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ABSTRACT

Evaluating large language models (LLMs) on their linguistic reasoning capabili-
ties is an important task to understand the gaps in their skills that may surface dur-
ing large-scale adoption. In this work, we investigate the abilities of such models
to perform abstract multilingual reasoning through the lens of linguistic puzzles
on extremely low-resource languages. As these translation tasks involve induc-
tive and deductive reasoning from reference instances, we examine whether di-
verse auxiliary demonstrations can be automatically induced from seed exemplars,
through analogical prompting. We employ a two-stage procedure, first generating
analogical exemplars with a language model, and then applying them in-context
along with provided target language exemplars. We explore various combinations
of language models as analogical generators and reasoning agents, testing differ-
ent model sizes and specialized multilingual LLMs. Our results on the modeLing
dataset show that analogical prompting is effective in eliciting models’ knowl-
edge of language grammar similarities, boosting the performance of GPT-4o by
as much as 8.1% and Llama-3.1-405B by 5.9% over chain-of-thought approaches.
These gains are realized with self-generated analogical demonstrations as well as
those generated by weaker multilingual models. We also report several findings
about interesting phenomena which drive linguistic reasoning performance, sug-
gesting that such puzzles are a valuable benchmark for new reasoning methods.

1 INTRODUCTION

As the capabilities of large language models (LLMs) continue to grow, it is necessary to develop
ways of testing the boundaries of their ability to reason over a wide range of languages. In particu-
lar, adapting language models to low-resource languages is challenging due to a lack of high-quality
annotated data in the target language for supervised fine-tuning. This has led to zero-shot and few-
shot transfer learning approaches being more commonly employed (Zoph et al., 2016; Nguyen &
Chiang, 2017; Lin et al., 2019). However, given the emergence of the in-context learning phe-
nomenon in LLMs, we hypothesize that this behavior can be used to enable few-shot generalization
to new languages at inference time.

In this work, we explore the task of linguistic reasoning, using linguistics puzzles akin to the Interna-
tional Linguistics Olympiad (IOL). Notably, in these puzzles, the target language is often extremely
low-resource or functionally extinct (Bean et al., 2024). While prior work has largely examined
the effect of vanilla in-context learning with English-target and target-English exemplars, chain-of-
thought prompting, and traditional neural machine translation methods (Chi et al., 2024; Şahin et al.,
2020), we believe that generating auxiliary exemplars which supplement the target language demon-
strations can guide the model to more effectively learn grammar similarities over a language family.
As such, we introduce an approach based on analogical prompting (Yasunaga et al., 2024), which
uses strong language models to self-generate exemplars of relevant problems given the test instance
and performs in-context learning conditioned on those demonstrations. In our setting, the knowledge
retrieval-like nature of analogical prompting allows us to test models’ parametric understanding of
language families, performing inference with both the provided and induced demonstrations.

We evaluate our approach on the modeLing (Chi et al., 2024) dataset, consisting of unseen IOL-
style problems. We find that strong models such as GPT-4o and Llama-3.1-405B-Instruct can iden-
tify the language family, similar languages within said family, generate exemplars in those similar
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Figure 1: An illustration of our 2-stage analogical prompting approach, translating a phrase in Mon-
tenegrin to English. While prior works would solely provide exemplars translating between the
source language and English and perform in-context learning, our method seeks diverse exemplars.
Model M1 first identifies the language family (Slavic) and higher-resource languages in the family
which the model has knowledge of (Croatian), then produces exemplars in those languages. Finally,
both the original and generated set of exemplars are passed with the test puzzle to model M2 to
perform the translation. M1 = M2 yields the self-generated analogical reasoning setting.

languages, and apply them to solve the test puzzle. Furthermore, while weak models do not ben-
efit significantly from using strong model-generated exemplars, strong models improve from using
exemplars produced by weaker yet specialized multilingual models (e.g. Aya-35B). Our findings
show that the ability of the model to deduce and apply rules, following inductive learning from the
exemplars, largely influences performance; where there is still much to be desired relative to the
reasoning of human experts on this task. From our results, we suggest that the linguistic reasoning
task presents a fertile ground for research on new language model reasoning methods, to uncover
how the skills which drive logical thinking may be imbued to models.

2 ANALOGICAL PROMPTING FOR LINGUISTIC REASONING

Analogical prompting (Yasunaga et al., 2024) avoids the need for annotated exemplars by relying
on a strong model to generate exemplars which are related to the test instance, but are sufficiently
diverse relative to one another and the test sample. Our approach of applying analogical prompts
follows the human system 2 thinking framework of slow, deliberate reasoning (Kahneman, 2011).
In chain-of-thought prompting for these puzzles, the model performs in-context learning with the
given exemplars, learning the rules governing the language by induction, including the meaning
of particular words, and using deduction to apply these rules to the test sample. This approach is
supported by prior works demonstrating the ability of LMs to learn rules and attempt to apply them
(Qiu et al., 2024; Zhu et al., 2024). Furthermore, we do not have access to complete grounding
sources of human-written rules governing these low-resource languages, so we must rely on the LM
to identify and generate these rules itself. However, as we expect the model to have little to no prior
knowledge about the target language1, we seek to leverage other languages with similar grammar
structure which the model has learned in order to guide the language model’s reasoning process.

1We design our experiments to avoid leakage, but do not directly analyze test set contamination aside from
zero-shot baselines.
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We use language families as a taxonomically-grounded means of identifying similar languages as
the target. The generated exemplars provide a source of reasoning support to the model, enabling
it to perform inductive reasoning first in a cross-lingual manner over the diverse exemplars, and
then deduce from its shared understanding. For instance, in Figure 1, given the test instance and the
provided exemplars in Montenegrin, we leverage the model to (i.) identify the family of Montenegrin
(Slavic Language Family), (ii.) select a few languages in the Slavic Language Family, and (iii.)
generate example puzzles with their solutions in those selected languages, e.g. Croatian. Then, the
provided exemplars and the generated cross-lingual demonstrations are provided to the model, to
solve the given test puzzle.

In line with the view of analogical prompting as a knowledge retrieval procedure in accordance with
the LM’s pre-training distribution, we desire for the model to produce exemplars from languages
it has learned, while probing its’ understanding of language families. In (Qiu et al., 2024), models
have been demonstrated to improve with more familiar exemplars (based on inclusion in the pre-
training data). Furthermore, their work suggested that noisy demonstrations hurt performance; as the
provided examples from the unseen target language could be considered as ”noisy”, we hypothesize
that the generated exemplars can help to compensate.

Exemplar Correctness. While one would ideally prefer to have a validator which, given a set of
rules for a language, can determine if they are being appropriately applied for each of the analogical
exemplars, this is very challenging at scale. In the context of Linguistics Olympiad problems, only
a small fraction of the population who are experts in such tasks (equivalent to achieving a high score
on these contests) would be able to reliably annotate solution rationales for these extremely low-
resource translation puzzles. Furthermore, the notion of correctness is ambiguous – we rely on exact
match relative to an annotated ”correct” response, but it is unclear if there could be more than one
”correct” response which is context-specific, or if partial credit assignment could be possible. Given
the models’ lack of zero-shot knowledge of these languages (else, there would likely be leakage), we
also cannot reliably use another language model as a validator. As a result, we leverage all generated
exemplars by the model for inference, and assume each problem has one correct solution.

2.1 LINGUISTICS PUZZLES

As noted before, the focus of this work is on linguistics puzzles – in particular, translation problems
from English to a low-resource language and vice versa. Such problems are also referred to in
the literature as Rosetta Stone puzzles, and constitute one of the most frequent types of problems
that appear in Linguistics Olympiad competitions (Şahin et al., 2020; Chi et al., 2024; Bean et al.,
2024). These problems typically consist of a test phrase in language A along with 5-10 exemplars2

of translation from language A to language B and vice versa, and the task is to translate the given
phrase into language B. We include an example of such a problem below, from Chi et al. (2024).

Example Translations from English to Rapa Nui

English: We see you. → Rapa Nui: tike’a tātou koe
English: I hear you. → Rapa Nui: aro’a au koe
English: I see you. → Rapa Nui: tike’a au koe

English: We hear you. → Rapa Nui: aro’a tātou koe
English: We bite the bone. → Rapa Nui: au tātou ivi

English: We hit the bird. → Rapa Nui: pu’a tātou manu

Translate Test Phrase
English: The bird bites you. → Rapa Nui: au manu koe

3 METHODS

We explore a number of sampling methods across various language models to assess their perfor-
mance on reasoning over unknown languages.

2For more challenging problems, the model may be given as many as 20 translation exemplars.
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3.1 BASELINES

We include the following methods as baselines for robust comparison to our method, reflecting prior
work examined in linguistic reasoning (Chi et al., 2024). We explore their results in Section 4.1.

Zero-Shot Prompting. Given the low-resource nature of the languages that we examine, we ex-
pect zero-shot performance to be poor, or even zero, on the exact match metric. However, we include
this setting for two reasons: (1.) a model which gets multiple questions correct for a given language
with zero-shot prompting may be an indication of leakage, and (2.) this serves as a robust check on
any additional metrics examined aside from exact match.

Few-Shot Prompting / In-Context Learning. As in the Linguistic Olympiad competitions,
demonstrations of translation to and from the low-resource language are provided to the model,
with the intention for inductive reasoning to guide the model towards identifying the set of grammar
rules the language follows.

Few-Shot Chain-of-Thought Reasoning. Given the efficacy of chain-of-thought prompting (Wei
et al., 2024; Kojima et al., 2022), we extend the few-shot evaluation setting by including prompts
for the model to ”think step-by-step” (Kojima et al., 2022; Yang et al., 2024a). We also include
a chain-of-thought rationale exemplar for English-Spanish translation from (Chi et al., 2024), to
demonstrate how step-by-step reasoning rationales should be produced, and are denoted in Section
4 as ”w/ rationale”.

3.2 ANALOGICAL PROMPTING VARIATIONS

We describe the various analogical prompting methods explored in the experiments; their results are
in Section 4.2.

Analogical Prompting on Language Families. As noted in Section 2, we seek to use language
families as a means to identify similar, auxiliary languages whose exemplars can boost the model’s
cross-lingual understanding. In a similar environment to the Linguistics Olympiad competition,
where one does not have access to any external resources, we test the model on its latent under-
standing of language families and regional associations to generate further exemplars and puzzles in
another language within the same language subgroup as the target language. For a target language
L, we prompt the model to identify a few other languages (denote this list LAux) in the same family
as L; then, for each language in LAux, generate a puzzle translating from l to English, and a puzzle
in the reverse direction. Then, we apply these exemplars along with the given ones for L in a new
instruction to the model. We term this 2-stage analogical reasoning.

Separating the two stages of analogical prompting (generation and application) yields an opportunity
to explore how different combinations of models for this approach might perform. While the above
entails using the same model for both steps, we look to contrast the strength of the models used, to
attempt to boost the performance of both frontier and small models.

Inference-time Exemplar Distillation. In our work, inference-time distillation refers to generat-
ing analogical exemplars with a strong model (e.g. GPT-4o) and applying them to a weak model
(e.g. models with roughly 7-8B parameters). Our hypothesis driving this setting is: can higher
quality exemplars produced by strong models enable better deductive abilities with weak models?

Weak-to-Strong Cross-Lingual Analogies. Specialized multilingual models such as the Aya-
23 models hold promise for our linguistic reasoning analysis, as they have been fine-tuned for
instruction-following across a wide range of languages. We propose using such models for gen-
erating analogical demonstrations, as they may have a stronger understanding of language families
and can produce diverse exemplars, which we believe strong models may be able to deduce from.

3.3 EXPERIMENTAL SETUP

Datasets. We primarily evaluate our approaches on the modeLing dataset (Chi et al., 2024).
This dataset consists of problems written by the authors and hence uninvolved in prior Linguistics
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Olympiads. This benchmark was released in 2024, and we rely on its recency to be more assured
that leakage is not a factor driving performance. We note that all problems examined are purely text-
based; while there exist linguistics puzzles that require deduction from images, filling in diagrams,
etc., the benchmark we evaluate on does not include such problems. This suggests that future work
could study the performance of multimodal models on these problem types. We also evaluate on the
LINGOLY dataset (Bean et al., 2024), which features 1,133 problems and expands beyond ”Rosetta
Stone” translation problems to include grammatical pattern-based translation, matching translation
pairs, text purely in an unknown language, identifying errors in machine translation, and longer text
in multiple languages. The results are included in Appendix D.

Models. We evaluate with the following models:

• OpenAI models: GPT-4o, GPT-4, and GPT-3.5-turbo
• Open-weight models: Llama 3.1 8B-Instruct, Llama 3.1 70B-Instruct, Llama 3.1 405B-

Instruct (Dubey et al., 2024), Mixtral 8x7B-Instruct-v0.1 (Jiang et al., 2024), and Mixtral
8x22B-Instruct-v0.1

• Multilingual Instruction-tuned Models: Aya-23 8B and Aya-23 35B (henceforth referred to
as Aya-8B and Aya-35B) (Aryabumi et al., 2024)

OpenAI models are inferenced with the OpenAI API, while the open-weight and multilingual
instruction-tuned models are queried with the Together AI API and Apple MLX, respectively.

4 RESULTS

We report exact match (EM) scores for all experiments performed. ChrF2 Popović (2015), a char-
acter n-gram F-score measure, and corpus-level BLEU scores (Papineni et al., 2002) are recorded
in Appendix A. We do not treat these as primary metrics as BLEU ignores word ordering nuances
amidst short responses in machine translation, which is integral to measuring correctness in the puz-
zles we explore (Callison-Burch et al., 2006; Chi et al., 2024), and we find the ChrF scores to be
noisy relative to EM scores. Smaller models with weaker instruction-following capabilities often
failed to produce their output in the exact desired format specified in the prompts. To ensure that re-
liable exact match scores are reported while some responses may have parsing issues relative to the
expected format, the authors of this work manually examined each response to confirm whether the
output generated contains the target response. To enforce standardization across our evaluation pro-
cedure, this was performed for all experiments; this was not applicable for stronger models whose
responses exactly followed the desired output format.

4.1 CHAIN-OF-THOUGHT LINGUISTIC REASONING

The results of baseline methods are in Table 1. The prompts for all experiments are included in
Appendix F, and all experiments are averaged over 3 runs. For the ”CoT with rationale experiment”,
we take the best of using 512 and 4096 max tokens (see Appendix B). For the ”few shot” results, we
take the best out of two different prompt settings, ablated on in Appendix C.

Our strongest baseline result is achieved with Llama-3.1-405B-Instruct producing CoT rationales, at
65.81%; in fact, this model produces the best results across all 4 baseline settings. GPT-4o remains
in the high 50s, but does not exceed 60% on any single run. Among smaller models, Llama-3.1-
8B-Instruct performs comparably to Aya-35B and Mixtral-8x7B-Instruct, outperforming it on some
baselines, which may be attributable to a stronger and more recent base model. We also observe that
GPT-4o and Llama-3.1-405B-Instruct do indeed solve a few puzzles (2 and 4 samples, respectively)
in the zero-shot setting. Given the former was released before the modeLing dataset, and the latter
was released just shortly after, we do not believe this to be a sign of leakage; furthermore, each
correct question was from a different language.

We report a few key observations below:

Strong models produce rationales without being instructed to. We find that strong models such
as GPT-4o and GPT-4 produce chain-of-thought stepwise rationales for responses, even in the zero-
shot and few-shot settings, without including a chain-of-thought prompt or including rationales in
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Table 1: Baseline experimental results using chain-of-thought methods, reporting exact match. The
models have been split into three groups, corresponding to the models noted in Section 3.3. All
results reported are average of 3 runs at a temperature of 0.3, to address sampling variance.

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales
GPT 3.5-Turbo 0% 25.74% 26.10% 38.6%
GPT-4 0% 56.25% 45.22% 45.59%
GPT-4o 1.10% 59.19% 58.82% 55.88%

Llama-3.1-8B-Instruct 0% 22.79% 16.91% 23.16%
Llama-3.1-70B-Instruct 0% 45.22% 44.49% 42.28%
Llama-3.1-405B-Instruct 1.47% 61.76% 59.19% 65.81%
Mixtral-8x7B-Instruct 0% 22.43% 22.06% 16.18%
Mixtral 8x22B-Instruct 0% 45.59% 43.38% 39.71%

Aya-23-8B 0% 9.93% 7.35% 5.88%
Aya-23-35B 0% 23.53% 20.59% 14.34%

the exemplars. This is a key reason why the few-shot without chain-of-thought setting performs
the highest for both models. Furthermore, when prompted with rationale-inducing exemplars (see
Appendix F), these strong models produce rule libraries from the exemplars, akin to (Zhu et al.,
2024), leading to very lengthy responses; some models such as Llama-3.1 70B fall into loops of
repeating the same rule many times. This necessitates the use of a higher number of max tokens to be
generated, to ensure that the final answer is indeed outputted, although this makes human verification
of response correctness harder due to their length; we report ablations on this in Appendix B.

Certain models perform uncertainty-based refusal. Some models, such as Mixtral-8x7B-
Instruct and Mixtral-8x22B-Instruct respond to test instances by stating an inability to perform the
desired task. This behavior especially appears in CoT with rationale exemplars; interestingly, this
occurs after the implicit induction stage has been performed. For instance, with Mixtral-8x22B-
Instruct, the model enumerates a set of word-level translations between the target language and En-
glish, respectively, then upon recognizing ambiguity in one of the word-level translations, it claims
that solving the problem is impossible without additional information. By contrast, models such
as GPT-4o instead output multiple candidate answers when it is not entirely certain. We include
qualitative examples of this behavior in Appendix E. This appears to reinforce the findings of the
Qiu et al. (2024) in that models are unable to reliably apply their inductively learned rules.

Our analogical reasoning method introduces an inference-time approach to boost deductive reason-
ing, by deliberately using their learned multilingual knowledge to guide puzzle solving.

4.2 TWO-STAGE ANALOGICAL REASONING

To critically explore the evaluation settings introduced in Section 3.2, we select 2 frontier models –
GPT-4o and Llama-3.1-405B-Instruct – which were the strongest performers in our baselines. We
select 2 weaker models – Aya-35B and Llama-3.1-8B-Instruct – for the inference-time distillation
and weak-to-strong prompting experiments. These models performed comparably to one another in
the baselines, and allow us to contrast multilingual specialization against a generalist model with
multilingual support. The experiments with Llama-3.1-8B-Instruct are included in Appendix I.

We also establish an upper bound on the performance we can attain with our approach, by a psuedo-
open-book method with oracle language families. That is, for each language in the evaluation set,
rather than prompting the model to implicitly infer the language family and other languages which
are a member of it, we abstract away the former by providing the language family in the prompt.
We suggest that a human expert with strong cross-lingual reasoning abilities would be able to de-
duce such relationships with similar languages, so providing language family labels eliminates one
uncertainty source in the model’s generations. The results of this are included in Figure 2b.

Analogical reasoning boosts frontier models. We find that 2-stage analogical reasoning pushes
the boundaries of the performance of frontier models, relative to their best baseline results. Solely
considering the self-generation setting (where the same model both generates analogical exemplars
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Table 2: Pairwise results with our 2-stage analogical prompting method. The left column denotes
the model generating the analogical exemplars, and the top row denotes the model applying both the
generated and provided exemplars to answer the test puzzle. Note that these results address the self-
generated analogical reasoning, inference-time distillation, and weak-to-strong prompting settings
posed in Section 3.2.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 66.91% 71.69% 21.32%
Llama-3.1-405B-Instruct 67.28% 67.65% 20.22%
Aya-23-35B 65.44% 71.32% 15.44%

and applies them), GPT-4o improves 7.2% (59.19% → 66.91%), and Llama-3.1-405B-Instruct
improves 1.8% (65.81% → 67.65%). We subsequently observe even stronger gains for both models
as the deducer, when selecting different models as the analogical exemplar generator. In the first
stage, both of these frontier models correctly identify the language family at a fairly high rate (see
Appendix H), select a few languages from said family, and generate analogical puzzles for those
auxiliary languages, as intended. Then, in the second stage, the model considers the tokens in the test
phrase, and analyzes how each is to be translated to the target language, and combines them together
in the appropriate order following the syntactical patterns observed from the given exemplars. Thus,
it appears that the model uses the analogical exemplars to better induce the mappings of words in
the target language to words in the source language, which it then applies to the target phrase.

Weak analogical ”supervision” improves performance. We find that generating the analogical
exemplars with Aya-35B and applying them to the test sample with Llama-3.1-405B-Instruct yields
71.32%, averaged over 3 runs; a 5.5% improvement over the best baseline for Llama-3.1-405B-
Instruct (65.81% → 71.32%). We similarly find that leveraging Aya-35B-generated exemplars
and applying them with GPT-4o yields a 6.2% improvement over the best GPT-4o baseline setting
(59.19% → 65.44%). In the case of Llama-3.1-405B-Instruct, using Aya-generated exemplars
outperforms using self-generated exemplars, by 3.7% (67.65% → 71.32%). Our findings suggest
that when equipped with the right tools (analogical demonstrations) from effective multilingual
reasoners, strong deducers can thrive.

This claim is further reinforced by the inference-time distillation results: smaller models such as
Aya-35B do not benefit from the analogical exemplars, regardless of the analogical generator. At
the same time, using the GPT-4o exemplars applied by Llama-3.1-405B-Instruct yields 71.69%, our
strongest result across all evaluation settings. Moreover, the reverse direction (Llama-3.1-405B-
Instruct exemplars applied by GPT-4o) yields an 8.09% improvement over the best GPT-4o baseline
result. From these findings, we conclude that analogical exemplars generated by good multilingual
reasoners do not ”unlock” deductive reasoning abilities for models without them (Aya-35B); how-
ever, for strong baseline reasoners (Llama-3.1-405B, GPT-4o), better exemplars help performance.3

Frontier models understand language families. We compare model performance with and with-
out oracle language families, finding that prompting models to infer the language family is superior.
We observe that frontier models such as GPT-4o and Llama-3.1-405B, as well as specialized mul-
tilingual models like Aya-35B, have a strong parametric knowledge of language families, and do
not need to rely on language family labels to identify similar languages. Furthermore, the model
performing retrieval of the language family helps it to identify a few languages within the family
that will help it, bootstrapping from the provided exemplars, whereas providing the language family
often leads to the model listing many languages in the family and attempting to produce exemplars
for all of them. We hypothesize that this is a source of noise; demonstrations beyond a certain num-
ber yield diminishing returns in performance. That is, the oracle language families setting stimulates
inductive cross-lingual reasoning, but makes deductive reasoning more challenging due to having

3We note that while it would have been beneficial to acquire expert annotations on the correctness of the
exemplars, this is extremely challenging given the many endangered and nearly-extinct languages present in
the dataset, with only a few thousand speakers in the world.
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(a) Best baseline vs. best analogical (b) Inferred families vs. oracle families

Figure 2: Figure (a) contains a comparison of the best baseline (in Table 1) with the best 2-stage
analogical reasoning result (in Table 2), for our two frontier models as the deducer. We find ana-
logical to improve GPT-4o by 8.1% and Llama-3.1-405B-Instruct by 5.9%. Figure (b) compares
self-generated analogical reasoning methods, with prompt-determined language families (”inferred
families”) and human-annotated language family labels (”oracle families”).

many exemplars. Specific examples of this behavior are included in Appendix E, and the language
families table is in Appendix G. We also include further discussion on the language families iden-
tified by GPT-4o and Llama-3.1-405B-Instruct in the inferred families setting, in Appendix H, and
find that they achieve a high correctness rate relative to the oracle labels.

Language Isolates and Proxy Languages. Language isolates would appear to pose particular
difficulty to our models, as by definition, they do not belong to any well-defined language fam-
ily. As a result, we rely solely on the models’ ability to trace grammatical correspondences based
on the languages it has seen in pre-training, even for our experiments with oracle language family
labels. While in the baseline experiments, our models often believed that the target language is
imaginary, prompting for language families leads models to note that the language is isolate. They
then attempt to either follow syntactic or morphological patterns to induce a new fictitious language
which is similar to the target, or select learned geographically-proximate languages. For the lan-
guage of Bangime, spoken in Mali, the model either retrieves languages from families in the same
geographical region, such as Dogon, or creates a new language (e.g. ”Xangime”) for which it gen-
erates analogical exemplars (see Appendix E). Analyzing at the instance level, this improves the
correctness on the Bangime puzzles from 27.8% to 50% for GPT-4o in the self-generated setting.

In summary, our results suggest that the ability of the model to deduce by leveraging the given and
analogically-generated exemplars is the key performance driver. This is lent credence by the efficacy
of weak-to-strong prompting (i.e. relying on the exemplars of Aya-35b), while the performance of
inference-time distillation remains roughly similar. Thus, we posit that the ”strength” of a linguistic
reasoning agent can be decomposed along two lenses, corresponding to our two stages: (1.) gen-
erating analogical exemplars by language identification and multilingual reasoning, and (2.)
deducing from hypotheses in complex evaluation settings.

5 RELATED WORK

5.1 LARGE LANGUAGE MODEL REASONING.

Few-shot Chain-of-Thought Reasoning. In-context learning has emerged as an exciting phe-
nomenon in language models, enabling them to learn from few-shot demonstrations at inference-
time to generalize to various tasks (Brown et al., 2020; Wei et al., 2022). At the same time, the
chain-of-thought (CoT) reasoning method guides language models to think systematically through
a problem, in a step-by-step manner (Wei et al., 2024; Kojima et al., 2022). In particular, applying
chain-of-thought prompting (zero-shot or few-shot) with the goal to induce rationales yields expla-
nations of why each step was performed, along with performance and faithfulness improvements
(Nye et al., 2021; Lampinen et al., 2022). Various similar approaches (Yao et al., 2023; Wang et al.,
2023; Besta et al., 2024) have been proposed to sample more diverse generations from models,
leveraging test-time compute to improve reasoning performance; we believe such methods make for
interesting lines of future research for the linguistic reasoning task.
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Inductive Reasoning in LLMs. Inductive and deductive reasoning skills in language models have
often been studied in the context of logical or abstract reasoning problems. Much of this prior work
on inductive reasoning with language models studies evaluation settings with more clearly defined
rules to be inductively learned and then applied; these works suggest gaps relative to the human intel-
ligence in performing both inductive and deductive reasoning (Xu et al., 2024; Gendron et al., 2024;
Yang et al., 2024c). In particular, Yang et al. (2024c) notes the need for more challenging tasks in
inductive reasoning to better assess the boundaries of LM capabilities, such as hypothesis generation
and pattern induction. Works such as Tang et al. (2023) demonstrate that models struggle to create
rules by induction when the semantics of the exemplars do not follow in a commonsense manner –
in our work, generating analogical exemplars similar to the models pre-training data may steer the
model towards a relative ”commonsense” representation of the rules underlying the exemplars.

Several works dive into the realm of hypothesis search, determining the ability of LMs to pose hy-
potheses about the problem (e.g. rules which exemplars follow) before seeking to deductively apply
them (Zhu et al., 2024; Qiu et al., 2024; Wang et al., 2024). Zhu et al. (2024) propose hypotheses-to-
theories (HtT), which learns a rule library from an induction stage, and then applies it by a deduction
stage; this multi-stage method is similar to our analogical approach, although we still perform both
induction and deduction together after analogical generation. Furthermore, their rule library depends
on verification – this is not possible in the linguistic reasoning task due to the lack of a reliable feed-
back source to judge responses, aside from expert humans. As discussed earlier in our work, Qiu
et al. (2024) demonstrates that models can propose rules well, but cannot consistently apply them.
Wang et al. (2024) proposes Hypothesis Search, a method which proposes hypotheses, implements a
subset of them as Python programs, and applies them to training samples to verify their correctness.

Exemplar Generation and Automated Reasoning. Analogical prompting (Yasunaga et al.,
2024) has been demonstrated to be an effective inference-time method to produce diverse, task-
conditioned exemplars, improving in-context learning. As noted above, this effectively serves as a
knowledge retrieval method which retrieves exemplars similar to (or directly from) the pre-training
distribution which the model has seen; RECITE (Sun et al., 2023) similarly retrieves passages di-
rectly from the model’s memory. Methods such as SG-ICL (Kim et al., 2022) and Auto-ICL (Yang
et al., 2024b) also self-generate in-context exemplars in a similar manner as analogical prompting.

5.2 MULTILINGUAL REASONING.

Multilingual reasoning in LMs for low-resource languages poses a unique challenge, as the pretrain-
ing corpora and supervised fine-tuning datasets for many models are largely concentrated on a few
high-resource languages. XLT (Huang et al., 2023) introduces a prompt template which translates
problems in other languages to English and solves the problem with chain-of-thought in English.
Qin et al. (2023) aligns each step in the chain-of-thought between the source language and English
explanations, then solves the problem given this alignment; they also apply self-consistency with
cross-lingual alignments with a set of pre-specified target languages. Li et al. (2024) trains on code
data with multilingual comments, while using multilingual code prompts at inference time with
symbolic function API calls as a structured way to solve the reasoning problem.

Linguistic Reasoning Benchmarks. The PuzzLing Machines dataset (Şahin et al., 2020) first in-
troduced a set of Linguistics Olympiad problems to study the ability of language models to learn
from a small amount of data; they apply RoBERTa-based neural machine translation methods, but
demonstrate a vast gap (attaining less than 4% exact match performance). With concerns of potential
leakage given the vast web scraping performed in procuring pre-training tokens for language model
training, modeLing (Chi et al., 2024) introduced a new set of hand-written Linguistics Olympiad
problems, demonstrating the performance of current models with CoT methods. The LINGOLY
(Bean et al., 2024) dataset presents problems from the UK Linguistics Olympiad competition, and
studies zero-shot and few-shot performance of current models categorized by question type.

6 DISCUSSION

We propose applying analogical prompting as a test of inductive reasoning from diverse exemplars
for challenging linguistic puzzles. Our results encouragingly suggest that despite frontier models
struggling with deductive reasoning, in line with the findings of (Qiu et al., 2024), they can indeed
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follow grammar rule similarities to generate analogical demonstrations and attempt to apply them
adeptly. This yields improved performance in self-generated analogical prompting with GPT-4o
and Llama-3.1-405B, as well as weak-to-strong prompting for those models employing Aya-35B-
generated demonstrations. We also show that Llama-3.1-405B-Instruct is the best model for linguis-
tic reasoning at present, becoming the first model to achieve over 70% on the modeLing benchmark
by way of our 2-stage analogical reasoning approach. This could be attributed to the vast scale of
multilingual pre-training data (15T tokens), as well as multilingual supervised fine-tuning and dia-
logue data seen in adaptation. The multilingual prowess of the Llama-3.1 models is evidenced by
its strong performance on the MGSM and multilingual MMLU benchmarks (Dubey et al., 2024).

Furthermore, the ability of smaller and specialized multilingual models (Aya) to generate coherent
analogical exemplars, which improve frontier models over their own self-generated exemplars, is
promising towards developing widely-available multilingual reasoners. We find that the improve-
ments observed can be attributed to the auxiliary exemplars generated, which are in turn due to
the model’s understanding of language families and grammar rules from the pre-training data or
its multilingual adaptation. The errors made by current models due to an inability to apply diverse
and complex exemplars suggest that the linguistic reasoning task is an exciting and challenging
evaluation setting for LM reasoning at large. That is, seeking to emulate human reasoning, where
deduction involves a clear application of recognized patterns, provides a ripe space for future work.

The interesting phenomenon examined with language isolates also provides a glimpse of model ca-
pabilities to follow grammatical similarities, rather than relying on knowledge retrieval of language
families. That is, the multilingual language understanding abilities of frontier models expand be-
yond typological knowledge, going so far as to create proxy fictitious languages which enable it to
solve the problem correctly. We suggest that future efforts in multilingual adaptation be placed in
identifying techniques to guide languages models to support typologically unique languages.

Research at the intersection of machine translation and reasoning in the development of the lat-
est foundation models is important from a societal perspective. With large language models being
adopted widely, the need for multilingual capabilities and rapid adaptation grows, and our work
proposes an effective method by which this can be performed at test-time. Notably, we have demon-
strated evidence that models follow language similarities – given the massive number of languages
and dialects present worldwide, this could help guide humans to learn dying languages, thus keeping
their tradition alive, while doing so in a scalable manner. We hope that these findings can inspire
future models releases to include evaluation on challenging multilingual tasks such as these puzzles,
and research on reasoning can explore the multilingual setting further in depth.

Limitations We note that the reliance on exact match scoring as our primary signal of perfor-
mance is not ideal, as it is a binary indicator. We have sought to examine other metrics which
correspond to ”partial credit” such as ChrF2 and BLEU; however, there are flaws in these methods
as well. A stronger human understanding of the rules which these extremely low-resource languages
follow could guide us to better metrics, especially capturing semantic meaning and word ordering
inversions, where appropriate. For instance, some languages might retain the same meaning while
inverting the word order – exact match is sensitive to this, and while ChrF2 and BLEU are not, we
should only be insensitive to ordering for languages which follow this property. We also recognized
that the IOL 2024 problems could not be used as a benchmark with our method, as they require
multimodality – our method only analyzes unimodal text problems. Another limitation of our work
is that we do not have a reliable means of verifying the correctness of analogical exemplars, nor con-
trasting the quality of exemplars generated across models to determine the best analogical generator
model. An expert annotator who could identify where a mistake was made in the model’s reasoning
process also would have been helpful to yield further insights into the fallacies of current models’
linguistic reasoning. Nonetheless, our most effective deducer models are able to leverage exemplars
generated by models of various sizes for improved linguistic reasoning.

Reproducibility Statement. We include all prompts used for generating our baseline experimen-
tal results, and all analogical prompting methods, in Appendix F. We have also broken down the
two stages of our analogical reasoning method for clarity on how the method should be applied with
two separator models (e.g. weak-to-strong prompting, inference-time exemplar distillation). We
evaluate our work on the modeLing dataset, which is publicly available. We have included details of
the platforms through which the models we evaluate have been queried (OpenAI API, TogetherAI
API, Apple MLX), along with the list of models studied. Lastly, we will release our code publicly.
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A RESULTS WITH CHRF AND BLEU METRICS

While our primary results are included in Section 4 with exact match scoring, we also include the
ChrF2 and BLEU scores for those experiments. Although exact match is helpful for assessing
performance on absolute terms, character and word-level metrics can help in determining partial
progress. While the challenges of using BLEU are discussed in Section 4, we include the corpus-
level scores as it is a commonly-employed metric in machine translation settings. We use the ChrF2
score (Popović, 2015) as implemented in SACREBLEU (Post, 2018); this metric doubles the preci-
sion value in the denominator of the F-score, placing more value on the recall. The inclusion of a
character-level metric is useful for robustness to morphologically rich languages in our low-resource
setting.

A.1 CHRF2 SCORES FOR BASELINE EXPERIMENTS

Table 3: Baseline experiments as reported in Table 1, but with the ChrF2 metric instead.

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales
GPT 3.5-Turbo 4.37 30.61 12.93 37.50
GPT-4 32.61 38.46 35.71 40.54
GPT-4o 37.50 39.47 40.54 40.54

Llama-3.1-8B-Instruct 0.25 40.54 48.39 45.45
Llama-3.1-70B-Instruct 38.46 34.09 38.46 41.67
Llama-3.1-405B-Instruct 27.27 38.46 38.46 38.46
Mixtral-8x7B-Instruct 39.47 4.10 1.49 12.30
Mixtral 8x22B-Instruct 42.86 38.46 2.42 34.88

Aya-23-8B 21.13 39.47 30 41.67
Aya-23-35B 27.27 46.88 46.88 45.45

These results seem to suggest that while they do not perform as well as the frontier models on exact
match, Llama-3.1-8B-Instruct and Aya-35B attain high ChrF2 scores, due to being close to the target
translation, but e.g. making a few character insertions or deletions, or word order changes. To that
effect, ChrF2 serves as a useful measure of ”partial credit”.

A.2 BLEU SCORES FOR BASELINE EXPERIMENTS

Table 4: Baseline experiments as reported in Table 1, with corpus-level BLEU scores.

Model Zero-Shot Few-Shot w/o CoT Few-Shot w/ CoT Few-Shot CoT w/ Rationales
GPT 3.5-Turbo 0.06 5.33 14.65 19.96
GPT-4 0.52 40.07 16.70 6.14
GPT-4o 0.75 50.53 34.76 36.33
Llama-3.1-8B-Instruct 0.02 0.54 0.09 0.06
Llama-3.1-70B-Instruct 0.47 0.65 0.57 0.36
Llama-3.1-405B-Instruct 0.19 3.34 1.22 6.28
Mixtral-8x7B-Instruct 0.04 0.52 0.32 0.31
Mixtral 8x22B-Instruct 0.09 11.36 3.84 7.45

Aya-23-8B 0.04 4.54 4.24 5.88
Aya-23-35B 0.12 11.37 11.55 0.58

We find that BLEU scores are highest for GPT-4o. However, this is a somewhat noisy signal, as
Llama-3.1-405B attains the highest exact match performance, but very low corpus-level BLEU
scores, below several models which it outperforms on the stricter (EM) metric.
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A.3 CHRF2 SCORES FOR ANALOGICAL REASONING EXPERIMENTS

Table 5: Analogical reasoning experiments as reported in Table 2, with ChrF2 scores.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 40.54 38.46 46.88
Llama-3.1-405B-Instruct 40.54 42.86 46.88
Aya-23-35B 38.46 32.86 46.88

A.4 BLEU SCORES FOR ANALOGICAL REASONING EXPERIMENTS

Table 6: Analogical reasoning experiments as reported in Table 2, with corpus-level BLEU scores.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Aya-23-35B

GPT-4o 39.50 6.95 3.66
Llama-3.1-405B-Instruct 41.76 2.35 2.82
Aya-23-35B 30.27 3.11 3.81

B ABLATIONS ON MAX TOKEN LENGTHS FOR RATIONALE GENERATION

For the chain-of-thought baseline where English-Spanish translation with rationales is provided
(from Chi et al. (2024)), we observe that frontier models produce verbose outputs. These outputs
include explaining the meaning of each word in the exemplars for the target language (inductive
learning), before applying them to the test sample. We find that including a max token length of
4096 as opposed to 512 yields vastly different results.

Table 7: A comparison of values of max tokens to generate, 512 against 4096.

Model 512 Max Tokens 4096 Max Tokens

GPT 3.5-Turbo 30.51% 38.60%
GPT-4 41.91% 45.59%
GPT-4o 55.51% 55.88%

Llama-3.1-8B-Instruct 19.85% 23.16%
Llama-3.1-70B-Instruct 42.28% 1.1%
Llama-3.1-405B-Instruct 37.87% 65.81%
Mixtral-8x7B-Instruct 16.18% 11.76%
Mixtral 8x22B-Instruct 30.88% 39.71%

In particular, we find that Llama-3.1-405B-Instruct, Mixtral-8x22B-Instruct-v0.1, and GPT-3.5-
Turbo improve significantly, by over 8%. Notably, Llama-3.1-405B-Instruct with the ability to
generate up to 4096 tokens yields our strongest baseline result of 65.81%. Conversely, Llama-3.1-
70B-Instruct surprisingly drops to 1.1%, performing almost as poorly as the zero-shot baseline.
Upon manual inspection, we find this to be due to entering loops of repeating the same rationale
step until the max token limit is reached.
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C FEW-SHOT PROMPT ABLATIONS

We also include the results with the provided few-shot exemplars, while using two different instruc-
tions. The ”zero-shot prompts” are the system prompt and instruction used for zero-shot evaluation,
where no reference is made to the existence of few-shot exemplars. The few-shot prompt used is a
close adaptation of that used in Chi et al. (2024). Surprisingly, we find that this makes a slight, yet
noticeable difference in results. The prompts used can be found in Appendix F.

Table 8: Comparison between two different few-shot prompting scenarios; the first involves provid-
ing the exemplars to the model, but making no mention of them in the instruction. The later also
provides the exemplar, but instructs the model to only use those to solve the problem.

Model ”Zero-Shot” Prompts 4096 ”Few-Shot” Prompts

GPT 3.5-Turbo 25.74% 12.50%
GPT-4 56.25% 53.68%
GPT-4o 58.09% 59.19%

Llama-3.1-8B-Instruct 21.32% 22.79%
Llama-3.1-70B-Instruct 42.65% 45.22%
Llama-3.1-405B-Instruct 60.29% 61.76%
Mixtral-8x7B-Instruct 11.76% 22.43%
Mixtral 8x22B-Instruct 45.59% 44.49%

Notably, GPT-3.5-Turbo and GPT-4 perform better with the ”zero-shot prompts”; we believe this
to be attributable to the few-shot prompt specifying to solve the puzzle only using the in-context
exemplars. This perhaps could be limiting the model from drawing from its knowledge base to solve
the problem. At the same time, Mixtral-8x7B performs much better with the few-shot prompts.

D LINGOLY DATASET RESULTS

To further the generalizability of our findings, we also evaluate our 2-stage analogical prompting
method on the LINGOLY dataset (Bean et al., 2024). This dataset includes 1,133 subquestions
across 90 languages, derived from the UK Linguistics Olympiad (UKLO), and features several
problem types beyond the Rosetta Stone category which constitutes the primary focus of our work
(although Rosetta Stone problems form 46% of the dataset). These categories include Pattern (trans-
lation based on grammatical patterns), Match-up (matching translation pairs), Monolingual (text
purely in an unknown language), Computational (identifying errors in machine translation), and Text
(longer text in multiple, often higher-resource languages). The difficulty levels vary from Break-
through (easiest, for newcomers of the UKLO), Foundation, Intermediate, Advanced, and Round 2
(hardest, invitational qualifier for the IOL). As such, applying our approach with this dataset serves
as a valuable test of the transferability of this method across datasets and cross-lingual tasks.

Table 9: Baseline results with GPT-4o, as reported in LINGOLY (Bean et al., 2024), on exact match.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 47% 79%
Foundation 0% 100% 67% 62%

Intermediate 58% 34%
Advanced 0% 33% 53% 26%
Round 2 0% 30% 27% 12%

We report the results for GPT-4o in the self-generated analogical prompting setting, in a tabular
format, as well as in pictorial representations in Figures 3 and 4 in the bubble plot style of Bean
et al. (2024). We demonstrate the performance (exact match scores) of the model in each combi-
nation (difficulty level and question type), as well as the improvements (denoted ∆Baseline) over
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Table 10: Results with Two-Stage Analogical Prompting (Ours) with GPT-4o on exact match.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 100% 80% 86%
Foundation 0% 100% 69% 80%

Intermediate 83% 64%
Advanced 19% 50% 73% 51%
Round 2 14% 42% 49% 41%

Table 11: ∆Baseline, the improvement yielded by our Two-Stage Analogical Prompting method
over the baseline results.

Computational Text Monolingual Match-up Pattern Rosetta
Breakthrough 0% +33% +7%
Foundation 0% 0% +2% +18%

Intermediate +25% +30%
Advanced +19% +17% +20% +25%
Round 2 +14% +12% +22% +29%

the baseline results reported in Bean et al. (2024). We followed the same evaluation procedure as
we did with modeLing, handling parsing issues accordingly for reliable exact match scoring. Note
that all categories for which the table is empty are those for which no problem of that type exists in
the dataset at present (or rather, there has not been such a problem in the recent history of the UK
Linguistics Olympiad, from which the dataset was curated).

Figure 3: Baseline Results with GPT-4o on LINGOLY. The size of the bubbles correspond to the
number of subquestions of that type present in the dataset.

We find that our results significantly outperform the baseline by a sizable amount across all dif-
ficulty levels, and across all tasks. Moreover, the results outperform the Claude-3 Opus state-of-
the-art scores reported in the LINGOLY paper on every single setting, with the exception of the
Breakthrough Rosetta Stone (easiest problems). Specifically, we find that our 2-stage analogical
prompting method enables GPT-4o to solve questions of the monolingual type which it could not
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Figure 4: Two-Stage Analogical Prompting (Ours) Results with GPT-4o on LINGOLY. The size of
the bubbles correspond to the number of subquestions of that type present in the dataset.

before (0% → 19% and 14%); furthermore, the correctness rates jump considerably for some of the
hardest categories over the baseline (1.81x in Round 2 Pattern, 1.96x in Advanced Rosetta Stone,
and 3.42x in Round 2 Rosetta Stone). It is especially worth noting that the Round 2 Rosetta Stone
results corroborate with our findings on modeLing as reported in our paper. These findings suggest
that our method generalizes across both datasets and question types.

E QUALITATIVE EXAMPLES

E.1 ANALOGICAL DEMONSTRATIONS

Analogical exemplars generated by GPT-4o for target language Ngadha:

”Based on the provided translations, it appears that Ngadha is a language that belongs to the
Austronesian family, specifically within the Central-Eastern Malayo-Polynesian group. Other
languages in this subgroup include those from the Flores-Lembata languages, such as Rem-
bong and Lamaholot.are some example puzzles translating from Rembong and Lamaholot to
English, and vice versa. Translating from Rembong to English: ua gina : big house : ga’e buin
: small flower : kafi gala : black chair : watu lin : long stone : regu boku : white cloud : poa
mina : green forest Translating from English to Rembong: big river : rehu gina : small bird :
ki’i buin : black mask : meke gala : long road : jalan lin : white sky : ara boku : green grass
: lea mina Translating from Lamaholot to English: mawar gete : big rose : sarik wena : small
rock : moto wulan : black moon : jalan rake : long street : lopo puti : white hut: nara hoban :
red boat Translating from English to Lamaholot: big tree : po’o gete : small river : wae wena
: black cloud : lero wulan : long valley : tana rake : white mountain : weling puti : red fruit :
bua hoban”

GPT-4o generated analogical exemplars for target language:

”**[Example Puzzle: Quechua to English]**: 0̆0f1awi: eye : hamuy: come : wasi: house :
sacha: forest : yacu: water **[Test Puzzle: Quechua to English]**: llapa: **[all]** : pacha:
**[time]** : chay: **[that]** : pu0̆0f1uy: **[sleep]** : qhari: **[man]****[Example Puzzle:
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Nahuatl to English]**: atl: water : calli: house : mixtli: cloud : teotl: god : cuauhtli: eagle
**[Test Puzzle: Nahuatl to English]**: tlitl: **[fire]** : yollotl: **[heart]** : in: **[the]** :
michin: **[fish]** : huitzilin: **[hummingbird]**”

Analogical exemplars generated by Aya-23-35B for target language Kalam (an example of generat-
ing new languages which it believes to be similar as Kalam):

”Here are some puzzles for translating from and to languages in the same family as Kalam:
**Puzzle 1: Translating from Languge X to English**: fey: fly: fey-gaw: (fly) away: gaw:
go: gaw-fey: (go) away: nack: take: nack-fey: take (and) fly: nack-gaw: take (and) go:
nack-fey-gaw: take, fly, and go**Puzzle 2: Translating from English to Language Y**: walk:
yack: walk quickly: yack-yack: run: yack-fey: run away: yack-fey-gaw: take and walk:
nack-yack: take and fly: nack-fey: take, walk, and fly: nack-yack-fey**Puzzle 3: Translating
from English to Language Z**: eat: ze: eat quickly: ze-ze: drink: ze-fey: drink water: ze-
fey-gaw: take and eat: nack-ze: take, eat, and drink: nack-ze-ze-feypuzzles help establish
the relationships between the languages and English, with each puzzle focusing on a specific
theme (going/flying, eating/drinking, and taking) to illustrate the translation patterns. note that
the languages X, Y, and Z are fictional and used for illustrative purposes only.”

Analogical exemplars generated by Aya-23-35B for target language Bangime:

”Here are some puzzles translating from and to languages in the same family as Bangime:
**Puzzle 1: Translating from Mande languages to English**- Manding: M̈i na soo.¨: Ï see
you.¨- Manding: T̈a na firi.¨: Ẅe hear you.¨- Manding: T̈a na biri.¨: Ẅe bite the bone.¨**Puzzle
2: Translating from English to Mande languages**- English: Ï am flying.¨: M̈i na fodoo.¨- En-
glish: T̈he dog drinks.¨: D̈ugul0̆0fc na kur0̆0fc.¨- English: T̈he fish sleeps.¨: P̈ishul0̆0fc na
sara.¨**Puzzle 3: Translating from Niger-Congo languages to English**- Igbo: M̈ uwe.¨: Ï
see you.¨- Igbo: M̈ nwunye.¨: Ẅe hear you.¨- Igbo: M̈ gbuo.¨: Ẅe bite the bone.¨**Puzzle 4:
Translating from English to Niger-Congo languages**- English: Ï am hitting.¨: M̈ uwu.¨- En-
glish: T̈he person drinks.¨: Öme na kur0̆0fc.¨- English: T̈he bone sleeps.¨: Ëji na sara.¨puzzles
showcase the translation relationships between Bangime and other languages in the same lan-
guage family, helping to establish patterns and rules for accurate translation.”

E.2 UNCERTAINTY-BASED REFUSAL

Mixtral-8x22B-Instruct-v0.1 expressing an inability to answer the question, despite producing a
”rule library” based on the given exemplars. This is due to the incompleteness of the library in
understanding what the phrase ”mise” means, from the exemplars.

Based on the given examples, we can infer the following:

1. ”eni” means ”we” 2. ”moni” means ”see” 3. ”syiene” means ”hear” 4. ”wo” means ”you”
5. ”fyani” means ”fly” 6. ”dhi” means ”eat” 7. ”ubhwo” means ”bird” 8. ”mise” is not given
a direct translation in the examples, but we can infer that it is a noun because it follows the
pattern of other nouns in the sentences.

Given the sentence ”eni mise”, we can break it down as follows:

1. ”eni” means ”we” 2. ”mise” is a noun, but we don’t have a direct translation for it.

Therefore, the sentence ”eni mise” translates to ”We [mise]”. Without more context or exam-
ples, we cannot provide a more specific translation for ”mise”.

F PROMPTS USED IN EXPERIMENTS

F.1 ZERO-SHOT PROMPTS

F.1.1 SYSTEM PROMPT
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’You are an experienced linguist with background in a wide variety of languages, and trans-
lating them to and from English. You have been asked to translate a series of phrases from
a language to English, or from English to that language. You have never seen this language
before, but you are confident in your ability to translate the phrases accurately.’

F.1.2 INSTRUCTION

’This is a translation puzzle. Here is a phrase in Language (a never-seen-before foreign lan-
guage) or in English. If the test phrase is in English, your task is to translate it into Language.
If the test phrase is in Language, your task is to translate it into English. When you are done
with your answer, provide your outputs in the format of **[your answer]**.’

F.2 FEW-SHOT AND ANALOGICAL REASONING SYSTEM PROMPT

’You are an experienced linguist with background in a wide variety of languages, and trans-
lating them to and from English. You have been asked to translate a series of phrases from
a language to English, or from English to that language. You have never seen this language
before, but you have been given a few examples of phrases in the language and their English
translations to help you. You are confident in your ability to translate the phrases accurately.’

F.3 FEW-SHOT, NO CHAIN-OF-THOUGHT

’This is a translation puzzle. Below are example phrases in Language (a never-seen-before
foreign language) as well as their English translations. Some test phrases follow them. If the
test phrase is in English, translate it to Language; if the test phrase is in Language, then translate
it to English. Your task is to look closely at the example phrases and use only the information
from them to translate the test phrases. When you are done with your answer, provide your
outputs in the format of **[your answer]**.’

F.4 FEW-SHOT WITH CHAIN-OF-THOUGHT, NO RATIONALE

’This is a translation puzzle. Below are example phrases in Language (a never-seen-before for-
eign language) as well as their English translations. Some test phrases follow them. Your task
is to look closely at the example phrases and use only the information from them to translate
the test phrases. If the test phrase is in English, translate it to Language; if the test phrase is in
Language, then translate it to English. Take a deep breath and work on this problem step-by-
step in a logical way, using careful analytical reasoning to get the correct result. When you are
done with your answer, provide your outputs in the format of **[your answer]**.’

F.5 FEW-SHOT CHAIN-OF-THOUGHT WITH RATIONALE PROMPT

’This is a translation puzzle. In a moment, you will use logic and analytical reasoning to trans-
late from a never-seen-before language (Language) to English. If the test phrase is in English,
translate it to Language; if the test phrase is in Language, then translate it to English. As a
training example, here are some expressions in Spanish and their translations in English.
1. Spanish: ventana roja English: red window
2. Spanish: ventana azul English: blue window
3. Spanish: manzana azul English: blue apple
Using the above examples, translate the following. Spanish: manzana roja
EXPLANATION: The first step we notice is that the word “ventana” must mean window be-
cause (1) the word “ventana” appears twice between sentences 1 and 2, and (2) the only word
that appears twice in the English translation is “window.” Next, we infer that “roja” must be
“red” and “azul” must be “blue” by process of elimination. Next, we guess that in Spanish, the
noun precedes the adjective because “ventana” comes before “roja” and “azul.” Therefore, the
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noun in sentence 3 (“apple”) must correspond to the word preceding the adjective (“manzana”)
in the Spanish translations. Putting this together, “manzana roja” must mean “red apple” in
English.
ANSWER: English: red apple.
Now, given the following test phrase, please translate it. Take a deep breath and work on this
problem step-by-step in a logical way, using careful analytical reasoning to get the correct re-
sult. When you are done with your answer, provide your outputs in the format of **[your
answer]**.’

F.6 ONE-STAGE ANALOGICAL PROMPTING

”This is a translation puzzle. In a moment, you will use logic and analytical reasoning to
translate from a never-seen-before language (Language) to English. Given a few example
puzzles translating from Language to English (or English to Language), generate 3 similar
puzzles translating other languages in the same family as Language to English, and 3 similar
puzzles translating from English to those languages in the same family as Language. The
puzzles that you generate should be distinct from one another, the example puzzles, and the
test puzzle. They also should be from a diverse set of languages within the same language
family as the test puzzle. Your task is to look closely at the example puzzles and the puzzles
that you have generated in order to solve the test puzzle. Take a deep breath and work on
this problem step-by-step in a logical way, using careful analytical reasoning to get the correct
result. When you are done with your answer, provide your outputs in the format of **[your
answer]**.”

F.7 TWO-STAGE ANALOGICAL PROMPTING

F.7.1 ANALOGICAL EXEMPLAR GENERATION PROMPT, INFERRED LANGUAGE FAMILIES

”Given a few example puzzles translating from {name} to English (or English to {name}),
identify few other languages in the same family as {name}, generate a puzzle similar to trans-
lating other languages in the same family as {name} to English, and another puzzle translating
from English to those languages in the same family as {name}. The puzzles that you generate
should be distinct from one another than the example puzzles, and the test puzzle but should
help establish the relationships for translation between {name} and English. They also should
be from a diverse set of languages within the same language family as the test puzzle. Provide
your outputs in the format of **[your answer]**.”

F.7.2 ANALOGICAL EXEMPLAR GENERATION PROMPT, ORACLE LANGUAGE FAMILIES

”Given a few example puzzles translating from name to English (or English to {name}), iden-
tify few other languages in the {lang family} family, generate a puzzle similar to translating
other languages in the same family as {name} to English, and another puzzle translating from
English to those languages in the same family as {name}. The puzzles that you generate should
be distinct from one another than the example puzzles, and the test puzzle but should help es-
tablish the relationships for translation between {name} and English. They also should be
from a diverse set of languages within the same language family as the test puzzle. Provide
your outputs in the format of **[your answer]**.”

F.7.3 DEDUCTION STEP PROMPT

”This is a translation puzzle. In a moment, you will use logic and analytical reasoning to trans-
late from a never-seen-before language ({name}) to English. Your task is to look closely at the
example puzzles and the puzzles that you have generated in order to solve the test puzzle. Take
a deep breath and work on this problem step-by-step in a logical way, using careful analytical
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reasoning to get the correct result. When you are done with your answer, provide your outputs
in the format of **[your answer]**.”

G ORACLE LANGUAGE FAMILIES

Table 12: Oracle language families used for the results in Table 4, where we present a language
family label to the model rather than (implicitly) instructing it to infer the language family.

Target Language Oracle Language Family

Abun West Papuan
Ainu Ainu / Language Isolate

Ayutla Mixe Mixe-Zoque
Bangime Language Isolate

Chimalapa Zoque Mixe-Zoque
Dogon Niger-Congo

Engenni Niger-Congo
Guugu Yimithirr Pama-Nyungan

Kalam Kalam
Komi-Ziran Uralic

Kutenai Language Isolate
Mapudungan Araucanian

Misantla Totonac Totonacan
Mixtepec Zapotec Oto-Manguean

Ngadha Austronesian Malayo-Polynesian
Niuean Malayo-Polynesian

Rapa Nui Austronesian Malayo-Polynesian
Seri Hokan / Language Isolate

Totonac Totonacan

H LANGUAGE IDENTIFICATION IN ANALOGICAL PROMPTING WITH
INFERRED FAMILIES

We analyze the ability for frontier models (GPT-4o, Llama-3.1-405B-Instruct) to produce the correct
language family labels solely by being prompted to produce exemplars in the same language family.
The results for GPT-4o are included in Table 10, and the results with Llama-3.1-405B-Instruct are
included in Table 11. The phrase ”synthetic” is used as a catch-all for the model determining that the
language is ”constructed”, ”synthetic”, ”fictional”, ”hypothetical”, or any similar synonym. There
are some instances where the model does not produce any label for the language family, and begins
immediately producing exemplar puzzles from some implicitly chosen set of languages, without
stating that list; this is listed in the tables as ”None”. For Language Isolates that are debated (e.g.
Seri, which is considered an isolate by some linguists, and a member of the Hokan language family
by others), we specify which label was provide, but assign either as correct when determining each
model’s correctness rate. Furthermore, the model may not necessarily produce the leaf-level lan-
guage family, but rather, a larger family which includes the leaf-level one (e.g. Trans-New Guinea
instead of Kalam, which belongs to the Trans-New Guinea family).
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Table 13: Inferred language families by Llama-3.1-405B-Instruct, where the model is prompted in
our 2-stage approach to first produce exemplars in the same language family and then apply them to
solve the test phrase. The model often identifies the language family which the target language is a
member of (”label”) which we report below, prior to identifying languages within that family, that
are geographically proximal, or if the model predicted that it is an isolate or believes the language
to be synthetic, produces similar synthetic languages.

Target Language Number of Questions Inferred Language Family

Abun 4 West Papuan (4)
Ainu 8 Language Isolate (8)

Ayutla Mixe 4 Mixe-Zoque (4)
Bangime 36 Isolate (25), Niger-Congo (11)

Chimalapa Zoque 12 Zoquean (12)
Dogon 8 Niger-Congo (6), None (2)

Engenni 25 Niger-Congo (25)
Guugu Yimithir 10 Pama-Nyungan (10)

Kalam 6 Trans-New Guinea (6)
Komi-Ziran 6 Uralic (6)

Kutenai 5 Language Isolate (5)
Mapudungan 24 Araucanian (14), Synthetic (10)

Misantla Totonac 4 Totonacan (4)
Mixtepec Zapotec 24 Oto-Manguean (24)

Ngadha 14 Austronesian (14)
Niuean 18 Polynesian (18)

Rapa Nui 37 Polynesian (37)
Seri 21 Hokan / Isolate (17), Isolate (4)

Totonac 6 Totonacan (6)

Our analysis reveals that both models are quite adept at identifying language families reliably. In
fact, Llama-3.1-405B-Instruct’s language family correctness out of the 272 samples, relative to the
oracle labels in Appendix F is an astounding 249

272 = 91.54%, while GPT-4o’s rate is 202
272 = 74.26%.

We report anecdotally that while both models appear to have a strong understanding of the leaf-level
language families (e.g. the Edoid family), Llama-3.1-405B-Instruct seems to have a stronger taxo-
nomical understanding, producing outputs such as ”Chimalapa Zoque is a member of the Zoquean
branch of the Zoque-Tzeltalan language family, which is part of the larger Mayan language family.”
By contrast, GPT-4o often would solely identify the direct parent of the language in question, pro-
ducing outputs such as ”Chimalapa Zoque belongs to the Mixe-Zoque language family.” It appears
that by the statements made at the start of the response, GPT-4o appears to (at least claim to) base its
choice of language family based on the structure of the source-target provided exemplar translations,
such as the following: ”Based on the examples provided in Mapudungan 3, it seems to encode sim-
ple noun phrases with an adjective-noun structure. To generate similar puzzles from other languages
potentially in the same family (Araucanian), we should maintain this structure and ensure variety in
the adjectives and nouns used.” Similarly, it produces statements such as ”Based on the examples
provided in Rapa Nui, I can infer common Polynesian morphological and syntactical patterns that
will help in generating puzzles for other related languages within the Austronesian language family,
specifically the Polynesian subfamily.”

Furthermore, through the process of obtaining the counts in the tables listed here, we observed that
both models struggled when it was specified that there were multiple separate problems for a given
language. For instance, both models do not struggle much with identifying the correct language
family for ”Mapudungan 1” as Araucanian, but completely either fail to identify any language fam-
ily (GPT-4o) or suggest that the language is synthetic when given ”Mapudungan 4”. This is an
interesting phenomenon that we propose merits further study.
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Table 14: Inferred language families by GPT-4o.

Target Language Number of Questions Inferred Language Family

Abun 4 West Papuan (3), Lakes Plain (1)
Ainu 8 Language Isolate (8)

Ayutla Mixe 4 Mixe-Zoque (4)
Bangime 36 Isolate (18), Niger-Congo (2), Synthetic (16)

Chimalapa Zoque 12 Mixe-Zoque (12)
Dogon 8 Niger-Congo (6), Isolate (1), None (1)

Engenni 25 Niger-Congo (21), Synthetic (2), None (2)
Guugu Yimithir 10 Pama-Nyungan (10)

Kalam 6 Trans-New Guinea (5), Austronesian (1)
Komi-Ziran 6 Uralic (4), Synthetic (2)

Kutenai 5 Language Isolate (5)
Mapudungan 24 Araucanian (3), Synthetic (3), None (18)

Misantla Totonac 4 Totonacan (4)
Mixtepec Zapotec 24 Oto-Manguean (24)

Ngadha 14 Austronesian (14)
Niuean 18 Polynesian (16), Synthetic (1), None (1)

Rapa Nui 37 Polynesian (30), Synthetic (3), None (4)
Seri 21 Isolate (6), Hokan (3), Synthetic (6), None (6)

Totonac 6 Totonacan (6)

I ABLATIONS WITH LLAMA-3.1-8B-INSTRUCT

We also examine the performance of another weak model, namely Llama-3.1-8B-Instruct. This
model achieves similar performance on the baseline experiments as Aya-35B, and despite not being
a specialized multilingual model like Aya, has seen 15T tokens of multilingual pre-training data, as
well as large volumes of multilingual SFT and post-training data, leveraging human annotations by a
constructed multilingual expert pre-trained model. We report these results in a 3x3 grid as in Section
4.2, where the model on the left side is the analogical exemplar generator, and the right hand side
is the model which applies inductively learned rules; this includes the self-generation (diagonal),
inference-time distillation, and weak-to-strong settings. Note that the results of the top left 2x2
(between GPT-4o and Llama-3.1-405B-Instruct) are the same as those reported in Section 4.2.

Table 15: The results of Table 2, mixing-and-matching the generator and deducer models, with
Llama-3.1-8B-Instruct in place of Aya-35B.

Generator
Deducer GPT-4o Llama-3.1-405B-Instruct Llama-3.1-8B-Instruct

GPT-4o 66.91% 71.69% 22.30%
Llama-3.1-405B-Instruct 67.28% 67.65% 19.12%
Llama-3.1-8B-Instruct 63.36% 70.96% 20.10%

Like Aya-35B, Llama-3.1-8B-Instruct does not improve with inference-time exemplar distillation.
However, despite smaller gains (4.2% over baseline) in the weak-to-strong setting with GPT-4o as
the deducer, we achieve nearly 71% with Llama-3.1-405B as the deducer. This further reinforces
the notion that Llama-3.1-405B is the strongest current model at inductive and deductive reasoning,
as it attains higher results than the next best model, GPT-4o, across all analogical generator models.
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J 1-STAGE ANALOGICAL PROMPTING

We study the 1-stage analogical prompting setting as posed in Yasunaga et al. (2024), where ana-
logical exemplars are generated and applied through the same instruction, all at once.

Table 16: Results with 1-stage analogical prompting (where both generation and application occur
through a single instruction).

Model 1-Stage Analogical Prompting

GPT-3.5-Turbo 2.21%
GPT-4 34.93%
GPT-4o 38.60%
Llama-3.1-8B-Instruct 3.31%
Llama-3.1-70B-Instruct 27.21%
Llama-3.1-405B-Instruct 22.43%
Mixtral-8x7B-Instruct 1.1%
Mixtral-8x22B-Instruct 34.56%

From our error analysis, we observe that even our strongest models such as GPT-4o are confused by
the 1-stage analogical reasoning prompt. That is, prompting models to identify the language family
of the test sample, identify multiple languages in that family, produce several puzzles of exemplars
translating to and from English to those languages such that they are sufficiently diverse from one
another, and apply all of the exemplars to the test puzzle made for an overloaded instruction. Split-
ting the instruction into 2 stages – generating analogical exemplars, then prompting with both the
provided and generated exemplars – is a natural solution. Evidently, as shown in Table 2, using
2-stage analogical prompting proves effective.
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