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ABSTRACT

Graph neural networks (GNNs) largely rely on the message-passing paradigm,
where nodes iteratively aggregate information from their neighbors. Yet, standard
message passing neural networks (MPNNs) face well-documented theoretical and
practical limitations. Graph positional encoding (PE) has emerged as a promising
direction to address these limitations. The Euler Characteristic Transform (ECT) is
an efficiently computable geometric–topological invariant that characterizes shapes
and graphs. In this work, we combine the differentiable approximation of the
ECT (DECT) and its local variant (ℓ-ECT) to propose LEAP, a new end-to-end
trainable local structural PE for graphs. We evaluate our approach on multiple
real-world datasets as well as on a synthetic task designed to test its ability to
extract topological features. Our results underline the potential of ℓ-ECT-based
encodings as a powerful component for graph representation learning pipelines.

1 INTRODUCTION

Graphs are the preferred modality in numerous scientific domains, permitting the study of dyadic
relationships in a highly efficient manner. Their broad applicability comes with several challenges
that make them harder to process with standard deep learning architectures. Among these
characteristics are (i) a mixture of geometrical information (via node and edge features) and
topological information (via the edges themselves), (ii) highly variable cardinalities even within the
same dataset, and (iii) a lack of a canonical representation. The development of suitable models
is thus crucial for advancing the field of graph representation learning. Contemporary research
largely focuses on message passing neural networks (MPNNs), i.e., architectures that are based
on local diffusion-like concepts. While powerful, MPNNs also exhibit intrinsic limitations, which
may pose severe obstacles for certain applications: For instance, MPNNs tend to lose “signals” in
graphs of high diameter (Di Giovanni et al., 2023; Rusch et al., 2023; Zhang et al., 2023), and many
architectures are incapable of efficiently leveraging substruture information (Chen et al., 2020).

As an alternative to pure MPNNs, inspired by the transformer architecture (Vaswani et al., 2017),
recent work started focusing on positional encodings (PEs) and structural encodings (SEs) of graphs,
denoting functions that assign embeddings to nodes based on locality or relational information,
respectively (Dwivedi et al., 2023; Kreuzer et al., 2021; Rampášek et al., 2022). Most PEs/SEs
are based on either geometrical aspects (like coordinates, curvature, or distances) or topological
aspects (like Laplacians or random walks), which may potentially limit their expressivity in practice.
To overcome this, we propose a new positional encoding that leverages both geometry and topology.
Our positional encoding, which we refer to as LEAP, affords end-to-end-training and is based on a
local and learnable variant of the Euler Characteristic Transform (ECT), a geometrical-topological
invariant that is easy to calculate and highly expressive.

Our paper contains the following contributions:

1. We propose a new graph positional encoding based on local ECTs, which is highly flexible and
permits end-to-end training, specifically geared to work with geometric graphs.

2. We observe that our method captures structural differences in graphs even in case the node features
are non-informative, thus also permitting to solve learning tasks for non-attributed graphs.

3. We conduct extensive experiments on benchmark datasets that demonstrate that our method yields
improved predictive power in comparison to existing positional encodings when used in conjunction
with graph neural networks.
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2 BACKGROUND

Before introducing our learnable positional encoding, we provide a short self-contained summary of
message-passing, positional encodings for Graphs and the Euler Characteristic Transform.

2.1 MESSAGE PASSING

Graph Neural Networks (GNNs) are specifically designed to operate on graph-structured data. A large
subclass of GNNs are Message Passing Neural Networks (Gilmer et al., 2017, MPNNs). MPNNs
represent each node by a vector that is iteratively updated by aggregating neighboring representations.
Hence, the state of a node v at step t, denoted h

(t)
v , is computed as

h(t)
v = UPDATE

(
h(t−1)
v ,AGGREGATE

(
{h(t−1)

u : u ∈ N (v)}
))

, (1)

where both AGGREGATE and UPDATE are learnable functions and N (v) denotes the neighbors
of node v. Following von Rohrscheidt & Rieck (2025), we refer to a graph G together with feature
vectors for each of its nodes as a featured graph. We adopt the notation in the definition below:
Definition 1. A featured graph is a pair (G, x), where G is a (non-directed) graph, and x is a map
that assigns each node v ∈ V (G) a feature vector x(v) ∈ Rd. We denote the set of nodes of G by
V (G), and the set of edges by E(G).

Despite their popularity, common MPNNs are limited by phenomena like oversquashing (Di Giovanni
et al., 2023), oversmoothing (Rusch et al., 2023; Zhang et al., 2023), or restricted expressive power
(Chen et al., 2020; Xu et al., 2019). Multiple approaches have been proposed to address these
challenges, for instance by (i) modifying graph connectivity via virtual nodes (Cai et al., 2023;
Grötschla et al., 2024), (ii) combining message passing with global attention (Rampášek et al., 2022),
or (iii) imbuing a model with topology-based inductive biases (Horn et al., 2022; Verma et al., 2024).

2.2 GRAPH POSITIONAL ENCODINGS

Inspired by positional encodings in Transformers (Vaswani et al., 2017), graph positional
encodings (PEs) emerged as a way to inject structural information directly into node features.
Architectures such as GPS (Rampášek et al., 2022) combine multiple PEs, enabling global-attention
layers to incorporate graph structure. Graph PEs have also been shown to benefit standard
MPNNs (Dwivedi et al., 2022; 2023; Ma et al., 2021; Verma et al., 2025). Rampášek et al. (2022)
propose a categorization of graph PEs into Positional Encodings and Structural Encodings, further
subdivided into local, global, or relative variants. Two commonly-used graph positional encodings
are the Random Walk Positional Encoding (Dwivedi et al., 2022, RWPE) and the Laplacian Positional
Encoding (Maskey et al., 2022, LAPE), which have inspired several other approaches (Grötschla
et al., 2024; Lim et al., 2023; Maskey et al., 2022; Rampášek et al., 2022), including learnable ones
like SignNet (Lim et al., 2023). We describe these two PE strategies for a graph G below.

Random Walk Positional Encoding (RWPE). For any node v ∈ V (G), Dwivedi et al. (2022)
define the k-dimensional RWPE of v, denoted by pRWPEk

v as:

pRWPEk
v := [RWvv, (RW)2vv, . . . , (RW)kvv] ∈ Rk, (2)

where RW := A(G)D(G)−1 is the random walk matrix of the graph G, A(G) denotes the adjacency
matrix of G, and D(G) denotes the degree matrix of G. Rampášek et al. (2022) categorize RWPE as
a local structural encoding.

Laplacian Positional Encoding (LaPE). The normalized Laplacian matrix of G is given by
L(G) = I−D(G)−1/2A(G)D(G)−1/2, where I denotes the identity matrix. The LaPE of the nodes
in G are constructed from the eigendecomposition of L(G) = Q⊤ΛQ. Given the eigenvalues sorted
in ascending order λ(1), . . . , λ(K), with corresponding eigenvectors q(1), . . . , q(K), Dwivedi et al.
(2023) define the k-dimensional LaPE (pLaPEk

v ) of a node v as

pLaPEk
v := [q(i)

v , q(i+1)
v , . . . , q(i+k)

v ] ∈ Rk, (3)
where i is the index of the first non-trivial eigenvector. Since LaPE employs the eigendecomposition
of the full graph, Rampášek et al. (2022) consider it to be a global positional encoding.
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2.3 THE EULER CHARACTERISTIC TRANSFORM (ECT)

The Euler Characteristic Transform (ECT) originated as a method to summarize simplicial complexes,
i.e., higher-order domains (Turner et al., 2014). We will specialize our exposition to the case of graphs,
consisting of vertices and edges. The Euler characteristic of a graph is a topological invariant, which
is defined as the number of nodes minus the number of edges, sometimes permitting to distinguish
between graphs that are not topologically equivalent.1 Its expressive power remains limited, however,
since many topologically different graphs share the same Euler characteristic. By moving to a
multi-scale variant of the Euler characteristic, we obtain the ECT, which combines geometrical and
topological information to obtain an expressive representation. Specifically, given a featured graph
(G, x), we calculate the inner product of its attributes with a unit vector θ ∈ Sd−1, referred to as
a direction, and consider the pre-image of the inner product to obtain a monotonically increasing
sequence of subgraphs of G. Tracking the Euler characteristic along that sequence indexed by t ∈ R
yields the Euler Characteristic Curve (ECC) in the direction of θ. The ECT is then the map that
sends each direction vector to its corresponding ECC. For graphs, it is defined as

ECT: Sd−1 × R → Z

(θ, t) 7→
∑

v∈V (G)

1[−∞,⟨θ,x(v)⟩](t)−
∑

e∈E(G)

1[−∞,maxu∈e⟨θ,x(u)⟩](t).
(4)

Somewhat surprisingly, given a sufficiently large finite number of directions, the ECT is injective on
geometric graphs and geometric (simplicial) complexes (Curry et al., 2022; Ghrist et al., 2018), i.e.,
distinct inputs yield distinct ECTs.

One limiting factor to the applicability of the ECT in a deep learning setting is the lack
of differentiability with respect to the direction vectors and input coordinates. However, by
approximating the indicator function of Equation (4) with a sigmoid function, we obtain the
differentiable Euler Characteristic Transform (Röell & Rieck, 2024, DECT), which may be
integrated into standard deep learning pipelines. This formulation of the ECT provides a global
summary of a shape, but certain graph learning tasks benefit from a local perspective of the graph
around a node of interest. As a static, i.e., non-trainable, extension to the ECT, the local Euler
Characteristic Transform (von Rohrscheidt & Rieck, 2025, ℓ-ECT), constitutes a variant based on
local neighborhoods with favorable properties for node classification. Given a featured graph (G, x)
with x : V (G) → Rd, and a vertex v, the local ECT of v with respect to m ∈ N is defined as

ℓ-ECTm[G, x; v] := ECT[Nm(v,G), x|Nm(v,G)], (5)

where Nm(v,G) denotes a neighborhood of v, whose locality is controlled by the hyperparameter m.
The following result by von Rohrscheidt & Rieck (2025) relates the ℓ-ECT to MPNNs.

Theorem 1. Let (G, x) be a featured graph, and let {ℓ-ECT1[G, x; v]}v be the set of the 1-hop
ℓ-ECTs of all the vertices v ∈ V (G). Then {ℓ-ECT1[G, x; v]}v provides all the (non-learnable)
needed information to perform a single message passing step on (G, x).

The required non-learnable information for a single message passing step refers to the fact that for a
given vertex v, one can theoretically recover the features of the neighboring nodes from the ℓ-ECT.
This result highlights the power of the 1-hop ℓ-ECT for graph representation learning. Moreover,
von Rohrscheidt & Rieck (2025) show that the ℓ-ECT is sufficiently expressive to perform subgraph
counting, one of the limitations of traditional message passing architectures (Chen et al., 2020). This
illustrates that ECT-based methods can be more powerful than traditional message passing neural
networks in certain cases.

3 METHODS

This section introduces the Local ECT and Projection PE (LEAP), a learnable local structural graph
PE based on the ℓ-ECT. As part of this encoding, we present strategies for projecting the ECT of a
shape into a lower-dimensional space.

1Formally, homotopy-equivalent topological spaces have the same Euler characteristic.
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Figure 1: Steps for computing the LEAP PE using 1-hop neighborhoods. (1) The neighborhood of a
node in a featured graph is selected. (2) Normalization of the neighborhood features. (3) Computation
of the differentiable ECT. (4) Projection of the matrix representation of the ECT to get the PE vector.

3.1 ℓ-ECT BASED POSITIONAL ENCODING

Given a featured graph (G, x) with d-dimensional node features, which may be static (i.e., the original
node features or another PE), or learned (i.e., hidden states at some step of an MPNN), let T ⊂ [0, 1]
be a finite set of thresholds and Θ ⊂ Sd−1 a finite set of directions. The k-dimensional LEAP PE of
a node v ∈ V (G) is constructed as follows:

1. Compute the m-hop subgraph Nm(v,G) around node v.
2. Given the set of nodes {u1, . . . , un} = V (Nm(v,G)), mean center their feature set

{x(u1), . . . , x(un)} and divide each element by the maximum norm in the centered set to obtain
new features F = {f(u1), . . . , f(un)} ⊂ Sd−1, where f : V (Nm(v,G)) → F denotes the
mapping between each node in the m-hop and its normalized feature vector.

3. Compute the matrix M ∈ R|Θ|×|T| whose (i, j) entry is the differentiable approximation of the
ECT of (Nm(v,G), f) at (θi, tj) ∈ Θ× T.

4. Lastly, a learnable projection ϕ : R|Θ|×|T| → Rk maps M to a vector PE(v) ∈ Rk, which is the
final positional encoding of node v.

Remark 1. LEAP is not a static pre-processing step on the graph. On the contrary, it can be
integrated in graph neural network architectures to be trained in an end-to-end fashion.

The previous remark highlights a key difference between LEAP and graph PEs like LaPE and RWPE.
This is also an important distinction from the prior use of the ℓ-ECT, which was introduced as a static,
non-learnable extension of node features, with neighborhood connectivity being disregarded as the
ECT was calculated on node neighborhoods as if they were point clouds rather than graphs (von
Rohrscheidt & Rieck, 2025). In addition, LEAP permits the set of directions Θ to be randomly
initialized and then either kept fixed or optimized during training. LEAP can also be applied to
learned graph features and, since it integrates with any GCN, it is naturally applicable to both
graph-level and node-level tasks. By contrast, the DECT is geared towards generating graph-level
descriptors (Röell & Rieck, 2024).
Remark 2. Within the categorization of Rampášek et al. (2022), LEAP is a local structural encoding.

The locality of LEAP comes from computing each node’s encoding only from its m-hop subgraph.
Thus, locality is controlled by the hop number m, which serves as a hyperparameter. By default, we
suggest 1-hop neighborhoods, making our method as scalable as a message passing, but we also
describe two ways to control the locality of LEAP:

• Use a larger hop number m. While straightforward, it should be noted that two nodes may differ in
their m-hop neighborhoods while becoming identical at (m+ 1)-hops.2

• Alternatively, we compute LEAP multiple times for each node with increasing m, then concatenate
the results to obtain a PE that captures how the m-hop neighborhoods evolve as m grows.

2For sufficiently large m, this strategy yields identical PEs for all nodes within the same connected component.
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We also note that two nodes in a graph that share identical m-hop neighborhoods receive the same
LEAP PE, since the second step in the computation of the PE yields identical outputs. This aligns
directly with the definition of local structural encoding given in Rampášek et al. (2022, Table 1).
Moreover, consider a node whose normalized m-hop neighborhood features form a geometric graph
embedding.3 If we could access the ECT of that subgraph rather than an approximation, then by
the injectivity results of the ECT (Curry et al., 2022; Ghrist et al., 2018) we would have all the
information required to recover the neighborhood’s structure.4

3.2 ECT PROJECTION STRATEGIES

Since LEAP aims to capture structural information, it should be invariant to scaling and rotations of
neighborhood features. Step 2 above addresses normalization, but to minimize the effect of rotations,
the projection in Step 4 should be permutation invariant with respect to the ECCs. However, this
requirement is often ignored in practice (Röell & Rieck, 2024). In the remainder of this section, we
present five projection strategies for LEAP, some of which explicitly enforce this invariance.

Linear projection: We “flatten” the ℓ-ECT of each node into a vector v ∈ RD with D = |Θ| · |T|,
following Amézquita et al. (2021). We then apply a linear projection by multiplying v with a
learnable matrix W ∈ Rk×D. This projection is not permutation invariant with respect to the
ECC, and the number of learnable parameters with respect to |Θ| and |T| is O(|Θ| · |T|).

One-dimensional convolutions: We treat the ℓ-ECT of each node as a multichannel time series,
where thresholds act as time steps and each ECC defines a channel. Several 1D convolutions are
concatenated, and the resulting channels are averaged to produce a vector that is used as an input
to an MLP. This projection is not permutation invariant with respect to the order of the directions,
and the number of learnable parameters with respect to |Θ| and |T| is O(|Θ|+ |T|).

DeepSets: We treat the ℓ-ECT of a node as a set of |T|-dimensional vectors, corresponding to
the ECCs along different directions in Θ, processing this set using an architecture inspired by
DeepSets (Zaheer et al., 2017): Given the set of vectors corresponding to the ECCs we have
PE = MLP2(

∑
θ∈|Θ| MLP1(ECCθ)). This projection strategy is permutation invariant wrt. the

directions of the ECT, and its number of learnable parameters is independent of |Θ|.
Attention: We treat the ℓ-ECT of a node as a set of |T|-dimensional vectors, corresponding to

the ECCs along the different directions in Θ, and process this set by a transformer encoder with
a single attention head. To obtain the PE, we apply an MLP to the sum of the generated ECC
representations. Due to the use of a self-attention without any positional encoding, the projection
is permutation invariant, and the number of learnable parameters depends on |T| but not on |Θ|.

Attention with PE: As a variant of the previous projection, instead of feeding the transformer
encoder the set of ECCs directly, we concatenate each ECCθ with the corresponding direction
θ ∈ Θ before passing it to the encoder. This yields a permutation invariant projection strategy,
while incorporating information about the directions along which the ECCs were computed.

3.3 PROPERTIES

We first discuss the computational complexity of our method. Given an m-hop subgraph Nm(v,G)
for each vertex v, calculating the ℓ-ECT has a total computational complexity of O(

∑
v |Nm(v,G)|).

In the worst case, each subgraph is the complete graph on n vertices, leading to an overall complexity
of O(n3). For sparse graphs whose m-hop neighborhood is of the order of m = O(n), we obtain
a worst-case complexity of O(n2). Finally, assuming bounded degree, this reduces to a worst-case
complexity of O(n), which is asymptotically equal to one step of message passing. Moreover,
individual ℓ-ECTs can be computed in parallel. In terms of expressivity, von Rohrscheidt & Rieck
(2025) provide the theoretical foundation for our work, stating that, given a sufficiently large number
of directions, the injectivity of the ℓ-ECT guarantees that it is more expressive than message passing.
However, we consider the main contribution of our work to be the development of a novel local
positional encoding and its empirical evaluation, in the spirit of Rampášek et al. (2022), thus leaving
a more in-depth theoretical analysis for future work.
3In general there is no guarantee this will occur.
4We design an experiment to test the ability of LEAP to capture topological features of a graph, see Section 4.1.
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4 EXPERIMENTS

We conduct experiments to evaluate different aspects of LEAP, investigating (i) its ability to capture
structural properties independent of node features, (ii) its impact on the performance of different
graph neural network architectures and the effect of learning the directions of the transform, (iii) its
performance on a large-scale dataset with 202,579 graphs (Chen et al., 2019), (iv) its behavior
when applied to learned node features in the HIV dataset (Wu et al., 2018), and (v) the effect of
hyperparameters. Subsequently, LEAP-L indicates that the directions for LEAP were randomly
initialized and learned during training, while LEAP-F denotes that the directions remained fixed.

4.1 SYNTHETIC DATASET

We introduce a synthetic dataset of 40,000 graphs to test whether LEAP can capture structural
differences independent of node features, thus proving that LEAP is indeed a structural encoding.
Each graph has three nodes and contains either zero, one, two, or three edges, yielding a classification
task with four classes based on edge count. The node features are uniformly sampled from the unit
disk D1 ⊂ R2 to make the task purely structural. We use a standard GCN and GAT architecture as
base models, and compare them to the same model enhanced with LEAP added as structural positional
encoding. For the computation of the ECT used in LEAP, we use 16 directions with a resolution of
16, summarizing each graph into a 16× 16 ECT. The models enhanced with LEAP achieve a perfect
accuracy of 100.0± 0.0, demonstrating LEAP’s ability to capture structural properties independent
of the node features. By contrast, the GCN and GAT models exhibit lower accuracies (71.83± 0.27
and 69.44 ± 0.82, respectively), demonstrating their inability to capture relevant structural graph
properties when informative node features are not available.

4.2 CLASSIFYING REAL-WORLD DATASETS

Table 1: Best approach (architecture, PE strategy,
and projection strategy) and relative accuracy
improvement with respect to the worst performing
baseline for TU classification datasets. In all cases
the best result was achieved using our PE strategy.

DATASET BEST METHOD WORST BEST GAIN (%)

LETTER-H NoMP + LEAP-L+ 1D Conv 41.6 81.6 96.2
LETTER-M NoMP + LEAP-L+ 1D Conv 57.8 88.5 53.1
LETTER-L NoMP + LEAP-L+ 1D Conv 80.4 98.0 21.9
FINGERPRINT NoMP + LEAP-L+ Linear 48.8 55.7 14.1
COX2 GAT + LEAP-L+ Attn w/ PE 77.7 80.1 3.1
BZR NoMP + LEAP-L+ Linear 78.3 84.7 8.2
DHFR GCN + LEAP-L+ Attn w/ PE 70.1 77.6 10.7

We evaluate LEAP on several graph
classification datasets from the TU benchmark
(Morris et al., 2020). Our aim is to evaluate
(i) the capacity of LEAP to enhance existing
graph neural networks with structural
information, (ii) compare LEAP with existing
PEs, and (iii) investigate in which architecture
LEAP induces the largest increase in accuracy.
Of particular interest is the evaluation on the
Alchemy full (Chen et al., 2019) dataset, as the
regression targets are rotation invariant with
respect to the node features. For this dataset, we
normalize the regression targets so that all 12

tasks are on the same scale. For the HIV dataset (Wu et al., 2018), where nodes have categorical
features, we exploit the end-to-end differentiability of the ECT by extending the architecture with a
learnable embedding layer that maps these features into R3, where LEAP is computed.

Architectures. We fix three “backbone” architectures to which we add different positional
encodings, namely (i) a GCN (Kipf & Welling, 2017), (ii) a GAT (Veličković et al., 2018), and
(iii) NoMP (“no message passing”), a model that we introduce based on a transformer encoder.
Following Maggs et al. (2024), we use five message-passing layers and 32-dimensional hidden
states for GCN and GAT. For the Alchemy dataset, we scale the architectures to 10 layers with 64-
dimensional hidden states. The NoMP architecture projects node features into a 16-dimensional latent
space with a linear layer, followed by a single self-attention layer that produces a 16-dimensional state
for each node. The final classification is performed by a feedforward layer. We chose hyperparameters
to match the parameter count of GCN/GAT. By design, NoMP ignores graph structure unless given
positional encodings, thus permitting us to evaluate the ability of each PE to encode relevant structural
properties. Finally, as positional encodings, we consider the following baselines: (i) no positional
encoding; (ii) RWPE, which, like LEAP, is a local structural PE under the categorization of Rampášek
et al. (2022), making it a particularly relevant baseline, and (iii) LaPE, a widely used graph PE that,
unlike LEAP, captures global positional information.
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Experimental setup. All experiments use 5-fold cross-validation and are trained with the Adam
optimizer for up to 100 epochs with early stopping enabled. As a loss term, we use cross entropy loss
except for the Alchemy dataset, where we use a mean squared error loss. We use 10-dimensional PEs
for all types and datasets. The only difference between the backbones with or without a PE is that
the input dimension of the backbone increases by 10 when a PE is used. The Euler Characteristic
Transform in LEAP is calculated with 16 directions and 16 thresholds. To simplify the setup, we
keep all hyperparameters of LEAP’s projection strategies fixed across all datasets. Despite this, as we
describe below, we observe high predictive performance across a variety of datasets.

RESULTS

Table 4 reports the results for LEAP and the baselines in combination with different architectures
across the various classification datasets. For every dataset–architecture combination, the two LEAP
variants (F/L) achieve the best and second-best performance, respectively. When combined with
GCN and NoMP architectures, learning the directions of LEAP consistently improves performance
in comparison to keeping them fixed. For GAT, learning the directions slightly reduces performance
compared to the fixed variant of LEAP in 3 of the 7 datasets. For all datasets, the overall best-
performing architecture–PE combination always uses LEAP with learned directions.

Alchemy HIV

Figure 2: Results for different PE strategies on the
Alchemy and HIV datasets reporting the R2 and
AUROC using a GCN. Colors rank the PEs from
best, second best to worst. LEAP with learnable
direction significantly outperforms other methods
on the Alchemy dataset while performing second
best on the HIV dataset.

Table 1 reports the relative increase of the
best-performing method compared to the
worst-performing method. We observe
the largest gains from using LEAP on
the Letter and Fingerprint datasets. For
the datasets COX2, BZR, and DHFR,
the advantage over the baselines is less
pronounced, likely due to their smaller
size, making it harder to benefit from
richer features. We observe the largest
improvement on DHFR, the largest dataset
among the three. Table 4 also shows
that NoMP without positional encodings
outperforms baseline GNNs on the Letter-High
and Letter-Low datasets, highlighting the
limitations of MPNNs, i.e., models without
structural information may achieve better
results.

Table 2: Surprisingly, increasing the neighborhood
size (Nm) does not improve the efficacy of LEAP,
showing that the 1-hop neighborhood is sufficient.

METHOD Nm LETTER-H LETTER-M LETTER-L

LEAP-F
1 81.29 ± 1.91 88.00 ± 1.89 96.27 ± 0.84
2 74.44 ± 3.26 84.31 ± 0.76 94.13 ± 1.05

1, 2 77.91 ± 1.82 84.76 ± 1.40 96.09 ± 0.34

LEAP-L
1 80.62 ± 3.58 86.49 ± 2.20 96.18 ± 1.24
2 72.76 ± 2.66 85.11 ± 1.29 93.38 ± 0.84

1, 2 78.13 ± 2.83 85.96 ± 1.42 95.64 ± 1.51

We also evaluate LEAP on the Alchemy and
HIV datasets from the TU Benchmark using the
same setup as described above. The Alchemy
dataset is significantly larger compared to the
other datasets allowing LEAP to extract more
meaningful information from the data. For the
Alchemy dataset, we show the R2 score and for
the HIV dataset, we report AUROC, due to large
class imbalances. Figure 2 shows the results for
LEAP with the GCN backbone and the various
projection methods, showing a clear advantage

for LEAP (with learned directions) over all baselines. For the HIV dataset, results exhibit a large
degree of variability, and this is the only case where neither of the two LEAP variant (L/F) outperforms
all baselines. Still, both variants surpass RWPE, which is in the same category of local structural
encodings. LaPE yields the strongest performance, suggesting that global positional information,
which cannot be captured by LEAP, may be particularly relevant for this dataset. The full results are
provided in Figure 3 in the Appendix.
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4.3 ABLATIONS

After having established that LEAP captures essential structural information to be used with multiple
graph neural network architectures, we further aim to investigate the sensitivity of LEAP with respect
to its various components. In particular we hope to further understand how (i) the choice of projection
method, (ii) the number of hops, and (iii) the embedding dimension impact the performance of LEAP.

Projection strategies. We repeated all experiments using the five proposed LEAP projection
strategies such that each projection strategy has approximately similar small parameter budgets,
comprising 1K–5K parameters. Table 5 in the Appendix reports the results; and we find no single
projection consistently outperformed the others, showing the best projection to be dependent on the
dataset–architecture combination. However, a remarkable fact is that learnable directions did on
average outperform the fixed set of directions, underpinning the benefits of learnable directions as
compared to using them as static features.

Table 3: Ablation study with respect to the
embedding dimension of the projection. LEAP
is stable with respect to the dimension and
consistently performs well.

EMB. PE LETTER-H LETTER-M LETTER-L

2

LaPE 66.31 ± 1.20 94.71 ± 1.29 76.76 ± 1.95
RWPE 73.82 ± 2.00 94.62 ± 0.51 83.47 ± 1.68
LEAP-F 81.16 ± 1.66 96.27 ± 1.47 86.76 ± 1.86
LEAP-L 78.53 ± 3.30 95.56 ± 0.31 87.38 ± 0.99

5

LaPE 64.44 ± 3.54 94.22 ± 0.61 82.09 ± 1.64
RWPE 75.64 ± 1.18 94.67 ± 0.96 85.82 ± 0.76
LEAP-F 79.78 ± 0.57 96.98 ± 0.25 86.76 ± 1.11
LEAP-L 80.40 ± 1.41 96.44 ± 0.59 88.36 ± 0.64

10

LaPE 65.02 ± 1.58 91.11 ± 2.23 76.93 ± 2.52
RWPE 79.24 ± 1.43 94.67 ± 0.97 84.53 ± 1.32
LEAP-F 80.13 ± 2.04 96.68 ± 0.78 86.59 ± 2.01
LEAP-L 80.68 ± 2.42 96.99 ± 1.05 87.24 ± 2.31

20

LaPE 64.80 ± 2.49 93.24 ± 0.96 77.64 ± 2.12
RWPE 76.76 ± 1.36 95.38 ± 1.12 86.49 ± 1.21
LEAP-F 80.84 ± 1.89 95.56 ± 0.65 87.42 ± 0.75
LEAP-L 79.91 ± 1.53 96.40 ± 0.79 86.89 ± 1.56

Locality. We study the effect of the locality
parameter in LEAP by repeating the experiments
on the Letter datasets, originally performed
with 1-hop neighborhoods, using instead 2-
hop neighborhoods and the concatenation
of LEAP embeddings from 1- and 2-hop
neighborhoods.5 For this ablation, we use
the NoMP model so that the models can only
access structural information through the PE,
and we use attention with PE as the LEAP
projection strategy. Table 2 shows that the 1-
hop neighborhood yields the best performance
across all datasets, followed by the concatenated
1- and 2-hop version.

PE dimension. To better understand the effect
of increasing the embedding dimension for the
projection strategies, we vary the size of the
embedding dimension on the Letter datasets.
The original experiment was ran with PE

dimension 10 for both LEAP and the baselines, and we now repeat the experiment with the embedding
dimension set to {2, 5, 10, 20}. As before, we fix the architecture to NoMP so that models access
structural information only through the PE, and use attention with PE as the projection strategy for
LEAP. The results in Table 3 show that across all the evaluated PE dimensions and datasets, LEAP
outperforms both RWPE and LaPE.

DECT hyperparameters and comparison. We assessed LEAP’s sensitivity to the DECT
hyperparameters by varying the number of directions in {2, 4, 8, 16, 32} and smoothing parameter
in {2, 4, 8, 16, 32, 64, 128}. LEAP remained robust, outperforming baselines across all settings; see
Figure 6 in the Appendix. Finally, Table 6 in the Appendix summarizes the comparison of LEAP with
DECT for graph classification tasks. LEAP outperforms two variants of the DECT (with different
parameter budgets) on most datasets, which further underscores the utility of learnable directions.

5 CONCLUSION AND FUTURE WORK

We presented LEAP, a new learnable local structural positional encoding for graphs based on
the ℓ-ECT. To the best of our knowledge, this is the first approach to integrate the ℓ-ECT into
deep learning architectures in an end-to-end trainable fashion. Our experiments show that LEAP
consistently outperforms established baselines across multiple architectures and datasets, with learned
directions further improving performance in most tasks, thereby highlighting the benefits of making

5In the concatenation setting, each embedding is computed with half the target dimension so that the final
representation matches the dimension of the other approaches.
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Table 4: Accuracy results for different PE strategies when using a GCN and GAT architectures for
multiple Computer Vision datasets from TU Benchmark. Best results are bold green, second best are
green, and worst are red. For every dataset, our approach achieves the best and second best results.

MODEL PE COX2 BZR DHFR LETTER-H LETTER-M LETTER-L FINGERPRINT

GCN

No PE 77.9 ± 1.0 81.9 ± 3.3 71.6 ± 1.4 41.6 ± 4.1 63.5 ± 2.0 80.4 ± 1.0 48.8 ± 1.4
RWPE 78.4 ± 0.5 79.5 ± 2.2 73.0 ± 2.4 60.9 ± 1.7 68.9 ± 2.7 83.2 ± 1.4 49.4 ± 0.6
LaPE 78.4 ± 0.9 80.3 ± 1.2 70.4 ± 2.8 55.3 ± 2.6 75.8 ± 2.6 89.2 ± 1.2 48.1 ± 1.8
LEAP-F 79.2 ± 0.6 82.5 ± 2.4 74.1 ± 5.2 72.2 ± 3.3 82.6 ± 1.4 95.8 ± 1.1 55.6 ± 1.1
LEAP-L 79.4 ± 1.0 82.5 ± 1.6 77.6 ± 2.8 74.2 ± 1.5 83.6 ± 1.3 96.0 ± 0.9 55.1 ± 1.2

GAT

No PE 78.2 ± 0.6 80.5 ± 2.0 73.7 ± 1.8 41.9 ± 3.2 58.4 ± 3.7 89.4 ± 0.7 50.5 ± 0.6
RWPE 79.0 ± 1.4 78.3 ± 1.1 70.9 ± 2.4 63.0 ± 3.0 69.0 ± 1.8 90.8 ± 1.5 50.4 ± 0.8
LaPE 77.9 ± 1.0 80.3 ± 1.2 70.4 ± 2.7 54.7 ± 5.3 75.2 ± 2.3 89.6 ± 1.5 48.9 ± 1.0
LEAP-F 79.2 ± 1.6 82.0 ± 3.2 75.7 ± 3.0 70.2 ± 2.2 83.2 ± 1.1 95.8 ± 0.8 55.1 ± 0.6
LEAP-L 80.1 ± 2.2 83.7 ± 2.9 76.5 ± 3.8 73.5 ± 2.1 82.4 ± 1.6 95.2 ± 0.9 54.9 ± 0.7

GIN

No PE 78.2 ± 0.5 79.5 ± 1.4 69.3 ± 4.8 47.7 ± 0.8 65.0 ± 3.9 82.7 ± 1.5 48.4 ± 1.4
RWPE 78.6 ± 1.6 79.3 ± 1.0 72.0 ± 4.9 54.4 ± 2.3 64.9 ± 3.7 81.6 ± 2.4 50.0 ± 1.6
LaPE 78.2 ± 0.5 79.5 ± 1.7 61.0 ± 0.1 55.0 ± 3.5 75.2 ± 3.5 84.4 ± 3.5 49.8 ± 1.9
LEAP-F 79.0 ± 0.9 81.2 ± 1.4 73.9 ± 4.1 60.2 ± 4.8 76.3 ± 2.0 93.3 ± 1.1 54.4 ± 1.1
LEAP-L 79.6 ± 1.6 81.0 ± 1.4 76.2 ± 3.2 62.7 ± 3.4 77.6 ± 1.7 94.0 ± 1.9 55.3 ± 1.4

NOMP

No PE 77.9 ± 0.8 79.8 ± 2.6 70.1 ± 3.4 63.4 ± 1.0 57.8 ± 0.9 89.7 ± 1.3 50.7 ± 0.5
RWPE 77.7 ± 1.3 80.9 ± 1.7 73.3 ± 1.5 79.2 ± 1.4 84.5 ± 1.3 94.7 ± 1.0 51.3 ± 0.7
LaPE 77.7 ± 1.0 81.2 ± 3.2 70.5 ± 3.5 65.0 ± 1.6 76.9 ± 2.5 91.1 ± 2.2 50.5 ± 1.2
LEAP-F 79.0 ± 0.6 83.2 ± 1.7 74.3 ± 6.1 81.3 ± 1.9 88.0 ± 1.9 97.2 ± 0.3 55.7 ± 1.1
LEAP-L 78.6 ± 0.8 84.7 ± 2.7 75.7 ± 2.7 81.6 ± 1.9 88.5 ± 2.5 98.0 ± 0.4 56.3 ± 1.4

this step trainable. Additionally, we introduced a synthetic task in which our approach achieved
perfect accuracy, demonstrating its ability to capture topological information independent of node
features, which the evaluated MPNNs (GCN/GAT) alone failed to recover. Taken together, these
results underscore the potential of ℓ-ECT encodings for topological deep learning (Papamarkou
et al., 2024) in general and graph representation learning tasks specifically. LEAP is particularly
well-suited to provide local structural information to architectures that rely on global attention
mechanisms, where graph structure is not directly modeled and multiple PEs are often combined to
capture complementary notions of graph position.

Limitations. While LEAP provides a learnable way to capture local structural information. First,
it is not a purely structural PE, as it requires node features to compute the ECTs. However, these
features can be learned, and in the synthetic dataset, our approach succeeded even though the features
were irrelevant to the prediction targets. Second, LEAP relies on a differentiable approximation of
the discretized ECT applied to normalized m-hop subgraphs, which are not necessarily geometric,
so the theoretical guarantees of the exact ECT (e.g., injectivity) may not fully carry over; we expect
this to be one interesting focus for future work. Finally, unlike other graph PEs, such as LaPE
or RWPE, where the only hyperparameter is the embedding dimension, LEAP introduces several
hyperparameters (among others, a smoothing parameter of the ECT approximation, the number of
directions, and the number of discretization steps). In practice, however, we fixed these across datasets
and architectures and nevertheless observed consistently strong performance, and our ablation studies
further demonstrated the robustness to these choices.

Future work. We envision several directions for future research. First, drawing on prior work (von
Rohrscheidt & Rieck, 2025), we aim to formalize the theoretical expressivity of LEAP, nothing
that theoretical expressivity and empirical performance are often not correlated. Combining LEAP
with positional encodings that capture complementary aspects of graph structure and embedding it
within more sophisticated architectures may further improve performance and expressivity. Another
promising line is to make the ECT step fully differentiable: Instead of discretizing along a fixed grid,
treating thresholds as trainable parameters would allow the model to focus on informative regions
and optimize their positions jointly with the other parameters. Using learned features, we also plan
on assessing the performance of LEAP on non-attributed graph datasets, i.e., datasets that are fully
structural. Finally, since the ECT can be applied to higher-order datasets (Ballester et al., 2025;
Hoppe et al., 2025) as well, we believe that LEAP could be extended to this modality, thus serving as
a generalizable addition to the topological deep learning toolbox.
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REPRODUCIBILITY STATEMENT

The anonymized code to reproduce our experiments are provided in the supplementary materials.
The experiments used a fixed seed and the full configurations can be found in the experiments
folder in the supplementary materials.
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APPENDIX

A RESULTS FOR THE ALCHEMY AND HIV DATASETS

GCN GAT

(a) Alchemy

GCN GAT

(b) HIV

Figure 3: R2 and AUROC results for different PE strategies on the Alchemy and HIV dataset using
the GCN and GAT architectures. Best results are bold green, second best are green, and worst are red.
LaPE achieves the best result for both architectures. For both architectures one of the two variants of
our approach achieves the second best result.
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B VALIDATION METRICS

Validation Loss Validation Accuracy

Figure 4: Validation loss and accuracy per training epoch for the synthetic dataset for the baseline
GCN, GAT, and LEAP. Our method achieves a perfect score in both metrics and convergence
immediately. The shadows indicate one standard deviation over 5 runs and the dashed line means that
model training finished earlier because of early stopping.

Letter High Letter Medium

Figure 5: Validation accuracy per training epoch for the Letter High (left) and Letter Medium (right)
datasets for different PE strategies using a GCN architecture. Our method achieves the best results
and converges faster. The shadows around the curves indicate the standard deviation over 5 runs and
the dashed line means that training ended due to early stopping.
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C ADDITIONAL EXPERIMENTS

Table 5: Accuracy results for all real-world datasets when varying the strategy of the LEAP PE with
fixed and learnable directions for different models. The backbone architectures have around 4K
parameters and we show the additional parameters each positional encoding introduces.
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MODEL PROJ. METHOD PARAMETERS LEAP-F LEAP-L LEAP-F LEAP-L LEAP-F LEAP-L LEAP-F LEAP-L LEAP-F LEAP-L LEAP-F LEAP-L LEAP-F LEAP-L

GCN

Linear 4K+2.5K 79.2 ± 0.6 79.4 ± 1.0 78.8 ± 0.6 82.5 ± 2.0 70.9 ± 3.2 74.9 ± 4.0 72.2 ± 3.3 74.2 ± 1.5 82.8 ± 1.4 83.6 ± 1.3 95.2 ± 0.9 96.0 ± 0.9 55.6 ± 1.1 54.7 ± 1.5
Attn 4K+5K 78.4 ± 1.3 79.0 ± 0.9 81.7 ± 2.8 82.5 ± 1.6 74.1 ± 5.2 77.3 ± 4.1 59.8 ± 2.8 62.7 ± 2.6 74.4 ± 1.5 73.9 ± 4.6 92.3 ± 1.3 94.5 ± 1.4 53.0 ± 1.9 54.4 ± 1.2
Attn PE 4K+5K 78.2 ± 1.2 78.8 ± 1.3 82.5 ± 2.4 82.5 ± 3.1 73.2 ± 3.7 77.6 ± 2.8 67.2 ± 1.5 68.6 ± 1.8 82.0 ± 0.8 82.9 ± 2.2 95.8 ± 1.1 94.7 ± 1.6 54.1 ± 1.3 55.1 ± 1.2
DeepSets 4K+.5K 78.2 ± 0.6 79.0 ± 1.2 79.0 ± 1.2 81.7 ± 3.5 71.2 ± 2.6 73.3 ± 3.6 59.2 ± 1.9 63.4 ± 2.1 72.4 ± 0.6 76.0 ± 1.1 91.4 ± 1.8 92.0 ± 0.6 52.3 ± 1.3 54.1 ± 1.3
1D Conv 4K+.9K 78.0 ± 1.2 79.2 ± 2.0 79.8 ± 1.9 82.5 ± 2.7 71.7 ± 1.2 76.7 ± 3.4 66.4 ± 2.8 63.1 ± 3.2 81.6 ± 1.5 81.7 ± 3.5 94.2 ± 1.5 93.4 ± 1.4 55.6 ± 1.1 54.0 ± 2.2

GAT

Linear 4K+2.5K 78.4 ± 1.2 79.7 ± 2.0 79.3 ± 1.8 81.7 ± 2.4 75.7 ± 3.0 76.3 ± 2.2 70.2 ± 2.2 73.5 ± 2.1 82.4 ± 2.3 82.4 ± 1.6 95.8 ± 0.8 95.1 ± 0.9 55.1 ± 0.6 54.8 ± 2.1
Attn 4K+5K 78.4 ± 0.5 78.8 ± 0.8 82.0 ± 3.4 82.2 ± 2.1 74.9 ± 3.1 73.3 ± 2.8 62.0 ± 1.2 62.9 ± 3.1 75.0 ± 2.1 79.7 ± 1.4 94.4 ± 0.1 93.4 ± 1.0 52.0 ± 1.3 53.5 ± 1.5
Attn PE 4K+5K 78.8 ± 0.8 80.1 ± 2.2 82.0 ± 3.2 79.5 ± 0.7 73.2 ± 3.1 75.9 ± 5.8 66.7 ± 2.0 65.0 ± 3.5 83.2 ± 1.1 79.3 ± 2.4 94.0 ± 1.3 95.1 ± 1.1 54.5 ± 1.8 54.5 ± 1.8
DeepSets 4K+.5K 79.2 ± 1.6 79.7 ± 1.8 81.2 ± 2.0 82.7 ± 4.7 71.2 ± 4.1 76.5 ± 3.8 58.8 ± 2.6 56.4 ± 4.3 75.4 ± 3.1 76.6 ± 2.3 94.6 ± 1.4 93.1 ± 1.3 52.9 ± 2.2 51.0 ± 1.1
1D Conv 4K+.9K 78.4 ± 0.9 78.6 ± 1.7 81.7 ± 4.0 83.7 ± 2.9 70.6 ± 2.3 75.7 ± 1.5 67.3 ± 2.0 68.1 ± 1.3 80.9 ± 1.3 80.5 ± 2.8 93.6 ± 2.0 95.2 ± 0.9 54.8 ± 1.5 54.9 ± 0.7

GIN

Linear 4K+2.5K 78.4 ± 0.8 77.9 ± 2.2 79.3 ± 1.4 78.8 ± 0.6 76.2 ± 3.2 70.6 ± 3.2 62.7 ± 3.4 60.2 ± 4.8 77.6 ± 1.7 74.7 ± 3.6 94.0 ± 1.9 93.3 ± 1.1 55.0 ± 1.2 54.4 ± 1.1
Attn 4K+5K 78.4 ± 0.8 78.2 ± 0.5 78.8 ± 0.6 78.5 ± 1.9 61.0 ± 0.1 73.9 ± 4.1 53.6 ± 4.0 46.3 ± 8.1 73.2 ± 5.2 65.2 ± 9.4 92.8 ± 1.3 89.6 ± 0.8 55.3 ± 1.4 53.9 ± 0.9
Attn PE 4K+5K 78.2 ± 0.5 78.2 ± 0.5 78.8 ± 0.6 78.8 ± 0.6 61.0 ± 0.1 61.0 ± 0.1 58.4 ± 4.8 52.8 ± 6.9 75.1 ± 3.5 76.3 ± 2.0 92.8 ± 1.0 90.6 ± 6.0 54.0 ± 1.4 53.7 ± 0.5
DeepSets 4K+.5K 79.6 ± 1.6 79.0 ± 0.9 81.0 ± 1.4 80.2 ± 2.0 74.7 ± 3.4 69.2 ± 2.2 49.5 ± 3.5 53.6 ± 6.9 71.2 ± 2.0 67.4 ± 4.6 89.5 ± 1.9 87.2 ± 3.8 54.5 ± 0.7 53.3 ± 0.5
1D Conv 4K+.9K 78.2 ± 0.5 78.4 ± 1.4 79.0 ± 1.2 81.2 ± 1.4 72.1 ± 5.6 70.1 ± 6.8 57.9 ± 4.7 52.7 ± 2.7 76.5 ± 3.7 72.7 ± 6.3 91.8 ± 1.7 90.6 ± 0.8 53.8 ± 0.4 54.2 ± 1.1

NOMP

Linear 4K+2.5K 79.0 ± 0.6 78.6 ± 0.8 83.2 ± 1.7 84.7 ± 2.7 74.3 ± 6.1 74.9 ± 3.3 79.5 ± 1.2 79.4 ± 1.1 86.0 ± 2.2 85.4 ± 1.5 96.7 ± 0.8 96.4 ± 0.7 55.7 ± 1.1 56.3 ± 1.4
Attn 4K+5K 78.2 ± 0.5 78.2 ± 0.5 81.7 ± 2.8 79.0 ± 0.9 68.3 ± 5.7 71.7 ± 4.1 79.0 ± 1.8 81.3 ± 1.9 84.8 ± 0.9 86.5 ± 2.6 96.1 ± 0.6 97.2 ± 0.8 53.8 ± 0.7 54.8 ± 1.2
Attn PE 4K+5K 78.4 ± 0.4 77.7 ± 1.5 78.8 ± 0.6 78.8 ± 0.6 64.2 ± 4.8 72.1 ± 3.7 81.3 ± 1.9 80.6 ± 3.6 88.0 ± 1.9 86.5 ± 2.2 96.3 ± 0.8 96.2 ± 1.2 54.8 ± 1.4 55.3 ± 1.1
DeepSets 4K+.5K 78.4 ± 0.8 78.0 ± 0.5 83.2 ± 2.1 82.0 ± 2.8 69.5 ± 3.0 72.6 ± 3.6 78.0 ± 2.0 79.2 ± 1.9 86.0 ± 2.2 87.5 ± 2.0 96.3 ± 0.6 96.6 ± 0.8 54.0 ± 0.4 54.3 ± 1.0
1D Conv 4K+.9K 78.0 ± 1.9 78.1 ± 1.1 81.0 ± 1.7 79.3 ± 1.8 71.6 ± 3.2 75.7 ± 2.7 81.1 ± 0.9 81.6 ± 1.9 87.0 ± 2.0 88.5 ± 2.5 97.2 ± 0.3 98.0 ± 0.4 54.5 ± 1.0 54.1 ± 0.4

Letter High Letter Medium Letter Low

Letter High Letter Medium Letter Low

Figure 6: We asses the sensitivity of LEAP with respect to the hyperparameters used in the ECT. Top
row shows the effect of changing the hyperparameters for LEAP-F (fixed directions) and the bottom
row for LEAP-L (learnable directions). LEAP consistently outperforms baselines across all settings
and is thus robust with respect to the hyperparameters.
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Table 6: We provide a comparison with DECT (Röell & Rieck, 2024). DECT summarizes the
graph with a single global ECT and subsequently applies a convolutional neural network for the
classification. We compare our method with two variants of DECT, one with 4K parameters and
one with 65K parameters. The parameter count in LEAP ranges from 1K to 5K and therefore the
comparison with DECT (4K) would be the most appropriate, although we outperform both variants
on most datasets.

MODEL COX2 BZR DHFR LETTER-H LETTER-M LETTER-L

DECT (4K) 70.4 ± 0.9 81.8 ± 3.2 67.9 ± 5.0 63.8 ± 6.0 76.2 ± 4.8 91.5 ± 2.1
DECT (65K) 74.6 ± 4.5 84.3 ± 6.1 72.9 ± 1.6 85.4 ± 1.3 86.3 ± 2.0 96.8 ± 1.2

LEAP-L (GCN) 79.4 ± 1.0 82.5 ± 1.6 77.6 ± 2.8 74.2 ± 1.5 83.6 ± 1.3 96.0 ± 0.9
LEAP-L (GAT) 80.1 ± 2.2 83.7 ± 2.9 76.5 ± 3.8 73.5 ± 2.1 82.4 ± 1.6 95.2 ± 0.9
LEAP-L (NOMP) 78.6 ± 0.8 84.7 ± 2.7 75.7 ± 2.7 81.6 ± 1.9 88.5 ± 2.5 98.0 ± 0.4

16


	Introduction
	Background
	Message Passing
	Graph Positional Encodings
	The Euler Characteristic Transform (ECT)

	Methods
	l-ECT based Positional Encoding
	ECT projection strategies
	Properties

	Experiments
	Synthetic Dataset
	Classifying real-world datasets
	Ablations

	Conclusion and future work
	Results for the Alchemy and HIV datasets
	Validation metrics
	Additional experiments

