
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROVABLY RELIABLE CONFORMAL PREDICTION SETS
IN THE PRESENCE OF DATA POISONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conformal prediction provides model-agnostic and distribution-free uncertainty
quantification through prediction sets that are guaranteed to include the ground
truth with any user-specified probability. Yet, conformal prediction is not reliable
under poisoning attacks where adversaries manipulate both training and calibra-
tion data, which can significantly alter prediction sets in practice. As a solution,
we propose reliable prediction sets (RPS): the first efficient method for construct-
ing conformal prediction sets with provable reliability guarantees under poisoning.
To ensure reliability under training poisoning, we introduce smoothed score func-
tions that reliably aggregate predictions of classifiers trained on distinct partitions
of the training data. To ensure reliability under calibration poisoning, we construct
multiple prediction sets, each calibrated on distinct subsets of the calibration data.
We then aggregate them into a majority prediction set, which includes a class only
if it appears in a majority of the individual sets. Both proposed aggregations mit-
igate the influence of datapoints in the training and calibration data on the final
prediction set. We experimentally validate our approach on image classification
tasks, achieving strong reliability while maintaining utility and preserving cov-
erage on clean data. Overall, our approach represents an important step towards
more trustworthy uncertainty quantification in the presence of data poisoning.

1 INTRODUCTION

Conformal prediction has emerged as a powerful framework for model-agnostic and distribution-free
uncertainty quantification in machine learning. By constructing prediction sets calibrated on hold-
out calibration data, it can transform any existing black-box classifier into a predictor with formal
coverage guarantees, ensuring that its prediction sets cover the ground truth with any user-specified
probability (Angelopoulos & Bates, 2021). This makes conformal prediction highly relevant for un-
certainty quantification in safety-critical applications such as medical diagnosis (Vazquez & Facelli,
2022), autonomous driving (Lindemann et al., 2023), and flood forecasting (Auer et al., 2023).

However in practice, noise, incomplete data or adversarial perturbations can lead to unreliable pre-
diction sets (Liu et al., 2024). In particular data poisoning – where adversaries modify the training
or calibration data (e.g. during data labeling) – can significantly alter the prediction sets, resulting
in overly conservative or empty sets (Li et al., 2024). This vulnerability can undermine the practical
utility of conformal prediction in safety-critical applications, raising the research question:

How can we make conformal prediction sets provably reliable in the presence of data poisoning?

As a solution, we propose reliable prediction sets (RPS): the first efficient method for constructing
prediction sets more reliable under data poisoning where adversaries can modify, add and delete dat-
apoints from training and calibration sets. Our approach consists of two key components (Figure 1):
First (i), we introduce smoothed score functions that reliably aggregate predictions from classifiers
trained on distinct partitions of the training data, improving reliability under training poisoning. Sec-
ond (ii), we calibrate multiple prediction sets on disjoint subsets of the calibration data and construct
a majority prediction set that includes classes only when a majority of the independent prediction
sets agree, improving reliability under calibration poisoning. Using both strategies (i) and (ii), RPS
effectively reduces the influence of datapoints during training and calibration.
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(i) Reliable CP under training poisoning (ii) Reliable CP under calibration poisoning
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Figure 1: Conformal prediction (CP) is not reliable under poisoning (orange) of training and calibra-
tion data, undermining its practical utility in safety-critical applications. As a solution, we propose
reliable prediction sets (RPS): A novel approach for constructing more reliable prediction sets. We
(i) aggregate predictions of classifiers trained on distinct partitions, and (ii) merge multiple predic-
tion sets Ci(x)={y : s(x, y)≥ τi} calibrated on separate partitions into a majority prediction set that
includes classes only if a majority of the prediction sets Ci agree. This way RPS reduces the influ-
ence of datapoints while preserving the coverage guarantee of conformal prediction on clean data.

We further derive certificates, i.e. provable guarantees for the reliability of RPS under worst-case poi-
soning. We experimentally validate the effectiveness of our approach on image classification tasks,
demonstrating strong reliability under worst-case poisoning while maintaining utility and empiri-
cally preserving the coverage guarantee of prediction sets on clean data. Our main contributions are:

• We propose reliable prediction sets (RPS) – the first scalable and efficient method for making
conformal prediction more reliable under training and calibration poisoning.

• We derive novel certificates that guarantee the reliability of RPS under worst-case data poisoning
attacks, including guarantees against label flipping attacks.

• We exhaustively evaluate our method and verify our theorems on image classification tasks.

2 RELATED WORK

Prediction set ensembles. Ensembles of prediction sets are studied in the uncertainty set literature
(Cherubin, 2019; Solari & Djordjilović, 2022; Gasparin & Ramdas, 2024) beyond machine learn-
ing, e.g. to reduce the effect of randomness. Our work instead proposes a method to improve the
reliability of conformal prediction under worst-case training and calibration poisoning.

Conformal prediction under evasion. Most works regarding reliable conformal prediction focus
on evasion threat models, i.e. adversarial perturbations of the test data. They typically build upon
randomized smoothing (Cohen et al., 2019) to certify robustness against evasion attacks (Gendler
et al., 2022; Yan et al., 2024; Zargarbashi et al., 2024), or use neural network-specific verification
(Jeary et al., 2024). Ghosh et al. (2023) introduce a probabilistic notion as an alternative to worst-
case evasion attacks. Unlike prior work on evasion, we consider poisoning threat models.

Conformal prediction under poisoning. Despite emerging poisoning attacks (Li et al., 2024), the
few existing attempts to improve reliability consider other reliability notions. Most works only cer-
tify the conformal guarantee under calibration poisoning (Park et al., 2023; Zargarbashi et al., 2024;
Kang et al., 2024). Others study calibration poisoning empirically (Einbinder et al., 2022), under
specific label noise (Penso & Goldberger, 2024), or consider distribution shifts between calibration
and test data (Cauchois et al., 2020). Zargarbashi et al. (2024) consider modifications to the cali-
bration data, but their threat model does not support adversarial data insertion or deletion. Overall,
none of the existing approaches considers pointwise reliability of prediction sets under threat models
where adversaries can modify, add or remove datapoints from both training and calibration data.

Robustness certification against data poisoning. Most certification techniques for robust classi-
fication under poisoning consider other threat models, specific training techniques or architectures
(Rosenfeld et al., 2020; Tian et al., 2023; Sosnin et al., 2024). The strongest guarantees also partition
the training data and aggregate predictions of classifiers trained on each partition (Levine & Feizi,
2021; Wang et al., 2022; Rezaei et al., 2023). However, all of the prior works only guarantee robust
classification and are not directly applicable to certify conformal prediction since prediction sets (1)
contain multiple classes, and (2) can be manipulated via poisoning during training and calibration.
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3 BACKGROUND AND PRELIMINARIES

We focus on classification tasks defined on an input space X = Rd for a given finite set of classes
Y = {1, . . . ,K}. We model prediction set predictors as functions C : X → Y ⊆ Y , which provide
prediction sets as subsets C(x) ⊆ Y of the classes Y for any given datapoint x ∈ X .

Exchangeability. Conformal prediction is a model-agnostic and distribution-free method for con-
structing prediction sets. It only requires that datapoints are exchangegable, which means that their
joint distribution is invariant under permutations. In this paper, we adopt the standard assumption
(e.g. in image classification) that datapoints are i.i.d., which implies exchangeability. Specifically,
we assume three datasets sampled i.i.d. from the same distribution D over X × Y: training set
Dtrain, calibration set Dcalib={(xi, yi)}ni=1 and test set Dtest.

Conformal prediction. Conformal prediction is a method for turning a given black-box classifier
f : X → Y into a prediction set predictor. We study split conformal prediction (Papadopoulos et al.,
2002; Lei et al., 2018), the most widely-used variation of conformal prediction in machine learning.
First we train a classifier f(x) on the training set and use a score function s(x, y) that measures con-
formity between samples x and classes y using classifier f . For example, homogeneous prediction
sets (HPS) use class probabilities s(x, y)=fy(x) (Sadinle et al., 2019). Using a score function s we
then compute conformal scores S={s(xi, yi)}ni=1 for samples of the calibration set Dcalib. Finally,
one can construct prediction sets with the following coverage guarantee (Vovk et al., 1999; 2005):
Theorem 1. Given user-specified coverage probability 1− α ∈ (0, 1), test sample (xn+1, yn+1) ∈
Dtest exchangeable withDcalib, and a score function s, we can construct the following prediction set

C(xn+1) = {y ∈ Y : s(xn+1, y) ≥ τ}
which fulfills the following marginal coverage guarantee

Pr[yn+1 ∈ C(xn+1)] ≥ 1− α

for τ = Quant(αn;S), which is the αn-quantile of the conformal scores S for a finite-sample
corrected coverage level αn = ⌊α(n+ 1)− 1⌋.

4 DESIDERATA FOR RELIABLE CONFORMAL PREDICTION

First we want to outline the desired properties reliable conformal prediction should exhibit, setting
clear goals for how uncertainty should be captured by prediction sets under data poisoning.

Data poisoning. While exchangeability may hold theoretically for the data distribution D, the la-
beled data Dl = (Dtrain,Dcalib) can be poisoned in practice. We formally model this threat model,
i.e. the strength of poisoning attacks, as a ball centered around labeled data:

Brt,rc(Dl) =
{
D̃l | δ(D̃train,Dtrain) ≤ rt, δ(D̃calib,Dcalib) ≤ rc

}
(1)

where δ is a distance metric between datasets, and rt, rc are the radii for training and calibration
sets, respectively. Specifically, we define δ as the number of inserted or deleted datapoints and label
flips, modelling feature modifications as two perturbations (deletion and insertion): δ(D1,D2) =
|D1 ⊖ D2| − |F(D1,D2)| where A ⊖ B = (A \ B) ∪ (B \ A) is the symmetric set difference
between two sets A and B, |S| denotes the cardinality of a set S, and F(D1,D2) represents the set
of datapoints with label flips F(D1,D2)={x | ∃ y1 : (x, y1)∈D1 \ D2,∃ y2 : (x, y2)∈D2 \ D1}.
Note that we count label flips only once, and feature perturbations can be of arbitrary magnitude.

Reliability under data poisoning. Given a datapoint x ∈ X and a prediction set C(x) ⊆ Y , we
define reliability of conformal prediction sets under data poisoning as follows:
Definition 1 (Reliability). We assume that reliability is compromised if adversaries can remove or
add a single class from or to the prediction set C(x) under our threat model (Equation 1). Specif-
ically, we call prediction sets coverage reliable if adversaries cannot compromise coverage by re-
moving classes from the prediction set C(x), and size reliable if adversaries cannot inflate prediction
set C(x) by adding classes. We further denote coverage and size reliable prediction sets as robust.

Note that while the coverage guarantee (Theorem 1) provides a marginal guarantee over the entire
distribution, our notion of coverage reliability is point-wise, i.e. applies to each prediction set C(x).
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Accordingly, we propose the following novel desiderata for reliable conformal prediction:

Desiderata for reliable conformal prediction under data poisoning

I: Reliable prediction sets must provide 1− α marginal coverage for clean data.
II: Reliable prediction sets must be small (comparable to sets without reliability guarantees).

III: Reliable conformal prediction must provably ensure reliability of prediction sets (Defini-
tion 1) under feature poisoning and label flipping (Equation 1) up to a radius that meets
the application’s needs and safety requirements.

IV: Algorithms for constructing reliable prediction sets must be flexible enough to allow for
increased reliability given larger training and calibration sets.

V: Algorithms for constructing reliable prediction sets must be computationally efficient,
scalable, and reproducible.

While Desideratum I requires marginal coverage (Theorem 1), Desideratum II ensures small sets,
and together they prevent that reliability can be achieved trivially by predicting empty or full sets.
Desideratum III ensures that reliability must be certifiable, i.e. a provable guarantee under worst-
case poisoning. Desideratum IV requires algorithms can increase reliability when additional data is
available, since practical risk increases with more data. Finally, Desideratum V ensures efficiency
for practical deployment, where reproducibility requires that sets do not differ for the same input.

5 RELIABLE CONFORMAL PREDICTION SETS

Guided by our desiderata for reliable conformal prediction we introduce reliable conformal predic-
tion sets (RPS): the first method for provably reliable conformal prediction under training and cal-
ibration poisoning (Figure 1). The first component of RPS (i) reliably aggregates classifiers trained
on kt disjoint partitions of the training data. The second component of RPS (ii) constructs reliable
prediction sets by merging sets calibrated separately on kc disjoint partitions of the calibration data.
Intuitively, larger kt increases reliability against training poisoning and larger kc increases reliability
against calibration poisoning. We provide detailed instructions in Algorithm 1 and Algorithm 2.

5.1 CONFORMAL SCORE FUNCTIONS RELIABLE UNDER TRAINING DATA POISONING

First, our goal is to derive a conformal score function that is reliable under poisoning of training
data. This is challenging since the score function also has to quantify agreement between samples
and classes, and maintain exchangeability of conformal scores between calibration and test data.
To overcome this challenge we propose to (1) partition the training data into kt disjoint sets, (2)
train separate classifiers on each partition, and (3) design a score function that counts the number of
classifiers voting for a class y given sample x. Since deleting or inserting one datapoint from or into
the training set only affects a single partition and thus a single classifier, this procedure effectively
reduces the influence of datapoints on the score function.

Training data partitioning. To prevent that simple reordering of the datasets affects all partitions
simultaneously, we have to partition the training data in a way that is invariant to its order. To achieve
this we assign datapoints to partitions by using a hash function directly defined on x. For example
for images, we hash the sum of their pixel values. This technique that has been previously shown to
induce certifiable robustness in the context of image classification (Levine & Feizi, 2021). Given a
hash function h we define the i-th partition of the training set as

P t
i = {(xj , yj) ∈ Dtrain : h(xj) ≡ i (mod kt)} .

Then we deterministically train kt classifiers fi : X → Y on all partitions P t
1 , . . . , P

t
kt

separately.

Smoothed score function. Now we define our novel score function that measures agreement be-
tween a sample x and class y by counting the number of classifiers fi voting for class y given x:

s(x, y) =
eπy(x)∑K
i=1 e

πi(x)
with πy(x) =

1

kt

kt∑
i=1

1{fi(x) = y} (2)

where πy(x) is the percentage of classifiers voting for class y given sample x, and K is the number
of classes. Note that we introduce the additional softmax over class distribution πy(x) to fulfill
Desideratum II, since the softmax prevents overly large prediction sets in practice (see Section 7).
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Algorithm 1 Reliable conformal score function

Input: Dtrain, kt, training algo. T
1: Split Dtrain into kt disjoint partitions P t

i

P t
i = {(xj , yj) ∈ Dtrain : h(xj) ≡ i (mod kt)}

2: for i = 1 to kt do
3: Train classifier fi = T (P t

i ) on partition P t
i

4: Construct the voting function
πy(x) =

1
kt

∑kt
i=1 1{fi(x) = y}

5: Smooth the voting function
s(x, y) = eπy(x)/(

∑K
i=1 e

πi(x))
Output: Reliable conformal score function s

Algorithm 2 Reliable conformal prediction sets

Input: Dcalib, kc, s, αn, xn+1

1: Split Dcalib into kc disjoint partitions P c
i

P c
i = {(xj , yj) ∈ Dcalib : h(xj) ≡ i (mod kc)}

2: for i = 1 to kc do
3: Compute scores Si={s(xj , yj)}(xj ,yj)∈Pc

i
4: Compute αni -quantile τi of scores Si

5: Construct prediction set for quantile τi
Ci(xn+1) = {y : s(xn+1, y) ≥ τi}

6: Construct majority vote prediction set
CM (xn+1)={y :

∑kc
i=1 1{y∈Ci(xn+1)}>τ̂(α)}

Output: Reliable conformal prediction set CM

For any function to be considered a valid score function for conformal prediction it has to maintain
exchangeability of conformal scores between calibration and test data (Angelopoulos et al., 2021).
Lemma 1. The smoothed score function in Equation 2 is a valid conformal score function.

Proof. We use one function to score all points independent of other datapoints and which dataset
they belong to (and where in the dataset). Thus, given exchangeable data, scores computed by our
smoothed score function remain exchangeable. Therefore s of Equation 2 is a valid score function. □

Lemma 1 implies that the coverage guarantee (Theorem 1) holds on clean data when using our
smoothed score function (Desideratum I). Intuitively, our score function quantifies uncertainty by
the number of votes from multiple classifiers (instead of the logits of one classifier). As long as clas-
sifiers are trained on isolated partitions we can reduce the influence of datapoints on the conformal
scores. We summarize instructions for the smoothed score function in Algorithm 1.

5.2 MAJORITY PREDICTION SETS RELIABLE UNDER CALIBRATION DATA POISONING

Now we derive prediction sets reliable against calibration poisoning. This is challenging since the
prediction sets must also achieve marginal coverage on clean data (Desideratum I) without inflat-
ing set size (Desideratum II). We propose to (1) partition the calibration data into kc disjoint sets,
(2) compute separate prediction sets based on the conformal scores on each partition, and to (3)
merge the resulting prediction sets via majority voting. This improves reliability since adversaries
have to poison multiple partitions to alter the majority vote. We further show that such majority
prediction sets achieve marginal coverage, and do not grow too much in size in practice (Section 7).

Calibration data partitioning. We partition the calibration data as follows: Given a hash function h
we define the i-th partition of the calibration set as P c

i = {(xj , yj) ∈ Dcalib : h(xj) ≡ i (mod kc)}.
We then use a (potentially reliable) conformal score function s to compute the conformal scores
Si={s(xj , yj)}(xj ,yj)∈P c

i
on each partition P c

i . We can then determine the αni -quantiles of the
separate conformal scores, τi = Quant(αni ;Si), where ni is the size of the i-th partition, ni = |Ci|.
Majority prediction sets. Now we propose our novel prediction sets reliable under calibration
poisoning. Given a new datapoint xn+1 ∈ Dtest we construct kc prediction sets for each partition
as Ci(xn+1) = {y : s(xn+1, y) ≥ τi}. We then construct a prediction set composed of all classes
that appear in the majority of independent prediction sets (see instructions in Algorithm 2):

CM (xn+1) =

{
y :

kc∑
i=1

1{y ∈ Ci(xn+1)} > τ̂(α)

}
(3)

with quantile function τ̂(α)=max {x ∈ [kc] : F (x) ≤ α} for [kc] = {0, . . . , kc}, where τ̂(α) is the
inverse of the CDF F of the Binomial distribution Bin(kc, 1−α). Intuitively, we select the required
majority τ̂(α) such that the sum over kc Bernoulli random variables 1{y ∈ Ci(xn+1)} (each with
success probability at least 1 − α) is at most τ̂(α) with probability at most α. Note that for kc = 1
we have τ̂(α) = 0 and then the majority prediction sets amount to vanilla conformal prediction.

Interestingly, majority voting is also used in the context of uncertainty sets (Gasparin & Ramdas,
2024), but their construction comes without reliability guarantees and additionally violates the cov-
erage guarantee (see discussion in Appendix E). In contrast, we show that our majority prediction
sets CM achieve marginal coverage on clean data (Proof in Appendix E):
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Theorem 2. Given any conformal score function s and test sample (xn+1, yn+1)∈Dtest exchange-
able with Dcalib, the majority prediction set (Equation 3) constructed on a calibration set of inde-
pendent datapoints achieves marginal coverage on clean data: Pr[yn+1∈CM (xn+1)]≥ 1−α.

Proof sketch. Since each prediction set Ci fulfills marginal coverage, Pr[yn+1 ∈ Ci(xn+1)] ≥ 1−α,
the probability of the sum over Bernoulli random variables 1{yn+1 ∈ Ci(xn+1)} being larger than
τ̂(α) is at least 1−α (due to the selection of τ̂(α)). Thus we have Pr[yn+1 ∈ CM (xn+1)] ≥ 1−α.□

Notably, Theorem 2 guarantees marginal coverage for any conformal score function. This holds
especially for our smoothed score function (Algorithm 1). As a result, majority prediction sets
based on the smoothed score function achieve marginal coverage (Desideratum II).

6 PROVABLE GUARANTEES FOR RELIABLE CONFORMAL PREDICTION SETS

After introducing reliable prediction sets (RPS), we derive certificates for their reliability as defined
in Definition 1 and required by Desideratum III. We consider the threat model Brt,rc(Dl) where ad-
versaries can insert, delete and flip labels for up to rt training and rc calibration points (Section 3). In
the following we treat training poisoning, then calibration poisoning, and finally poisoning of both.

6.1 GUARANTEES FOR SMOOTHED SCORING FUNCTION UNDER TRAINING POISONING

We begin with the reliability of the smoothed scoring function under training poisoning (rt>0,
rc=0). Let C(xn+1)={y ∈Y : s(xn+1, y)≥ τ} be a prediction set for a new test point xn+1 derived
using conformal prediction (Section 3) under the clean dataset Dl with smoothed score function s.
Our goal is to bound the prediction set C̃(xn+1) derived under any poisoned dataset D̃l ∈ Brt,rc(Dl).
This requires that we bound score function s and quantile τ . We start with the score function:
Lemma 2. We can upper bound the score function for any D̃l ∈ Brt,rc(Dl) as follows:

s(x, y) = max
0≤πi≤1

∆i∈{0,± 1
kt

,...,± rt
kt

}∑K
i=1 ∆i=0

eπy∑K
i=1 e

πi

with π = [π1(x) + ∆1, . . . , πK(x) + ∆K ] (4)

Proof in Appendix F. Although optimizing softmax func-
tions typically leads to non-convex optimization problems,
the problem in (4) reduces to a discrete optimization prob-
lem that can be solved efficiently (Desideratum V). We
derive algorithms computing lower and upper bounds in
rt steps, presenting the upper bound in Algorithm 3. In-
tuitively, in each step we greedily redistribute 1

kt
probability

mass from the current class ŷ ̸=y with the largest probability
mass to the target class y. We repeat this process until we
have redistributed the entire probability mass rt

kt
. We present

the lower bound algorithm and proofs in Appendix F.

Algorithm 3 Greedy algorithm for upper
bounding the smoothed score function s

Input: Score function s, x, y, kt, rt
1: π = [π1(x), . . . , πK(x)]
2: for i = 1 to rt do
3: ŷ = argmaxŷ ̸=y πŷ

4: πŷ ← min(max(πŷ − 1/kt, 0), 1)
5: πy ← min(max(πy + 1/kt, 0), 1)

Output: s(x, y) = eπy/(
∑K

i=1 e
πi)

Given lower and upper bounds zi = s(xi, yi) and zi = s(xi, yi) on the conformal scores for all
points (xi, yi) ∈ Dcalib in the calibration set, we can directly determine the worst-case quantiles:

τ = Quant(αn; {zi}ni=1) τ = Quant(αn; {zi}ni=1)

Finally we need to identify (1) the class within the prediction set that received the fewest votes from
the classifiers fi and (2) the class outside the prediction set that got most votes from the classifiers:

y = argmin
y∈C(xn+1)

πy(x) y = argmax
y/∈C(xn+1)

πy(x)

Then we can provide the following guarantees (Proof in Appendix F):
Theorem 3. Given rc=0, the conformal prediction set C̃(xn+1) derived with the smoothed score
function under any poisoned dataset D̃l∈Brt,rc(Dl) is coverage reliable, i.e. C̃(xn+1) ⊇ C(xn+1),
if s

(
x, y

)
≥ τ , and size reliable, i.e. C̃(xn+1) ⊆ C(xn+1), if s (x, y) < τ .

Intuitively, if class y cannot be removed from C(xn+1) (y added), adversaries cannot remove (add)
other classes and thus the prediction sets are coverage (size) reliable.

6
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6.2 GUARANTEES FOR MAJORITY PREDICTION SETS UNDER CALIBRATION POISONING

Now we analyze reliability of majority prediction sets under calibration poisoning (rt = 0,rc > 0).
Let CM (xn+1) be the majority prediction set for a new test point xn+1 derived under the clean
dataset Dl using any deterministic conformal score function s. Intuitively, if adversaries cannot
remove (add) a class from the majority prediction set by removing (adding) it from (to) rc individual
prediction sets, the majority prediction set remains coverage (size) reliable even in the worst case.
This is since adversaries can perturb at most rc calibration partitions. To determine if adversaries can
remove or add classes, we have to count minimum and maximum support

∑kc

i=1 1{y ∈ Ci(xn+1)}
for classes in and outside of the majority set:

m = min
y∈CM

kc∑
i=1

1{y ∈ Ci(xn+1)} m = max
y/∈CM

kc∑
i=1

1{y ∈ Ci(xn+1)}

Using each support we can provide the following guarantees (Proof in Appendix F):

Theorem 4. Given rt=0 and deterministic score function s, the majority prediction set C̃M (xn+1)

derived under any dataset D̃l ∈ Brt,rc(Dl) is coverage reliable, i.e. C̃M (xn+1) ⊇ CM (xn+1), if
m − rc > τ̂(α), and size reliable, i.e. C̃M (xn+1) ⊆ CM (xn+1), if m + rc ≤ τ̂(α), provided that
the smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Note that the last condition ensures that the calibration partitions are large enough such that worst-
case adversaries cannot delete datapoints to prevent us from computing the majority prediction sets.

6.3 PROVABLE RELIABILITY GUARANTEES FOR RPS UNDER GENERAL DATA POISONING

Finally, we consider poisoning of training and calibration data (rt > 0, rc > 0).

Coverage reliability. To ensure coverage reliability we have to show that all classes y ∈CM are
guaranteed to be in the majority prediction set under worst-case poisoning. The majority prediction
set CM contains a class y only if it appears in a majority of τ̂(α) individual prediction sets Ci. Under
calibration poisoning, adversaries can remove classes from rc individual prediction sets. Intuitively,
the number of prediction sets reliable under training poisoning βy must be large enough such that
even under calibration poisoning, the number of prediction sets containing the class is still larger
than the threshold, βy − rc > τ̂(α). This leads to the following guarantee (Proof in Appendix F):
Theorem 5. Let βy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc

} for which we can
guarantee y ∈ Ci under rt poisoned training datapoints. If βy − rc > τ̂(α) for all y ∈ CM (xn+1)

then the majority prediction set is coverage reliable under any dataset D̃l ∈ Brt,rc(Dl), provided
that the smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Size reliability. To ensure size reliability we have to show that all classes y /∈ CM are guaranteed to
stay outside of the majority prediction set under worst-case poisoning. The majority prediction set
CM does not contain a class y if it appears in less than or equal to τ̂(α) individual prediction sets
Ci. Under calibration poisoning, adversaries can add classes to rc prediction sets in the worst-case.
Intuitively, if we can guarantee that γy prediction sets Ci do not contain the class y under training
poisoning, at most kc − γy prediction sets contain the class under worst-case training poisoning.
This number of prediction sets containing the class in the worst-case must be small enough such that
even if adversaries add the class to rc prediction sets, the majority prediction set does not contain
the class, kc − γy + rc ≤ τ̂(α). This leads to the following guarantee (Proof in Appendix F):
Theorem 6. Let γy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc

} for which we can
guarantee y ̸∈ Ci under rt poisoned training datapoints. If kc−γy+rc≤ τ̂(α) for all y /∈ CM (xn+1)

then the majority prediction set is size reliable under any dataset D̃l ∈ Brt,rc(Dl), provided that the
smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Note that we can efficiently compute numbers βy and γy as described in Subsection 6.1 by comput-
ing the worst-case quantiles and verifying s(x, y) < τ and s(x, y) < τ , respectively. Our overall
certification approach is efficient in practice (Desideratum V) as we discuss in Appendix F and
experimentally demonstrate in the next section.
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7 EXPERIMENTAL EVALUATION

In this section we evaluate our reliabe prediction sets and their worst-case guarantees, demonstrating
their effectiveness in analyzing and improving reliability of conformal prediction under poisoning.
We compare three settings (calibration poisoning, training poisoning, and poisoning of both) by
computing the following prediction sets: (a) majority prediction sets merging multiple homogeneous
prediction sets calibrated on each partition, (b) conformal prediction sets using our smoothed score
function, and (c) majority prediction sets using our smoothed score function.

Datasets and models. We train ResNet18, ResNet50 and ResNet101 models (He et al., 2016) on
SVHN (Netzer et al., 2011), CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). The datasets con-
tain images with 3 channels of size 32x32, categorized into 10, 10 and 100 classes. We show results
for ResNet18 on CIFAR10 and coverage level α=0.1 here and additional results in Appendix B.

Experimental setup. We randomly select 1,000 images of the test set for calibration and use the
remaining 9,000 datapoints for testing. To account for randomness in training and calibration set
sampling we train 5 classifiers with different initializations and validate each of them on 5 different
calibration splits. We report mean and standard deviation (shaded areas in the plots). We refer to
Appendix A for the full experimental setup including detailed reproducibility instructions.

Evaluation metrics. We report three reliability ratios: The ratios of test datapoints whose prediction
sets are, according to our worst-case analysis, coverage reliable (classes cannot be removed), size
reliable (classes cannot be added), or robust (classes cannot removed or added). Empirical coverage
refers to the ratio of datapoints whose prediction sets cover the ground truth label of the test set. We
also report the average size of the prediction sets computed on the test set.
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Figure 2: Worst-case reliability guarantees across three scenarios: (a) poisoning of the calibration
data, (b) poisoning of the training data, and (c) poisoning of both datasets. Our guarantees against
coverage attacks are stronger when training data is poisoned, whereas for calibration attacks our
method offers stronger guarantees against size attacks. Notably, even under strong adversarial con-
ditions where both datasets can be poisoned we still provide non-trivial reliability guarantees.

(a) Reliability of majority prediction sets under calibration poisoning. Majority prediction sets
demonstrate strong reliability guarantees against calibration set poisoning in empirical evaluations
(Figure 2 a). Specifically, we construct majority prediction sets by merging kc=22 homogeneous
prediction sets, each calibrated on separate calibration partitions, resulting in an empirical coverage
of 90.6% and an average set size of 0.95. When up to rc=4 datapoints in the calibration set are
poisoned, our method guarantees that over 97% of the prediction sets remain reliable against worst-
case coverage attacks. The guarantees against set size attacks are even stronger: Even if rc=17
datapoints are poisoned we still guarantee that over 79% of the prediction sets remain size reliable.

(b) Reliability of smoothed score function under training poisoning. The setting of training
set poisoning is considerably more challenging since adversaries can simultaneously manipulate the
quantiles during calibration and the scores at inference. We compute conformal prediction sets using
our smoothed score function on kt=100 training partitions, resulting in empirical coverage of 90.6%
and average set size of 3.3 (Figure 2 b). Despite strong adversaries, our reliable prediction sets still
manage to provide non-trivial reliability guarantees under worst-case perturbations. Specifically,
when up to rt = 5 datapoints in the training set are poisoned, our method guarantees that over 25%
of the prediction sets remain reliable against worst-case coverage attacks.
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(c) Reliability of RPS under training and calibration poisoning. By far the most challenging set-
ting constitute adversaries that manipulate both training and calibration data. We compute majority
prediction sets using our smoothed score function on kt=100 training partitions and kc=40 calibra-
tion partitions, resulting in empirical coverage of 92.3% and average set size of 3.6 (Figure 2 c).
Notably, under poisoning of up to rt = 3 training and rc = 3 calibration points, our method still
guarantees that over 23% of the prediction sets remain reliable against worst-case coverage attacks.
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Figure 3: Average set size and empirical coverage in all three different experiment settings (a–c).
Notably, our reliable prediction sets yield valid coverage guarantees without becoming too large.

Average set size. In Figure 3 (top row) we study the average set size. Notably, our majority predic-
tion sets yield strong guarantees (Figure 2 a) without any significant increase in size (Figure 3 a): the
average prediction set size remains below 1, which even holds for kc=40 (α=0.1). Interestingly, the
size increases with more training partitions, creating a tade-off between reliability and utility of the
prediction sets. Practitioners have to fine-tune this trade-off depending on the application’s sensitiv-
ity. Additionally, we study the sizes on different datasets under calibration poisoning (setting (a)):
On CIFAR100 the average set size remains around 4 for kc ≤ 25, demonstrating that our majority
prediction sets scale well to datasets with more classes (Figure 4 (1)). Overall, we empirically find
that our reliable prediction sets do not become too large in size (Desideratum II).

Empirical coverage. In Figure 3 (bottom row) we empirically validate the coverage guarantee
(Theorem 2) on clean data (Desideratum I). In Appendix C we provide additional empirical evidence
that, while concentration around the nominal level 1−α naturally decreases for smaller sets, majority
prediction sets are again closely concentrated around the nominal coverage level.

Minimal number of classifiers. We observe increasing empirical coverage and sizes when using
only kt=2 or 3 classifiers (spikes in Figure 3). Intuitively, a small number of classifiers makes the
smoothed score function less stable during calibration. In practice, a sufficient number of classifiers
is required to achieve consistent majority vote consensus and reliability. Notably, our analysis shows
that four classifiers are already sufficient to prevent excessively large prediction sets.

Softmax ablation study. We found that smoothing the voting function with a softmax (Section 5)
avoids overly large prediction sets and overcoverage in practice. To demonstrate this we conduct
an experiment (Figure 4 (2, 3)) for varying numbers of training partitions kt, where we compare
conformal prediction with our smoothed score function s against using the voting function π only.

Computational efficiency. Training the classifiers takes most of the time (statistics in Appendix A).
Note, however, that while having to train more classifiers, each one is trained on a subset of the
training data, which can speed up the training process. Inference with the ResNet18 models takes
between 4 and 10 seconds on CIFAR10. Constructing the conformal prediction sets takes at most
0.5 seconds for the entire test set. Computing certificates for majority prediction sets takes less than
a second, and around one minute when computing guarantees under training and calibration poison-
ing. Overall, we found that reliable prediction sets are computationally efficient (Desideratum V).
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Figure 4: (1): Average prediction set size of majority prediction sets across three different datasets.
(2,3): Softmax ablation study for empirically justifying smoothing of the voting function (α = 0.05).

8 DISCUSSION

Reproducible prediction sets. Score functions in the literature are not just unreliable but some also
depend on randomization to break ties (Romano et al., 2020). While randomization at inference
changes prediction sets by at most one class (Angelopoulos et al., 2021), different prediction sets
for the same input may not be desirable from a reliability standpoint, violating Desideratum V. For
example, a differential diagnosis for two patients with identical health should not yield different
results. As a remedy, we propose to make randomized score functions reproducible (Appendix D).

Limitations. Although RPS computationally scales to larger settings, training on subsets of larger
datasets such as CIFAR100 or ImageNet comes with accuracy loss, which also affects the utility of
our smoothed score function (details in Appendix B). This accuracy loss is an open challenge in the
general certifiably robust classification literature and beyond the scope of this paper.

Minimal calibration set size for majority prediction sets. Recall that Desideratum VI requires
that the reliability of prediction sets must increase for larger calibration sets. Our majority prediction
sets fulfill this desideratum by construction since increasing the number partitions kc will decrease
the influence of datapoints. However, we need enough data to construct our prediction sets: due to
the finite-sample correction, the calibration partitions cannot become arbitrarily small (Section 6).
If the hashing function would distribute all calibration images into equally-sized partitions of size
n/kc, we would need at least n ≥ kc

(
1
α − 1

)
calibration points in total (Proof in Appendix E).

Notably, this relationship is linear: given a fixed coverage probability 1−α, increasing the calibration
partitions by a factor of k only requires k-times larger calibration sets, which is realistic for all
commonly used image classification datasets and coverage probabilities used in the literature.

Training poisoning discussion. Under the assumption of exchangeability, adversaries cannot com-
promise the coverage guarantee of Theorem 1 by poisoning training data. This holds because confor-
mal scores are computed using a fixed classifier (post-training). However, in practice, the exchange-
ability assumption may not always hold: Adversaries could exploit knowledge of the calibration set
to manipulate the training process, causing the classifier to perform differently on the (known) cali-
bration set than on unseen test data. Moreover, even without access to calibration data, adversaries
can still affect individual prediction sets: For example, they can manipulate the training process to
degrade utility of the score function, resulting in large prediction sets. This underscores again the
need for point-wise coverage and size reliability as we introduce in Definition 1.

9 CONCLUSION

We introduce reliable prediction sets (RPS), a novel method designed to improve reliability of
conformal prediction in the presence of data poisoning and label flipping attacks. By leveraging
smoothed score functions and a majority voting mechanism, RPS effectively mitigates the influence
of adversarial perturbations during both training and calibration. We provide theoretical guarantees
that RPS maintains stability under worst-case data poisoning, and demonstrate the effectiveness of
our approach on image classification tasks. Overall, our approach represents an important contri-
bution towards more reliable uncertainty quantification in practice, fostering the trustworthiness in
real-world scenarios where data integrity cannot be guaranteed.
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APPENDIX OVERVIEW

In this appendix we provide additional results, details on our experimental setup and prove theoreti-
cal results as outlined in the following:

A Full experimental setup and reproducibility details 14

B Additional results for reliable prediction sets 14

C Study of statistical efficiency of majority prediction sets 19

D Reproducible prediction sets 19

E Proofs for reliable prediction sets (Section 5) 20

F Proofs for reliability certificates (Section 6) 21

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FULL EXPERIMENTAL SETUP AND REPRODUCIBILITY DETAILS

We provide details on the experimental setup to ensure reproducibility of our results.

Datasets. The datasets we use for evaluation are described in Section 7 (SVHN (Netzer et al., 2011),
CIFAR10 and CIFAR100 (Krizhevsky et al., 2009)) and are publicly available. We use the torchvi-
sion library to load the datasets.1 We normalize images before training, and we compute dataset
mean and standard deviation on each training partition separately to ensure models are trained on
isolated partitions, which is required by our method to improve reliability.

Training details. We train all models with stochastic gradient descent (learning rate 0.01, momen-
tum 0.9, weight decay 5e-4) for 400 epochs using early stopping if the training accuracy does not
improve for 100 epochs. We further deploy a cosine learning rate scheduler (Loshchilov & Hutter,
2017). We use a batch-size of 128 during training and 300 at inference. To ensure that our guar-
antees against training-poisoning hold we require that the training process is deterministic, which
not only involves fixing the random seed for data augmentation but also ensuring that the training
processes are deterministic.

Image preprocessing. We determine dataset-wide mean and standard deviation dynamically on ev-
ery training set partition separately once before training to ensure that each classifier is trained on
an isolated partition. We subsequently normalize all images in one partition with the corresponding
values. We also augment the training set with random crops (padding of 4 pixels) and random hori-
zontal flips (but we perform the data augmentation in a deterministic, reproducible way across runs).

Hardware details. We train ResNet18 models on a NVIDIA GTX 1080TI GPU, and the ResNet50
and ResNet101 models on a NVIDIA A100 40GB. We perform inference of all models on a NVIDIA
GTX 1080TI GPU, and compute certificates on a Xeon E5-2630 v4 CPU.

Reproducibility. To ensure reproducibility we use random seeds for all randomized functions, this
especially includes the dataset preprocessing, model training and calibration splits. We will publish
source code along with reproducibility instructions and all random seeds.

Training time details. The runtime statistics for training ResNet18 models on CIFAR-10 and
SVHN are as follows. Training a single ResNet18 model on CIFAR-10 takes 2.2 hours, while
training 100 models requires a total of 21.7 hours, with each individual model taking approximately
2.6 minutes. For SVHN, a single ResNet18 model takes 5.6 hours to train, and training 100 models
requires a total of 30 hours, with each model training taking around 3.5 minutes.

B ADDITIONAL RESULTS FOR RELIABLE PREDICTION SETS

In this section, we expand on the experimental results by providing further analyses and comple-
mentary information. Figure 5 shows the worst-case reliability guarantees for the SVHN dataset
under the three different poisoning scenarios (in the same settings as described in the main paper).
We again observe that our method provides reliable prediction sets even under worst-case poison-
ing attacks. Complementary to the main section, Figure 6 shows the average set size and empirical
coverage in all three different experiment settings (a–c) on the SVHN dataset. Figure 10 shows the
relationship between reliability of ResNet18 and the number of partitions under calibration poison-
ing for SVHN, CIFAR10, and CIFAR100. For training poisoning, guarantees become non-trivial for
kt = 100 partitions as shown in the main text.

Figure 7 (1) shows the average set sizes of the three different architectures (ResNet18, ResNet50,
ResNet101) on the CIFAR10 dataset when using majority vote prediction sets with the smoothed
score function (third experimental setting). Interestingly, using the ResNet18 model yields the best
results, which we attribute to the fact that models trained on subsets of the training set require less
capacity to learn the data distribution, and small models prevent overfitting. Figure 7 (2,3) show the
softmax ablation study for empirically justifying the smoothing of the voting function for α = 0.1.

We also provide additional results for our reliable prediction sets for the following evaluation met-
rics: (1) the ratio of empty sets, (2) the ratio of full sets, (3) the singleton ratio (ratio of sets contain-
ing a single class), and (4) the singleton hit ratio (empirical coverage of singleton prediction sets).

1https://pytorch.org/vision/stable/index.html
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Figure 11 shows results for the CIFAR10 dataset, and Figure 12 shows results for the SVHN dataset,
for all three evaluation settings (a-c) described in Section 5.

In the main plots in Section 7, we only considered the diagonal rt = rc for the reliability ratios. In
Figure 8, we show the reliability ratios for coverage reliability, size reliability, and robustness for all
combinations of rt and rc for the CIFAR10 dataset (kt = 100, kc = 40, α = 0.1). Interestingly, the
reliability ratios are generally higher for larger rc, which indicates that the majority prediction sets
are more reliable when calibration data is poisoned.

In Figure 9, we provide additional results for ResNet18 on the CIFAR100 dataset under calibra-
tion poisoning. We show the empirical coverage, average set size, and reliability guarantees for the
ResNet18 model. We observe that our method provides reliable prediction sets even under calibra-
tion poisoning attacks on the CIFAR100 dataset (showing that our approach scales to datasets with
significantly more classes). As mentioned in Section 8, training on subsets of larger datasets such as
CIFAR100 or ImageNet comes with accuracy loss, which affects the utility of our smoothed score
function. Specifically, when splitting the training set of CIFAR100 into 10 partitions only, each
individual classifier achieves an accuracy of approximately 30% (in contrast to at least 70% when
trained on the entire dataset). This affects the performance of our score function, leading to overly
excessive prediction sets. Future learning algorithms could further improve performance for larger
datasets, ultimately boosting robustness and reliability in machine learning.

1 5 10 15 20
Calib. set radius rc

25

50

75

R
el

ia
b.

ra
tio

(%
) (a)

robust
coverage reliable
size reliable

1 2 3 4 5 6 7 8 9 10
Training set radius rt

25

50

75

R
el

ia
b.

ra
tio

(%
) (b)

robust
coverage reliable
size reliable

1 5
Poisoning radius rt = rc

25

50

75

R
el

ia
b.

ra
tio

(%
) (c)

robust
coverage reliable
size reliable

Figure 5: SVHN: Worst-case reliability guarantees across three scenarios: (a) poisoning of the
calibration data, (b) poisoning of the training data, and (c) poisoning of both datasets.
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Figure 6: Avg. size and empirical coverage in all three settings (a–c) on the SVHN dataset.
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Figure 7: (1): Different models on CIFAR10. (2,3): Softmax ablation study for empirically justify-
ing smoothing of the voting function (here with α = 0.1) on CIFAR10.
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Figure 8: CIFAR10, kt = 100, kc = 40, α = 0.1, (1): Coverage reliability ratio, (2): Size reliability
ratio, (3): Robust ratio. Here with all radii combinations (and not just the diagonal, rt = rc).
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Figure 9: Additional results for ResNet18 on CIFAR100 under calibration poisoning: (1): Empirical
coverage, (2): Average set size, (3): Reliability guarantees.
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Figure 10: Relationship between reliability and the number of partitions under calibration poisoning
for ResNet18 on (1): SVHN, (2): CIFAR10, and (3): CIFAR100. Here, AUCRC stands for the area
under the certifiable reliability curve of the corresponding reliability types.
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Figure 11: Various metrics for RPS in the three experiment settings (a-c) for ResNet18 on CIFAR10.
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Figure 12: Various metrics for RPS in the three experiment settings (a-c) for ResNet18 on SVHN.
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C STUDY OF STATISTICAL EFFICIENCY OF MAJORITY PREDICTION SETS

Empirical coverage is a random variable following a Beta distribution concentrated around the nom-
inal coverage level (Vovk, 2013). Here we conduct additional experiments to provide empirical
evidence that the majority prediction sets are again closely concentrated around the nominal cover-
age level. We train a ResNet18 classifier on CIFAR10 and calibrate homogeneous prediction sets
(Sadinle et al., 2019) for the nominal coverage level of 1− α = 0.9. Then we compute the smaller
prediction sets on kc = 10 and kc = 20 partitions, respectively. Finally, we merge the smaller
prediction sets using the majority voting scheme described in Section 5. We repeat this process 100
times and compute the empirical coverage for each run. We then plot the empirical coverage for
each run in Figure 13. As we partition the calibration set, the concentration naturally decreases for
smaller prediction sets, leading to overcoverage. Interestingly, we observe that the majority pre-
diction sets are again closely concentrated around the nominal coverage level, providing empirical
evidence that majority prediction sets are statistically efficient.
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Figure 13: Concentration of empirical coverage for vanilla HPS, HPS for each partition, and the
majority prediction sets. We use kc = 10 partitions for the left plot, and kc = 20 partitions for
the right plot. Majority prediction sets are again closely concentrated around the nominal coverage
level, providing empirical evidence that majority prediction sets are statistically efficient.

D REPRODUCIBLE PREDICTION SETS

There are conformal score functions that rely on random variables, e.g. for ensuring exact coverage
by breaking ties. For example, adaptive prediction sets (APS) sum over class probabilities of classes
with probability at least fy(x): s(x, u, y)=−(

∑K
i=1 fi(x)1[fi(x)>fy(x)]+ufy(x)). Conformal

prediction sets are then formed by C(xn+1) = {s(xn+1, un+1, y) ≥ τ}, where un+1 ∈ [0, 1] is a
uniform random variable (Romano et al., 2020).

Although randomization at inference changes prediction sets by at most one class (Angelopoulos
et al., 2021), generating different prediction sets for the same input may not be desirable from a
reliability standpoint and violates Desideratum V. For example, a differential diagnosis for two pa-
tients with identical health parameters should not yield different results. As a solution we propose
reproducible score functions: Instead of drawing from a random variable, we propose to compute
pseudorandom numbers by hashing the sum of the image’s pixel values and initialize the pseudo-
random number with the hash. We found that this is enough to break ties in practice while ensuring
determinism required by our reliability guarantees. Note that our score functions with pseudo-
randomization are valid since they maintain exchangeability as the numbers depend solely on the
data itself (not its position in the dataset or other datapoints).

We analyze this in Figure 14: Without randomization APS results in large set sizes (2) despite tight
coverage (1). With randomization the sets shrink in size, but are not reproducible. With pseudo-
randomization, APS is reproducible with tight coverage and small prediction sets.
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Figure 14: Comparing APS without and with randomization against our reproducible version.

E PROOFS FOR RELIABLE PREDICTION SETS (SECTION 5)

Recall the definition of the majority prediction sets from Section 5:

CM (xn+1) =

{
y :

kc∑
i=1

1{y ∈ Ci(xn+1)} > τ̂(α)

}
with τ̂(α)=max {x ∈ [kc] : F (x) ≤ α}, where F is the CDF of the Binomial distribution
Bin(kc, 1 − α) and [kc] = {0, . . . , kc}. Note that by assumption the sets Ci(xn+1) are indepen-
dent. In the following, denote τ̂ ≜ τ̂(α) for simplicity. We show the following result:
Theorem 2. Given any conformal score function s and test sample (xn+1, yn+1)∈Dtest exchange-
able with Dcalib, the majority prediction set (Equation 3) constructed on a calibration set of inde-
pendent datapoints achieves marginal coverage on clean data: Pr[yn+1∈CM (xn+1)]≥ 1−α.

Proof. Define the event ϕi = 1{yn+1 ∈ Ci(xn+1)}. Note that yn+1 is fixed and the events ϕi and ϕj

are independent for i ̸= j since the prediction sets Ci and Cj are constructed on disjoint partitions in a
calibration set of independent datapoints. Therefore ϕi are independent Bernoulli random variables
with pi = Pr[ϕi = 1] ≥ 1− α by construction. Further define the random variable

Skc
=

kc∑
i=1

1{y ∈ Ci(xn+1)} .

First we consider the special case pi = 1− α for all i. Then Skc
=

∑kc

i=1 ϕi is a Binomial random
variable, Skc

∼ Bin(kc, 1− α). Thus we have:

Pr[yn+1 ∈ CM (xn+1)] = Pr

[
kc∑
i=1

1{yn+1 ∈ Ci(xn+1)} > τ̂

]
(5)

= Pr [Skc
> τ̂ ] (6)

= 1− Pr [Skc
≤ τ̂ ] (7)

= 1− F (τ̂)︸ ︷︷ ︸
≤α

(8)

≥ 1− α (9)

In the general case of pi ≥ 1 − α we have that Skc is distributed as a Poisson binomial random
variable, Skc

∼ PB(kc, [p1, . . . , pkc
]). However, it holds that

∏kc

i=1 pi > (1− α)kc , which implies
that the Poisson binomial distribution is stochastically larger than the Binomial distribution (Boland
et al., 2002; Tang & Tang, 2023). See details in (Gasparin & Ramdas, 2024). Intuitively, this means
that the probability Pr [Skc

> τ̂ ] can only increase in the general case where pi ≥ 1− α.

Discussion. Notably, Gasparin & Ramdas (2024) merge uncertainty sets with a similar majority vote
but they define the threshold in their majority prediction set as q = sup{x ∈ R : F (x) ≤ α} instead
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of τ̂ = max{x ∈ [kc] : F (x) ≤ α}. However, clearly we have F (q) > α due to the definition of
the supremum and the definition of the binomial CDF:

F (x; kc, 1− α) =

⌊x⌋∑
i=0

(
kc
i

)
(1− α)iαkc−i

This means q = τ̂ + 1, which leads to smaller majority prediction sets which violate the coverage
guarantee since Pr[Skc > q] < 1− α due to F (q) > α.

Minimal calibration set size for majority prediction sets. Recall that desideratum VI (Section 4)
requires that the reliability of prediction sets must increase for larger calibration sets. Our majority
prediction sets fulfill this desideratum by construction since increasing the number partitions kc will
decrease the influence of datapoints. However, we need enough data to construct prediction sets:
due to the finite-sample correction, the calibration partitions cannot become arbitrarily small. This
naturally bounds the number of partitions kc for a fixed calibration size n (and thus reliability):

Proposition 1. Let i∗ = argmini∈{1,...,kc} |P c
i | denote the partition of smallest size. Given cover-

age probability 1−α, we can construct prediction sets for partition i provided that |P c
i∗ | ≥ ( 1

α −1).

Proof. In general, constructing prediction sets given n calibration points requires, due to the finite
sample correction, that 0 ≤ αn = ⌊α(n + 1)− 1⌋ holds (otherwise we cannot compute quantiles).

We have: 0 ≤ ⌊α(n+1)− 1⌋ ⇔ 1 ≤ ⌊α(n+1)⌋ (1)⇔ 1 ≤ α(n+1)⇔ 1
α − 1 ≤ n, where (1) holds

since the l.h.s. is a natural number.

Thus we need n ≥ 1
α − 1 datapoints in our calibration set. If we partition the calibration data into k

equally-sizes subsets of size n
k , then we need at least n ≥ k

(
1
α − 1

)
datapoints. If the partitions are

not equally-sized, then we require for the smallest partition i∗ that |P c
i∗ | ≥ ( 1

α − 1) holds.

If the hashing function would distribute all calibration images into equally-sized partitions of size
n/kc, we would need at least n ≥ kc

(
1
α − 1

)
calibration points in total. Notably this relationship

is linear: given a fixed coverage probability 1 − α, increasing the calibration partitions by a factor
of k only requires k-times larger calibration sets, which is realistic for all commonly used image
classification datasets and coverage probabilities used in the literature.

F PROOFS FOR RELIABILITY CERTIFICATES (SECTION 6)

Algorithm 3 Greedy algorithm for upper bounding the
smoothed score function s

Input: Score function s, x, y, kt, rt
1: π = [π1(x), . . . , πK(x)]
2: for i = 1 to rt do
3: ŷ = argmaxŷ ̸=y πŷ

4: πŷ ← min(max(πŷ − 1/kt, 0), 1)
5: πy ← min(max(πy + 1/kt, 0), 1)

Output: s(x, y) = eπy/(
∑K

i=1 e
πi)

Algorithm 4 Greedy algorithm for lower bounding the
smoothed score function s

Input: Score function s, x, y, kt, rt
1: π = [π1(x), . . . , πK(x)]
2: for i = 1 to rt do
3: if πy = 0 then
4: y′ ← y
5: else
6: y′ ← argminy′:πy′>0 πy′

7: πy′ ← min(max(πy′ − 1/kt, 0), 1)
8: ŷ = argmaxŷ ̸=y πŷ

9: πŷ ← min(max(πŷ + 1/kt, 0), 1)

Output: s(x, y) = eπy/(
∑K

i=1 e
πi)

Let C(xn+1)={y ∈ Y : s(xn+1, y) ≥ τ} be a prediction set for a new test point xn+1 derived using
conformal prediction (Section 3) under the clean datasetDl and with the smoothed score function s.
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Lemma 2. We can upper bound the score function for any D̃l ∈ Brt,rc(Dl) as follows:

s(x, y) = max
0≤πi≤1

∆i∈{0,± 1
kt

,...,± rt
kt

}∑K
i=1 ∆i=0

eπy∑K
i=1 e

πi

with π = [π1(x) + ∆1, . . . , πK(x) + ∆K ] (10)

Proof. Since adversaries can insert or delete at most rt datapoints, we know at most rt training
partitions can be affected in the worst-case. Thus at most rt of kt classifiers change their prediction.

Equivalently for the lower bound:

s(x, y) = min
0≤πi≤1

∆i∈{0,± 1
kt

,...,± rt
kt

}∑K
i=1 ∆i=0

eπy∑K
i=1 e

πi

with π = [π1(x) + ∆1, . . . , πK(x) + ∆K ] (11)

Proposition 3. Algorithm 3 and Algorithm 4 solve the discrete optimization problems in Equation 10
and Equation 11, respectively. The optimal solutions represent the worst-case bounds on the score
function s under any poisoned dataset D̃l ∈ Brt,rc(Dl).

Proof. In the worst-case, the adversary controls at most rt partitions, which means the adversary
controls the predictions of at most rt classifiers and can consequently change at most rt

kt
probability

mass in the vote-distribution π over classes Y , which is exactly what the two optimization problems
model. We now distinguish between the two cases:

• For the upper bound s(x, y), the worst-case adversary redistributes the probability mass
from the classes with the largest probability masses to the target class y, which is the
worst-case upper bound since it maximizes the numerator and minimizes the denominator.

• For the lower bound s(x, y), the worst-case adversary redistributes the probability mass
from the target class to the class with the largest probability mass. If the target class has
0 remaining probability mass, then the probability from the smallest class with probability
mass larger 0 is redistributed to the class with most of the probability mass. This is the
worst-case lower bound since it minimizes the numerator and maximizes the denominator.

The argument holds since πi(x) ∈ {0, 1
kt
, . . . , kt−1

kt
, 1}. Both worst-cases are exactly what the

Algorithms in Algorithm 3 and Algorithm 4 compute.

Clearly, both greedy algorithms need rt iterations to terminate (due to the for loop).

Theorem 3. Given rc=0, the conformal prediction set C̃(xn+1) derived with the smoothed score
function under any poisoned dataset D̃l∈Brt,rc(Dl) is coverage reliable, i.e. C̃(xn+1) ⊇ C(xn+1),
if s

(
x, y

)
≥ τ , and size reliable, i.e. C̃(xn+1) ⊆ C(xn+1), if s (x, y) < τ .

Proof. We consider training set poisoning. In the worst case, adversaries perturb at most rt training
partitions. Thus, the worst-case quantiles are given by:

τ = Quant(αn; {zi}ni=1) τ = Quant(αn; {zi}ni=1)

where zi = s(xi, yi) and zi = s(xi, yi) are lower and upper bounds on the scores for all points
(xi, yi) ∈ Dcalib in the calibration set. We treat coverage and size reliability separately:

Coverage reliability: We consider a prediction set as coverage reliable if no class can be removed
from the set. If adversaries cannot remove the “weakest” class y with the fewest votes πy among all
classes y ∈ C(xn+1) from the prediction set, then adversaries also cannot remove any other class
since they would need even more adversarial budget. In the worst-case, the lowest score for sample x
and class y is given by s

(
x, y

)
. Thus, if this lowest score is still larger than or equal to the worst-case

quantile τ , then the weakest class cannot be removed and the prediction set is coverage reliable.
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Size reliability: We consider a prediction set as size reliable if no class can be added to the set. If
adversaries cannot add the “strongest” class y with the most votes πy among all classes y /∈ C(xn+1)
into the prediction set, then adversaries also cannot add any other class since they would need even
more adversarial budget. In the worst-case, the largest score for sample x and class y is given by
s (x, y). Thus, if this largest score is still smaller than the worst-case quantile τ , then the strongest
class cannot be added and the prediction set is size reliable.

Theorem 4. Given rt=0 and deterministic score function s, the majority prediction set C̃M (xn+1)

derived under any dataset D̃l ∈ Brt,rc(Dl) is coverage reliable, i.e. C̃M (xn+1) ⊇ CM (xn+1), if
m − rc > τ̂(α), and size reliable, i.e. C̃M (xn+1) ⊆ CM (xn+1), if m + rc ≤ τ̂(α), provided that
the smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Proof. Coverage reliability: In the worst-case, adversaries control at most rc calibration partitions
and thus can change the support

∑kc

i=1 1{y ∈ Ci(xn+1)} for classes y ∈ CM (xn+1) by at most rc.
If removing rc from the support of the class with the least support m is not enough to remove the
class, m− rc > τ̂ , then the majority prediction set remains coverage reliable.

Size reliability: In the worst-case, adversaries control at most rc calibration partitions and thus can
change the support

∑kc

i=1 1{y ∈ Ci(xn+1)} for classes y /∈ CM (xn+1) by at most rc. If adding rc
to the support of the class with the most support m is not enough to add the class, m+ rc ≤ τ̂ , then
the majority prediction set remains size reliable.

This only holds if the smallest calibration partition i∗ is large enough |P c
i∗ | − rc ≥ ( 1

α − 1) under an
attack, otherwise the adversary could prevent us from computing the majority prediction set in the
first place by deleting datapoints from partition i∗.

Theorem 5. Let βy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc
} for which we can

guarantee y ∈ Ci under rt poisoned training datapoints. If βy − rc > τ̂(α) for all y ∈ CM (xn+1)

then the majority prediction set is coverage reliable under any dataset D̃l ∈ Brt,rc(Dl), provided
that the smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Proof. If there is a single class y ∈ CM (xn+1) for which we cannot guarantee that more than τ̂
prediction sets contain y under rt poisoned training datapoints and rc poisoned calibration points,
then the majority prediction set is not coverage reliable in the worst-case. Showing βy − rc > τ̂ for
all y ∈ CM (xn+1) as explained in the main text is a sufficient condition for coverage reliability.

Theorem 6. Let γy denote the number of prediction sets Ci ∈ {C1, . . . , Ckc} for which we can
guarantee y ̸∈ Ci under rt poisoned training datapoints. If kc−γy+rc≤ τ̂(α) for all y /∈ CM (xn+1)

then the majority prediction set is size reliable under any dataset D̃l ∈ Brt,rc(Dl), provided that the
smallest calibration partition i∗ is large enough |P c

i∗ | − rc ≥ ( 1
α − 1).

Proof. If there is a single class y /∈ CM (xn+1) for which we cannot guarantee that less than (or equal
to) τ̂ prediction sets do not contain y under rt poisoned training points and rc poisoned calibration
points, then the majority prediction set is not size reliable in the worst-case. If γy denotes the number
of prediction sets for which we can guarantee y ̸∈ Ci under rt poisoned training datapoints, then
kc − γy is the number of prediction sets for which we cannot guarantee y /∈ Ci (this entails the
number of prediction sets with y ∈ Ci). Under consideration of additional calibration poisoning, we
cannot guarantee y /∈ Ci for kc − γy + rc prediction sets. In the worst case, kc − γy + rc prediction
sets will contain the class. In other words, kc − γy + rc ≤ τ for all y /∈ CM (xn+1) is a sufficient
condition for size reliability.

Computational complexity. For the training-poisoning certificates we have to compute the algo-
rithm for all n calibration points. Assuming we recompute the argmax every time, the certificates can
be computed in O(nrtK) (where K is the number of classes). Regarding our calibration-poisoning
certificates, the terms m,m can be computed efficiently inO(Kkc) steps. To compute guarantees in
the general case, we mainly need to compute the terms βy and γy for all K classes y ∈ Y . This in-
volves computing the worst-case quantiles (O( n

kc
rtK)) for each prediction set kc and the worst-case

score (O(rtK)). Thus overall the guarantees can be computed in O(Kkc(
n
kc
rtK)) = O(K2nrt).
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