
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FROM MNIST TO IMAGENET: UNDERSTANDING
THE SCALABILITY BOUNDARIES OF DIFFERENTIABLE
LOGIC GATE NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient
alternative to conventional feed-forward networks. With learnable combinations
of logical gates, DLGNs enable fast inference by hardware-friendly execution.
Since the concept of DLGNs has only recently gained attention, these networks
are still in their developmental infancy, including the design and scalability of
their output layer. To date, this architecture has primarily been tested on datasets
with up to ten classes.
This work examines the behavior of DLGNs on large multi-class datasets. We in-
vestigate its general expressiveness, its scalability, and evaluate alternative output
strategies. Using both synthetic and real-world datasets, we provide key insights
into the importance of temperature tuning and its impact on output layer perfor-
mance. We evaluate conditions under which the Group-Sum layer performs well
and how it can be applied to large-scale classification of up to 2000 classes.

1 INTRODUCTION

100 101 102 103
0

25

50

75

100

Classes

Te
st

A
cc

ur
ac

y
(%

)

DLGN
MLP

Figure 1: DLGNs (blue) consistently outperform
MLPs (red) across classification tasks with up to 2000
classes. The result illustrates the potential of logic-
gate-based architectures to remain effective when ap-
plied to large-scale classification problems.

Deep artificial neural networks have im-
proved immensely in the last few years,
exhibiting impressive performance across
a wide range of tasks (Golroudbari &
Sabour, 2023; Noor & Ige, 2024; Ekun-
dayo & Ezugwu, 2025). However, these
improvements come with rapidly grow-
ing computational costs (Thompson et al.,
2020; Rosenfeld, 2021; Tripp et al., 2024).
This constrains their deployment in many
real-world environments, particularly on
edge devices and mobile phones (Zhang
et al., 2020; Zheng, 2025). Thus, there
is increasing interest in developing neural
networks with competitive performance
and energy-efficient deployment.

All computations on digital hardware are
inherently built from Boolean operations
such as AND, OR, and NOT (Kukunas,
2015). This raises the question of whether
machine learning models can be run di-
rectly on logic gates, the fundamental
building blocks of digital computation.

Logic Gate Networks (LGNs) provide one way to address this question. Instead of relying on tra-
ditional arithmetic operations, LGNs combine discrete logical operations, enabling extremely fast
inference. While inference is efficient, training such discrete networks poses significant challenges.
Differentiable LGNs (DLGNs) (Petersen et al., 2022) resolve this issue by introducing continuous

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

relaxations of logical operations, allowing LGNs to be trained with gradient-based optimization
methods (LeCun et al., 2015; Goodfellow et al., 2016).

Up to now, DLGNs have been evaluated mainly on small classification datasets. Designing an
expressive yet trainable classification layer for DLGNs is not trivial. The most common approach is
the Group-Sum layer, where a large set of output neurons represents each class. The activations of
neurons within each set are summed to produce the logit for that class. Thus, every class requires
its own dedicated group of neurons. Petersen et al. (2022) report using between 8’000 and 64’000
output neurons for MNIST (800–6’400 neurons per class) and up to 102’400 neurons per class for
CIFAR-10. While effective for small-scale datasets, this design raises concerns about efficiency and
scalability as the number of classes increases.

The standard Group-Sum classification layer is believed to have limited capacity to handle larger
numbers of classes, potentially restricting the scalability of DLGNs. Petersen et al. (2022; 2025);
Yousefi et al. (2025) mainly evaluated DLGNs on MNIST and CIFAR-10, arguing that training for
a larger number of classes is infeasible when up to 102’400 neurons per output class is required.

In this work, we provide the first large-scale evaluation of DLGNs on datasets with thousands of
classes, systematically analyzing the expressiveness of the Group-Sum output layer. We show that
the temperature parameter τ is a key factor that controls redundancy and neuron utilization, di-
rectly influencing scalability. Beyond Group-Sum, we propose and evaluate alternative output layer
designs, comparing their effectiveness across synthetic and real-world datasets. Together, these ex-
periments shed light on the strengths and limitations of DLGNs in large-class settings and highlight
open challenges for extending these architectures to more complex data. Open questions include
how many output bits are needed to represent a class reliably and whether summing over large
groups of output neurons provides an effective decoding strategy.

2 BACKGROUND

2.1 DIFFERENTIABLE LOGIC GATE NETWORKS

Logic Gate Networks (LGNs) are composed of Boolean logic gates that process binary signals.
Karakatic et al. (2013) proposed a genetic programming approach that constructs circuits from truth
tables. While effective for small tasks, these methods scale poorly (Ondas et al., 2005). Differen-
tiable Logic Gate Networks (DLGNs) (Petersen et al., 2022) address this limitation by introducing
continuous relaxations of discrete functions, enabling gradient-based training.

A DLGN consists of LogicLayers, where each neuron receives two inputs and applies a learnable
logical function. During training, a neuron’s output is computed as:

o =

16∑
i=1

pi · fi(a, b) =
16∑
i=1

ewi∑16
j=1 e

wj

· fi(a, b), (1)

where a and b are inputs, fi represent logical functions such as AND, OR, XOR (see Table 1), and wi

are learnable weights. The continuous formulation allows end-to-end training with gradient-based
learning methods (LeCun et al., 2015; Goodfellow et al., 2016).

During inference, only the function with the largest weight is used:
o = fi∗(a, b), i∗ = arg max

i∈{1,...,16}
wi. (2)

This reduces computation to binary logical operations, enabling highly efficient predictions. This is
referred to as the discrete setting. Here, the inputs must also be binarized.

2.2 GROUP-SUM LAYER

The Group-Sum layer serves as the DLGN output layer. The output of the final layer (o) is parti-
tioned into k equal segments, one per class. The outputs in each segment are summed and passed
through a softmax to form the predicted probability distribution:

p = softmax

(
1

τ

[n
k −1∑
j=0

oj ,

2n
k −1∑
j=n

k

oj , . . . ,
n−1∑

j=
(k−1)n

k

oj

])
, (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: List of real-valued binary logic operators used in the neurons of a Differentiable Logic
Gate Network. During training, the real-valued functions are used to allow gradient propagation,
thus enabling gradient-based learning methods (LeCun et al., 2015; Goodfellow et al., 2016).

ID Operator Real-valued equivalent 00 01 10 11

0 FALSE 0 0 0 0 0
1 a ∧ b a · b 0 0 0 1
2 ¬(a ⇒ b) a− ab 0 0 1 0
3 a a 0 0 1 1
4 ¬(a ⇐ b) b− ab 0 1 0 0
5 b b 0 1 0 1
6 a⊕ b a+ b− 2ab 0 1 1 0
7 a ∨ b a+ b− ab 0 1 1 1
8 ¬(a ∨ b) 1− (a+ b− ab) 1 0 0 0
9 ¬(a⊕ b) 1− (a+ b− 2ab) 1 0 0 1
10 ¬b 1− b 1 0 1 0
11 a ⇐ b 1− b+ ab 1 0 1 1
12 ¬a 1− a 1 1 0 0
13 a ⇒ b 1− a+ ab 1 1 0 1
14 ¬(a ∧ b) 1− ab 1 1 1 0
15 TRUE 1 1 1 1 1

where n is the number of output neurons, k the number of classes, and τ a temperature scaling.

2.3 THE ROLE OF τ

Temperature τ strongly affects performance (see Section 5). Small τ values produce sharper pre-
dictions and larger gradients, increasing confidence but potentially destabilizing training. Large τ
values result in smooth predictions, reducing gradients and model confidence. Section 5.4 provides
a detailed analysis.

3 RELATED WORK

The development of Differentiable Logic Gate Networks (DLGNs) can be seen as an extension of
earlier work in logic-based neural computing (Karakatic et al., 2013). These networks struggle to
scale effectively to larger architectures (Karakatic et al., 2013; Ondas et al., 2005).

Differentiable Logic Gate Networks (DLGNs) (Petersen et al., 2022; 2025) overcome this limita-
tion by relaxing discrete logic functions into continuous approximations. This continuous relaxation
enables end-to-end training using gradient-based optimization. DLGNs achieve remarkable compu-
tational efficiency, processing over one million MNIST images per second on a single CPU core.
When implemented on an FPGA, they are even more efficient, consuming very little power. This
makes them suitable for battery-powered edge devices.

Extensions of DLGNs have explored different architectural and application domains. Recurrent
Deep Differentiable Logic Gate Networks (RDDLGNs) (Bührer et al., 2025) adapt the logic-based
framework to sequence-to-sequence tasks such as neural machine translation. They replace standard
neural building blocks with logic operations and achieve performance comparable to GRU baselines.
Differentiable Logic Gate Cellular Automata (Miotti et al., 2025) apply DLGNs to learn local update
rules in discrete state spaces. This reduces computational cost compared to traditional neural cellular
automata while preserving the ability to learn rules.

A parallel line of research focuses on low-precision networks for efficient inference on edge devices.
Reducing numerical precision from 32-bit floating-point to 8-bit, 4-bit, or even binary representa-
tions substantially accelerates computation with minimal accuracy loss (Rehm et al., 2021; Dettmers,
2016; Sun et al., 2019; 2020; Qin et al., 2020). Techniques like Differentiable Soft Quantization
(DSQ) (Gong et al., 2019) mitigate the accuracy gap by approximating full-precision behavior dur-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Top row: illustration of class-specific position sampling and initialization in the synthetic
dataset. For each class, a random subset of input positions is chosen and fixed to either 0 or 1,
defining the class identity. The remaining positions are left unconstrained and are randomly assigned
for each individual sample. Bottom row: four complete examples generated for the same class,
demonstrating that all samples share the fixed positions while the random positions vary across
instances. This design ensures that the dataset is easy to separate at the feature level, so performance
differences can be attributed primarily to the capacity of the output layer rather than the backbone.

ing training. These methods share the principle of combining discrete or low-precision operations
with gradient-based optimization, conceptually related to DLGNs.

Other work has addressed the discretization gap inherent to differentiable logic networks. Yousefi
et al. (2025) introduced Gumbel Logic Gate Networks (GLGNs), injecting Gumbel noise during
training to reduce the mismatch between training and inference. This improves neuron utilization
and enhances scalability. Gumbel noise has also been shown to act as a regularization technique
improving downstream performance (Kim, 2023).

Similarly to DLGNs, differentiable Neural Architecture Search (NAS) methods such as DARTS
(Liu et al., 2018) leverage continuous relaxation of discrete design choices to automate the search
for high-performing architectures. These methods illustrate a broader trend of using continuous
approximations to enable efficient optimization in discrete or combinatorial domains (Zoph & Le,
2017; Dong & Yang, 2019; Baymurzina et al., 2022).

Despite these advances, DLGNs have been evaluated mainly on small-scale classification tasks with
up to 10 classes. The standard Group-Sum classification layer, which represents each class with
large groups of output neurons, may not scale efficiently to problems with many classes. Our work
addresses this gap by investigating the expressiveness and scalability of the DLGN output layer.

4 METHODOLOGY AND EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate how the performance of DLGN models scales across datasets. Specifically, we construct
a synthetic dataset, we use the ImageNet-32 dataset, and we combine multiple MNIST variants.

We first introduce a synthetic dataset designed to support dynamically increasing class counts. The
dataset is intentionally simple to ensure that the feature extractor can learn effectively, so that any
limitations in performance can be attributed to the Group-Sum layer rather than an insufficient fea-
ture extraction. Each sample is represented as a binary vector of length 784, matching the dimension-
ality of MNIST-like datasets Lecun et al. (1998). For each class, between 5 and 40 input positions
are randomly chosen and fixed to either 0 or 1, while the remaining positions are assigned randomly
for each sample. Figure 2 shows an example of a class and four samples drawn from the class. The
top image shows the random sampling of positions and their initialization. All samples of a class
share these positions and values. All other values are chosen randomly per sample (four samples are
shown on the bottom row).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

We evaluate DLGNs on an RGB dataset of higher complexity than the previously evaluated CIFAR-
10, namely on the ImageNet-32 dataset that consists of the ImageNet images that have been down-
scaled to 32 by 32 (Krizhevsky et al., 2012; Russakovsky et al., 2015; Chrabaszcz et al., 2017).
ImageNet-32 scales up to 1,000 classes, making it a particularly challenging benchmark for large-
scale classification. DLGNs have not been scaled to larger images (in resolution) than the 28 by
28 for CIFAR images. Therefore, we focus on ImageNet-32 as they are roughly of the same size.
DLGNs take a long time to train, so scaling them to larger resolutions is difficult and outside the
scope of this work (Petersen et al., 2025; Yousefi et al., 2025; Bührer et al., 2025).

DLGNs perform best on binarized grayscale images, so we construct a dataset with many classes
by combining several MNIST-like datasets. These datasets include MNIST Lecun et al. (1998),
Fashion-MNIST Xiao et al. (2017), Kuzushiji-MNIST (K-MNIST) Clanuwat et al. (2018), and Q-
MNIST Yadav & Bottou (2019).

4.2 INPUT TRANSFORMATION AND PREPROCESSING

For all MNIST variants, models are trained using continuous inputs without transformation. Pre-
liminary experiments showed negligible performance differences between continuous and binarized
inputs for training. A validation set is created by sampling 20% of the training data before train-
ing. Unless stated otherwise, references to the validation or test set refer to the binarized version.
Binarization is applied by thresholding input values at 0.5.

For CIFAR-10, CIFAR-100, and ImageNet-32, inputs are flattened into vectors of size 32 · 32 · 3 =
3072 with RGB channels (Petersen et al., 2022). Each vector is expanded using three thresholds,
yielding a representation of size 3 · 3072 = 9216. Formally, an input x is transformed as:

f(x) = concat
(

float(x >
1

4
),float(x >

2

4
),float(x >

3

4
)

)
. (4)

The synthetic dataset requires no transformation, as it is generated directly in binary form. Further
details on datasets and preprocessing are provided in Appendix B.

4.3 MODEL ARCHITECTURE AND TRAINING SETUP

The DLGN baseline consists of 6 logical layers with 64,000 neurons per layer. The input to the
Group-Sum layer, therefore, also counts 64’000 neurons. The 64’000 neurons are then split evenly
amongst the classes. As a comparison, we use multilayer perceptrons (MLPs) with three fully con-
nected hidden layers of 256, 512, and 1024 neurons, referred to as small, medium, and big, respec-
tively. A detailed overview of training and architecture parameters, along with complete DLGN and
MLP results, is provided in the Appendix B.2 and F. During inference, the models are discretized as
described in Section 2.1. This is the default evaluation setting.

4.4 CONVOLUTIONAL LOGIC GATE NETWORKS

As a supplementary evaluation, we also experiment with Convolutional Differentiable Logic Gate
Networks (CLGNs) (Petersen et al., 2025). For technical specifications, we refer to the original
work. We adopt minimally modified versions of the M model for MNIST and CIFAR experiments
and the larger G model for ImageNet-32, following the configurations in Petersen et al. (2025).

For ImageNet, CIFAR, and the MNIST-like datasets, the input transformations are identical to those
in Section 4.2. The use of CLGNs allows us to assess whether conclusions drawn for DLGNs
extend to architectures with convolutional backbones. This tests the robustness of our findings
across different network families.

5 RESULTS

We examine how model performance is affected by increasing the number of classes across three
settings: the synthetic dataset, ImageNet-32, and a combined MNIST-like dataset. In addition, we
highlight the role of the temperature parameter τ in enabling the models to scale effectively to a
large number of classes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

101 102 103
0

25

50

75

100

Classes

Te
st

A
cc

ur
ac

y
(%

)

Small, τ = 1

Small, τ = 10

Big, τ = 1

Big, τ = 10

MLP (Medium)

Figure 3: Accuracy of DLGNs compared to the MLP model, considering an increasing number of
classes. Small: A DLGN with a layer size of 64’000 logical gates. Big: A DLGN with a layer size
of 256’000 logical gates. The MLP model refers to a conventional MLP with three layers of 512
neurons and Batchnorm. The accuracy of all DLGNs stays high up until a few hundred classes, but
sharply drops after.

5.1 SYNTHETIC DATASET

To evaluate performance with hundreds to thousands of classes while keeping the input size man-
ageable, we construct a synthetic dataset as described in Section 4. The dataset is intentionally
simple, ensuring that classification performance is primarily limited by the Group-Sum layer rather
than the backbone. For each class, between 5 and 40 input bits are fixed, while the remaining bits
are assigned randomly. We scale the number of classes logarithmically from 2 to 2000 and compare
four DLGN variants against a medium-sized multilayer perceptron (MLP) baseline. Figure 3 reports
accuracy as a function of the number of classes.

The MLP maintains accuracy above 86% up to 100 classes but drops to around 50% at 1000–2000
classes. For DLGNs, performance depends strongly on the choice of τ . When the number of
classes is small, each class is represented by a large set of output neurons, and large differences
in the summed activations can lead to overconfident predictions. In this regime, higher τ values are
effective, as they temper these differences and prevent a few neurons from dominating the softmax.
As the number of classes grows, each class is represented by fewer neurons, reducing the risk of such
dominance. Here, smaller τ values become more suitable, ensuring that the reduced class sums still
produce confident and accurate predictions. This trade-off enables DLGNs to remain competitive
with the MLP even as the task scales to hundreds or thousands of classes.

Expanding the DLGN backbone to 256’000 neurons per layer (with the same output dimension)
yields further gains. With τ = 10, the large DLGN outperforms all models up to 300 classes and
continues to exceed the MLP even at 2000 classes. Interestingly, the small DLGN with τ = 1
underperforms on tasks with few classes but performs better as the number of classes increases (see
Appendix for additional findings). These results demonstrate that DLGNs can surpass conventional
feed-forward networks on large-class problems. Increasing backbone capacity consistently improves
performance even when the output dimension is fixed, as representing each class with 32 output
neurons in the Group-Sum layer is sufficient to outperform the MLP.

Finally, we investigated the impact of output dimensionality while keeping a 6-layer, 64’000-neuron
DLGN backbone fixed. We tested three output sizes (16’000, 64’000, and 256’000 neurons) for
τ ∈ {1, 10, 100}. Performance was largely insensitive to output dimension: neither increasing nor
decreasing output size had a significant effect on accuracy (see Appendix D.1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

101 102 103
0

25

50

75

Classes

Te
st

A
cc

ur
ac

y
(%

)

Big, τ = 1

Big, τ = 10

Big, τ = 100

MLP (Medium)

Figure 4: Accuracy of DLGNs compared to the MLP model, considering an increasing number of
ImageNet classes. Big: A DLGN with a layer size of 256’000 logical gates. The MLP model refers
to a conventional MLP with three layers of 512 neurons and Batchnorm.

5.2 IMAGENET-32

To evaluate the applicability of our findings to real-world tasks, we test on the ImageNet-32 dataset.
Due to its increased complexity relative to the synthetic dataset, we adopt a DLGN with 256,000
logical gates per layer as our default model and compare it to the same MLP used previously. Both
models are trained on binary input representations to avoid any inherent advantage. Performance
trends, illustrated in Figure 4, are broadly consistent with those observed on the synthetic dataset:
larger τ values perform better for small numbers of classes, whereas τ = 10 is more effective as the
number of classes increases. While τ = 100 allows the DLGN to approach MLP performance for
up to 100 classes, no tested configuration matches the MLP beyond that point.

Increasing the DLGN layer size to 512’000 gates (with 512’000 output neurons) does not signifi-
cantly improve performance.

The discrepancy between synthetic and ImageNet-32 datasets likely stems from several factors.
First, the synthetic dataset has a simple, linearly separable structure: certain input features are fixed
for specific classes, while the remaining inputs are random. In contrast, ImageNet-32 has higher
in-class variability and a complex, noisy input distribution. Second, the input dimension after three
thresholds is 9’216. While the MLP effectively has a receptive field covering 100% of the inputs,
each DLGN output neuron depends only on 2n inputs across n layers. With six layers, this corre-
sponds to 64 inputs (∼ 0.7% of the whole input vector), likely insufficient for accurate predictions.
For the synthetic dataset, 784 input dimensions result in a larger effective receptive field (∼ 8%).
Increasing the number of layers could expand the receptive field but introduces challenges such as
vanishing gradients (Petersen et al., 2022).

DLGNs do not perform fundamentally worse than MLPs, as both architectures exhibit decreasing ac-
curacy with an increasing number of classes. Crucially, the best DLGNs achieve performance com-
parable to MLPs when the temperature parameter τ is chosen appropriately. In particular, DLGN
(τ = 10) achieves results on par with MLPs, indicating that with a well-optimized τ , DLGNs can
maintain competitive performance for datasets with up to 67 classes.

5.3 CUSTOM MNIST DATASET

DLGN performance is comparable to that of MLPs across different MNIST datasets, likely because
grayscale images are relatively easy to classify even in binary form, unlike more complex RGB

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Model performance on combined MNIST datasets with increasing number of classes. All
models are evaluated on binary input representations. The best model per column is shown in bold,
and the second-best is underlined.

Model 2 Classes 4 Classes 11 Classes 27 Classes 67 Classes

MLP (Medium) 99.58 99.09 96.20 92.37 83.53

DLGN (τ = 1) 97.92 97.27 91.27 73.33 56.78
DLGN (τ = 3) 98.65 97.69 94.05 88.92 75.44
DLGN (τ = 10) 98.96 98.56 96.98 93.15 83.42
DLGN (τ = 30) 99.17 98.90 97.40 93.30 78.40
DLGN (τ = 100) 99.27 99.20 96.87 86.32 62.12

CLGN (τ = 1) 31.50 39.09 73.34 81.68 61.71
CLGN (τ = 3) 31.50 16.09 39.14 89.51 85.52
CLGN (τ = 10) 32.25 46.05 81.34 96.56 88.29
CLGN (τ = 30) 77.88 86.05 97.16 96.89 88.13
CLGN (τ = 100) 97.00 98.23 98.04 96.19 80.49

datasets such as CIFAR 10 or ImageNet 32. To study scalability, we first combine multiple MNIST
datasets, including E-MNIST Balanced, K-MNIST, and Fashion-MNIST, into a single dataset with
67 classes and gradually increase the number of classes in a logarithmic fashion. Test accuracies for
the different models, evaluated on binary input representations, are summarized in Table 2.

We evaluated our findings on convolutional differentiable logic gate networks (CLGNs) (Petersen
et al., 2025), which generally show similar behavior to feed-forward DLGNs. On all datasets, per-
formance varies a lot with the temperature parameter τ . Combining MNIST-like datasets into a
67-class dataset demonstrates that optimal τ values are even more important than for DLGNs (see
Figure 2). Similarly, smaller τ are superior for large-class datasets, whereas larger τ perform better
on datasets with small number of classes. This effect can be reduced by using alternative output
layer architectures, such as the Codebook-Output layer (see Appendix E).

On ImageNet-32, similarly to DLGN, increasing backbone size improves accuracy, but enlarging
the Group-Sum output layer has minimal effect. Additional results are provided in the Appendix.

5.4 EFFECT OF τ ON MNIST DATASETS

We begin by examining the effect of different τ values on validation accuracy for the MNIST digits
dataset, observing similar trends across other datasets. Higher τ values yield smoother learning
curves and faster convergence, while excessively large values (e.g., τ = 200) reduce final accuracy
and very small values (e.g., τ = 1) prevent convergence. For MNIST digits, τ = 20 achieves the
best performance. Optimal τ values for other datasets are reported in Appendix F.

The temperature parameter τ therefore plays a critical role in model performance and should be
treated as a primary optimization target.

Next, we examine individual neuron contributions in the output layer. Figure 5 shows neuron acti-
vation distributions for τ = 1 and τ = 100. The activation rate of a neuron is defined as the fraction
of inputs producing an output of 1.

Low τ (e.g., τ = 1) produces a pronounced spike in the activation distribution around 0%, 50%, and
100%, indicating many neurons are either consistently inactive (’dead’), fully active (’saturated’),
or toggle in a synchronized manner. This results in increased redundancy and less differentiated
contributions from individual neurons. In contrast, high τ (e.g., τ = 100) generates a broader and
smoother activation distribution, with neurons exhibiting more varied activity levels. This greater
differentiation enhances the network’s ensemble-like behavior and supports effective pruning of
redundant neurons (details in Appendix D).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 0.5 1
0

5

10

Activation Rate

%
of

N
eu

ro
ns

τ = 100

τ = 1

2 4 9 19 43 92 199 430 928 200
0

Output Neurons per Class

2
4
9

19
43
92

199
430
928

2000

of

 C
las

se
s

1 1 1 1 1 1 10 10 10 10
0.1 0.1 1 1 1 10 10 10 10 10
0.1 1 1 1 1 10 10 10 10 10
1 1 1 1 1 10 10 10 100 100

0.1 1 1 1 1 10 10 10 10 10
1 1 1 1 1 10 10 10 10 10
1 1 1 1 1 10 10 10 10 10

0.1 1 1 1 10 10 10 10 10 10
0.1 1 1 1 10 10 10 10 10 10
0.1 1 1 1 1 10 10 10 10 10

Figure 5: Left: Distribution of neuron activation rates for two models. Larger τ values concentrate
neurons at low activation rates, while smaller τ shifts the distribution toward higher activations.
Right: Best τ ∈ {0.1, 1, 10, 100} for various numbers of output neurons and neurons per class.

5.5 RELATIONSHIP BETWEEN NUMBER OF OUTPUTS AND TEMPERATUR τ

As a supplementary experiment, we want to find the relationship between the output dimension
and an optimal τ . We use out synthetic dataset to train models with different output layer size and
different number of classes. We chose four different values τ ∈ {0.1, 1, 10, 100}. Figure 5 shows
the best τ for a specific number of classes and number of output neurons per class. Our findings
indicate that optimal τ is not actually dependent on the number of output neurons, but rather on the
number of output neurons per class.

5.6 ALTERNATIVES

To evaluate the effectiveness of the Group-Sum layer, we tested several alternative output layer vari-
ants. This analysis identifies the strengths and limitations of the current approach. Some alternatives
occasionally approach or slightly surpass the Group-Sum’s performance, but none consistently or
significantly improve results across datasets. See Appendices E and F for more details and results.

6 CONCLUSION

This work studies the expressiveness and scalability of the Group-Sum output layer in Differen-
tiable Logic Gate Networks. DLGNs have previously been evaluated mainly on datasets with up to
ten classes. We extend this analysis to tasks with up to 2000 classes to assess the Group-Sum layer
on large-scale classification. Through extensive experiments, we analyze the output layer under dif-
ferent conditions and datasets. We show that the temperature parameter τ is critical for performance.
It affects prediction accuracy, output neuron redundancy, and scalability. We also observe that the
optimal value of τ decreases as the number of output neurons per class increases.

Our results show that DLGNs perform competitively on structured datasets. On MNIST and its
variants, DLGNs with the Group-Sum layer achieve accuracy comparable to conventional feed-
forward networks using binary input data. With a well-chosen τ parameter, DLGNs maintain high
accuracy even with up to 67 classes. On a synthetic dataset, we scale the number of classes up to
2000. In this setting, DLGNs clearly outperform feed-forward networks, demonstrating their ability
to distinguish thousands of classes effectively.

Evaluation on the real-world ImageNet-32 dataset highlights current limitations. DLGNs do not
achieve performance comparable to feed-forward networks. The complexity of the RGB input and
high in-class variability appear to be too challenging for the current network and input representa-
tion. This indicates that further architectural adjustments are needed for DLGNs to generalize to
natural image datasets.

In conclusion, the Group-Sum output layer is expressive and scalable for structured classification
tasks. The choice of τ is key to achieving high performance. At the same time, DLGNs require
further development to improve robustness and generalization on complex real-world data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary material, along with a README
describing how to run the training and evaluation scripts. The training and test data are publicly
available through PyTorch’s torchtext, Kaggle, and Huggingface. The code will be made publicly
available on GitHub with the camera-ready version. Details of model architectures, training proce-
dures, and datasets are provided in Section 4 and Appendix B.

REFERENCES

Dilyara Baymurzina, Eugene Golikov, and Mikhail Burtsev. A review of neural architecture search.
Neurocomputing, 474:82–93, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2021.12.014. URL https://www.sciencedirect.com/science/article/pii/
S0925231221018439.

Simon Bührer, Andreas Plesner, Till Aczel, and Roger Wattenhofer. Recurrent deep differentiable
logic gate networks, 2025. URL https://arxiv.org/abs/2508.06097.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets, 2017. URL https://arxiv.org/abs/1707.08819.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Tim Dettmers. 8-bit approximations for parallelism in deep learning, 2016. URL https://
arxiv.org/abs/1511.04561.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

Olufisayo S. Ekundayo and Absalom E. Ezugwu. Deep learning: Historical overview from inception
to actualization, models, applications and future trends. Applied Soft Computing, 181:113378,
2025. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2025.113378. URL https://
www.sciencedirect.com/science/article/pii/S1568494625006891.

Arman Asgharpoor Golroudbari and Mohammad Hossein Sabour. Recent advancements in deep
learning applications and methods for autonomous navigation: A comprehensive review, 2023.
URL https://arxiv.org/abs/2302.11089.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

S Karakatic, V Podgorelec, and M Hericko. Optimization of combinational logic circuits with
genetic programming. Elektronika ir Elektrotechnika, 19(7):86–89, 2013.

Youngsung Kim. Deep stochastic logic gate networks. IEEE Access, 11:122488–122501, 2023. doi:
10.1109/ACCESS.2023.3328622.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

Jim Kukunas. Chapter 1 - Early Intel® Architecture, pp. 3–29. Morgan Kaufmann,
Boston, 2015. ISBN 978-0-12-800726-6. doi: https://doi.org/10.1016/B978-0-12-800726-6.
00001-X. URL https://www.sciencedirect.com/science/article/pii/
B978012800726600001X.

10

https://www.sciencedirect.com/science/article/pii/S0925231221018439
https://www.sciencedirect.com/science/article/pii/S0925231221018439
https://arxiv.org/abs/2508.06097
https://arxiv.org/abs/1707.08819
https://arxiv.org/abs/1511.04561
https://arxiv.org/abs/1511.04561
https://www.sciencedirect.com/science/article/pii/S1568494625006891
https://www.sciencedirect.com/science/article/pii/S1568494625006891
https://arxiv.org/abs/2302.11089
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/B978012800726600001X
https://www.sciencedirect.com/science/article/pii/B978012800726600001X

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Pietro Miotti, Eyvind Niklasson, Ettore Randazzo, and Alexander Mordvintsev. Differentiable logic
cellular automata: From game of life to pattern generation, 2025. URL https://arxiv.
org/abs/2506.04912.

Mohd Halim Mohd Noor and Ayokunle Olalekan Ige. A survey on state-of-the-art deep learning
applications and challenges. arXiv preprint arXiv:2403.17561, 2024.

Radovan Ondas, Martin Pelikan, and Kumara Sastry. Scalability of genetic programming and prob-
abilistic incremental program evolution. In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’05, pp. 1785–1786, New York, NY, USA, 2005. As-
sociation for Computing Machinery. ISBN 1595930108. doi: 10.1145/1068009.1068310. URL
https://doi.org/10.1145/1068009.1068310.

Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep differentiable logic gate
networks. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Felix Petersen, Hilde Kuehne, Christian Borgelt, Julian Welzel, and Stefano Ermon. Convolutional
differentiable logic gate networks. In Proceedings of the 38th International Conference on Neural
Information Processing Systems, NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc.
ISBN 9798331314385.

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Bi-
nary neural networks: A survey. Pattern Recognition, 105:107281, 2020. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2020.107281. URL https://www.sciencedirect.
com/science/article/pii/S0031320320300856.

Florian Rehm, Sofia Vallecorsa, Vikram Saletore, Hans Pabst, Adel Chaibi, Valeriu Codreanu, Ker-
stin Borras, and Dirk Krücker. Reduced precision strategies for deep learning: A high energy
physics generative adversarial network use case. In Proceedings of the 10th International Con-
ference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technol-
ogy Publications, 2021. doi: 10.5220/0010245002510258. URL http://dx.doi.org/10.
5220/0010245002510258.

Jonathan S. Rosenfeld. Scaling Laws for Deep Learning. Thesis, Massachusetts Institute of Tech-
nology, September 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211–252, December 2015. ISSN 1573-1405. doi: 10.1007/s11263-015-0816-y.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijay-
alakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hy-
brid 8-bit floating point (hfp8) training and inference for deep neural networks. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swa-
gath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srinivasan, and Kailash
Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. In

11

https://arxiv.org/abs/2506.04912
https://arxiv.org/abs/2506.04912
https://doi.org/10.1145/1068009.1068310
https://www.sciencedirect.com/science/article/pii/S0031320320300856
https://www.sciencedirect.com/science/article/pii/S0031320320300856
http://dx.doi.org/10.5220/0010245002510258
http://dx.doi.org/10.5220/0010245002510258
https://proceedings.neurips.cc/paper_files/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1796–1807. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/13b919438259814cd5be8cb45877d577-Paper.pdf.

Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso. The computational
limits of deep learning. arXiv preprint arXiv:2007.05558, 2020.

Charles Edison Tripp, Jordan Perr-Sauer, Jamil Gafur, Amabarish Nag, Avi Purkayastha, Sagi Zis-
man, and Erik A. Bensen. Measuring the energy consumption and efficiency of deep neural
networks: An empirical analysis and design recommendations, 2024. URL https://arxiv.
org/abs/2403.08151.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits. Advances in neural information
processing systems, 32, 2019.

Shakir Yousefi, Andreas Plesner, Till Aczel, and Roger Wattenhofer. Mind the gap: Removing the
discretization gap in differentiable logic gate networks, 2025. URL https://arxiv.org/
abs/2506.07500.

Mi Zhang, Faen Zhang, Nicholas D Lane, Yuanchao Shu, Xiao Zeng, Biyi Fang, Shen Yan, and Hui
Xu. Deep learning in the era of edge computing: Challenges and opportunities. Fog Computing:
Theory and Practice, pp. 67–78, 2020.

Dongqi Zheng. Diffusion models on the edge: Challenges, optimizations, and applications, 2025.
URL https://arxiv.org/abs/2504.15298.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning, 2017. URL
https://arxiv.org/abs/1611.01578.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://arxiv.org/abs/2403.08151
https://arxiv.org/abs/2403.08151
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2506.07500
https://arxiv.org/abs/2506.07500
https://arxiv.org/abs/2504.15298
https://arxiv.org/abs/1611.01578

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Table 3: Overview of the datasets used in this study.

Dataset Name # Samples Input Dimensions # Classes
MNIST 70,000 28× 28 (grayscale) 10
Fashion-MNIST 70,000 28× 28 (grayscale) 10
Kuzushiji-MNIST 70,000 28× 28 (grayscale) 10
Q-MNIST 120,000 28× 28 (grayscale) 10
E-MNIST (Balanced) 131,600 28× 28 (grayscale) 47
E-MNIST (Letters) 145,600 28× 28 (grayscale) 26
CIFAR-10 60,000 32× 32 (RGB) 10
CIFAR-100 60,000 32× 32 (RGB) 100
ImageNet-32 1,331,167 32× 32 (RGB) 1,000
Synthetic 600/Class 784 (binary) 2 – 2,000

A USAGE OF LLMS

We have made use of several large language models (LLMs) during the preparation of this work.
ChatGPT, Claude, Gemini, and Grammarly were employed to assist with spellchecking, improving
wording, and shortening text for clarity and readability. In addition, ChatGPT, Claude, and Cursor
were used for analyzing and explaining code, providing code completions, and generating visual-
izations to support our implementation and experiments. These tools were applied as auxiliary aids
to polish the writing and streamline the development process, while the core research contributions,
experimental design, and interpretation of results remain entirely our own.

B IMPLEMENTATION DETAILS

This section details the experimental setup, including descriptions of the datasets used, input trans-
formations applied and the evaluation metrics examined.

B.1 DATASETS

Table 3 summarizes the various datasets used, their number of samples, input dimensions, and num-
ber of classes.

B.2 TRAINING AND ARCHITECTURAL DETAILS

The most important training and architectural parameters of the baseline DLGN and MLP are pre-
sented in Table 4. Additional experiments most often use a minimally modified version of this
baseline configuration.

B.3 EVALUATION METRIC

The model performance is evaluated using classification accuracy, which reflects the proportion of
correctly predicted samples relative to the total number of samples.

Accuracy is selected as the primary metric because it provides a clear and intuitive measure of
overall model effectiveness. It enables straightforward comparisons between different architectures
and training configurations. Our dataset exhibits a reasonably balanced class distribution, accuracy
therefore serves as a reliable performance indicator.

C IMPACT OF τ

Figure 6 shows the impact of τ on performance for different datasets. Even though the same model
is used, the optimal value of τ greatly differs. While high values perform well on CIFAR-10 dataset
(top left), they do not perform nearly as good on CIFAR-100 (top right).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Table 4: Default configurations for DLGN and MLP models, specifically used for creating the base-
lines. Three different MLPs were tested, referred to as small, medium, and big, with 256, 512, and
1024 neurons per layer, respectively.

Parameter DLGN MLP
Number of Layers 6 3
Neurons per Layer 64,000 256 / 512 / 1024
Data Augmentation None None
Dropout None None
Batch Normalization – Enabled
Temperature Parameter (τ) 10 –
Learning Rate 0.01 0.00001
Training Epochs 100 100
Optimizer Adam Adam
Loss Function Cross-Entropy Cross-Entropy
Number of Independent Runs 3 3

0 50 100
30

40

50

60

Epoch

A
cc

ur
ac

y
(%

)

τ = 1

τ = 5

τ = 10

τ = 20

τ = 50

τ = 200

0 50 100
10

20

30

Epoch

A
cc

ur
ac

y
(%

)

τ = 1

τ = 5

τ = 10

τ = 20

τ = 50

τ = 200

0 50 100
75

80

85

90

95

Epoch

A
cc

ur
ac

y
(%

)

τ = 1

τ = 5

τ = 10

τ = 20

τ = 50

τ = 200

0 50 100

70

80

90

Epoch

A
cc

ur
ac

y
(%

)

τ = 1

τ = 5

τ = 10

τ = 20

τ = 50

τ = 200

Figure 6: The impact of the τ value on performance on different datasets. From left to right and
top to bottom: CIFAR-10, CIFAR-100, Fashion-MNIST, EMNIST-Letters. The plots show the
validation accuracy for different τ . Even though the same model is used, there is great difference
between optimal τ .

As mentioned in Section 5.4, per-class accuracy differs greatly for different τ . We analyze this for
MNIST. The accuracies are shown in Figure 7. Easily classifiable digits like 1 and 0 show good
performance for all τ . However, performance varies a lot more for small τ as opposed to large τ .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

0 1 2 3 4 5 6 7 8 9
70

80

90

100

Class Label

A
cc

ur
ac

y
(%

)

τ = 0.1

τ = 1

τ = 5

τ = 10

τ = 20

τ = 50

Figure 7: MNIST digits per-class distribution. Low τ show much greater performance differences
compared to large τ .

D USING INFORMATION DISTRIBUTION TO PRUNE THE NETWORK

As shown in Section 5, using a large tau value allows us to evenly distribute information across the
output neurons. This theoretically allows us to prune some of the output neurons, without loosing
much accuracy. We therefore disregard random output neurons for each class. Deleting specific out-
puts further allows us to prune neurons from intermediate layer. We prune the network by randomly
removing output layer neurons. The data is shown in Figure 8. We plot the number of neurons
pruned per class to the accuracy that is still preserved. Additionally, in red we show the amount of
neurons (in %) that can be pruned in the whole network.

For low tau values, the accuracy curve shows rough characteristics. This indicates that the prediction
accuracy of the model heavily depends on specific neurons, rather than on an ensemble of all outputs.
The larger τ , the smoother the curve. The information is more evenly distributed over the output
neurons, making it possible to remove more neurons, without significant accuracy loss.

D.1 VARYING OUTPUT LAYER SIZES

In Section 5, we illustrated the performance improvement of DLGNs on the synthetic dataset when
increasing the backbone from 64,000 to 256,000 neurons per layer, while keeping the output layer
fixed at 64,000 neurons. Here, we further investigate how performance changes when varying the
output layer dimension instead. With the backbone fixed at 64,000 neurons per layer, we evaluate
models with output layer sizes of 16,000 and 256,000 neurons. Figure 9 compares the results,
showing no significant performance differences among the three models. This suggests that accuracy
is limited more by the backbone than by the output layer capacity.

E ALTERNATIVES

To evaluate the effectiveness of the Group-Sum layer, we investigate several alternative output layer
designs, aiming to identify either comparable or superior approaches. Unless stated otherwise, all
comparisons are based on a slightly modified version of the standard DLGN baseline described in
Section 4. Appendix F contains tables with extensive results for the methods.

E.1 BINARY LOSS

Instead of using cross-entropy loss, we use a binary logit loss. This loss gets calculated per output
neuron instead of over all neurons of a class. Even though the network learns well, its performance
does not come close to our baseline.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

0 1,000 2,000 3,000 4,000 5,000 6,000
0

20

40

60

80

100

Neurons per Class

V
al

id
at

io
n

A
cc

ur
ac

y
(%

)

τ = 0.05

τ = 0.5

τ = 3

τ = 20

τ = 200

Pruning

Figure 8: MNIST digits output neurons pruning. Shows the number of output neurons pruned per
class (x) to the remaining prediction accuracy. Red indicated the amount of neurons that can be
pruned in the whole network.

101 102 103
0

25

50

75

100

Classes

Te
st

A
cc

ur
ac

y
(%

)

DLGN (16k)
DLGN (64k)
DLGN (256k)

Figure 9: Accuracy of DLGNs for different output layer sizes over increasing numbers of classes,
keeping the backbone of the netowork at 64’000 neurons per layer.

E.2 FULLY-CONNECTED LAST LAYER

To try and get more out of the output layer, we replace the Group-Sum layer with a fully connected
layer at the end of the DLGN. This setup could show more of what the network’s backbone is capable
of. While the performance improves on some datasets, training becomes more unstable.

E.3 FULLY-CONNECTED AFTER TRAINING

Rather than appending a fully-connected layer during training, we now retrain a separate layer after
training the DLGN normally. This increases performance slightly on some of the MNIST datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

2 4 8 16 32 64
80

90

100

Classes

A
cc

ur
ac

y
(%

)
o = 1600

o = 6400

Group-Sum (τ = 30)
Group-Sum (τ = 100)

Figure 10: Test Accuracy (eval mode) for MNIST with increasing number of classes. Results com-
pare different output sizes o and Group-Sum with varying τ .

E.4 CODEBOOK-BASED PREDICTION

Instead of splitting the output layer into k parts for k classes, we try a different method. Each class
is assigned a random binary code (a vector of the same length as the output). We then use Hamming
distance to compare the network output to each code, picking the closest match. This approach
performs better on some datasets — for example, on CIFAR-10, accuracy increases from 50.7%
(DLGN baseline) to around 54.8%. Additionally, even though a τ value is used, the performance is
not as dependent on its optimality than with the normal Group-Sum output layer.

We also combine the Group-Sum approach with the Codebook-based approach. By specifying an
output size, one can use Group-Sum to create an output with this dimension. We then use the smaller
output vector as the network’s prediction, calculating the hamming distance to the class encodings.
Figure 10 shows the performance of CLGNs on the combined MNIST dataset. In this case we use
τ = 0.1. o is the output dimension, equivalent to the dimension of the class encodings. Using the
Codebook-Layer and an output dimension of 1600 or 6400, we are able to use a single model to
compete or outperform the best Group-Sum layer models for all number of classes.

E.5 GROUP-SUM DROPOUT

Many of our experimental models show overfitting tendencies. Even though the choice of τ can help
to partially mitigate it, there are other techniques that may be applied. One of them is dropout. Since
we are mainly focused on the output layer, we apply dropout only to the Group-Sum layer. We do
this by deactivating each neuron with a probability p ∈ {0.1, 0.3, 0.5, 0.7, 0.9} in each batch. Figure
11 shows the performance heatmap of various τ -dropout combinations on our synthetic dataset with
2000 different classes.

We see that certain amounts of dropout increased performance considerably. For p = 0.1, almost
all test accuracies are superior to p = 0. Not only that, but it seems to lessen the importance of an
optimal τ , expanding high performance regions.

E.6 TREE-BASED PREDICTION

Instead of summing up each part of each class, we try to decrease the parts’ size by using class-
specific DLGN. This halves the parts’ dimension with each layer for a certain number of layers
before being summed up. We also use a class-specific DLGN that uses the whole output layer for
each output. Unfortunately, neither variants improve the model’s performance. Additionally, using
the whole output layer for each class quickly becomes computationally infeasible for many classes
and a large output layer dimension.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

0.1
0

0.4
0

1.5
8

6.3
1

25.
12

100
.00

0 %

10 %

30 %

50 %

70 %

90 %
Dr

op
ou

t

2.1 % 5.8 % 33.8 % 21.9 % 14.6 % 6.9 %

5.2 % 41.0 % 38.1 % 23.6 % 15.2 % 6.7 %

2.5 % 27.8 % 40.2 % 24.6 % 15.0 % 6.0 %

1.7 % 19.6 % 37.5 % 23.4 % 14.1 % 4.7 %

1.1 % 11.7 % 26.8 % 16.6 % 9.6 % 3.9 %

0.5 % 3.8 % 7.4 % 5.5 % 2.8 % 1.3 %

Figure 11: Test performance heatmap of different τ -dropout combinations. The performance is
measured on our synthetic dataset with 2000 different classes.

F NUMERIC RESULTS

This section displays the resulting accuracies for many of our tested models, including the methods
in Appendix E. We show accuracy for all MNIST datasets (Tables 5 to 10) as well as CIFAR10
(Table 11) and CIFAR100 (Table 12). All models were trained with the same input representation
as explained in Section 4. DLGNs can only make use of hardware-accelerated inference with binary
input representation. To mitigate comparisons of models with inconsistent amounts of input infor-
mation, we show both the accuracy with binary and continuous input representations. The discrete
settings use binary inputs and discrete models for logic gate-based models. Fully Connected Last
Layer refers to a standard DLGN, with appended fully-connected layers during training. Run 1, 2,
and 3 refer to appended layers with {512}, {512, 512}, and {1000, 100}, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 5: Test Accuracy (%) Comparison of Mod-
els on MNIST (digits).

Input
Discrete Continuous

Baseline
97.84 ± 0.07 98.26 ± 0.02

MLP Baseline
Small 96.81 ± 0.16 97.83 ± 0.13
Medium 97.19 ± 0.11 98.12 ± 0.05
Big 97.44 ± 0.14 98.27 ± 0.05

Different tau
τ = 1 92.21 94.88
τ = 3 94.72 96.11
τ = 10 97.90 98.29
τ = 30 98.31 98.54
τ = 100 97.68 97.72

Binary Logit Loss
75.68 75.35

Fully Connected Last Layer
Run 1 95.71 97.48
Run 2 94.98 97.17
Run 3 95.68 97.16

Codebook-Based Prediction
τ = 0.1 97.58 98.09
τ = 0.3 98.07 98.47
τ = 1 97.83 98.02
τ = 3 94.95 95.12

Group-Sum Dropout
p = 0.1 97.72 98.12
p = 0.3 98.15 98.30
p = 0.5 98.16 98.38
p = 0.7 98.24 98.29
p = 0.9 97.28 97.30

Convolutional Difflogic
τ = 1 92.19 –
τ = 3 91.74 –
τ = 10 97.14 –
τ = 30 98.73 –
τ = 100 99.03 –

Table 6: Test Accuracy (%) Comparison of Mod-
els on Fashion-MNIST.

Input
Discrete Continuous

Baseline
78.35 ± 0.11 88.90 ± 0.13

MLP Baseline
Small 78.90 ± 0.18 88.52 ± 0.20
Medium 78.63 ± 0.60 88.80 ± 0.06
Big 77.66 ± 0.33 89.01 ± 0.09

Different τ
τ = 1 69.89 77.13
τ = 3 74.52 86.60
τ = 10 78.31 88.93
τ = 30 81.15 89.14
τ = 100 81.79 87.66

Binary Logit Loss
65.10 70.31

Fully Connected Last Layer
Run 1 72.96 83.79
Run 2 74.77 85.18
Run 3 74.46 85.29

Codebook-Based Prediction
τ = 0.1 77.78 88.67
τ = 0.3 81.57 89.16
τ = 1 82.21 88.26
τ = 3 80.35 84.71

Group-Sum Dropout
p = 0.1 79.27 88.62
p = 0.3 81.62 88.97
p = 0.5 81.69 88.91
p = 0.7 82.07 88.56
p = 0.9 81.51 86.47

Convolutional Difflogic
τ = 1 38.07 –
τ = 3 61.86 –
τ = 10 80.99 –
τ = 30 86.44 –
τ = 100 87.41 –

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 7: Test Accuracy (%) Comparison of Mod-
els on Q-MNIST.

Input
Discrete Continuous

Baseline
97.52 ± 0.09 97.93 ± 0.06

MLP Baseline
Small 96.45 ± 0.09 97.60 ± 0.06
Medium 96.67 ± 0.03 97.79 ± 0.02
Big 97.09 ± 0.07 97.91 ± 0.02

Different τ
τ = 1 91.06 94.74
τ = 3 94.06 96.10
τ = 10 97.56 97.97
τ = 30 97.91 98.17
τ = 100 97.41 97.55

Binary Logit Loss
74.94 74.54

Fully Connected Last Layer
Run 1 95.07 96.86
Run 2 94.65 96.91
Run 3 95.89 97.30

Codebook-Based Prediction
τ = 0.1 97.46 97.99
τ = 0.3 97.88 98.19
τ = 1 97.65 97.81
τ = 3 94.59 94.64

Group-Sum Dropout
p = 0.1 97.46 97.95
p = 0.3 97.63 98.01
p = 0.5 97.78 98.11
p = 0.7 97.80 98.08
p = 0.9 96.91 97.04

Convolutional Difflogic
τ = 1 89.88 –
τ = 3 90.20 –
τ = 10 97.14 –
τ = 30 98.48 –
τ = 100 98.74 –

Table 8: Test Accuracy (%) Comparison of Mod-
els on K-MNIST.

Input
Discrete Continuous

Baseline
95.12 ± 0.14 96.10 ± 0.08

MLP Baseline
Small 92.23 ± 0.12 94.91 ± 0.09
Medium 92.88 ± 0.02 95.42 ± 0.07
Big 93.86 ± 0.21 95.90 ± 0.24

Different τ
τ = 1 83.83 90.57
τ = 3 91.63 94.33
τ = 10 95.00 96.01
τ = 30 95.88 96.44
τ = 100 94.32 94.70

Binary Logit Loss
68.78 69.11

Fully Connected Last Layer
Run 1 91.29 94.83
Run 2 91.03 94.78
Run 3 91.26 94.97

Codebook-Based Prediction
τ = 0.1 94.73 95.90
τ = 0.3 95.93 96.56
τ = 1 94.88 95.32
τ = 3 88.71 88.76

Group-Sum Dropout
p = 0.1 95.17 96.29
p = 0.3 95.54 96.35
p = 0.5 95.82 96.42
p = 0.7 95.86 96.13
p = 0.9 93.29 93.68

Convolutional Difflogic
τ = 1 90.31 –
τ = 3 88.86 –
τ = 10 95.48 –
τ = 30 97.58 –
τ = 100 97.51 –

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 9: Test Accuracy (%) Comparison of Mod-
els on E-MNIST-Letters.

Input
Discrete Continuous

Baseline
87.46 ± 0.14 90.72 ± 0.14

MLP Baseline
Small 86.24 ± 0.07 90.37 ± 0.11
Medium 87.08 ± 0.08 90.83 ± 0.09
Big 87.68 ± 0.17 90.97 ± 0.09

Different τ
τ = 1 55.68 74.34
τ = 3 79.63 87.74
τ = 10 87.62 90.66
τ = 30 88.85 90.15
τ = 100 79.04 79.32

Binary Logit Loss
53.40 54.57

Fully Connected Last Layer
Run 1 67.33 78.65
Run 2 69.61 80.60
Run 3 75.11 81.87

Codebook-Based Prediction
τ = 0.1 82.90 88.97
τ = 0.3 88.84 90.88
τ = 1 86.30 86.87
τ = 3 72.60 73.01
τ = 10 58.62 59.32

Group-Sum Dropout
p = 0.1 88.50 91.24
p = 0.3 89.18 91.05
p = 0.5 89.18 90.48
p = 0.7 87.97 88.86
p = 0.9 79.22 79.65

Convolutional Difflogic
τ = 1 51.15 –
τ = 3 86.42 –
τ = 10 92.18 –
τ = 30 92.69 –
τ = 100 91.73 –

Table 10: Test Accuracy (%) Comparison of
Models on E-MNIST-Balanced.

Input
Discrete Continuous

Baseline
80.30 ± 0.03 83.75 ± 0.02

MLP Baseline
Small 79.25 ± 0.10 84.04 ± 0.03
Medium 80.13 ± 0.17 84.52 ± 0.10
Big 80.85 ± 0.01 84.76 ± 0.15

Different τ
τ = 1 51.56 70.31
τ = 3 71.87 80.69
τ = 10 80.31 83.77
τ = 30 79.84 80.66
τ = 100 64.29 64.79

Binary Logit Loss
48.76 49.25

Fully Connected Last Layer
Run 1 49.38 62.19
Run 2 55.19 64.29
Run 3 67.75 75.88

Codebook-Based Prediction
τ = 0.1 71.84 80.49
τ = 0.3 81.20 83.81
τ = 1 77.74 78.20
τ = 3 63.07 63.30
τ = 10 51.41 51.93

Group-Sum Dropout
p = 0.1 81.37 84.04
p = 0.3 81.71 83.59
p = 0.5 80.96 82.15
p = 0.7 78.59 79.22
p = 0.9 65.94 66.58

Convolutional Difflogic
τ = 1 55.67 –
τ = 3 81.02 –
τ = 10 85.56 –
τ = 30 86.25 –
τ = 100 83.32 –

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 11: Test Accuracy (%) Comparison of
Models on CIFAR10.

Input
Discrete Continuous

Baseline
50.88 ± 0.87 –

MLP Baseline
Small 48.43 ± 0.15 –
Medium 49.33 ± 0.24 –
Big 49.87 ± 0.48 –

Different τ
τ = 1 37.82 –
τ = 3 45.27 –
τ = 10 49.88 –
τ = 30 53.56 –
τ = 100 54.72 –

Binary Logit Loss
31.06 –

Fully Connected Last Layer
Run 1 41.02 –
Run 2 41.25 –
Run 3 44.13 –

Codebook-Based Prediction
τ = 0.1 49.68 –
τ = 0.3 54.33 –
τ = 1 55.56 –
τ = 3 51.13 –

Group-Sum Dropout
p = 0.1 51.05 –
p = 0.3 51.99 –
p = 0.5 52.95 –
p = 0.7 53.03 –
p = 0.9 52.71 –

Convolutional Difflogic
τ = 1 27.80 –
τ = 3 43.37 –
τ = 10 62.22 –
τ = 30 65.23 –
τ = 100 65.21 –

Table 12: Test Accuracy (%) Comparison of
Models on CIFAR100.

Input
Discrete Continuous

Baseline
22.54 ± 0.26 –

MLP Baseline
Small 18.55 ± 0.13 –
Medium 20.89 ± 0.11 –
Big 22.77 ± 0.15 –

Different τ
τ = 1 11.40 –
τ = 3 17.48 –
τ = 10 22.27 –
τ = 30 22.89 –
τ = 100 17.14 –

Binary Logit Loss
9.50 –

Fully Connected Last Layer
Run 1 8.92 –
Run 2 10.93 –
Run 3 9.74 –

Codebook-Based Prediction
τ = 0.1 16.86 –
τ = 0.3 21.87 –
τ = 1 23.12 –
τ = 3 17.73 –

Group-Sum Dropout
p = 0.1 23.50 –
p = 0.3 23.87 –
p = 0.5 24.35 –
p = 0.7 22.75 –
p = 0.9 17.52 –

Convolutional Difflogic
τ = 1 15.88 –
τ = 3 25.95 –
τ = 10 30.96 –
τ = 30 30.67 –
τ = 100 25.60 –

22

	Introduction
	Background
	Differentiable Logic Gate Networks
	Group-Sum Layer
	The Role of tau

	Related Work
	Methodology and Experimental Setup
	Datasets
	Input Transformation and Preprocessing
	Model Architecture and Training Setup
	Convolutional Logic Gate Networks

	Results
	Synthetic Dataset
	ImageNet-32
	Custom MNIST Dataset
	Effect of tau on MNIST Datasets
	Relationship between Number of Outputs and Temperatur tau
	Alternatives

	Conclusion
	Usage of LLMs
	Implementation Details
	Datasets
	Training and Architectural Details
	Evaluation Metric

	Impact of tau
	Using Information Distribution to Prune the Network
	Varying Output Layer Sizes

	Alternatives
	Binary Loss
	Fully-Connected Last Layer
	Fully-Connected After Training
	Codebook-Based Prediction
	Group-Sum Dropout
	Tree-based Prediction

	Numeric Results

