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ABSTRACT

Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient
alternative to conventional feed-forward networks. With learnable combinations
of logical gates, DLGNs enable fast inference by hardware-friendly execution.
Since the concept of DLGNs has only recently gained attention, these networks
are still in their developmental infancy, including the design and scalability of
their output layer. To date, this architecture has primarily been tested on datasets
with up to ten classes.
This work examines the behavior of DLGNs on large multi-class datasets. We in-
vestigate its general expressiveness, its scalability, and evaluate alternative output
strategies. Using both synthetic and real-world datasets, we provide key insights
into the importance of temperature tuning and its impact on output layer perfor-
mance. We evaluate conditions under which the Group-Sum layer performs well
and how it can be applied to large-scale classification of up to 2000 classes.

1 INTRODUCTION
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Figure 1: DLGNs (blue) consistently outperform
MLPs (red) across classification tasks with up to 2000
classes. The result illustrates the potential of logic-
gate-based architectures to remain effective when ap-
plied to large-scale classification problems.

Deep artificial neural networks have im-
proved immensely in the last few years,
exhibiting impressive performance across
a wide range of tasks (Golroudbari &
Sabour, 2023; Noor & Ige, 2024; Ekun-
dayo & Ezugwu, 2025). However, these
improvements come with rapidly grow-
ing computational costs (Thompson et al.,
2020; Rosenfeld, 2021; Tripp et al., 2024).
This constrains their deployment in many
real-world environments, particularly on
edge devices and mobile phones (Zhang
et al., 2020; Zheng, 2025). Thus, there
is increasing interest in developing neural
networks with competitive performance
and energy-efficient deployment.

All computations on digital hardware are
inherently built from Boolean operations
such as AND, OR, and NOT (Kukunas,
2015). This raises the question of whether
machine learning models can be run di-
rectly on logic gates, the fundamental
building blocks of digital computation.

Logic Gate Networks (LGNs) provide one way to address this question. Instead of relying on tra-
ditional arithmetic operations, LGNs combine discrete logical operations, enabling extremely fast
inference. While inference is efficient, training such discrete networks poses significant challenges.
Differentiable LGNs (DLGNs) (Petersen et al., 2022) resolve this issue by introducing continuous
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relaxations of logical operations, allowing LGNs to be trained with gradient-based optimization
methods (LeCun et al., 2015; Goodfellow et al., 2016).

Up to now, DLGNs have been evaluated mainly on small classification datasets. Designing an
expressive yet trainable classification layer for DLGNs is not trivial. The most common approach is
the Group-Sum layer, where a large set of output neurons represents each class. The activations of
neurons within each set are summed to produce the logit for that class. Thus, every class requires
its own dedicated group of neurons. Petersen et al. (2022) report using between 8’000 and 64’000
output neurons for MNIST (800–6’400 neurons per class) and up to 102’400 neurons per class for
CIFAR-10. While effective for small-scale datasets, this design raises concerns about efficiency and
scalability as the number of classes increases.

The standard Group-Sum classification layer is believed to have limited capacity to handle larger
numbers of classes, potentially restricting the scalability of DLGNs. Petersen et al. (2022; 2025);
Yousefi et al. (2025) mainly evaluated DLGNs on MNIST and CIFAR-10, arguing that training for
a larger number of classes is infeasible when up to 102’400 neurons per output class is required.

In this work, we provide the first large-scale evaluation of DLGNs on datasets with thousands of
classes, systematically analyzing the expressiveness of the Group-Sum output layer. We show that
the temperature parameter τ is a key factor that controls redundancy and neuron utilization, di-
rectly influencing scalability. Beyond Group-Sum, we propose and evaluate alternative output layer
designs, comparing their effectiveness across synthetic and real-world datasets. Together, these ex-
periments shed light on the strengths and limitations of DLGNs in large-class settings and highlight
open challenges for extending these architectures to more complex data. Open questions include
how many output bits are needed to represent a class reliably and whether summing over large
groups of output neurons provides an effective decoding strategy.

2 BACKGROUND

2.1 DIFFERENTIABLE LOGIC GATE NETWORKS

Logic Gate Networks (LGNs) are composed of Boolean logic gates that process binary signals.
Karakatic et al. (2013) proposed a genetic programming approach that constructs circuits from truth
tables. While effective for small tasks, these methods scale poorly (Ondas et al., 2005). Differen-
tiable Logic Gate Networks (DLGNs) (Petersen et al., 2022) address this limitation by introducing
continuous relaxations of discrete functions, enabling gradient-based training.

A DLGN consists of LogicLayers, where each neuron receives two inputs and applies a learnable
logical function. During training, a neuron’s output is computed as:

o =

16∑
i=1

pi · fi(a, b) =
16∑
i=1

ewi∑16
j=1 e

wj

· fi(a, b), (1)

where a and b are inputs, fi represent logical functions such as AND, OR, XOR (see Table 1), and wi

are learnable weights. The continuous formulation allows end-to-end training with gradient-based
learning methods (LeCun et al., 2015; Goodfellow et al., 2016).

During inference, only the function with the largest weight is used:
o = fi∗(a, b), i∗ = arg max

i∈{1,...,16}
wi. (2)

This reduces computation to binary logical operations, enabling highly efficient predictions. This is
referred to as the discrete setting. Here, the inputs must also be binarized.

2.2 GROUP-SUM LAYER

The Group-Sum layer serves as the DLGN output layer. The output of the final layer (o) is parti-
tioned into k equal segments, one per class. The outputs in each segment are summed and passed
through a softmax to form the predicted probability distribution:

p = softmax

(
1

τ

[n
k −1∑
j=0

oj ,

2n
k −1∑
j=n

k

oj , . . . ,
n−1∑

j=
(k−1)n

k

oj

])
, (3)
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Table 1: List of real-valued binary logic operators used in the neurons of a Differentiable Logic
Gate Network. During training, the real-valued functions are used to allow gradient propagation,
thus enabling gradient-based learning methods (LeCun et al., 2015; Goodfellow et al., 2016).

ID Operator Real-valued equivalent 00 01 10 11

0 FALSE 0 0 0 0 0
1 a ∧ b a · b 0 0 0 1
2 ¬(a ⇒ b) a− ab 0 0 1 0
3 a a 0 0 1 1
4 ¬(a ⇐ b) b− ab 0 1 0 0
5 b b 0 1 0 1
6 a⊕ b a+ b− 2ab 0 1 1 0
7 a ∨ b a+ b− ab 0 1 1 1
8 ¬(a ∨ b) 1− (a+ b− ab) 1 0 0 0
9 ¬(a⊕ b) 1− (a+ b− 2ab) 1 0 0 1
10 ¬b 1− b 1 0 1 0
11 a ⇐ b 1− b+ ab 1 0 1 1
12 ¬a 1− a 1 1 0 0
13 a ⇒ b 1− a+ ab 1 1 0 1
14 ¬(a ∧ b) 1− ab 1 1 1 0
15 TRUE 1 1 1 1 1

where n is the number of output neurons, k the number of classes, and τ a temperature scaling.

2.3 THE ROLE OF τ

Temperature τ strongly affects performance (see Section 5). Small τ values produce sharper pre-
dictions and larger gradients, increasing confidence but potentially destabilizing training. Large τ
values result in smooth predictions, reducing gradients and model confidence. Section 5.4 provides
a detailed analysis.

3 RELATED WORK

The development of Differentiable Logic Gate Networks (DLGNs) can be seen as an extension of
earlier work in logic-based neural computing (Karakatic et al., 2013). These networks struggle to
scale effectively to larger architectures (Karakatic et al., 2013; Ondas et al., 2005).

Differentiable Logic Gate Networks (DLGNs) (Petersen et al., 2022; 2025) overcome this limita-
tion by relaxing discrete logic functions into continuous approximations. This continuous relaxation
enables end-to-end training using gradient-based optimization. DLGNs achieve remarkable compu-
tational efficiency, processing over one million MNIST images per second on a single CPU core.
When implemented on an FPGA, they are even more efficient, consuming very little power. This
makes them suitable for battery-powered edge devices.

Extensions of DLGNs have explored different architectural and application domains. Recurrent
Deep Differentiable Logic Gate Networks (RDDLGNs) (Bührer et al., 2025) adapt the logic-based
framework to sequence-to-sequence tasks such as neural machine translation. They replace standard
neural building blocks with logic operations and achieve performance comparable to GRU baselines.
Differentiable Logic Gate Cellular Automata (Miotti et al., 2025) apply DLGNs to learn local update
rules in discrete state spaces. This reduces computational cost compared to traditional neural cellular
automata while preserving the ability to learn rules.

A parallel line of research focuses on low-precision networks for efficient inference on edge devices.
Reducing numerical precision from 32-bit floating-point to 8-bit, 4-bit, or even binary representa-
tions substantially accelerates computation with minimal accuracy loss (Rehm et al., 2021; Dettmers,
2016; Sun et al., 2019; 2020; Qin et al., 2020). Techniques like Differentiable Soft Quantization
(DSQ) (Gong et al., 2019) mitigate the accuracy gap by approximating full-precision behavior dur-
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Figure 2: Top row: illustration of class-specific position sampling and initialization in the synthetic
dataset. For each class, a random subset of input positions is chosen and fixed to either 0 or 1,
defining the class identity. The remaining positions are left unconstrained and are randomly assigned
for each individual sample. Bottom row: four complete examples generated for the same class,
demonstrating that all samples share the fixed positions while the random positions vary across
instances. This design ensures that the dataset is easy to separate at the feature level, so performance
differences can be attributed primarily to the capacity of the output layer rather than the backbone.

ing training. These methods share the principle of combining discrete or low-precision operations
with gradient-based optimization, conceptually related to DLGNs.

Other work has addressed the discretization gap inherent to differentiable logic networks. Yousefi
et al. (2025) introduced Gumbel Logic Gate Networks (GLGNs), injecting Gumbel noise during
training to reduce the mismatch between training and inference. This improves neuron utilization
and enhances scalability. Gumbel noise has also been shown to act as a regularization technique
improving downstream performance (Kim, 2023).

Similarly to DLGNs, differentiable Neural Architecture Search (NAS) methods such as DARTS
(Liu et al., 2018) leverage continuous relaxation of discrete design choices to automate the search
for high-performing architectures. These methods illustrate a broader trend of using continuous
approximations to enable efficient optimization in discrete or combinatorial domains (Zoph & Le,
2017; Dong & Yang, 2019; Baymurzina et al., 2022).

Despite these advances, DLGNs have been evaluated mainly on small-scale classification tasks with
up to 10 classes. The standard Group-Sum classification layer, which represents each class with
large groups of output neurons, may not scale efficiently to problems with many classes. Our work
addresses this gap by investigating the expressiveness and scalability of the DLGN output layer.

4 METHODOLOGY AND EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate how the performance of DLGN models scales across datasets. Specifically, we construct
a synthetic dataset, we use the ImageNet-32 dataset, and we combine multiple MNIST variants.

We first introduce a synthetic dataset designed to support dynamically increasing class counts. The
dataset is intentionally simple to ensure that the feature extractor can learn effectively, so that any
limitations in performance can be attributed to the Group-Sum layer rather than an insufficient fea-
ture extraction. Each sample is represented as a binary vector of length 784, matching the dimension-
ality of MNIST-like datasets Lecun et al. (1998). For each class, between 5 and 40 input positions
are randomly chosen and fixed to either 0 or 1, while the remaining positions are assigned randomly
for each sample. Figure 2 shows an example of a class and four samples drawn from the class. The
top image shows the random sampling of positions and their initialization. All samples of a class
share these positions and values. All other values are chosen randomly per sample (four samples are
shown on the bottom row).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

We evaluate DLGNs on an RGB dataset of higher complexity than the previously evaluated CIFAR-
10, namely on the ImageNet-32 dataset that consists of the ImageNet images that have been down-
scaled to 32 by 32 (Krizhevsky et al., 2012; Russakovsky et al., 2015; Chrabaszcz et al., 2017).
ImageNet-32 scales up to 1,000 classes, making it a particularly challenging benchmark for large-
scale classification. DLGNs have not been scaled to larger images (in resolution) than the 28 by
28 for CIFAR images. Therefore, we focus on ImageNet-32 as they are roughly of the same size.
DLGNs take a long time to train, so scaling them to larger resolutions is difficult and outside the
scope of this work (Petersen et al., 2025; Yousefi et al., 2025; Bührer et al., 2025).

DLGNs perform best on binarized grayscale images, so we construct a dataset with many classes
by combining several MNIST-like datasets. These datasets include MNIST Lecun et al. (1998),
Fashion-MNIST Xiao et al. (2017), Kuzushiji-MNIST (K-MNIST) Clanuwat et al. (2018), and Q-
MNIST Yadav & Bottou (2019).

4.2 INPUT TRANSFORMATION AND PREPROCESSING

For all MNIST variants, models are trained using continuous inputs without transformation. Pre-
liminary experiments showed negligible performance differences between continuous and binarized
inputs for training. A validation set is created by sampling 20% of the training data before train-
ing. Unless stated otherwise, references to the validation or test set refer to the binarized version.
Binarization is applied by thresholding input values at 0.5.

For CIFAR-10, CIFAR-100, and ImageNet-32, inputs are flattened into vectors of size 32 · 32 · 3 =
3072 with RGB channels (Petersen et al., 2022). Each vector is expanded using three thresholds,
yielding a representation of size 3 · 3072 = 9216. Formally, an input x is transformed as:

f(x) = concat
(

float(x >
1

4
),float(x >

2

4
),float(x >

3

4
)

)
. (4)

The synthetic dataset requires no transformation, as it is generated directly in binary form. Further
details on datasets and preprocessing are provided in Appendix B.

4.3 MODEL ARCHITECTURE AND TRAINING SETUP

The DLGN baseline consists of 6 logical layers with 64,000 neurons per layer. The input to the
Group-Sum layer, therefore, also counts 64’000 neurons. The 64’000 neurons are then split evenly
amongst the classes. As a comparison, we use multilayer perceptrons (MLPs) with three fully con-
nected hidden layers of 256, 512, and 1024 neurons, referred to as small, medium, and big, respec-
tively. A detailed overview of training and architecture parameters, along with complete DLGN and
MLP results, is provided in the Appendix B.2 and F. During inference, the models are discretized as
described in Section 2.1. This is the default evaluation setting.

4.4 CONVOLUTIONAL LOGIC GATE NETWORKS

As a supplementary evaluation, we also experiment with Convolutional Differentiable Logic Gate
Networks (CLGNs) (Petersen et al., 2025). For technical specifications, we refer to the original
work. We adopt minimally modified versions of the M model for MNIST and CIFAR experiments
and the larger G model for ImageNet-32, following the configurations in Petersen et al. (2025).

For ImageNet, CIFAR, and the MNIST-like datasets, the input transformations are identical to those
in Section 4.2. The use of CLGNs allows us to assess whether conclusions drawn for DLGNs
extend to architectures with convolutional backbones. This tests the robustness of our findings
across different network families.

5 RESULTS

We examine how model performance is affected by increasing the number of classes across three
settings: the synthetic dataset, ImageNet-32, and a combined MNIST-like dataset. In addition, we
highlight the role of the temperature parameter τ in enabling the models to scale effectively to a
large number of classes.
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Figure 3: Accuracy of DLGNs compared to the MLP model, considering an increasing number of
classes. Small: A DLGN with a layer size of 64’000 logical gates. Big: A DLGN with a layer size
of 256’000 logical gates. The MLP model refers to a conventional MLP with three layers of 512
neurons and Batchnorm. The accuracy of all DLGNs stays high up until a few hundred classes, but
sharply drops after.

5.1 SYNTHETIC DATASET

To evaluate performance with hundreds to thousands of classes while keeping the input size man-
ageable, we construct a synthetic dataset as described in Section 4. The dataset is intentionally
simple, ensuring that classification performance is primarily limited by the Group-Sum layer rather
than the backbone. For each class, between 5 and 40 input bits are fixed, while the remaining bits
are assigned randomly. We scale the number of classes logarithmically from 2 to 2000 and compare
four DLGN variants against a medium-sized multilayer perceptron (MLP) baseline. Figure 3 reports
accuracy as a function of the number of classes.

The MLP maintains accuracy above 86% up to 100 classes but drops to around 50% at 1000–2000
classes. For DLGNs, performance depends strongly on the choice of τ . When the number of
classes is small, each class is represented by a large set of output neurons, and large differences
in the summed activations can lead to overconfident predictions. In this regime, higher τ values are
effective, as they temper these differences and prevent a few neurons from dominating the softmax.
As the number of classes grows, each class is represented by fewer neurons, reducing the risk of such
dominance. Here, smaller τ values become more suitable, ensuring that the reduced class sums still
produce confident and accurate predictions. This trade-off enables DLGNs to remain competitive
with the MLP even as the task scales to hundreds or thousands of classes.

Expanding the DLGN backbone to 256’000 neurons per layer (with the same output dimension)
yields further gains. With τ = 10, the large DLGN outperforms all models up to 300 classes and
continues to exceed the MLP even at 2000 classes. Interestingly, the small DLGN with τ = 1
underperforms on tasks with few classes but performs better as the number of classes increases (see
Appendix for additional findings). These results demonstrate that DLGNs can surpass conventional
feed-forward networks on large-class problems. Increasing backbone capacity consistently improves
performance even when the output dimension is fixed, as representing each class with 32 output
neurons in the Group-Sum layer is sufficient to outperform the MLP.

Finally, we investigated the impact of output dimensionality while keeping a 6-layer, 64’000-neuron
DLGN backbone fixed. We tested three output sizes (16’000, 64’000, and 256’000 neurons) for
τ ∈ {1, 10, 100}. Performance was largely insensitive to output dimension: neither increasing nor
decreasing output size had a significant effect on accuracy (see Appendix D.1).
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Figure 4: Accuracy of DLGNs compared to the MLP model, considering an increasing number of
ImageNet classes. Big: A DLGN with a layer size of 256’000 logical gates. The MLP model refers
to a conventional MLP with three layers of 512 neurons and Batchnorm.

5.2 IMAGENET-32

To evaluate the applicability of our findings to real-world tasks, we test on the ImageNet-32 dataset.
Due to its increased complexity relative to the synthetic dataset, we adopt a DLGN with 256,000
logical gates per layer as our default model and compare it to the same MLP used previously. Both
models are trained on binary input representations to avoid any inherent advantage. Performance
trends, illustrated in Figure 4, are broadly consistent with those observed on the synthetic dataset:
larger τ values perform better for small numbers of classes, whereas τ = 10 is more effective as the
number of classes increases. While τ = 100 allows the DLGN to approach MLP performance for
up to 100 classes, no tested configuration matches the MLP beyond that point.

Increasing the DLGN layer size to 512’000 gates (with 512’000 output neurons) does not signifi-
cantly improve performance.

The discrepancy between synthetic and ImageNet-32 datasets likely stems from several factors.
First, the synthetic dataset has a simple, linearly separable structure: certain input features are fixed
for specific classes, while the remaining inputs are random. In contrast, ImageNet-32 has higher
in-class variability and a complex, noisy input distribution. Second, the input dimension after three
thresholds is 9’216. While the MLP effectively has a receptive field covering 100% of the inputs,
each DLGN output neuron depends only on 2n inputs across n layers. With six layers, this corre-
sponds to 64 inputs (∼ 0.7% of the whole input vector), likely insufficient for accurate predictions.
For the synthetic dataset, 784 input dimensions result in a larger effective receptive field (∼ 8%).
Increasing the number of layers could expand the receptive field but introduces challenges such as
vanishing gradients (Petersen et al., 2022).

DLGNs do not perform fundamentally worse than MLPs, as both architectures exhibit decreasing ac-
curacy with an increasing number of classes. Crucially, the best DLGNs achieve performance com-
parable to MLPs when the temperature parameter τ is chosen appropriately. In particular, DLGN
(τ = 10) achieves results on par with MLPs, indicating that with a well-optimized τ , DLGNs can
maintain competitive performance for datasets with up to 67 classes.

5.3 CUSTOM MNIST DATASET

DLGN performance is comparable to that of MLPs across different MNIST datasets, likely because
grayscale images are relatively easy to classify even in binary form, unlike more complex RGB

7
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Table 2: Model performance on combined MNIST datasets with increasing number of classes. All
models are evaluated on binary input representations. The best model per column is shown in bold,
and the second-best is underlined.

Model 2 Classes 4 Classes 11 Classes 27 Classes 67 Classes

MLP (Medium) 99.58 99.09 96.20 92.37 83.53

DLGN (τ = 1) 97.92 97.27 91.27 73.33 56.78
DLGN (τ = 3) 98.65 97.69 94.05 88.92 75.44
DLGN (τ = 10) 98.96 98.56 96.98 93.15 83.42
DLGN (τ = 30) 99.17 98.90 97.40 93.30 78.40
DLGN (τ = 100) 99.27 99.20 96.87 86.32 62.12

CLGN (τ = 1) 31.50 39.09 73.34 81.68 61.71
CLGN (τ = 3) 31.50 16.09 39.14 89.51 85.52
CLGN (τ = 10) 32.25 46.05 81.34 96.56 88.29
CLGN (τ = 30) 77.88 86.05 97.16 96.89 88.13
CLGN (τ = 100) 97.00 98.23 98.04 96.19 80.49

datasets such as CIFAR 10 or ImageNet 32. To study scalability, we first combine multiple MNIST
datasets, including E-MNIST Balanced, K-MNIST, and Fashion-MNIST, into a single dataset with
67 classes and gradually increase the number of classes in a logarithmic fashion. Test accuracies for
the different models, evaluated on binary input representations, are summarized in Table 2.

We evaluated our findings on convolutional differentiable logic gate networks (CLGNs) (Petersen
et al., 2025), which generally show similar behavior to feed-forward DLGNs. On all datasets, per-
formance varies a lot with the temperature parameter τ . Combining MNIST-like datasets into a
67-class dataset demonstrates that optimal τ values are even more important than for DLGNs (see
Figure 2). Similarly, smaller τ are superior for large-class datasets, whereas larger τ perform better
on datasets with small number of classes. This effect can be reduced by using alternative output
layer architectures, such as the Codebook-Output layer (see Appendix E).

On ImageNet-32, similarly to DLGN, increasing backbone size improves accuracy, but enlarging
the Group-Sum output layer has minimal effect. Additional results are provided in the Appendix.

5.4 EFFECT OF τ ON MNIST DATASETS

We begin by examining the effect of different τ values on validation accuracy for the MNIST digits
dataset, observing similar trends across other datasets. Higher τ values yield smoother learning
curves and faster convergence, while excessively large values (e.g., τ = 200) reduce final accuracy
and very small values (e.g., τ = 1) prevent convergence. For MNIST digits, τ = 20 achieves the
best performance. Optimal τ values for other datasets are reported in Appendix F.

The temperature parameter τ therefore plays a critical role in model performance and should be
treated as a primary optimization target.

Next, we examine individual neuron contributions in the output layer. Figure 5 shows neuron acti-
vation distributions for τ = 1 and τ = 100. The activation rate of a neuron is defined as the fraction
of inputs producing an output of 1.

Low τ (e.g., τ = 1) produces a pronounced spike in the activation distribution around 0%, 50%, and
100%, indicating many neurons are either consistently inactive (’dead’), fully active (’saturated’),
or toggle in a synchronized manner. This results in increased redundancy and less differentiated
contributions from individual neurons. In contrast, high τ (e.g., τ = 100) generates a broader and
smoother activation distribution, with neurons exhibiting more varied activity levels. This greater
differentiation enhances the network’s ensemble-like behavior and supports effective pruning of
redundant neurons (details in Appendix D).
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Figure 5: Left: Distribution of neuron activation rates for two models. Larger τ values concentrate
neurons at low activation rates, while smaller τ shifts the distribution toward higher activations.
Right: Best τ ∈ {0.1, 1, 10, 100} for various numbers of output neurons and neurons per class.

5.5 RELATIONSHIP BETWEEN NUMBER OF OUTPUTS AND TEMPERATUR τ

As a supplementary experiment, we want to find the relationship between the output dimension
and an optimal τ . We use out synthetic dataset to train models with different output layer size and
different number of classes. We chose four different values τ ∈ {0.1, 1, 10, 100}. Figure 5 shows
the best τ for a specific number of classes and number of output neurons per class. Our findings
indicate that optimal τ is not actually dependent on the number of output neurons, but rather on the
number of output neurons per class.

5.6 ALTERNATIVES

To evaluate the effectiveness of the Group-Sum layer, we tested several alternative output layer vari-
ants. This analysis identifies the strengths and limitations of the current approach. Some alternatives
occasionally approach or slightly surpass the Group-Sum’s performance, but none consistently or
significantly improve results across datasets. See Appendices E and F for more details and results.

6 CONCLUSION

This work studies the expressiveness and scalability of the Group-Sum output layer in Differen-
tiable Logic Gate Networks. DLGNs have previously been evaluated mainly on datasets with up to
ten classes. We extend this analysis to tasks with up to 2000 classes to assess the Group-Sum layer
on large-scale classification. Through extensive experiments, we analyze the output layer under dif-
ferent conditions and datasets. We show that the temperature parameter τ is critical for performance.
It affects prediction accuracy, output neuron redundancy, and scalability. We also observe that the
optimal value of τ decreases as the number of output neurons per class increases.

Our results show that DLGNs perform competitively on structured datasets. On MNIST and its
variants, DLGNs with the Group-Sum layer achieve accuracy comparable to conventional feed-
forward networks using binary input data. With a well-chosen τ parameter, DLGNs maintain high
accuracy even with up to 67 classes. On a synthetic dataset, we scale the number of classes up to
2000. In this setting, DLGNs clearly outperform feed-forward networks, demonstrating their ability
to distinguish thousands of classes effectively.

Evaluation on the real-world ImageNet-32 dataset highlights current limitations. DLGNs do not
achieve performance comparable to feed-forward networks. The complexity of the RGB input and
high in-class variability appear to be too challenging for the current network and input representa-
tion. This indicates that further architectural adjustments are needed for DLGNs to generalize to
natural image datasets.

In conclusion, the Group-Sum output layer is expressive and scalable for structured classification
tasks. The choice of τ is key to achieving high performance. At the same time, DLGNs require
further development to improve robustness and generalization on complex real-world data.
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REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary material, along with a README
describing how to run the training and evaluation scripts. The training and test data are publicly
available through PyTorch’s torchtext, Kaggle, and Huggingface. The code will be made publicly
available on GitHub with the camera-ready version. Details of model architectures, training proce-
dures, and datasets are provided in Section 4 and Appendix B.
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Table 3: Overview of the datasets used in this study.

Dataset Name # Samples Input Dimensions # Classes
MNIST 70,000 28× 28 (grayscale) 10
Fashion-MNIST 70,000 28× 28 (grayscale) 10
Kuzushiji-MNIST 70,000 28× 28 (grayscale) 10
Q-MNIST 120,000 28× 28 (grayscale) 10
E-MNIST (Balanced) 131,600 28× 28 (grayscale) 47
E-MNIST (Letters) 145,600 28× 28 (grayscale) 26
CIFAR-10 60,000 32× 32 (RGB) 10
CIFAR-100 60,000 32× 32 (RGB) 100
ImageNet-32 1,331,167 32× 32 (RGB) 1,000
Synthetic 600/Class 784 (binary) 2 – 2,000

A USAGE OF LLMS

We have made use of several large language models (LLMs) during the preparation of this work.
ChatGPT, Claude, Gemini, and Grammarly were employed to assist with spellchecking, improving
wording, and shortening text for clarity and readability. In addition, ChatGPT, Claude, and Cursor
were used for analyzing and explaining code, providing code completions, and generating visual-
izations to support our implementation and experiments. These tools were applied as auxiliary aids
to polish the writing and streamline the development process, while the core research contributions,
experimental design, and interpretation of results remain entirely our own.

B IMPLEMENTATION DETAILS

This section details the experimental setup, including descriptions of the datasets used, input trans-
formations applied and the evaluation metrics examined.

B.1 DATASETS

Table 3 summarizes the various datasets used, their number of samples, input dimensions, and num-
ber of classes.

B.2 TRAINING AND ARCHITECTURAL DETAILS

The most important training and architectural parameters of the baseline DLGN and MLP are pre-
sented in Table 4. Additional experiments most often use a minimally modified version of this
baseline configuration.

B.3 EVALUATION METRIC

The model performance is evaluated using classification accuracy, which reflects the proportion of
correctly predicted samples relative to the total number of samples.

Accuracy is selected as the primary metric because it provides a clear and intuitive measure of
overall model effectiveness. It enables straightforward comparisons between different architectures
and training configurations. Our dataset exhibits a reasonably balanced class distribution, accuracy
therefore serves as a reliable performance indicator.

C IMPACT OF τ

Figure 6 shows the impact of τ on performance for different datasets. Even though the same model
is used, the optimal value of τ greatly differs. While high values perform well on CIFAR-10 dataset
(top left), they do not perform nearly as good on CIFAR-100 (top right).
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Table 4: Default configurations for DLGN and MLP models, specifically used for creating the base-
lines. Three different MLPs were tested, referred to as small, medium, and big, with 256, 512, and
1024 neurons per layer, respectively.

Parameter DLGN MLP
Number of Layers 6 3
Neurons per Layer 64,000 256 / 512 / 1024
Data Augmentation None None
Dropout None None
Batch Normalization – Enabled
Temperature Parameter (τ ) 10 –
Learning Rate 0.01 0.00001
Training Epochs 100 100
Optimizer Adam Adam
Loss Function Cross-Entropy Cross-Entropy
Number of Independent Runs 3 3
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Figure 6: The impact of the τ value on performance on different datasets. From left to right and
top to bottom: CIFAR-10, CIFAR-100, Fashion-MNIST, EMNIST-Letters. The plots show the
validation accuracy for different τ . Even though the same model is used, there is great difference
between optimal τ .

As mentioned in Section 5.4, per-class accuracy differs greatly for different τ . We analyze this for
MNIST. The accuracies are shown in Figure 7. Easily classifiable digits like 1 and 0 show good
performance for all τ . However, performance varies a lot more for small τ as opposed to large τ .
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Figure 7: MNIST digits per-class distribution. Low τ show much greater performance differences
compared to large τ .

D USING INFORMATION DISTRIBUTION TO PRUNE THE NETWORK

As shown in Section 5, using a large tau value allows us to evenly distribute information across the
output neurons. This theoretically allows us to prune some of the output neurons, without loosing
much accuracy. We therefore disregard random output neurons for each class. Deleting specific out-
puts further allows us to prune neurons from intermediate layer. We prune the network by randomly
removing output layer neurons. The data is shown in Figure 8. We plot the number of neurons
pruned per class to the accuracy that is still preserved. Additionally, in red we show the amount of
neurons (in %) that can be pruned in the whole network.

For low tau values, the accuracy curve shows rough characteristics. This indicates that the prediction
accuracy of the model heavily depends on specific neurons, rather than on an ensemble of all outputs.
The larger τ , the smoother the curve. The information is more evenly distributed over the output
neurons, making it possible to remove more neurons, without significant accuracy loss.

D.1 VARYING OUTPUT LAYER SIZES

In Section 5, we illustrated the performance improvement of DLGNs on the synthetic dataset when
increasing the backbone from 64,000 to 256,000 neurons per layer, while keeping the output layer
fixed at 64,000 neurons. Here, we further investigate how performance changes when varying the
output layer dimension instead. With the backbone fixed at 64,000 neurons per layer, we evaluate
models with output layer sizes of 16,000 and 256,000 neurons. Figure 9 compares the results,
showing no significant performance differences among the three models. This suggests that accuracy
is limited more by the backbone than by the output layer capacity.

E ALTERNATIVES

To evaluate the effectiveness of the Group-Sum layer, we investigate several alternative output layer
designs, aiming to identify either comparable or superior approaches. Unless stated otherwise, all
comparisons are based on a slightly modified version of the standard DLGN baseline described in
Section 4. Appendix F contains tables with extensive results for the methods.

E.1 BINARY LOSS

Instead of using cross-entropy loss, we use a binary logit loss. This loss gets calculated per output
neuron instead of over all neurons of a class. Even though the network learns well, its performance
does not come close to our baseline.
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Figure 8: MNIST digits output neurons pruning. Shows the number of output neurons pruned per
class (x) to the remaining prediction accuracy. Red indicated the amount of neurons that can be
pruned in the whole network.
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Figure 9: Accuracy of DLGNs for different output layer sizes over increasing numbers of classes,
keeping the backbone of the netowork at 64’000 neurons per layer.

E.2 FULLY-CONNECTED LAST LAYER

To try and get more out of the output layer, we replace the Group-Sum layer with a fully connected
layer at the end of the DLGN. This setup could show more of what the network’s backbone is capable
of. While the performance improves on some datasets, training becomes more unstable.

E.3 FULLY-CONNECTED AFTER TRAINING

Rather than appending a fully-connected layer during training, we now retrain a separate layer after
training the DLGN normally. This increases performance slightly on some of the MNIST datasets.
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Figure 10: Test Accuracy (eval mode) for MNIST with increasing number of classes. Results com-
pare different output sizes o and Group-Sum with varying τ .

E.4 CODEBOOK-BASED PREDICTION

Instead of splitting the output layer into k parts for k classes, we try a different method. Each class
is assigned a random binary code (a vector of the same length as the output). We then use Hamming
distance to compare the network output to each code, picking the closest match. This approach
performs better on some datasets — for example, on CIFAR-10, accuracy increases from 50.7%
(DLGN baseline) to around 54.8%. Additionally, even though a τ value is used, the performance is
not as dependent on its optimality than with the normal Group-Sum output layer.

We also combine the Group-Sum approach with the Codebook-based approach. By specifying an
output size, one can use Group-Sum to create an output with this dimension. We then use the smaller
output vector as the network’s prediction, calculating the hamming distance to the class encodings.
Figure 10 shows the performance of CLGNs on the combined MNIST dataset. In this case we use
τ = 0.1. o is the output dimension, equivalent to the dimension of the class encodings. Using the
Codebook-Layer and an output dimension of 1600 or 6400, we are able to use a single model to
compete or outperform the best Group-Sum layer models for all number of classes.

E.5 GROUP-SUM DROPOUT

Many of our experimental models show overfitting tendencies. Even though the choice of τ can help
to partially mitigate it, there are other techniques that may be applied. One of them is dropout. Since
we are mainly focused on the output layer, we apply dropout only to the Group-Sum layer. We do
this by deactivating each neuron with a probability p ∈ {0.1, 0.3, 0.5, 0.7, 0.9} in each batch. Figure
11 shows the performance heatmap of various τ -dropout combinations on our synthetic dataset with
2000 different classes.

We see that certain amounts of dropout increased performance considerably. For p = 0.1, almost
all test accuracies are superior to p = 0. Not only that, but it seems to lessen the importance of an
optimal τ , expanding high performance regions.

E.6 TREE-BASED PREDICTION

Instead of summing up each part of each class, we try to decrease the parts’ size by using class-
specific DLGN. This halves the parts’ dimension with each layer for a certain number of layers
before being summed up. We also use a class-specific DLGN that uses the whole output layer for
each output. Unfortunately, neither variants improve the model’s performance. Additionally, using
the whole output layer for each class quickly becomes computationally infeasible for many classes
and a large output layer dimension.
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Figure 11: Test performance heatmap of different τ -dropout combinations. The performance is
measured on our synthetic dataset with 2000 different classes.

F NUMERIC RESULTS

This section displays the resulting accuracies for many of our tested models, including the methods
in Appendix E. We show accuracy for all MNIST datasets (Tables 5 to 10) as well as CIFAR10
(Table 11) and CIFAR100 (Table 12). All models were trained with the same input representation
as explained in Section 4. DLGNs can only make use of hardware-accelerated inference with binary
input representation. To mitigate comparisons of models with inconsistent amounts of input infor-
mation, we show both the accuracy with binary and continuous input representations. The discrete
settings use binary inputs and discrete models for logic gate-based models. Fully Connected Last
Layer refers to a standard DLGN, with appended fully-connected layers during training. Run 1, 2,
and 3 refer to appended layers with {512}, {512, 512}, and {1000, 100}, respectively.
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Table 5: Test Accuracy (%) Comparison of Mod-
els on MNIST (digits).

Input
Discrete Continuous

Baseline
97.84 ± 0.07 98.26 ± 0.02

MLP Baseline
Small 96.81 ± 0.16 97.83 ± 0.13
Medium 97.19 ± 0.11 98.12 ± 0.05
Big 97.44 ± 0.14 98.27 ± 0.05

Different tau
τ = 1 92.21 94.88
τ = 3 94.72 96.11
τ = 10 97.90 98.29
τ = 30 98.31 98.54
τ = 100 97.68 97.72

Binary Logit Loss
75.68 75.35

Fully Connected Last Layer
Run 1 95.71 97.48
Run 2 94.98 97.17
Run 3 95.68 97.16

Codebook-Based Prediction
τ = 0.1 97.58 98.09
τ = 0.3 98.07 98.47
τ = 1 97.83 98.02
τ = 3 94.95 95.12

Group-Sum Dropout
p = 0.1 97.72 98.12
p = 0.3 98.15 98.30
p = 0.5 98.16 98.38
p = 0.7 98.24 98.29
p = 0.9 97.28 97.30

Convolutional Difflogic
τ = 1 92.19 –
τ = 3 91.74 –
τ = 10 97.14 –
τ = 30 98.73 –
τ = 100 99.03 –

Table 6: Test Accuracy (%) Comparison of Mod-
els on Fashion-MNIST.

Input
Discrete Continuous

Baseline
78.35 ± 0.11 88.90 ± 0.13

MLP Baseline
Small 78.90 ± 0.18 88.52 ± 0.20
Medium 78.63 ± 0.60 88.80 ± 0.06
Big 77.66 ± 0.33 89.01 ± 0.09

Different τ
τ = 1 69.89 77.13
τ = 3 74.52 86.60
τ = 10 78.31 88.93
τ = 30 81.15 89.14
τ = 100 81.79 87.66

Binary Logit Loss
65.10 70.31

Fully Connected Last Layer
Run 1 72.96 83.79
Run 2 74.77 85.18
Run 3 74.46 85.29

Codebook-Based Prediction
τ = 0.1 77.78 88.67
τ = 0.3 81.57 89.16
τ = 1 82.21 88.26
τ = 3 80.35 84.71

Group-Sum Dropout
p = 0.1 79.27 88.62
p = 0.3 81.62 88.97
p = 0.5 81.69 88.91
p = 0.7 82.07 88.56
p = 0.9 81.51 86.47

Convolutional Difflogic
τ = 1 38.07 –
τ = 3 61.86 –
τ = 10 80.99 –
τ = 30 86.44 –
τ = 100 87.41 –
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Table 7: Test Accuracy (%) Comparison of Mod-
els on Q-MNIST.

Input
Discrete Continuous

Baseline
97.52 ± 0.09 97.93 ± 0.06

MLP Baseline
Small 96.45 ± 0.09 97.60 ± 0.06
Medium 96.67 ± 0.03 97.79 ± 0.02
Big 97.09 ± 0.07 97.91 ± 0.02

Different τ
τ = 1 91.06 94.74
τ = 3 94.06 96.10
τ = 10 97.56 97.97
τ = 30 97.91 98.17
τ = 100 97.41 97.55

Binary Logit Loss
74.94 74.54

Fully Connected Last Layer
Run 1 95.07 96.86
Run 2 94.65 96.91
Run 3 95.89 97.30

Codebook-Based Prediction
τ = 0.1 97.46 97.99
τ = 0.3 97.88 98.19
τ = 1 97.65 97.81
τ = 3 94.59 94.64

Group-Sum Dropout
p = 0.1 97.46 97.95
p = 0.3 97.63 98.01
p = 0.5 97.78 98.11
p = 0.7 97.80 98.08
p = 0.9 96.91 97.04

Convolutional Difflogic
τ = 1 89.88 –
τ = 3 90.20 –
τ = 10 97.14 –
τ = 30 98.48 –
τ = 100 98.74 –

Table 8: Test Accuracy (%) Comparison of Mod-
els on K-MNIST.

Input
Discrete Continuous

Baseline
95.12 ± 0.14 96.10 ± 0.08

MLP Baseline
Small 92.23 ± 0.12 94.91 ± 0.09
Medium 92.88 ± 0.02 95.42 ± 0.07
Big 93.86 ± 0.21 95.90 ± 0.24

Different τ
τ = 1 83.83 90.57
τ = 3 91.63 94.33
τ = 10 95.00 96.01
τ = 30 95.88 96.44
τ = 100 94.32 94.70

Binary Logit Loss
68.78 69.11

Fully Connected Last Layer
Run 1 91.29 94.83
Run 2 91.03 94.78
Run 3 91.26 94.97

Codebook-Based Prediction
τ = 0.1 94.73 95.90
τ = 0.3 95.93 96.56
τ = 1 94.88 95.32
τ = 3 88.71 88.76

Group-Sum Dropout
p = 0.1 95.17 96.29
p = 0.3 95.54 96.35
p = 0.5 95.82 96.42
p = 0.7 95.86 96.13
p = 0.9 93.29 93.68

Convolutional Difflogic
τ = 1 90.31 –
τ = 3 88.86 –
τ = 10 95.48 –
τ = 30 97.58 –
τ = 100 97.51 –
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Table 9: Test Accuracy (%) Comparison of Mod-
els on E-MNIST-Letters.

Input
Discrete Continuous

Baseline
87.46 ± 0.14 90.72 ± 0.14

MLP Baseline
Small 86.24 ± 0.07 90.37 ± 0.11
Medium 87.08 ± 0.08 90.83 ± 0.09
Big 87.68 ± 0.17 90.97 ± 0.09

Different τ
τ = 1 55.68 74.34
τ = 3 79.63 87.74
τ = 10 87.62 90.66
τ = 30 88.85 90.15
τ = 100 79.04 79.32

Binary Logit Loss
53.40 54.57

Fully Connected Last Layer
Run 1 67.33 78.65
Run 2 69.61 80.60
Run 3 75.11 81.87

Codebook-Based Prediction
τ = 0.1 82.90 88.97
τ = 0.3 88.84 90.88
τ = 1 86.30 86.87
τ = 3 72.60 73.01
τ = 10 58.62 59.32

Group-Sum Dropout
p = 0.1 88.50 91.24
p = 0.3 89.18 91.05
p = 0.5 89.18 90.48
p = 0.7 87.97 88.86
p = 0.9 79.22 79.65

Convolutional Difflogic
τ = 1 51.15 –
τ = 3 86.42 –
τ = 10 92.18 –
τ = 30 92.69 –
τ = 100 91.73 –

Table 10: Test Accuracy (%) Comparison of
Models on E-MNIST-Balanced.

Input
Discrete Continuous

Baseline
80.30 ± 0.03 83.75 ± 0.02

MLP Baseline
Small 79.25 ± 0.10 84.04 ± 0.03
Medium 80.13 ± 0.17 84.52 ± 0.10
Big 80.85 ± 0.01 84.76 ± 0.15

Different τ
τ = 1 51.56 70.31
τ = 3 71.87 80.69
τ = 10 80.31 83.77
τ = 30 79.84 80.66
τ = 100 64.29 64.79

Binary Logit Loss
48.76 49.25

Fully Connected Last Layer
Run 1 49.38 62.19
Run 2 55.19 64.29
Run 3 67.75 75.88

Codebook-Based Prediction
τ = 0.1 71.84 80.49
τ = 0.3 81.20 83.81
τ = 1 77.74 78.20
τ = 3 63.07 63.30
τ = 10 51.41 51.93

Group-Sum Dropout
p = 0.1 81.37 84.04
p = 0.3 81.71 83.59
p = 0.5 80.96 82.15
p = 0.7 78.59 79.22
p = 0.9 65.94 66.58

Convolutional Difflogic
τ = 1 55.67 –
τ = 3 81.02 –
τ = 10 85.56 –
τ = 30 86.25 –
τ = 100 83.32 –
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Table 11: Test Accuracy (%) Comparison of
Models on CIFAR10.

Input
Discrete Continuous

Baseline
50.88 ± 0.87 –

MLP Baseline
Small 48.43 ± 0.15 –
Medium 49.33 ± 0.24 –
Big 49.87 ± 0.48 –

Different τ
τ = 1 37.82 –
τ = 3 45.27 –
τ = 10 49.88 –
τ = 30 53.56 –
τ = 100 54.72 –

Binary Logit Loss
31.06 –

Fully Connected Last Layer
Run 1 41.02 –
Run 2 41.25 –
Run 3 44.13 –

Codebook-Based Prediction
τ = 0.1 49.68 –
τ = 0.3 54.33 –
τ = 1 55.56 –
τ = 3 51.13 –

Group-Sum Dropout
p = 0.1 51.05 –
p = 0.3 51.99 –
p = 0.5 52.95 –
p = 0.7 53.03 –
p = 0.9 52.71 –

Convolutional Difflogic
τ = 1 27.80 –
τ = 3 43.37 –
τ = 10 62.22 –
τ = 30 65.23 –
τ = 100 65.21 –

Table 12: Test Accuracy (%) Comparison of
Models on CIFAR100.

Input
Discrete Continuous

Baseline
22.54 ± 0.26 –

MLP Baseline
Small 18.55 ± 0.13 –
Medium 20.89 ± 0.11 –
Big 22.77 ± 0.15 –

Different τ
τ = 1 11.40 –
τ = 3 17.48 –
τ = 10 22.27 –
τ = 30 22.89 –
τ = 100 17.14 –

Binary Logit Loss
9.50 –

Fully Connected Last Layer
Run 1 8.92 –
Run 2 10.93 –
Run 3 9.74 –

Codebook-Based Prediction
τ = 0.1 16.86 –
τ = 0.3 21.87 –
τ = 1 23.12 –
τ = 3 17.73 –

Group-Sum Dropout
p = 0.1 23.50 –
p = 0.3 23.87 –
p = 0.5 24.35 –
p = 0.7 22.75 –
p = 0.9 17.52 –

Convolutional Difflogic
τ = 1 15.88 –
τ = 3 25.95 –
τ = 10 30.96 –
τ = 30 30.67 –
τ = 100 25.60 –
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