

000 001 002 003 004 005 LEAP: LOCAL ECT-BASED LEARNABLE POSITIONAL 006 ENCodings FOR GRAPHS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Graph neural networks (GNNs) largely rely on the message-passing paradigm, where nodes iteratively aggregate information from their neighbors. Yet, standard message passing neural networks (MPNNs) face well-documented theoretical and practical limitations. Graph positional encoding (PE) has emerged as a promising direction to address these limitations. The Euler Characteristic Transform (ECT) is an efficiently computable geometric–topological invariant that characterizes shapes and graphs. In this work, we combine the differentiable approximation of the ECT (DECT) and its local variant (ℓ -ECT) to propose LEAP, a new end-to-end trainable local structural PE for graphs. We evaluate our approach on multiple real-world datasets as well as on a synthetic task designed to test its ability to extract topological features. Our results underline the potential of ℓ -ECT-based encodings as a powerful component for graph representation learning pipelines.

1 INTRODUCTION

Graphs are the preferred modality in numerous scientific domains, permitting the study of dyadic relationships in a highly efficient manner. Their broad applicability comes with several challenges that make them harder to process with standard deep learning architectures. Among these characteristics are (i) a mixture of geometrical information (via node and edge features) and topological information (via the edges themselves), (ii) highly variable cardinalities even within the same dataset, and (iii) a lack of a canonical representation. The development of suitable models is thus crucial for advancing the field of *graph representation learning*. Contemporary research largely focuses on *message passing neural networks* (MPNNs), i.e., architectures that are based on local diffusion-like concepts. While powerful, MPNNs also exhibit intrinsic limitations, which may pose severe obstacles for certain applications: For instance, MPNNs tend to lose “signals” in graphs of high diameter (Di Giovanni et al., 2023; Rusch et al., 2023; Zhang et al., 2023), and many architectures are incapable of efficiently leveraging substructure information (Chen et al., 2020).

As an alternative to pure MPNNs, inspired by the transformer architecture (Vaswani et al., 2017), recent work started focusing on *positional encodings* (PEs) and *structural encodings* (SEs) of graphs, denoting functions that assign embeddings to nodes based on locality or relational information, respectively (Dwivedi et al., 2023; Kreuzer et al., 2021; Rampášek et al., 2022). Most PEs/SEs are based on *either* geometrical aspects (like coordinates, curvature, or distances) *or* topological aspects (like Laplacians or random walks), which may potentially limit their expressivity in practice. To overcome this, we propose a new positional encoding that leverages *both* geometry *and* topology. Our positional encoding, which we refer to as LEAP, affords end-to-end-training and is based on a *local* and *learnable* variant of the Euler Characteristic Transform (ECT), a geometrical-topological invariant that is easy to calculate and highly expressive.

Our paper contains the following **contributions**:

1. We propose a new graph positional encoding based on local ECTs, which is highly flexible and permits end-to-end training, **specifically geared to work with geometric graphs**.
2. We observe that our method captures structural differences in graphs even in case the node features are *non-informative*, **thus also permitting to solve learning tasks for non-attributed graphs**.
3. We conduct extensive experiments on benchmark datasets that demonstrate that our method yields *improved predictive power* in comparison to existing positional encodings when used in conjunction with graph neural networks.

054 **2 BACKGROUND**
 055

056 Before introducing our learnable positional encoding, we provide a short self-contained summary of
 057 message-passing, positional encodings for Graphs and the Euler Characteristic Transform.
 058

059 **2.1 MESSAGE PASSING**
 060

061 Graph Neural Networks (GNNs) are specifically designed to operate on graph-structured data. A large
 062 subclass of GNNs are Message Passing Neural Networks (Gilmer et al., 2017, MPNNs). MPNNs
 063 represent each node by a vector that is iteratively updated by aggregating neighboring representations.
 064 Hence, the state of a node v at step t , denoted $\mathbf{h}_v^{(t)}$, is computed as

065
$$\mathbf{h}_v^{(t)} = \text{UPDATE} \left(\mathbf{h}_v^{(t-1)}, \text{AGGREGATE} \left(\{ \mathbf{h}_u^{(t-1)} : u \in \mathcal{N}(v) \} \right) \right), \quad (1)$$

 066

067 where both AGGREGATE and UPDATE are learnable functions and $\mathcal{N}(v)$ denotes the neighbors
 068 of node v . Following von Rohrscheidt & Rieck (2025), we refer to a graph \mathcal{G} together with feature
 069 vectors for each of its nodes as a *featured graph*. We adopt the notation in the definition below:

070 **Definition 1.** A featured graph is a pair (\mathcal{G}, x) , where \mathcal{G} is a (non-directed) graph, and x is a map
 071 that assigns each node $v \in V(\mathcal{G})$ a feature vector $x(v) \in \mathbb{R}^d$. We denote the set of nodes of \mathcal{G} by
 072 $V(\mathcal{G})$, and the set of edges by $E(\mathcal{G})$.

073 Despite their popularity, common MPNNs are limited by phenomena like oversquashing (Di Giovanni
 074 et al., 2023), oversmoothing (Rusch et al., 2023; Zhang et al., 2023), or restricted expressive power
 075 (Chen et al., 2020; Xu et al., 2019). Multiple approaches have been proposed to address these
 076 challenges, for instance by (i) modifying graph connectivity via virtual nodes (Cai et al., 2023;
 077 Grötschla et al., 2024), (ii) combining message passing with global attention (Rampášek et al., 2022),
 078 or (iii) imbuing a model with topology-based inductive biases (Horn et al., 2022; Verma et al., 2024).
 079

080 **2.2 GRAPH POSITIONAL ENCODINGS**
 081

082 Inspired by positional encodings in Transformers (Vaswani et al., 2017), graph positional
 083 encodings (PEs) emerged as a way to inject structural information directly into node features.
 084 Architectures such as GPS (Rampášek et al., 2022) combine multiple PEs, enabling global-attention
 085 layers to incorporate graph structure. Graph PEs have also been shown to benefit standard
 086 MPNNs (Dwivedi et al., 2022; 2023; Ma et al., 2021; Verma et al., 2025). Rampášek et al. (2022)
 087 propose a categorization of graph PEs into *Positional Encodings* and *Structural Encodings*, further
 088 subdivided into *local*, *global*, or *relative* variants. Two commonly-used graph positional encodings
 089 are the Random Walk Positional Encoding (Dwivedi et al., 2022, RWPE) and the Laplacian Positional
 090 Encoding (Maskey et al., 2022, LaPE), which have inspired several other approaches (Grötschla
 091 et al., 2024; Lim et al., 2023; Maskey et al., 2022; Rampášek et al., 2022), including learnable ones
 092 like SignNet (Lim et al., 2023). We describe these two PE strategies for a graph \mathcal{G} below.

093 **Random Walk Positional Encoding (RWPE).** For any node $v \in V(\mathcal{G})$, Dwivedi et al. (2022)
 094 define the k -dimensional RWPE of v , denoted by $\mathbf{p}_v^{\text{RWPE}_k}$ as:

095
$$\mathbf{p}_v^{\text{RWPE}_k} := [\mathbf{RW}_{vv}, (\mathbf{RW})_{vv}^2, \dots, (\mathbf{RW})_{vv}^k] \in \mathbb{R}^k, \quad (2)$$

 096

097 where $\mathbf{RW} := \mathbf{A}(\mathcal{G})\mathbf{D}(\mathcal{G})^{-1}$ is the random walk matrix of the graph \mathcal{G} , $\mathbf{A}(\mathcal{G})$ denotes the *adjacency*
 098 matrix of \mathcal{G} , and $\mathbf{D}(\mathcal{G})$ denotes the *degree matrix* of \mathcal{G} . Rampášek et al. (2022) categorize RWPE as
 099 a *local structural encoding*.

100 **Laplacian Positional Encoding (LaPE).** The *normalized Laplacian matrix* of \mathcal{G} is given by
 101 $\mathbf{L}(\mathcal{G}) = \mathbf{I} - \mathbf{D}(\mathcal{G})^{-1/2} \mathbf{A}(\mathcal{G}) \mathbf{D}(\mathcal{G})^{-1/2}$, where \mathbf{I} denotes the identity matrix. The LaPE of the nodes
 102 in \mathcal{G} are constructed from the eigendecomposition of $\mathbf{L}(\mathcal{G}) = \mathbf{Q}^\top \Lambda \mathbf{Q}$. Given the eigenvalues sorted
 103 in ascending order $\lambda^{(1)}, \dots, \lambda^{(K)}$, with corresponding eigenvectors $\mathbf{q}^{(1)}, \dots, \mathbf{q}^{(K)}$, Dwivedi et al.
 104 (2023) define the k -dimensional LaPE ($\mathbf{p}_v^{\text{LaPE}_k}$) of a node v as

105
$$\mathbf{p}_v^{\text{LaPE}_k} := [\mathbf{q}_v^{(i)}, \mathbf{q}_v^{(i+1)}, \dots, \mathbf{q}_v^{(i+k)}] \in \mathbb{R}^k, \quad (3)$$

 106

107 where i is the index of the first non-trivial eigenvector. Since LaPE employs the eigendecomposition
 108 of the full graph, Rampášek et al. (2022) consider it to be a *global positional encoding*.

108 2.3 THE EULER CHARACTERISTIC TRANSFORM (ECT)
109

110 The *Euler Characteristic Transform* (ECT) originated as a method to summarize simplicial complexes,
111 i.e., higher-order domains (Turner et al., 2014). We will specialize our exposition to the case of graphs,
112 consisting of *vertices* and *edges*. The *Euler characteristic* of a graph is a topological invariant, which
113 is defined as the number of nodes minus the number of edges, sometimes permitting to *distinguish*
114 between graphs that are not topologically equivalent.¹ Its expressive power remains limited, however,
115 since many topologically different graphs share the same Euler characteristic. By moving to a
116 *multi-scale* variant of the Euler characteristic, we obtain the ECT, which combines geometrical and
117 topological information to obtain an expressive representation. Specifically, given a featured graph
118 $(\mathcal{G}, \mathbf{x})$, we calculate the inner product of its attributes with a unit vector $\theta \in \mathbb{S}^{d-1}$, referred to as
119 a *direction*, and consider the pre-image of the inner product to obtain a monotonically increasing
120 sequence of subgraphs of \mathcal{G} . Tracking the Euler characteristic along that sequence indexed by $t \in \mathbb{R}$
121 yields the *Euler Characteristic Curve* (ECC) in the direction of θ . The ECT is then the map that
122 sends each direction vector to its corresponding ECC. For graphs, it is defined as

$$123 \text{ECT: } \mathbb{S}^{d-1} \times \mathbb{R} \rightarrow \mathbb{Z} \\ 124 (\theta, t) \mapsto \sum_{v \in V(\mathcal{G})} \mathbb{1}_{[-\infty, \langle \theta, \mathbf{x}(v) \rangle]}(t) - \sum_{e \in E(\mathcal{G})} \mathbb{1}_{[-\infty, \max_{u \in e} \langle \theta, \mathbf{x}(u) \rangle]}(t). \quad (4)$$

125 Somewhat surprisingly, given a sufficiently large *finite* number of directions, the ECT is *injective* on
126 geometric graphs and geometric (simplicial) complexes (Curry et al., 2022; Ghrist et al., 2018), i.e.,
127 distinct inputs yield distinct ECTs.

128 One limiting factor to the applicability of the ECT in a deep learning setting is the lack
129 of differentiability with respect to the direction vectors and input coordinates. However, by
130 approximating the indicator function of Equation (4) with a sigmoid function, we obtain the
131 *differentiable Euler Characteristic Transform* (Röell & Rieck, 2024, DECT), which may be
132 integrated into standard deep learning pipelines. This formulation of the ECT provides a *global*
133 summary of a shape, but certain graph learning tasks benefit from a *local* perspective of the graph
134 around a node of interest. As a *static*, i.e., non-trainable, extension to the ECT, the *local Euler*
135 *Characteristic Transform* (von Rohrscheidt & Rieck, 2025, ℓ -ECT), constitutes a variant based on
136 local neighborhoods with favorable properties for node classification. Given a featured graph $(\mathcal{G}, \mathbf{x})$
137 with $\mathbf{x}: V(\mathcal{G}) \rightarrow \mathbb{R}^d$, and a vertex v , the *local ECT* of v with respect to $m \in \mathbb{N}$ is defined as

$$138 \ell\text{-ECT}_m[\mathcal{G}, \mathbf{x}; v] := \text{ECT}[\mathcal{N}_m(v, \mathcal{G}), \mathbf{x}|_{\mathcal{N}_m(v, \mathcal{G})}], \quad (5)$$

139 where $\mathcal{N}_m(v, \mathcal{G})$ denotes a *neighborhood* of v , whose locality is controlled by the hyperparameter m .
140 The following result by von Rohrscheidt & Rieck (2025) relates the ℓ -ECT to MPNNs.

141 **Theorem 1.** *Let $(\mathcal{G}, \mathbf{x})$ be a featured graph, and let $\{\ell\text{-ECT}_1[\mathcal{G}, \mathbf{x}; v]\}_v$ be the set of the 1-hop
142 ℓ -ECTs of all the vertices $v \in V(\mathcal{G})$. Then $\{\ell\text{-ECT}_1[\mathcal{G}, \mathbf{x}; v]\}_v$ provides all the (non-learnable)
143 needed information to perform a single message passing step on $(\mathcal{G}, \mathbf{x})$.*

144 The required non-learnable information for a single message passing step refers to the fact that for a
145 given vertex v , one can theoretically recover the features of the neighboring nodes from the ℓ -ECT.
146 This result highlights the power of the 1-hop ℓ -ECT for graph representation learning. Moreover,
147 von Rohrscheidt & Rieck (2025) show that the ℓ -ECT is sufficiently expressive to perform subgraph
148 counting, one of the limitations of traditional message passing architectures (Chen et al., 2020). This
149 illustrates that ECT-based methods can be *more powerful* than traditional message passing neural
150 networks in certain cases.

151 3 METHODS
152

153 This section introduces the Local ECT and Projection PE (LEAP), a *learnable* local structural graph
154 PE based on the ℓ -ECT. As part of this encoding, we present strategies for projecting the ECT of a
155 shape into a lower-dimensional space.

156 ¹Formally, homotopy-equivalent topological spaces have the same Euler characteristic.

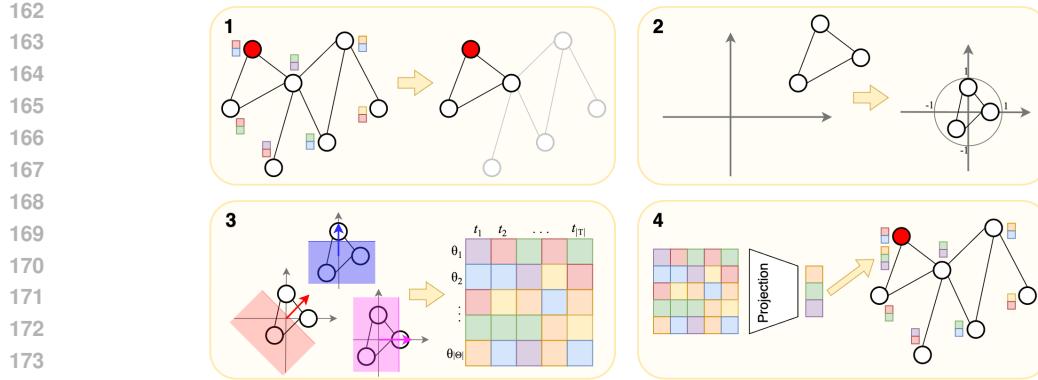


Figure 1: Steps for computing the LEAP PE using 1-hop neighborhoods. (1) The neighborhood of a node in a featured graph is selected. (2) Normalization of the neighborhood features. (3) Computation of the differentiable ECT. (4) Projection of the matrix representation of the ECT to get the PE vector.

3.1 ℓ -ECT BASED POSITIONAL ENCODING

Given a featured graph (\mathcal{G}, x) with d -dimensional node features, which may be static (i.e., the original node features or another PE), or learned (i.e., hidden states at some step of an MPNN), let $\mathbb{T} \subset [0, 1]$ be a finite set of thresholds and $\Theta \subset \mathbb{S}^{d-1}$ a finite set of directions. The k -dimensional LEAP PE of a node $v \in V(\mathcal{G})$ is constructed as follows:

1. Compute the m -hop subgraph $\mathcal{N}_m(v, \mathcal{G})$ around node v .
2. Given the set of nodes $\{u_1, \dots, u_n\} = V(\mathcal{N}_m(v, \mathcal{G}))$, mean center their feature set $\{x(u_1), \dots, x(u_n)\}$ and divide each element by the maximum norm in the centered set to obtain new features $\mathbb{F} = \{f(u_1), \dots, f(u_n)\} \subset \mathbb{S}^{d-1}$, where $f : V(\mathcal{N}_m(v, \mathcal{G})) \rightarrow \mathbb{F}$ denotes the mapping between each node in the m -hop and its normalized feature vector.
3. Compute the matrix $M \in \mathbb{R}^{|\Theta| \times |\mathbb{T}|}$ whose (i, j) entry is the differentiable approximation of the ECT of $(\mathcal{N}_m(v, \mathcal{G}), f)$ at $(\theta_i, t_j) \in \Theta \times \mathbb{T}$.
4. Lastly, a learnable projection $\phi : \mathbb{R}^{|\Theta| \times |\mathbb{T}|} \rightarrow \mathbb{R}^k$ maps M to a vector $\text{PE}(v) \in \mathbb{R}^k$, which is the final positional encoding of node v .

Remark 1. LEAP is not a static pre-processing step on the graph. On the contrary, it can be integrated in graph neural network architectures to be trained in an end-to-end fashion.

The previous remark highlights a key difference between LEAP and graph PEs like LaPE and RWPE. This is also an important distinction from the prior use of the ℓ -ECT, which was introduced as a static, non-learnable extension of node features, with neighborhood connectivity being disregarded as the ECT was calculated on node neighborhoods as if they were point clouds rather than graphs (von Rohrscheidt & Rieck, 2025). In addition, LEAP permits the set of directions Θ to be randomly initialized and then either kept fixed or optimized during training. LEAP can also be applied to learned graph features and, since it integrates with any GCN, it is naturally applicable to both graph-level and node-level tasks. By contrast, the DECT is geared towards generating graph-level descriptors (Röell & Rieck, 2024).

Remark 2. Within the categorization of Rampášek et al. (2022), LEAP is a local structural encoding.

The locality of LEAP comes from computing each node's encoding only from its m -hop subgraph. Thus, locality is controlled by the hop number m , which serves as a hyperparameter. By default, we suggest 1-hop neighborhoods, making our method as scalable as a message passing, but we also describe two ways to control the locality of LEAP:

- Use a larger hop number m . While straightforward, it should be noted that two nodes may differ in their m -hop neighborhoods while becoming identical at $(m + 1)$ -hops.²
- Alternatively, we compute LEAP multiple times for each node with increasing m , then concatenate the results to obtain a PE that captures how the m -hop neighborhoods evolve as m grows.

²For sufficiently large m , this strategy yields identical PEs for all nodes within the same connected component.

We also note that two nodes in a graph that share identical m -hop neighborhoods receive the same LEAP PE, since the second step in the computation of the PE yields identical outputs. This aligns directly with the definition of *local structural encoding* given in Rampášek et al. (2022, Table 1). Moreover, consider a node whose normalized m -hop neighborhood features form a *geometric* graph embedding.³ If we could access the ECT of that subgraph rather than an approximation, then by the injectivity results of the ECT (Curry et al., 2022; Ghrist et al., 2018) we would have all the information required to recover the neighborhood’s structure.⁴

3.2 ECT PROJECTION STRATEGIES

Since LEAP aims to capture structural information, it should be invariant to scaling and rotations of neighborhood features. Step 2 above addresses normalization, but to minimize the effect of rotations, the projection in Step 4 should be *permutation invariant* with respect to the ECCs. However, this requirement is often ignored in practice (Röell & Rieck, 2024). In the remainder of this section, we present five projection strategies for LEAP, some of which explicitly enforce this invariance.

Linear projection: We “flatten” the ℓ -ECT of each node into a vector $\mathbf{v} \in \mathbb{R}^D$ with $D = |\Theta| \cdot |\mathbb{T}|$, following Amézquita et al. (2021). We then apply a linear projection by multiplying \mathbf{v} with a learnable matrix $\mathbf{W} \in \mathbb{R}^{k \times D}$. This projection is *not* permutation invariant with respect to the ECC, and the number of learnable parameters with respect to $|\Theta|$ and $|\mathbb{T}|$ is $\mathcal{O}(|\Theta| \cdot |\mathbb{T}|)$.

One-dimensional convolutions: We treat the ℓ -ECT of each node as a multichannel time series, where thresholds act as time steps and each ECC defines a channel. Several 1D convolutions are concatenated, and the resulting channels are averaged to produce a vector that is used as an input to an MLP. This projection is *not* permutation invariant with respect to the order of the directions, and the number of learnable parameters with respect to $|\Theta|$ and $|\mathbb{T}|$ is $\mathcal{O}(|\Theta| + |\mathbb{T}|)$.

DeepSets: We treat the ℓ -ECT of a node as a set of $|\mathbb{T}|$ -dimensional vectors, corresponding to the ECCs along different directions in Θ , processing this set using an architecture inspired by DeepSets (Zaheer et al., 2017): Given the set of vectors corresponding to the ECCs we have $\text{PE} = \text{MLP}_2(\sum_{\theta \in |\Theta|} \text{MLP}_1(\text{ECC}_\theta))$. This *projection* strategy is permutation invariant wrt. the directions of the ECT, and its number of learnable parameters is independent of $|\Theta|$.

Attention: We treat the ℓ -ECT of a node as a set of $|\mathbb{T}|$ -dimensional vectors, corresponding to the ECCs along the different directions in Θ , and process this set by a transformer encoder with a single attention head. To obtain the PE, we apply an MLP to the sum of the generated ECC representations. Due to the use of a self-attention without any positional encoding, the projection is permutation invariant, and the number of learnable parameters depends on $|\mathbb{T}|$ but not on $|\Theta|$.

Attention with PE: As a variant of the previous *projection*, instead of feeding the transformer encoder the set of ECCs directly, we concatenate each ECC_θ with the corresponding direction $\theta \in \Theta$ before passing it to the encoder. This yields a permutation invariant projection strategy, while incorporating information about the directions along which the ECCs were computed.

3.3 PROPERTIES

We first discuss the *computational complexity* of our method. Given an m -hop subgraph $\mathcal{N}_m(v, \mathcal{G})$ for each vertex v , calculating the ℓ -ECT has a total computational complexity of $\mathcal{O}(\sum_v |\mathcal{N}_m(v, \mathcal{G})|)$. In the worst case, each subgraph is the *complete* graph on n vertices, leading to an overall complexity of $\mathcal{O}(n^3)$. For *sparse graphs* whose m -hop neighborhood is of the order of $m = \mathcal{O}(n)$, we obtain a worst-case complexity of $\mathcal{O}(n^2)$. Finally, assuming *bounded degree*, this reduces to a worst-case complexity of $\mathcal{O}(n)$, which is asymptotically equal to one step of message passing. Moreover, individual ℓ -ECTs can be computed *in parallel*. In terms of expressivity, von Rohrscheidt & Rieck (2025) provide the theoretical foundation for our work, stating that, given a sufficiently large number of directions, the injectivity of the ℓ -ECT guarantees that it is *more* expressive than message passing. However, we consider the main contribution of our work to be the development of a novel local positional encoding and its empirical evaluation, in the spirit of Rampášek et al. (2022), thus leaving a more in-depth theoretical analysis for future work.

³In general there is no guarantee this will occur.

⁴We design an experiment to test the ability of LEAP to capture topological features of a graph, see Section 4.1.

270 4 EXPERIMENTS
271

272 We conduct experiments to evaluate different aspects of LEAP, investigating (i) its ability to capture
273 structural properties *independent* of node features, (ii) its impact on the performance of different
274 graph [neural network](#) architectures and the effect of learning the directions of the transform, (iii) its
275 performance on a large-scale dataset with 202,579 graphs ([Chen et al., 2019](#)), (iv) its behavior
276 when applied to learned node features in the *HIV* dataset ([Wu et al., 2018](#)), and (v) the effect of
277 hyperparameters. Subsequently, *LEAP-L* indicates that the directions for LEAP were randomly
278 initialized and learned during training, while *LEAP-F* denotes that the directions remained fixed.
279

280 4.1 SYNTHETIC DATASET
281

282 We introduce a synthetic dataset of 40,000 graphs to test whether LEAP can capture structural
283 differences *independent* of node features, [thus proving that LEAP is indeed a *structural encoding*](#).
284 Each graph has three nodes and contains either zero, one, two, or three edges, yielding a classification
285 task with four classes based on edge count. The node features are uniformly sampled from the unit
286 disk $D_1 \subset \mathbb{R}^2$ to make the task purely structural. We use a standard GCN and GAT architecture as
287 base models, and compare them to the same model enhanced with LEAP added as structural positional
288 encoding. For the computation of the ECT used in LEAP, we use 16 directions with a resolution of
289 16, summarizing each graph into a 16×16 ECT. The models enhanced with LEAP achieve a perfect
290 accuracy of 100.0 ± 0.0 , demonstrating LEAP’s ability to capture structural properties *independent*
291 of the node features. By contrast, the GCN and GAT models exhibit lower accuracies (71.83 ± 0.27
292 and 69.44 ± 0.82 , respectively), demonstrating their inability to capture relevant structural graph
293 properties when informative node features are not available.
294

295 4.2 CLASSIFYING REAL-WORLD DATASETS

296 Table 1: Best approach (architecture, PE strategy,
297 and projection strategy) and relative accuracy
298 improvement with respect to the worst performing
299 baseline for TU classification datasets. In all cases
300 the best result was achieved using our PE strategy.

DATASET	BEST METHOD	WORST	BEST	GAIN (%)
LETTER-H	NoMP + LEAP-L+ 1D Conv	41.6	81.6	96.2
LETTER-M	NoMP + LEAP-L+ 1D Conv	57.8	88.5	53.1
LETTER-L	NoMP + LEAP-L+ 1D Conv	80.4	98.0	21.9
FINGERPRINT	NoMP + LEAP-L+ Linear	48.8	55.7	14.1
COX2	GAT + LEAP-L+ Attn w/ PE	77.7	80.1	3.1
BZR	NoMP + LEAP-L+ Linear	78.3	84.7	8.2
DHFR	GCN + LEAP-L+ Attn w/ PE	70.1	77.6	10.7

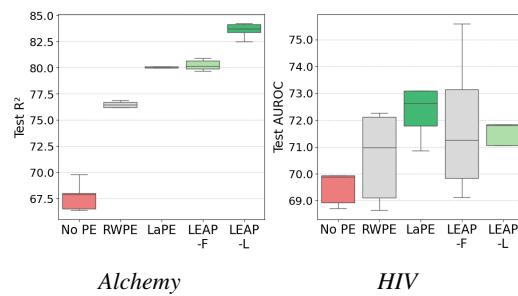
307 tasks are on the same scale. For the *HIV* dataset ([Wu et al., 2018](#)), where nodes have categorical
308 features, we exploit the end-to-end differentiability of the ECT by extending the architecture with a
309 learnable embedding layer that maps these features into \mathbb{R}^3 , where LEAP is computed.
310

311 **Architectures.** We fix three “backbone” architectures to which we add different positional
312 encodings, namely (i) a GCN ([Kipf & Welling, 2017](#)), (ii) a GAT ([Veličković et al., 2018](#)), and
313 (iii) NoMP (“no message passing”), a model that we introduce based on a transformer encoder.
314 Following [Maggs et al. \(2024\)](#), we use five message-passing layers and 32-dimensional hidden
315 states for GCN and GAT. For the *Alchemy* dataset, we scale the architectures to 10 layers with 64-
316 dimensional hidden states. The NoMP architecture projects node features into a 16-dimensional latent
317 space with a linear layer, followed by a single self-attention layer that produces a 16-dimensional state
318 for each node. The final classification is performed by a feedforward layer. We chose hyperparameters
319 to match the parameter count of GCN/GAT. By design, NoMP ignores graph structure unless given
320 positional encodings, thus permitting us to evaluate the ability of each PE to encode relevant structural
321 properties. Finally, as positional encodings, we consider the following baselines: (i) no positional
322 encoding; (ii) RWPE, which, like LEAP, is a local structural PE under the categorization of [Rampášek
323 et al. \(2022\)](#), making it a particularly relevant baseline, and (iii) LaPE, a widely used graph PE that,
324 unlike LEAP, captures global positional information.

324 **Experimental setup.** All experiments use 5-fold cross-validation and are trained with the Adam
 325 optimizer for up to 100 epochs with early stopping enabled. As a loss term, we use *cross entropy loss*
 326 except for the *Alchemy* dataset, where we use a mean squared error loss. We use 10-dimensional PEs
 327 for all types and datasets. The only difference between the backbones with or without a PE is that
 328 the input dimension of the backbone increases by 10 when a PE is used. The Euler Characteristic
 329 Transform in LEAP is calculated with 16 directions and 16 thresholds. To simplify the setup, we
 330 keep all hyperparameters of LEAP’s projection strategies *fixed* across all datasets. Despite this, as we
 331 describe below, we observe high predictive performance across a variety of datasets.

RESULTS

338 **Table 4** reports the results for LEAP and the baselines in combination with different architectures
 339 across the various classification datasets. For every dataset–architecture combination, the two LEAP
 340 variants (F/L) achieve the best and second-best performance, respectively. When combined with
 341 GCN and NoMP architectures, *learning* the directions of LEAP consistently improves performance
 342 in comparison to keeping them fixed. For GAT, learning the directions slightly reduces performance
 343 compared to the fixed variant of LEAP in 3 of the 7 datasets. For all datasets, the overall best-
 344 performing architecture–PE combination always uses LEAP with learned directions.



355 Figure 2: Results for different PE strategies on the
 356 *Alchemy* and *HIV* datasets reporting the R^2 and
 357 AUROC using a GCN. Colors rank the PEs from
 358 **best**, **second best** to **worst**. LEAP with learnable
 359 direction significantly outperforms other methods
 360 on the *Alchemy* dataset while performing second
 361 best on the *HIV* dataset.

362 **Table 1** reports the relative increase of the
 363 best-performing method compared to the
 364 worst-performing method. We observe
 365 the largest gains from using LEAP on
 366 the *Letter* and *Fingerprint* datasets. For
 367 the datasets *COX2*, *BZR*, and *DHFR*,
 368 the advantage over the baselines is less
 369 pronounced, likely due to their smaller
 370 size, making it harder to benefit from
 371 richer features. We observe the largest
 372 improvement on *DHFR*, the largest dataset
 373 among the three. **Table 4** also shows
 374 that NoMP without positional encodings
 375 outperforms baseline GNNs on the *Letter-High*
 376 and *Letter-Low* datasets, highlighting the
 377 limitations of MPNNs, i.e., models *without*
 378 structural information may achieve better
 379 results.

380 **Table 2**: Surprisingly, increasing the neighborhood
 381 size (\mathcal{N}_m) does not improve the efficacy of LEAP,
 382 showing that the 1-hop neighborhood is sufficient.

METHOD	\mathcal{N}_m	LETTER-H	LETTER-M	LETTER-L
LEAP-F	1	81.29 ± 1.91	88.00 ± 1.89	96.27 ± 0.84
LEAP-F	2	74.44 ± 3.26	84.31 ± 0.76	94.13 ± 1.05
LEAP-F	1, 2	77.91 ± 1.82	84.76 ± 1.40	96.09 ± 0.34
LEAP-L	1	80.62 ± 3.58	86.49 ± 2.20	96.18 ± 1.24
LEAP-L	2	72.76 ± 2.66	85.11 ± 1.29	93.38 ± 0.84
LEAP-L	1, 2	78.13 ± 2.83	85.96 ± 1.42	95.64 ± 1.51

383 for LEAP (with learned directions) over all baselines.
 384 The degree of variability, and this is the only case where neither of the two LEAP variant (L/F) outperforms
 385 all baselines. Still, both variants surpass RWPE, which is in the same category of *local structural*
 386 *encodings*. LaPE yields the strongest performance, suggesting that *global positional* information,
 387 which cannot be captured by LEAP, may be particularly relevant for this dataset. The full results are
 388 provided in [Figure 3](#) in the Appendix.

378 4.3 ABLATIONS
379

380 After having established that LEAP captures essential structural information to be used with multiple
381 graph neural network architectures, we further aim to investigate the sensitivity of LEAP with respect
382 to its various components. In particular we hope to further understand how (i) the choice of projection
383 method, (ii) the number of hops, and (iii) the embedding dimension impact the performance of LEAP.
384

385 **Projection strategies.** We repeated all experiments using the five proposed LEAP projection
386 strategies such that each projection strategy has approximately similar small parameter budgets,
387 comprising 1K–5K parameters. [Table 5](#) in the Appendix reports the results; and we find *no* single
388 projection consistently outperformed the others, showing the best projection to be dependent on the
389 dataset–architecture combination. However, a remarkable fact is that learnable directions did *on*
390 *average* outperform the fixed set of directions, underpinning the benefits of learnable directions as
391 compared to using them as static features.
392

393 Table 3: Ablation study with respect to the
394 embedding dimension of the projection. LEAP
395 is stable with respect to the dimension and
396 consistently performs well.
397

EMB.	PE	LETTER-H	LETTER-M	LETTER-L
2	LaPE	66.31 ± 1.20	94.71 ± 1.29	76.76 ± 1.95
	RWPE	73.82 ± 2.00	94.62 ± 0.51	83.47 ± 1.68
	LEAP-F	81.16 ± 1.66	96.27 ± 1.47	86.76 ± 1.86
	LEAP-L	78.53 ± 3.30	95.56 ± 0.31	87.38 ± 0.99
5	LaPE	64.44 ± 3.54	94.22 ± 0.61	82.09 ± 1.64
	RWPE	75.64 ± 1.18	94.67 ± 0.96	85.82 ± 0.76
	LEAP-F	79.78 ± 0.57	96.98 ± 0.25	86.76 ± 1.11
	LEAP-L	80.40 ± 1.41	96.44 ± 0.59	88.36 ± 0.64
10	LaPE	65.02 ± 1.58	91.11 ± 2.23	76.93 ± 2.52
	RWPE	79.24 ± 1.43	94.67 ± 0.97	84.53 ± 1.32
	LEAP-F	80.13 ± 2.04	96.68 ± 0.78	86.59 ± 2.01
	LEAP-L	80.68 ± 2.42	96.99 ± 1.05	87.24 ± 2.31
20	LaPE	64.80 ± 2.49	93.24 ± 0.96	77.64 ± 2.12
	RWPE	76.76 ± 1.36	95.38 ± 1.12	86.49 ± 1.21
	LEAP-F	80.84 ± 1.89	95.56 ± 0.65	87.42 ± 0.75
	LEAP-L	79.91 ± 1.53	96.40 ± 0.79	86.89 ± 1.56

411 dimension 10 for both LEAP and the baselines, and we now repeat the experiment with the embedding
412 dimension set to $\{2, 5, 10, 20\}$. As before, we fix the architecture to NoMP so that models access
413 structural information only through the PE, and use *attention with PE* as the projection strategy for
414 LEAP. The results in [Table 3](#) show that across all the evaluated PE dimensions and datasets, LEAP
415 outperforms both RWPE and LaPE.
416

417 **DECT hyperparameters and comparison.** We assessed LEAP’s sensitivity to the DECT
418 hyperparameters by varying the number of directions in $\{2, 4, 8, 16, 32\}$ and smoothing parameter
419 in $\{2, 4, 8, 16, 32, 64, 128\}$. LEAP remained robust, outperforming baselines across all settings; see
420 [Figure 6](#) in the Appendix. Finally, [Table 6](#) in the Appendix summarizes the comparison of LEAP with
421 DECT for graph classification tasks. LEAP outperforms two variants of the DECT (with different
422 parameter budgets) on most datasets, which further underscores the utility of learnable directions.
423

5 CONCLUSION AND FUTURE WORK
424

425 We presented *LEAP*, a new *learnable local structural positional encoding* for graphs based on
426 the ℓ -ECT. To the best of our knowledge, this is the *first* approach to integrate the ℓ -ECT into
427 deep learning architectures in an end-to-end trainable fashion. Our experiments show that LEAP
428 consistently outperforms established baselines across multiple architectures and datasets, with learned
429 directions further improving performance in most tasks, thereby highlighting the benefits of making
430

431 ⁵In the concatenation setting, each embedding is computed with half the target dimension so that the final
representation matches the dimension of the other approaches.

432 Table 4: Accuracy results for different PE strategies when using a GCN and GAT architectures for
 433 multiple Computer Vision datasets from TU Benchmark. Best results are **bold green**, second best are
 434 **green**, and worst are **red**. For every dataset, our approach achieves the best and second best results.
 435

436	MODEL	PE	COX2	BZR	DHFR	LETTER-H	LETTER-M	LETTER-L	FINGERPRINT
437	GCN	No PE	77.9 ± 1.0	81.9 ± 3.3	71.6 ± 1.4	41.6 ± 4.1	63.5 ± 2.0	80.4 ± 1.0	48.8 ± 1.4
438		RWPE	78.4 ± 0.5	79.5 ± 2.2	73.0 ± 2.4	60.9 ± 1.7	68.9 ± 2.7	83.2 ± 1.4	49.4 ± 0.6
439		LaPE	78.4 ± 0.9	80.3 ± 1.2	70.4 ± 2.8	55.3 ± 2.6	75.8 ± 2.6	89.2 ± 1.2	48.1 ± 1.8
440		LEAP-F	79.2 ± 0.6	82.5 ± 2.4	74.1 ± 5.2	72.2 ± 3.3	82.6 ± 1.4	95.8 ± 1.1	55.6 ± 1.1
441		LEAP-L	79.4 ± 1.0	82.5 ± 1.6	77.6 ± 2.8	74.2 ± 1.5	83.6 ± 1.3	96.0 ± 0.9	55.1 ± 1.2
442	GAT	No PE	78.2 ± 0.6	80.5 ± 2.0	73.7 ± 1.8	41.9 ± 3.2	58.4 ± 3.7	89.4 ± 0.7	50.5 ± 0.6
443		RWPE	79.0 ± 1.4	78.3 ± 1.1	70.9 ± 2.4	63.0 ± 3.0	69.0 ± 1.8	90.8 ± 1.5	50.4 ± 0.8
444		LaPE	77.9 ± 1.0	80.3 ± 1.2	70.4 ± 2.7	54.7 ± 5.3	75.2 ± 2.3	89.6 ± 1.5	48.9 ± 1.0
445		LEAP-F	79.2 ± 1.6	82.0 ± 3.2	75.7 ± 3.0	70.2 ± 2.2	83.2 ± 1.1	95.8 ± 0.8	55.1 ± 0.6
446		LEAP-L	80.1 ± 2.2	83.7 ± 2.9	76.5 ± 3.8	73.5 ± 2.1	82.4 ± 1.6	95.2 ± 0.9	54.9 ± 0.7
447	GIN	No PE	78.2 ± 0.5	79.5 ± 1.4	69.3 ± 4.8	47.7 ± 0.8	65.0 ± 3.9	82.7 ± 1.5	48.4 ± 1.4
448		RWPE	78.6 ± 1.6	79.3 ± 1.0	72.0 ± 4.9	54.4 ± 2.3	64.9 ± 3.7	81.6 ± 2.4	50.0 ± 1.6
449		LaPE	78.2 ± 0.5	79.5 ± 1.7	61.0 ± 0.1	55.0 ± 3.5	75.2 ± 3.5	84.4 ± 3.5	49.8 ± 1.9
450		LEAP-F	79.0 ± 0.9	81.2 ± 1.4	73.9 ± 4.1	60.2 ± 4.8	76.3 ± 2.0	93.3 ± 1.1	54.4 ± 1.1
451		LEAP-L	79.6 ± 1.6	81.0 ± 1.4	76.2 ± 3.2	62.7 ± 3.4	77.6 ± 1.7	94.0 ± 1.9	55.3 ± 1.4
452	NoMP	No PE	77.9 ± 0.8	79.8 ± 2.6	70.1 ± 3.4	63.4 ± 1.0	57.8 ± 0.9	89.7 ± 1.3	50.7 ± 0.5
453		RWPE	77.7 ± 1.3	80.9 ± 1.7	73.3 ± 1.5	79.2 ± 1.4	84.5 ± 1.3	94.7 ± 1.0	51.3 ± 0.7
454		LaPE	77.7 ± 1.0	81.2 ± 3.2	70.5 ± 3.5	65.0 ± 1.6	76.9 ± 2.5	91.1 ± 2.2	50.5 ± 1.2
455		LEAP-F	79.0 ± 0.6	83.2 ± 1.7	74.3 ± 6.1	81.3 ± 1.9	88.0 ± 1.9	97.2 ± 0.3	55.7 ± 1.1
456		LEAP-L	78.6 ± 0.8	84.7 ± 2.7	75.7 ± 2.7	81.6 ± 1.9	88.5 ± 2.5	98.0 ± 0.4	56.3 ± 1.4

454
 455 this step trainable. Additionally, we introduced a synthetic task in which our approach achieved
 456 perfect accuracy, demonstrating its ability to capture topological information independent of node
 457 features, which the evaluated MPNNs (GCN/GAT) alone failed to recover. Taken together, these
 458 results underscore the potential of ℓ -ECT encodings for *topological deep learning* (Papamarkou
 459 et al., 2024) in general and graph representation learning tasks specifically. LEAP is particularly
 460 well-suited to provide local structural information to architectures that rely on global attention
 461 mechanisms, where graph structure is not directly modeled and multiple PEs are often combined to
 462 capture complementary notions of graph position.

463 **Limitations.** While LEAP provides a learnable way to capture local structural information. First,
 464 it is not a purely structural PE, as it requires *node features* to compute the ECTs. However, these
 465 features can be *learned*, and in the synthetic dataset, our approach succeeded even though the features
 466 were irrelevant to the prediction targets. Second, LEAP relies on a differentiable approximation of
 467 the discretized ECT applied to normalized m -hop subgraphs, which are not necessarily geometric,
 468 so the theoretical guarantees of the exact ECT (e.g., injectivity) may not fully carry over; we expect
 469 this to be one interesting focus for future work. Finally, unlike other graph PEs, such as LaPE
 470 or RWPE, where the only hyperparameter is the embedding dimension, LEAP introduces several
 471 hyperparameters (among others, a smoothing parameter of the ECT approximation, the number of
 472 directions, and the number of discretization steps). In practice, however, we fixed these across datasets
 473 and architectures and nevertheless observed consistently strong performance, and our ablation studies
 474 further demonstrated the robustness to these choices.

475 **Future work.** We envision several directions for future research. First, drawing on prior work (von
 476 Rohrscheidt & Rieck, 2025), we aim to formalize the theoretical expressivity of LEAP, noting
 477 that theoretical expressivity and empirical performance are often not correlated. Combining LEAP
 478 with positional encodings that capture complementary aspects of graph structure and embedding it
 479 within more sophisticated architectures may further improve performance and expressivity. Another
 480 promising line is to make the ECT step fully differentiable: Instead of discretizing along a fixed grid,
 481 treating thresholds as trainable parameters would allow the model to focus on informative regions
 482 and optimize their positions jointly with the other parameters. Using learned features, we also plan
 483 on assessing the performance of LEAP on non-attributed graph datasets, i.e., datasets that are fully
 484 structural. Finally, since the ECT can be applied to higher-order datasets (Ballester et al., 2025;
 485 Hoppe et al., 2025) as well, we believe that LEAP could be extended to this modality, thus serving as
 486 a generalizable addition to the topological deep learning toolbox.

486 REPRODUCIBILITY STATEMENT
487488 The anonymized code to reproduce our experiments are provided in the supplementary materials.
489 The experiments used a fixed seed and the full configurations can be found in the experiments
490 folder in the supplementary materials.
491492 REFERENCES
493494 Erik J Amézquita, Michelle Y Quigley, Tim Ophelders, Jacob B Landis, Daniel Koenig, Elizabeth
495 Munch, and Daniel H Chitwood. Measuring hidden phenotype: Quantifying the shape of barley
496 seeds using the Euler characteristic transform. *in silico Plants*, 4(1):diab033, 12 2021.497 Rubén Ballester, Ernst Röell, Daniel Bīn Schmid, Mathieu Alain, Sergio Escalera, Carles Casacuberta,
498 and Bastian Rieck. MANTRA: The manifold triangulations assemblage. In *International
499 Conference on Learning Representations*, 2025. URL [https://openreview.net/forum?
500 id=X6y5CC44HM](https://openreview.net/forum?id=X6y5CC44HM).
501502 Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and graph
503 transformer. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
504 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine
505 Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 3408–3430. PMLR,
506 2023.507 Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao,
508 Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset
509 for benchmarking ai models. *arXiv preprint arXiv:1906.09427*, 2019.
510511 Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
512 substructures? *Advances in Neural Information Processing Systems*, 33:10383–10395, 2020.513 Justin Curry, Sayan Mukherjee, and Katharine Turner. How many directions determine a shape and
514 other sufficiency results for two topological transforms. *Transactions of the American Mathematical
515 Society, Series B*, 9(32):1006–1043, 2022.
516517 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
518 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
519 and topology. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
520 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning*, volume 202,
521 pp. 7865–7885. PMLR, 2023.522 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
523 Graph neural networks with learnable structural and positional representations. In *International
524 Conference on Learning Representations*, 2022. URL [https://openreview.net/forum?
id=wTTjnvGphYj](https://openreview.net/forum?
525 id=wTTjnvGphYj).526 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
527 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24
528 (43):1–48, 2023.
529530 Robert Ghrist, Rachel Levanger, and Huy Mai. Persistent homology and Euler integral transforms.
531 *Journal of Applied and Computational Topology*, 2(1):55–60, 2018.
532533 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
534 message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), *International
535 Conference on Machine Learning*, volume 70, pp. 1263–1272. PMLR, 2017.536 Florian Grötschla, Jiaqing Xie, and Roger Wattenhofer. Benchmarking positional encodings for gnns
537 and graph transformers. *arXiv preprint arXiv:2411.12732*, 2024.
538539 Josef Hoppe, Vincent P. Grande, and Michael T. Schaub. Don’t be afraid of cell complexes! An
introduction from an applied perspective. *arXiv preprint arXiv:2506.09726*, 2025.

540 Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
 541 Topological graph neural networks. In *International Conference on Learning Representations*,
 542 2022. URL <https://openreview.net/forum?id=oxxUMeFwEHd>.

543 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 544 In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJU4ayYgl>.

545 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 546 Rethinking graph transformers with spectral attention. In *Advances in Neural Information
 547 Processing Systems*, volume 34, pp. 21618–21629. Curran Associates, Inc., 2021.

548 Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
 549 Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
 550 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Q-UHqMorzil>.

551 Liheng Ma, Reihaneh Rabbany, and Adriana Romero-Soriano. Graph attention networks with
 552 positional embeddings. In Kamal Karlapalem, Hong Cheng, Naren Ramakrishnan, R. K. Agrawal,
 553 P. Krishna Reddy, Jaideep Srivastava, and Tanmoy Chakraborty (eds.), *Advances in Knowledge
 554 Discovery and Data Mining*, pp. 514–527, Cham, Switzerland, 2021. Springer.

555 Kelly Maggs, Celia Hacker, and Bastian Rieck. Simplicial representation learning with neural
 556 k -forms. In *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Djw0XhjHZb>.

557 Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
 558 Generalized laplacian positional encoding for graph representation learning. *arXiv preprint
 559 arXiv:2210.15956*, 2022.

560 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 561 Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. *arXiv preprint
 562 arXiv:2007.08663*, 2020.

563 Theodore Papamarkou, Tolga Birdal, Michael Bronstein, Gunnar Carlsson, Justin Curry, Yue Gao,
 564 Mustafa Hajij, Roland Kwitt, Pietro Liò, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane,
 565 Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T.
 566 Schaub, Petar Veličković, Bei Wang, Yusu Wang, Guo-Wei Wei, and Ghada Zamzmi. Position:
 567 Topological deep learning is the new frontier for relational learning. In Ruslan Salakhutdinov, Zico
 568 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 569 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 570 *Proceedings of Machine Learning Research*, pp. 39529–39555. PMLR, 2024.

571 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
 572 Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in
 573 Neural Information Processing Systems*, 35:14501–14515, 2022.

574 Ernst Röell and Bastian Rieck. Differentiable Euler characteristic transforms for shape classification.
 575 In *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=M0632iPg3I>.

576 T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
 577 graph neural networks. *arXiv preprint arXiv:2303.10993*, 2023.

578 Katharine Turner, Sayan Mukherjee, and Doug M Boyer. Persistent homology transform for modeling
 579 shapes and surfaces. *Information and Inference: A Journal of the IMA*, 3(4):310–344, 2014.

580 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 581 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 582 systems*, 30, 2017.

583 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 584 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 585 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

594 Yogesh Verma, Amauri H Souza, and Vikas Garg. Topological neural networks go persistent,
 595 equivariant, and continuous. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
 596 Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st*
 597 *International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning*
 598 *Research*, pp. 49388–49407. PMLR, 2024.

599 Yogesh Verma, Amauri H Souza, and Vikas K Garg. Positional encoding meets persistent homology
 600 on graphs. In *Proceedings of the 42nd International Conference on Machine Learning*, Proceedings
 601 of Machine Learning Research. PMLR, 2025.

602 Julius von Rohrscheidt and Bastian Rieck. Diss-l-ECT: Dissecting graph data with local Euler
 603 characteristic transforms. In *Proceedings of the 42nd International Conference on Machine*
 604 *Learning*, Proceedings of Machine Learning Research. PMLR, 2025.

605 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
 606 Karl Leswing, and Vijay Pande. MoleculeNet: A benchmark for molecular machine learning.
 607 *Chemical science*, 9(2):513–530, 2018.

608 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 609 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

610 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 611 Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
 612 S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*,
 613 volume 30. Curran Associates, Inc., 2017.

614 Xu Zhang, Yonghui Xu, Wei He, Wei Guo, and Lizhen Cui. A comprehensive review of the
 615 oversmoothing in graph neural networks. In *CCF Conference on Computer Supported Cooperative*
 616 *Work and Social Computing*, pp. 451–465. Springer, 2023.

617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

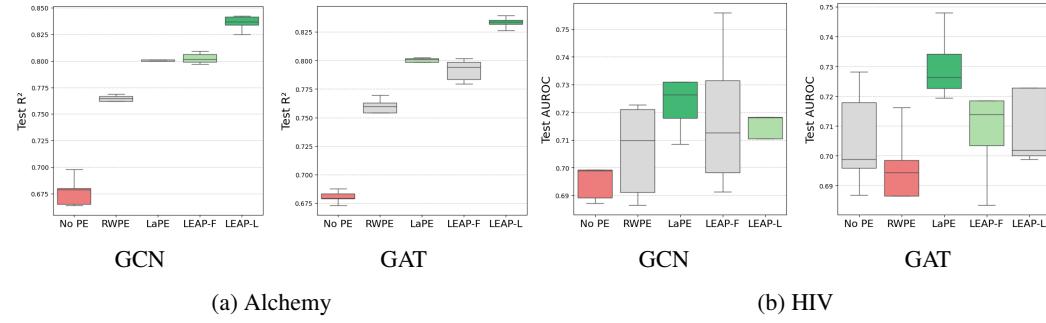
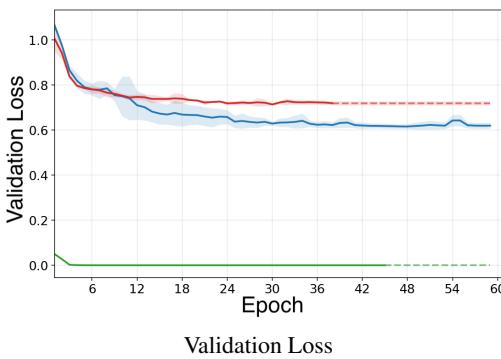
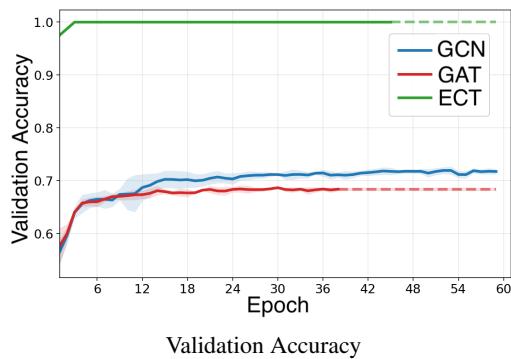
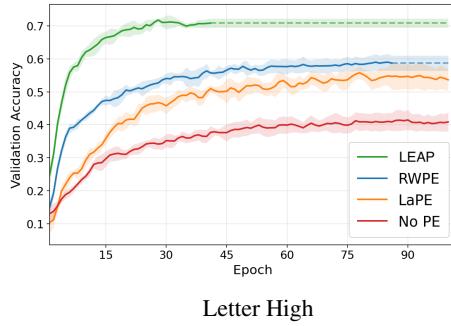
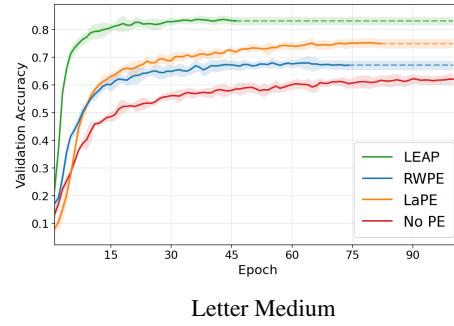
648 APPENDIX
649650 A RESULTS FOR THE ALCHEMY AND HIV DATASETS
651

Figure 3: R^2 and AUROC results for different PE strategies on the *Alchemy* and *HIV* dataset using the GCN and GAT architectures. Best results are **bold green**, second best are **green**, and worst are **red**. LaPE achieves the best result for both architectures. For both architectures one of the two variants of our approach achieves the second best result.

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703 B VALIDATION METRICS
704

717
718 Figure 4: Validation loss and accuracy per training epoch for the synthetic dataset for the baseline
719 GCN, GAT, and LEAP. Our method achieves a perfect score in both metrics and convergence
720 immediately. The shadows indicate one standard deviation over 5 runs and the dashed line means that
721 model training finished earlier because of early stopping.

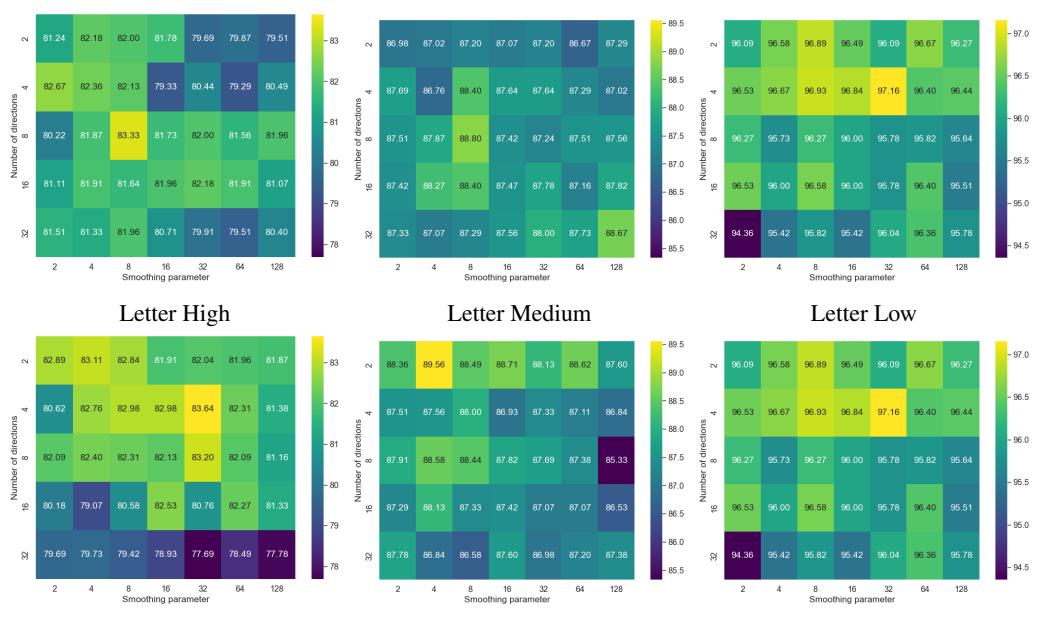


732
733 Figure 5: Validation accuracy per training epoch for the Letter High (left) and Letter Medium (right)
734 datasets for different PE strategies using a GCN architecture. Our method achieves the best results
735 and converges faster. The shadows around the curves indicate the standard deviation over 5 runs and
736 the dashed line means that training ended due to early stopping.

756 C ADDITIONAL EXPERIMENTS

758
 759 Table 5: Accuracy results for all real-world datasets when varying the strategy of the LEAP PE with
 760 fixed and learnable directions for different models. The backbone architectures have around 4K
 761 parameters and we show the additional parameters each positional encoding introduces.

762 MODEL	763 PROJ. METHOD	764 PARAMETERS	COX2		BZR		DHFR		LETTER-H		LETTER-M		LETTER-L		FINGERPRINT	
			765 LEAP-F	766 LEAP-L	767 LEAP-F	768 LEAP-L	769 LEAP-F	770 LEAP-L	771 LEAP-F	772 LEAP-L	773 LEAP-F	774 LEAP-L	775 LEAP-F	776 LEAP-L	777 LEAP-F	778 LEAP-L
763 GCN	764 Linear	765 4K+2.5K	79.2 ± 0.6	79.4 ± 1.0	78.8 ± 0.6	82.5 ± 2.0	70.9 ± 3.2	74.9 ± 4.0	72.2 ± 3.3	74.2 ± 1.5	82.8 ± 1.4	83.6 ± 1.3	95.2 ± 0.9	96.0 ± 0.9	55.6 ± 1.1	54.7 ± 1.5
	764 Attn	765 4K+5K	78.4 ± 1.3	79.0 ± 0.7	81.7 ± 2.8	82.5 ± 1.6	74.1 ± 5.2	77.3 ± 4.1	59.8 ± 2.8	62.7 ± 2.6	74.4 ± 1.2	73.9 ± 4.6	92.3 ± 1.3	94.5 ± 1.4	53.0 ± 1.9	54.4 ± 1.2
	764 PE	765 4K+5K	78.2 ± 1.2	78.8 ± 1.3	82.5 ± 2.4	82.5 ± 1.1	73.2 ± 3.7	77.6 ± 2.8	67.2 ± 1.5	68.6 ± 1.8	82.0 ± 0.8	82.9 ± 2.2	93.4 ± 1.1	94.7 ± 1.6	54.1 ± 1.3	55.1 ± 1.2
	764 DeepSets	765 4K+5K	78.2 ± 0.6	79.0 ± 1.2	79.0 ± 1.2	81.7 ± 3.5	71.2 ± 2.6	73.3 ± 3.6	59.2 ± 1.9	63.4 ± 2.1	72.4 ± 0.8	76.0 ± 1.1	91.4 ± 1.8	92.0 ± 0.6	52.3 ± 1.3	54.1 ± 1.3
	764 ID Conv	765 4K+9K	78.0 ± 1.2	79.2 ± 2.0	79.8 ± 1.9	82.5 ± 2.7	71.7 ± 1.2	76.7 ± 3.4	66.4 ± 2.8	63.1 ± 3.2	81.6 ± 1.5	94.2 ± 1.5	93.4 ± 1.4	55.6 ± 1.1	54.0 ± 2.2	
763 GAT	764 Linear	765 4K+2.5K	78.4 ± 1.2	79.7 ± 2.0	79.3 ± 1.8	81.7 ± 2.4	75.7 ± 3.0	76.3 ± 2.2	70.2 ± 2.2	73.5 ± 2.1	82.4 ± 2.3	84.2 ± 1.6	95.8 ± 0.8	95.1 ± 0.9	55.1 ± 0.2	54.8 ± 2.1
	764 Attn	765 4K+5K	78.4 ± 0.5	78.4 ± 0.8	82.0 ± 1.2	82.2 ± 1.1	74.9 ± 3.1	73.3 ± 2.3	62.0 ± 1.0	62.9 ± 3.1	76.0 ± 2.1	80.4 ± 1.0	93.4 ± 1.0	94.4 ± 1.0	52.5 ± 1.8	53.1 ± 1.5
	764 PE	765 4K+5K	78.3 ± 0.8	80.1 ± 2.2	82.0 ± 3.2	82.2 ± 0.7	73.3 ± 3.1	75.9 ± 3.8	65.7 ± 2.0	65.0 ± 4.3	83.2 ± 3.8	94.0 ± 1.3	95.1 ± 1.1	54.5 ± 1.8	55.5 ± 1.5	
	764 DeepSets	765 4K+5K	79.2 ± 1.6	79.7 ± 1.8	81.2 ± 2.0	82.7 ± 4.7	71.2 ± 4.1	73.2 ± 3.8	58.8 ± 2.6	50.4 ± 4.3	76.6 ± 2.3	94.6 ± 1.4	95.3 ± 1.3	54.2 ± 2.2	51.0 ± 1.1	
	764 ID Conv	765 4K+9K	78.4 ± 0.9	78.6 ± 1.7	81.7 ± 4.0	83.7 ± 2.9	76.0 ± 2.3	75.7 ± 1.5	67.3 ± 2.0	68.1 ± 1.3	80.5 ± 2.8	93.6 ± 2.0	95.2 ± 0.9	54.8 ± 1.5	54.9 ± 0.7	
763 GIN	764 Linear	765 4K+2.5K	77.9 ± 2.2	78.3 ± 3.4	78.8 ± 0.6	80.2 ± 2.0	72.7 ± 4.1	73.2 ± 4.1	60.2 ± 3.4	60.2 ± 4.8	77.6 ± 2.0	74.2 ± 3.6	94.0 ± 1.9	93.3 ± 1.1	55.0 ± 1.2	54.4 ± 1.9
	764 Attn	765 4K+5K	78.4 ± 0.8	78.4 ± 0.5	78.8 ± 0.5	78.8 ± 0.5	78.8 ± 0.6	78.8 ± 0.6	61.0 ± 0.1	61.0 ± 0.1	65.2 ± 1.0	65.2 ± 1.0	92.8 ± 0.8	93.9 ± 0.8	53.9 ± 1.0	53.9 ± 0.9
	764 PE	765 4K+5K	78.2 ± 0.5	78.2 ± 0.4	78.8 ± 0.6	78.8 ± 0.6	61.0 ± 0.1	61.0 ± 0.1	58.4 ± 4.8	52.8 ± 6.9	75.1 ± 3.5	83.3 ± 2.0	92.8 ± 1.0	90.6 ± 6.0	54.0 ± 1.4	53.7 ± 0.5
	764 DeepSets	765 4K+5K	79.6 ± 1.6	79.0 ± 0.4	81.0 ± 1.4	80.2 ± 2.0	74.7 ± 3.4	69.2 ± 2.2	49.5 ± 3.5	53.6 ± 6.9	71.2 ± 2.0	67.4 ± 4.6	89.5 ± 1.9	87.2 ± 3.8	54.5 ± 0.7	53.3 ± 0.5
	764 ID Conv	765 4K+9K	78.2 ± 0.5	78.4 ± 1.4	79.0 ± 1.2	81.2 ± 1.4	72.1 ± 5.6	70.1 ± 6.8	57.9 ± 4.7	52.7 ± 2.7	76.5 ± 3.7	72.7 ± 6.3	91.8 ± 1.7	90.4 ± 0.8	53.8 ± 0.4	54.2 ± 1.1
763 NoMP	764 Linear	765 4K+2.5K	79.0 ± 0.6	78.6 ± 0.8	83.2 ± 1.7	84.7 ± 2.7	74.3 ± 6.1	74.9 ± 3.3	70.5 ± 1.2	79.4 ± 1.1	86.0 ± 2.2	85.4 ± 1.5	96.7 ± 0.8	96.4 ± 0.7	55.7 ± 1.1	56.3 ± 1.4
	764 Attn	765 4K+5K	78.4 ± 0.5	78.4 ± 0.5	78.4 ± 0.5	78.4 ± 0.5	78.4 ± 0.5	78.4 ± 0.5	61.0 ± 0.1	61.0 ± 0.1	84.8 ± 0.9	84.5 ± 2.6	96.1 ± 0.6	97.2 ± 0.8	53.8 ± 0.7	54.8 ± 1.2
	764 PE	765 4K+5K	78.4 ± 0.4	77.7 ± 1.5	78.8 ± 0.6	78.8 ± 0.6	64.2 ± 4.8	72.1 ± 3.7	81.3 ± 1.9	80.6 ± 3.6	88.0 ± 1.9	86.5 ± 2.2	96.3 ± 0.8	96.2 ± 1.2	54.8 ± 1.4	55.3 ± 1.1
	764 DeepSets	765 4K+5K	78.4 ± 0.8	78.0 ± 0.5	83.2 ± 2.1	82.0 ± 2.8	69.5 ± 3.0	72.6 ± 3.6	78.0 ± 2.0	79.2 ± 1.9	86.0 ± 2.2	87.5 ± 2.0	96.3 ± 0.6	96.6 ± 0.8	54.0 ± 0.4	54.3 ± 1.0
	764 ID Conv	765 4K+9K	78.0 ± 1.9	78.1 ± 1.1	81.0 ± 1.7	79.3 ± 1.8	71.6 ± 3.2	75.7 ± 2.7	81.1 ± 0.9	81.6 ± 1.9	87.0 ± 2.0	88.5 ± 2.5	97.2 ± 0.3	98.0 ± 0.4	54.5 ± 1.0	54.1 ± 0.4



794 Figure 6: We assess the sensitivity of LEAP with respect to the hyperparameters used in the ECT. Top
 795 row shows the effect of changing the hyperparameters for LEAP-F (fixed directions) and the bottom
 796 row for LEAP-L (learnable directions). LEAP consistently outperforms baselines across all settings
 797 and is thus robust with respect to the hyperparameters.

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830

Table 6: We provide a comparison with DECT (Röell & Rieck, 2024). DECT summarizes the graph with a single global ECT and subsequently applies a convolutional neural network for the classification. We compare our method with two variants of DECT, one with 4K parameters and one with 65K parameters. The parameter count in LEAP ranges from 1K to 5K and therefore the comparison with DECT (4K) would be the most appropriate, although we outperform both variants on most datasets.

831
 832
 833
 834
 835
 836

MODEL	COX2	BZR	DHFR	LETTER-H	LETTER-M	LETTER-L
DECT (4K)	70.4 ± 0.9	81.8 ± 3.2	67.9 ± 5.0	63.8 ± 6.0	76.2 ± 4.8	91.5 ± 2.1
DECT (65K)	74.6 ± 4.5	84.3 ± 6.1	72.9 ± 1.6	85.4 ± 1.3	86.3 ± 2.0	96.8 ± 1.2
LEAP-L (GCN)	79.4 ± 1.0	82.5 ± 1.6	77.6 ± 2.8	74.2 ± 1.5	83.6 ± 1.3	96.0 ± 0.9
LEAP-L (GAT)	80.1 ± 2.2	83.7 ± 2.9	76.5 ± 3.8	73.5 ± 2.1	82.4 ± 1.6	95.2 ± 0.9
LEAP-L (NoMP)	78.6 ± 0.8	84.7 ± 2.7	75.7 ± 2.7	81.6 ± 1.9	88.5 ± 2.5	98.0 ± 0.4

844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863