x∗ − xk∥2 + 1

2
∥∇f(xk)∥2 + λ2

2
∥G(∇f(xk))∥2

=
η + 1

2
∥x∗ − xk∥2 + 1

2
∥∇f(xk)−∇f(x∗)∥2 + λ2

2
∥G(∇f(xk))∥2 (127)

≤η + 1

2
∥x∗ − xk∥2 + η2

2
∥xk − x∗∥2 + λ2C

2
(128)

≤d∗(η2 + η + 1)

2
+

λ2C

2
(129)

where equality (127) is derived based on the conditions that ∇f(x∗) = 0. Inequality (128) is derived
according to the Lipschitz condition of the gradients (22) and the condition that ∥G(∇f(x))∥2 ≤ C
for any x.

Combining the results, we have that

f(x∗)− 1

K

K∑
k=1

f(xk)

=
1

K

K∑
k=1

f(x∗)− f(xk) (130)

≤ 1

2K

K∑
k=1

(
∥λG(∇f(xk))∥2 + ∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
+

d∗(η2 + η + 1)

2
+

λ2C

2
(131)

≤λ2C

2
+

∥x1 − x∗∥2 − ∥xK+1 − x∗∥2

2K
+

d∗(η2 + η + 1)

2
+

λ2C

2
(132)

≤λ2C +
∥x1 − x∗∥2

2K
+

d∗(η2 + η + 1)

2
(133)

≤λ2C +
d∗

2K
+

d∗(η2 + η + 1)

2
(134)

Taking λ = 1√
K

, we have

f(x∗)− 1

K

K∑
k=1

f(xk) ≤ (2C + d∗)

2K
+

d∗(η2 + η + 1)

2
(135)

This completes the proof.

26

	Introduction
	Other related works
	Problem setup and preliminaries
	Uniform Stability of Adversarial Training
	Revisit of PGD-based AT
	Revisit of sign function in PGD
	Limitations
	Proofs
	Hyper-parameter settings for the experiments
	Computing p
	Omitted figures
	Additional Results for Rebuttal
	For Reviewer e9T9
	For Reviewer Fpbq
	Proof of Lemma E.1

