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Abstract

We present a super-resolution ultrasound approach based on direct deconvolution of single-
channel ultrasound radio-frequency (RF) signals with a one-dimensional dilated convolu-
tional neural network (CNN). Data are generated with a physics-based simulator that
simulates the echoes from a dense cloud of monodisperse microbubbles and captures the
full, nonlinear response of resonant, lipid-coated microbubbles. The network is trained
with a novel dual-loss function, which features elements of both a classification loss and a
regression loss and improves the detection-localization characteristics of the output. The
potential of the presented approach to super-resolution ultrasound imaging is demonstrated
with a delay-and-sum reconstruction with deconvolved ultrasound data. The resulting im-
age shows an order-of-magnitude gain in axial resolution compared to a delay-and-sum
reconstruction with unprocessed element data.

Keywords: Contrast-enhanced ultrasound, deconvolution, dilated convolutional neural
network, microbubbles, super-resolution.

1. Introduction

Recently, super-resolution ultrasound imaging with ultrasound localization microscopy (ULM)
has received much attention (Errico et al., 2015). In ULM, the microvasculature is imaged
by tracking sparsely distributed microbubbles (contrast agents) flowing through the capil-
laries. The low bubble concentration ensures the separation of their point spread functions
but results in long acquisition times. As ULM often relies on reconstructed images, much
of the information content in the raw ultrasound data is unused. Here, we present an al-
ternative approach based on direct deconvolution of unprocessed ultrasound RF data (i.e.
before image reconstruction). This is an extended abstract of a full paper that was recently
accepted for publication in IEEE Transactions on Medical Imaging (Blanken et al., 2022).
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Figure 1: a Generation of (1) 1D RF signals and (2) ground truth arrival times of bubble
echoes and (3) CNN training. b CNN architecture. c. Exponential expansion of
the receptive field Ni as a function of the number of convolutional layers L.

2. Methods

Figure 1 summarizes the methodology. We generate data for training, validation, and test-
ing with a simulator that simulates the nonlinear propagation of a plane wave emitted by a
multi-element transducer (1.7 MHz) and the resulting nonlinear response from a dense mi-
crobubble cloud. The arrival times of the individual microbubble echoes serve as 1D ground
truth data. The high sampling rate of 62.5 MHz allows for super-resolved microbubble lo-
calization. An RF signal U can be regarded as a convolution of the ground truth ¢ with an
individual microbubble echo (a variable convolution kernel). The RF signals contain up to
1000 microbubbles echoes, corresponding to an average echo overlap of 94%.

To recover ¢ from U, we use a dilated CNN (Figure 1). The fine signal sampling re-
sults in long signals (8446 grid points) with large-scale features, requiring a large receptive
field. A dilated CNN preserves translational equivariance and has a receptive field that in-
creases exponentially with network depth, without loss of resolution or coverage (Yu and
Koltun, 2016). The neural network is trained with a dual-loss function £ = e1L;(¢*, ¢*) +
£9DL(p!, ¢1), which is a linear combination of an L; regression loss and a Dice loss DL.
Here, ¢* are soft labels, generated by convolving ¢ with a Gaussian kernel, and ¢ are hard
labels, a binary version ¢. The hats denote predictions, and e; and e3 are tunable pro-
portionality constants. L; enforces a high degree of bubble localization on the predictions,
whereas DL enforces a high bubble detection rate.

3. Results

Figure 2a shows a typical example of an input RF signal, its ground truth bubble distribution
©, and the output ¢ of a trained model for this signal. For a quantitative analysis of the
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Figure 2: Example output in 1D and a beamformed 2D image.

network performance, see the full paper (Blanken et al., 2022). To demonstrate how a super-
resolved image can be reconstructed with deconvolved RF signals, we apply a trained model
to each RF signal independently and, subsequently, apply delay-and-sum (DAS) beamforming
to the deconvolved RF signals. For comparison, we also apply the delay-and-sum to the
unprocessed element data (standard B-mode image, Figure 2b). The super-resolved image
(Figure 2c) demonstrates the gain in localization accuracy achieved with our method.

4. Conclusion

The presented results demonstrate that the application of a convolutional neural network
to transducer element data is a promising path towards real-time, super-resolved imaging
of high-density microbubble populations.
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