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ABSTRACT

Link prediction is one important application of graph neural networks (GNNs).
Most existing GNNs for link prediction are based on one-dimensional Weisfeiler-
Lehman (1-WL) test. As pointed out by previous works, 1-WL-GNNs by nature
learn node-level representations thereby have poor expressive power on links. Some
node labeling methods relieve this weakness but introduce low efficiency. In this
paper, we study a completely different approach which directly obtain node pair
(link) representations based on two-dimensional Weisfeiler-Lehman (2-WL) tests.
2-WL tests directly use links (2-tuples) as message passing units instead of nodes,
and thus can directly obtain link representations. We theoretically analyze the
expressive power of 2-WL tests to discriminate non-isomorphic links, and prove
their superior link discriminating power than 1-WL. Based on different 2-WL
variants, we propose a series of novel 2-WL-GNN models for link prediction.
Experiments on a wide range of real-world datasets demonstrate their competitive
performance to state-of-the-art baselines.

1 INTRODUCTION

Link prediction is a key problem of graph-structured data (Al Hasan et al., 2006; Liben-Nowell
& Kleinberg, 2007; Menon & Elkan, 2011; Trouillon et al., 2016). It refers to utilizing node
characteristics and graph topology to measure how likely a link exists between a pair of nodes. Due
to the importance of predicting pairwise relations, it has wide applications in various domains, such
as recommendation in social networks (Adamic & Adar, 2003), knowledge graph completion (Nickel
et al., 2015), and metabolic network reconstruction (Oyetunde et al., 2017).

One class of traditional link prediction methods are heuristic methods, which use manually designed
graph structural features of a target node pair such as number of common neighbors (CN) (Liben-
Nowell & Kleinberg, 2007), preferential attachment (PA) (Barabási & Albert, 1999), and resource
allocation (RA) (Zhou et al., 2009) to estimate the likelihood of link existence. Another class
of methods, embedding methods, including Matrix Factorization (MF) (Menon & Elkan, 2011)
and node2vec (Grover & Leskovec, 2016), learn node embeddings from the graph structure in a
transductive manner, which cannot generalize to unseen nodes or new graphs. Recently, with the
popularity of GNNs, their application to link prediction brings a number of cutting-edge models (Kipf
& Welling, 2016; Zhang & Chen, 2018; Zhang et al., 2021; Zhu et al., 2021).

Most existing GNN models for link prediction are based on one-dimensional Weisfeiler-Lehman
(1-WL) test (Weisfeiler & Leman, 1968; Shervashidze et al., 2011). 1-WL test is a popular heuristic
for detecting non-isomorphic graphs. In each update, it obtains all nodes’ new colors by hashing their
own colors and multisets of their neighbors’ colors. Vanilla GNNs simulate 1-WL test by iteratively
aggregating neighboring node features to the center node to update node representations, which we
call 1-WL-GNNs. With the node representations, 1-WL-GNNs compute link prediction scores by
aggregating pairwise node representations. Graph Auto-encoder (GAE, and its variant VGAE) (Kipf
& Welling, 2016) is such a model. However, 1-WL-GNNs can only discriminate links on the “node”
level. This is illustrated by Figure 1 left: v2 and v3 are symmetric nodes in the graph thus having
the same representation by 1-WL-GNN, but links (v1, v2) and (v1, v3) are not symmetric. However,
1-WL-GNNs are unable to discriminate links (v1, v2) and (v1, v3), though (v1, v2) has a shorter path
between them than (v1, v3). Although positional node embeddings or random features can alleviate
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this problem, they fail to guarantee symmetrical links (such as (v1, v2) and (v4, v3)) to have the same
representation.

In order to surpass 1-WL, plenty of link prediction models apply node labeling inherently, including
SEAL (Zhang & Chen, 2018), Distance Encoding (Li et al., 2020), ID-GNN (You et al., 2021), and
some models for matrix completion (Zhang & Chen, 2020) and knowledge graph completion (Teru
et al., 2020). It raises expressive power from “node” to “link” level by breaking the symmetry
between the target node pair and other nodes during the message passing. Figure 1 middle and right
illustrated this effect. However, labeling also introduces a challenge. It requires repeatedly applying
GNN to a labeled subgraph for every link to predict thereby being inefficient. Therefore, we aim to
develop novel GNN models with both full-batch link prediction ability and higher expressive power
than 1-WL.
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Figure 1: 1-WL-GNNs cannot distinguish links
(v1, v2) and (v1, v3) in the left graph. With label-
ing trick, 1-WL-GNNs can distinguish them in their
respective labeled graphs (middle and right).

We propose a completely different paradigm
for link prediction. We construct GNNs based
on two-dimensional Weisfeiler-Lehman (2-
WL) tests, which we call 2-WL-GNNs. In
2-WL-GNNs, node pairs are used as the el-
emental message passing units so that link
representations are directly obtained. Figure 2
gives an illustration for a particular 2-WL al-
gorithm. We first theoretically study the link
discriminating power of different 2-WL test
variants, including the plain 2-WL, 2-FWL

(Folklore WL), and their newly proposed local version. We show that 2-WL, 2-FWL and local
2-FWL are strictly more expressive than 1-WL for link prediction, while local 2-WL has equivalent
power to 1-WL. Based on these 2-WL tests, we construct a series of 2-WL-GNN models. Despite
all using node pairs to propagate messages, these models have different aggregation schemes, link
discriminating power, time/space complexity, as well as drastically different implementations, which
we discuss in Section 4. Extensive experiments on multiple benchmark datasets verify 2-WL-GNNs’
power for link prediction. 2-WL-GNNs achieve highly competitive link prediction performance to
state-of-the-art models including SEAL (Zhang & Chen, 2018) and NBFNet (Zhu et al., 2021), while
using significantly less time.

In this paper, we aim to develop novel GNN models with both full-batch link prediction ability and
higher expressive power than 1-WL.

2 LINK-LEVEL TWO-DIMENSIONAL WEISFEILER-LEHMAN TESTS

In this section we introduce various 2-WL tests which directly use links as message passing unit, and
define their link-level expressive power. We denote a set by {·}, an ordered set (tuple) by (·) and a
multiset by {{·}} to have repeated elements. We use [n] to denote the set {1, 2, ..., n}.

2.1 k-DIMENSIONAL WEISFEILER-LEHMAN TESTS

k-dimensional WL test (k-WL) uses k-tuples of nodes as update unit. In each iteration, every k-tuple
updates its color from its newly-defined neighboring k-tuples. There are two variants of k-WL
algorithms: the plain k-dimensional WL (k-WL) and the k-dimensional Folklore WL (k-FWL) (Cai
et al., 1992; Grohe, 2017; Maron et al., 2019). Both k-WL and k-FWL update colors for k-tuples
s := (s1, s2, ..., sk) with s1, ..., sk being nodes.

k-WL defines neighborhood of k-tuple s as N(s) =
(
N1(s), N2(s), ..., Nk(s)

)
, where

Nj(s) =
{{
(s1, ..., sj−1, s

′, sj+1, ..., sk)|s′ ∈ [n]
}}
. (1)

k-FWL has a different definition of neighborhood. k-FWL defines the jth neighborhood of s as

NF
j (s) =

(
(j, s2, ..., sk), (s1, j, ..., sk), ..., (s1, ..., sk−1, j)

)
. (2)

And the full neighborhood of s is given by NF (s) = {{NF
j (s)|j ∈ [n]}}. Essentially, k-WL and

k-FWL have the same nk neighbor tuples but differ in how these nk tuples are ordered and grouped.
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Figure 2: This figure illustrates how local 2-FWL works for link prediction. It takes links as message
passing units. Given link (a, b) to predict, it aggregates four orange link pairs in the first iteration
(middle), where common neighbor d is learned. Then in the second iteration (right), it aggregates five
green link pairs through link (a, c), where a 3-path (a, e, c, b) between a, b is captured.

They result in different expressive power between k-WL and k-FWL. In previous work k-WL and k-
FWL’s discriminating power for graphs has been studied that k-FWL has equal graph discriminating
power to (k + 1)-WL which is strictly stronger than k-WL for k ≥ 2 (Cai et al., 1992; Grohe, 2017).

2.2 VARIANTS OF LINK-LEVEL WEISFEILER-LEHMAN TESTS

Link-level tasks require representation of one or several links within the whole graph. It is natural to
investigate the k = 2 case as link representation can be directly encoded by its color in test. We use
c(t)(e) to denote the color of link e := (p, q) ∈ [n]× [n] at iteration t. Then, c(t)(e) in 2-WL and
2-FWL tests is updated respectively by:

c(t)(e) = f
(
c(t−1)(e), {{c(t−1)(u, q)|u ∈ [n]}}, {{c(t−1)(p, v)|v ∈ [n]}}

)
, (3)

c(t)(e) = fF

(
c(t−1)(e), {{

(
c(t−1)(u, q), c(t−1)(p, u)

)
|u ∈ [n]}}

)
, (4)

where f, fF are injective functions. For unlabeled graphs, we can take c(0)(e) to be the indicator of
whether e exists in E. For labeled graphs, we additionally consider the initial node features.

When the initial representation for link (p, q) is its edge indicator, 2-FWL can count the common
neighbors between p, q by checking how many (1, 1) appear in the multiset. By iterating on the third
node u, it can actually learn all 3-node structures containing p, q.

Considering the space complexity and the locality of link prediction problems, we also propose local
version of 2-WL and 2-FWL tests:

c(t)(e) = fL
(
c(t−1)(e), {{c(t−1)(u, q)|(u, q) ∈ E}}, {{c(t−1)(p, v)|(p, v) ∈ E}}

)
, (5)

c(t)(e) = fL
F

(
c(t−1)(e), {{

(
c(t−1)(u, q), c(t−1)(p, u)

)
|(u, q) ∈ E or (p, u) ∈ E}}

)
, (6)

Figure ?? shows how local 2-FWL works. In brief, local version of tests only include neighbouring
links that are connected. It’s formally different from the local k-WL proposed in (Morris et al., 2019)

Note that such link-level WL test is different from graph-level tests as it directly output color of target
units without pooling all units together. Though there has been results of k-WL power on graph
isomorphism (Cai et al., 1992), The discussion of their link-level expressive power is still missing.

To compare the link discriminating power of 1-WL and different 2-WL variants, we first formally
define 1-WL-indistinguishable and 2-WL-indistinguishable.
Definition 2.1. (1-WL-indistinguishable) Let G = (V,E, l), G′ = (V ′, E′, l′) be two graphs,
and s = (s1, s2, ..., sk), s′ = (s′1, s

′
2, ..., s

′
k) be two equally sized node tuples, where sj ∈ V ,

s′j ∈ V ′, ∀ j ∈ [k]. Let c(t)(i) denote the color of node i after t steps of 1-WL update. If

(si, sj) ∈ E ⇐⇒ (s′i, s
′
j) ∈ E′, ∀i, j ∈ [k], and (7)

c(t)(sj) = c(t)(s′j), ∀j ∈ [k], ∀t ≥ 0, (8)

we say (s, G) is 1-WL-indistinguishable from (s′, G′), denoted by (s, G) ≃1-WL (s′, G′).

Note that we are more concerned with the case G = G′, |s| = |s′| = 2 , where we aim to discriminate
node pairs (links) on the same graph.
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Definition 2.2. (2-WL-indistinguishable) Given graphs G = (V,E, l), G′ = (V ′, E′, l′) and links
e = (p, q) ∈ V 2, e′ = (p′, q′) ∈ V ′2, c(t)(e) the color of e after t steps of 2-WL update, if

c(t)(e) = c(t)(e′), ∀t ≥ 0, (9)

we say (e, G) is 2-WL-indistinguishable from (e′, G′), denoted by (e, G) ≃2-WL (e′, G′).

Similarly, we can define indistinguishable property for other 2-WL variants that take links as update
units. Note that for 2-WL-indistinguishable, we only consider the link case, but it can be generalized
to arbitrary node tuples. Given Definition 2.1 and Definition 2.2, it is possible to compare the link
discriminating power between 1-WL and 2-WL tests. Below we formally define the relative link
discriminating power.

Definition 2.3. (Discriminating Power) Given two tests A and B, if A distinguishes (e, G) and
(e′, G′) only if B distinguishes (e, G) and (e′, G′) for any e, e′, G,G′, and there exists some
e1, e

′
1, G1, G

′
1 such that (e1, G1) is distinguishable from (e′1, G

′
1) by B but not by A , then we say

test B has stronger link discriminating power than test A , denoted by A ≺ B. If A distinguishes
(e, G) and (e′, G′) if and only if B distinguishes (e, G) and (e′, G′) for any e, e′, G,G′, we say
test A has equivalent link discriminating power to test B, denoted by A ∼ B.

The set of all link-level tests becomes a partially ordered set with relation ≺. Now we are able to
compare the link expressive power between 1-WL and 2-WL variants.

3 THE POWER OF 2-WL TESTS FOR LINK PREDICTION

In this section we theoretically characterize the link discriminating power of different 2-WL tests by
comparing them with each other and 1-WL. We summarize our results in Table 1.

3.1 2-WL AND 2-FWL TESTS HAVE STRONGER LINK DISCRIMINATING POWER THAN 1-WL

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

Figure 3: Non-isomorphic links
(v1, v2) and (v3, v4) from their
respective graphs can be discrim-
inated by 2-WL but not by 1-
WL. 2-WL can capture global
features like graph size but 1-WL
only captures local structures.

We use 2-WL to specifically denote its plain version defined in (3),
and 2-FWL to denote the Folklore version defined in (4). We have
the following theorems.

Theorem 3.1. 2-WL has stronger link discriminating power than
1-WL.

Theorem 3.2. 2-FWL has stronger link discriminating power than
2-WL.

Theorem 3.1 is proved by Theorem 3.3 and the example displayed
in Figure 3. The proof of Theorem 3.2 is included in appendix.
The two theorems directly derive that 1-WL≺ 2-WL≺ 2-FWL.
2-WL is strictly stronger than 1-WL on the link level because
it still maintains the ability to capture global structure like un-
connected component and the number of nodes rather than 1-
WL. However, 2-WL still cannot discriminate links like (v1, v2)

and (v1, v3) in Figure 1 or count common neighbors as the two branches of neighboring links
{{(u, q)|u ∈ [n]}}, {{(p, v)|v ∈ [n]}} from (p, q) are still independently aggregated. 2-FWL integrates
links (u, p) and (p, v) as (u, v)’s neighbours, therefore it has stronger link expressive power.

3.2 THE LINK DISCRIMINATING POWER OF LOCAL 2-WL AND LOCAL 2-FWL

2-WL and 2-FWL have higher link discriminating power than 1-WL. However, they also bring higher
time and space complexity. Given a graph G = (V,E) where |V | = n and |E| = m, 1-WL takes
O(m) time complexity in each iteration and occupies O(n) memory. For 2-WL, it requires O(n2)
memory and O(n3) time for each iteration, which is unaffordable for large-scale graphs.

The local version of 2-WL and 2-FWL test denoted by 2-WLL and 2-FWLL relieve this question.
They reduce the neighborhood scope from global to local thereby leveraging the graph sparsity and
reducing the complexity. The following theorem characterizes local 2-WL’s discriminating power.
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Theorem 3.3. 2-WLL has equivalent link discriminating power to 1-WL.

The whole proof is included in the appendix. The main idea is to establish an bijective mapping
between the subtrees of 1-WL and those of 2-WLL. Intuitively, the two neighborhoods of e = (p, q)
exactly correspond to the neighborhood of q and p in 1-WL.

Now we characterize the expressive power of 2-FWLL.

Theorem 3.4. 2-FWLL has stronger link discriminating power than 2-WLL but lower than 2-FWL.

The proof is included in the appendix. The rationale is similar that 2-FWLL test groups neighbor
links by the shared nodes u, thus capturing higher-order information than 2-WLL, and that 2-FWLL

integrates only local information than 2-FWL.

Table 1: The below matrix shows relative link dis-
criminating power of different tests, where ∼ de-
notes equal power, ≺ denotes weaker power, and -
denotes that both are not weaker than the other.

1-WL 2-WLL 2-WL 2-FWLL 2-FWL
1-WL ∼ ∼ ≺ ≺ ≺
2-WLL ∼ ≺ ≺ ≺
2-WL ∼ - ≺

2-FWLL ∼ ≺
2-FWL ∼

Summarizing previous results, we depict a full
picture of the relative link discriminating power
of all the tests in Table 1. In general, the origi-
nal 2-WL tests are stronger than their local ver-
sions, and the Folklore versions are stronger
than the plain versions. All 2-WL tests except
the 2-WLL are stronger than 1-WL. Although
the local versions are less powerful, they bring
significant complexity reduction, as well as pos-
sibly more robustness and better generalizability
for link prediction due to their focus on local
structure patterns. Our experiments verify that local versions are usually not worse.

4 IMPLEMENTATION BY GNN MODELS

We first use 1-WL-GNN to learn node embeddings with the raw node features inspired by (Morris
et al., 2019). If raw node features don’t exist, we take embeddings of node degrees to keep the
inductive property of our model. Then, we obtain the initial link representations by pooling the
pairwise node embeddings. Then we implement four link-level 2-WL tests through GNNs in a totally
different way due to different neighborhood aggregation form and goal of complexity reduction.

4.1 GNN IMPLEMENTATION OF 2-WL

Constructing a complete graph and apply traditional graph convolutions suffers from O(n3) time
complexity is unaffordable for large graphs. Therefore, we construct our own aggregation and
combination functions. We group the link representations in the tth step into an n×n× r tensor A(t),
where the p, q indexed vector A(t)

p,q,: is the representation of link (p, q). For A(0), we also include the
adjacency matrix as one slice. Then A(t+1) is computed by:

B(t)
p,q,: = concat

( ∑
i∈[n]

g(A
(t)
p,i,:),

∑
i∈[n]

h(A
(t)
i,q,:)

)
, (Aggregation) (10)

A(t+1) = f
(
concat(B(t), A(t))

)
, (Combination) (11)

where f, g, h are MLPs. Given the ordered node pair (p, q), in each layer we apply two distinct
transformations g and h to respectively aggregate its neighbors {{(u, q)|u ∈ [n]}}, {{(p, v)|v ∈ [n]}}.
Directly operating on the dense link representations A saves us from explicitly constructing the
complete graph, and allows using MLP to implement the model. The whole algorithm takes O(n2r2)
time and O(n2r) memory.

4.2 GNN IMPLEMENTATION OF 2-WLL

Local 2-WL is realised differently from 2-WL. Due to the reduced neighborhood, it is possible
to leverage the graph sparsity to save memory and time. In training period, let S be the mini-
batch containing all positive and negative target links to predict, E′ be the existing edges in the
original graph (after removing the positive training links). Then we construct a second-order graph
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GS := (E′ ∪ S,E(2)), where E(2) denotes “edges” between E′ ∪ S based on the neighborhood
definition of 2-WLL. We then apply graph convolution on GS to obtain node representations for S
which are used to output their link prediction scores in the original graph. The second-order graph has
O((|E′|+ |S|)d) edges, where d is the max node degree in the original graph. Therefore, the time
complexity of message passing follows to be O((|E′|+ |S|)dr2), where r is the hidden dimension.
Memory efficiency is also largely improved to O((|E′|+ |S|)r).

4.3 GNN IMPLEMENTATION OF 2-FWL

The situation becomes a bit more complex for 2-FWL. The join of two links is difficult to implement
by standard graph convolution layers. Thus, we apply a model similar to that proposed in Maron et al.
(2019). In each layer, we apply slice-wise matrix multiplication of two reshaped link representation
tensors to implement the 2-FWL message passing.

B(t)
p,q,: =

∑
i∈[n]

g(A
(t)
p,i,:)⊙ h(A

(t)
i,q,:), (Aggregation) (12)

A(t+1) = f
(
concat(B(t), A(t))

)
, (Combination) (13)

where ⊙ is element-wise product and f, g, h are MLPs. The above implementation first joins link
representations of (p, i) and (i, q) through element-wise product, and then performs the aggregation
through summing. We also add adjacency matrix into the first layer.

Because 2-FWL uses batched matrix multiplication, it has time complexity O(n3r+n2r2) and space
complexity O(n2r), with r the third dimension of A(t). It seems to be slower than 2-WL model, but
batched matrix multiplication can be efficiently computed in practice.

4.4 GNN IMPLEMENTATION OF 2-FWLL

For local 2-FWL, the implementation is the same as 2-FWL except that we replace the dense matrix
multiplications in Equation (12) with sparse matrix multiplications, i.e., initially only those entries
A

(0)
p,q,: corresponding to existing edges (p, q) ∈ E have nonzero values, and at the tth message passing

step we still only track those nonzero p, q entries. We also concatenate n× n× 1 adjacency matrix
to embedding in each layer.

Note that this implementation doesn’t perfectly follow the definition of 2-FWLL in (6) and therefore
cannot learn representations for all (intermediate) links (which may fails to cover questioned links).
Thus, we concatenate the final link representations with node-pair representations learned by a 1-WL-
GNN to give a nonzero representation to any questioned link. Although this implementation does
not preserve the full representation power of 2-FWLL, it can still learn common neighbor and path-
counting features between nodes, and most importantly, it significantly reduces the space complexity
from O(n2r) to O(mdlr), with d max node degree, l number of layers, r hidden dimension.

5 RELATED WORK

Weisfeiler-Lehman tests are a family of algorithms to deal with the graph isomorphism problem (Cai
et al., 1992). In addition to graph isomorphism checking, they have found many applications in
machine learning recently (Morris et al., 2021). Shervashidze et al. (2011) use the idea to construct
subtree-based graph kernels. Niepert et al. (2016) and (Zhang & Chen, 2017b) use WL to sort nodes
and construct neural networks for graphs. Vanilla GNNs have also been shown to have limited graph
discriminating power bounded by 1-WL (Xu et al., 2019). Many works focus on how to improve
GNNs’ power by considering high-dimensional WL tests. Morris et al. (2019) introduce GNN models
simulating 2-WL and 3-WL tests. Maron et al. (2019); Chen et al. (2019b) achieve the same graph
discriminating power as 3-WL with a 2-FWL based model. However, these works all deal with
the whole-graph representation learning problem. Little work has been done in the link prediction
context. The graph-level tasks mainly work on small graph when encoding high-order graph structure,
but graphs for link prediction can be extremely large and more attention should be put on their
local property. Therefore whether the 2-WL based models work well in link-level tasks and how to
design their variants to adapt to the locality are valuable questions. In this work, we also for the first
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time demonstrate both the theoretical and practical power of 2-WL-based GNNs for link prediction,
therefore filling in this blank area.

In the community of using GNN models for link-oriented tasks, various techniques have been
proposed to enhance their theoretical power. SEAL (Zhang & Chen, 2018) utilizes a distance-based
node labeling trick to label the context nodes according to their relationships to the target link, which
is later formalized into distance encoding (Li et al., 2020). Zhang et al. (2021) further proved that
such a labeling trick brings theoretical improvement to GNNs’ link discriminating power. However,
using labeling tricks requires extracting a subgraph for each link and repeatedly applying GNN to the
subgraphs, which incurs high computational complexity and prevents full-batch learning. In contrast,
our models aim to still apply GNN only once to the entire graph like the traditional GAE methods,
while outperforming GAE in terms of link discriminating power. NBFNet (Zhu et al., 2021) uses
a type of partial labeling trick which only labels the source node and applies a GNN to predict all
links from the source node. Although it does not need to extract a subgraph for every link, it needs to
apply a GNN to a large graph for each source node and suffers from low training efficiency. On the
basis of SEAL, Pan et al. (2022) encode a transition matrix serving as a form of pairwise encoding
for each link in the subgraph. However, it still requires extracting subgraphs for all links to predict.

Given original graph G, line graph L(G) represents the adjacency between edges. In L(G), each
node corresponds to a unique edge in G. By using node representation learning methods (Kipf &
Welling, 2017) on the line graph, some methods (Zhu et al., 2019; Chen et al., 2019a; Jiang et al.,
2019; Cai et al., 2021; Liu et al., 2021) can utilize edge features and topology better, which have
achieved outstanding performance on graph tasks like heterogeneous graph learning, community
detection, graph classification, and link prediction. Using 1-WL-GNNs on line graphs is similar to
local 2-WL. However, none of these previous works have noticed the connection between line graph
and 2-WL tests. Furthermore, more expressive variants like 2-FWL are not studied.

6 EXPERIMENTS

In this section, we conduct experiments to verify the effectiveness of 2-WL-GNNs for link prediction.
We test 2-WL-GNNs based on the proposed four tests: 2-WL, local 2-WL (2-WLL), 2-FWL, and
local 2-FWL (2-FWLL). Since these methods do message passing among two-node tuples rather than
sets, they can do prediction tasks on both homogeneous graph data and knowledge graph data. To
predict the edge between nodes p, q in former condition, we simply pool (p, q) and (q, p)’s embedding
to obtain {p, q}’s embedding as the prediction score. Hyperparameters include learning rate, hidden
dimension, number of message passing layers, and dropout rate. Baseline results are taken from
(Zhang & Chen, 2018), (Liu et al., 2021) and (Zhu et al., 2021).

6.1 HOMOGENEOUS GRAPH LINK PREDICTION

The baseline methods we choose are Matrix Factorization (MF) (Mnih & Salakhutdinov, 2008),
Node2Vec (N2V) (Grover & Leskovec, 2016), Weisfeiler-Lehman Neural Machine (WLNM) (Zhang
& Chen, 2017a), TLC-GNN (Yan et al., 2021), 1-WL-GNNs including VGAE (Kipf & Welling, 2016)
and S-VGAE (Davidson et al., 2018), and labeling trick methods including SEAL (Zhang & Chen,
2018), NBFNet (Zhu et al., 2021), WalkPool (Pan et al., 2022) and Neo-GNN (Yun et al., 2021). We
use eleven benchmark datasets. Three of them are citation networks with node feature information:
Cora, CiteSeer and Pubmed (Sen et al., 2008). The other eight datasets are: USAir, NS, PB, Yeast,
C.ele, Power, Router, and E.coli from SEAL, which are networks from different domains and do not
contain node features. For each network, we randomly choose 10% edges as test set and 5% edges
as validation set. The remaining are treated as the observed training graph. The same number of
randomly sampled nonexistent links are added into each set as the negative data. The performance
metric is area under the ROC curve (AUC). We run each model for 10 times and report the average
performance and standard deviations.The results are presented in Table 2 and 3.

According to the results, our 2-WL-GNNs achieve generally better performance than the baseline
models. Specifically, the 2-WL and 2-WLL models perform competitively with SEAL on a large
number of datasets and the 2-FWL and 2-FWLL models obtain overall better results than SEAL. On
citation networks our models also achieve competitive results among recent methods. As displayed
in Table 3, 2-FWL achieves a new state-of-the-art result of 96.44 on Citeseer. On Cora and Pubmed,
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Table 2: Performance on eight networks without node features
Dataset MF N2V VGAE WLNM SEAL 2-WL 2-WLL 2-FWL 2-FWLL

USAir 94.08±0.80 91.44±1.78 89.28±1.99 95.95±1.10 97.09±0.70 92.86± 1.08 94.65± 0.99 98.10± 0.42 96.06± 0.51
NS 74.55±4.34 91.52±1.28 94.04±1.64 98.61±0.49 97.71±0.93 97.15± 0.78 95.79± 0.73 98.85± 0.43 99.49± 0.12
PB 94.30±0.53 85.79±0.78 90.70±0.53 93.49±0.47 95.01±0.34 93.61± 0.54 95.10± 0.48 94.07± 0.47 94.71± 0.54

Yeast 90.28±0.69 93.67±0.46 93.88±0.21 95.62±0.52 97.20±0.64 95.76± 0.54 95.33± 3.34 97.82± 0.21 97.44± 0.25
Cele 85.90±1.74 84.11±1.27 81.80±2.18 86.18±1.72 86.54±2.04 81.72± 2.15 83.34± 2.35 91.25± 3.82 88.68± 1.34

Power 50.63±1.10 76.22±0.92 71.20± 1.65 84.76±0.98 84.18±1.82 74.10± 1.90 81.02± 1.25 72.21± 1.16 85.60±0.67
Router 78.03±1.63 65.46±0.86 61.51±1.22 94.41±0.88 95.68±1.22 96.02± 0.61 96.68± 0.50 95.34± 0.79 94.91±0.64
Ecoli 93.76±0.56 90.82±1.49 90.81±0.63 97.21±0.27 97.22±0.28 96.12± 0.48 96.51± 0.28 98.42± 0.21 97.03± 0.57

Table 3: Performance on citation networks with node features. OOM: Out of memory.
Dataset VGAE S-VGAE TLC-GNN SEAL NBFNet WalkPool Neo-GNN 2-WL 2-WLL 2-FWL 2-FWLL

Cora 91.4 94.1 93.4 93.3 95.6 96.0 96.2 93.15±1.17 95.33± 0.50 96.03±0.52 95.81±0.60
Citeseer 90.8 94.7 90.9 90.5 92.3 96.0 95.5 94.45±1.01 92.10± 0.79 95.28± 0.76 96.44±0.67
Pubmed 94.4 96.0 97.0 97.8 98.3 98.6 99.2 OOM 98.66± 0.16 OOM 98.69±0.09

2-FWL and 2-FWLL also obtain second best results respectively. Their competitive performance
verifies the effectiveness of directly using links as message passing units to learn their representations.

Theoretically, both labeling trick methods and 2-FWL models are more expressive than 1-WL models
like VGAE and S-VGAE, which is reflected in their performance comparisons. However, we found
even 2-WL and local 2-WL models can sometimes outperform 1-WL-GNNs by large margins,
especially on networks without node features. This might be explained by that the direct learning
of link representations and the message passing along edge adjacency might capture better edge
topology than node-centered methods. Furthermore, we found that the global versions 2-WL and
2-FWL do not always achieve better performance than their local versions 2-WLL and 2-FWLL,
despite being theoretically more powerful. This might be because the local versions focus more on
local neighborhood around links, which is proved to contain the most useful information for link
prediction (Zhang & Chen, 2018). Considering the significantly larger memory requirement (OOM in
Pubmed), we recommend to use the local versions in most cases due to their efficiency and scalability.

6.2 KNOWLEDGE GRAPH COMPLETION

we conduct an additional experiments to test 2-WL-GNNs’ link prediction performance on inductive
knowledge graph completion (KGC). We adopt two datasets, FB15K-237 and WN18RR from
(Teru et al., 2020) to evaluate the performance. Each dataset includes four versions v1 to v4 with
increasing sizes. The baselines we use are state-of-the-art inductive KGC methods including R-
GCN (Schlichtkrull et al., 2017), GraIL (Teru et al., 2020), and a recent line-graph-based model
INDIGO (Liu et al., 2021). We compare them with our GNN implementations of 2-WLL and
2-FWLL using three metrics: accuracy (ACC), area under the ROC curve (AUROC) and Hits@3.
The results are given in Table 4. Best and second-to-best results are in bold and with underlines
respectively.

As we can see, 2-FWLL generally achieves the strongest performance with 17 highest metric
numbers out of 24, and 3 second-to-best metric numbers among the remaining. This again verifies
the higher link expressive power brought by the 2-FWL tests. On the other hand, 2-WLL and
INDIGO perform competitively too. As discussed in the related work, INDIGO can be understood
as a special implementation of local 2-WL by leveraging line graphs. The excellent performance of
2-WL methods further verifies the advantage of directly learning link representations. Specifically,
we notice that these link-centered methods have much higher Hits@3 than the other node-centered
baselines, indicating that link-centered methods are better at ranking the correct links at the top. This
is especially important in real-world applications where we can only focus on top-ranked predictions.

6.3 TIME COMPLEXITY ANALYSIS

Finally, we compare time complexity between local 2-WL models and labeling trick methods. For
each model, we record the time to train an epoch as training, and the computation of prediction scores
for all links of test set as the inference time. We use the default batch size: 10% of the number of
all existed links in 2-WL models, 32 in SEAL (dynamic train/test), (64, 64, 16) for Cora, Citeseer,
Pubmed respectively in NBFNet. Table 5 summarize the results. Best and second-to-best results are
in bold and with underline, respectively. The performance demonstrates that 2-WL based models
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Table 4: Performance on KG datasets (%). Higher the better.
FB15K-237 WN18RR

v1 v2 v3 v4 v1 v2 v3 v4

ACC

R-GCN 51.0 51.3 54.9 52.1 50.2 52.7 52.2 48.4
GraIL 69.0 80.0 81.0 79.3 88.7 81.2 75.7 86.4

INDIGO 84.3 89.3 89.0 87.8 85.7 85.8 84.3 85.4
2-WLL 85.7 93.2 90.0 91.1 84.7 86.5 79.9 86.8
2-FWLL 90.7 94.7 93.9 91.8 84.7 86.7 81.5 88.7

AUROC

R-GCN 51.0 50.5 50.5 52.6 49.0 49.8 53.1 50.2
GraIL 78.6 90.0 93.1 89.5 92.3 92.7 82.8 94.4

INDIGO 93.4 96.3 96.6 95.8 91.2 92.5 92.4 94.7
2-WLL 87.9 95.7 96.9 97.7 88.5 93.3 86.6 89.1
2-FWLL 95.3 98.2 97.5 96.6 92.8 93.3 85.9 95.4

Hits@3

R-GCN 2.4 3.4 3.5 3.3 2.1 11.0 24.5 8.1
GraIL 1.0 0.4 6.6 3.0 0.6 10.7 17.5 22.6

INDIGO 53.1 67.6 66.5 66.3 98.4 97.3 91.9 96.1
2-WLL 70.8 79.0 79.5 79.8 97.8 96.1 83.7 96.2
2-FWLL 71.5 84.2 81.7 78.3 97.4 96.6 85.2 97.3

Table 5: Time complexity comparison.
Training Time Inference Time

Dataset 2-WLL 2-WL 2-FWLL 2-FWL SEAL NBFNet 2-WLL 2-WL 2-FWLL 2-FWL SEAL NBFNet

Cora 0.54s 4.59s 9.18s 6.03s 8.44s 48.38s 0.007s 0.29s 1.45s 0.16s 2.30s 1.94s
Citeseer 0.90s 4.32s 5.85s 4.41s 7.69s 49.15s 0.006s 0.59s 0.74s 0.24s 2.11s 1.80s
Pubmed 13.05s OOM 38.43s OOM 59.67s 3000s 0.05s OOM 3.9s OOM 15.4s 95s

have significantly lower time complexity than labeling trick methods. This is because local 2-WL
models can predict all the target links by applying the GNN once to the entire graph, while labeling
trick methods require repeatedly applying GNNs to a labeled graph for every target link or source
node to predict. 2-FWLL is relatively slower due to inefficient sparse matrix operation, but it brings
space efficiency.

6.4 LIMITATIONS

A notable problem for 2-WL models is its scalability. Although we purpose local version of the plain
2-WL models, they still suffers from high space complexity and relatively low performance when
dealing with large and dense dataset. On Power and Router with nearly 5000 nodes, our models
perform not much better than baselines. On Pubmed with 19717 nodes and 44324 edges, 2-WL and
2-FWL used up 48GB memories and their local versions fail to outperform Neo-GNN. All of our
models cannot work on OGBL dataset due to the large size. One possible solution is using graph
partition. Despite such weakness, 2-WL models obtain remarkable performance on small graph and
speed advantages.

7 CONCLUSIONS

This work studies a novel method for link prediction based on two-dimensional Weisfeiler-Lehman
graph neural networks. The problems with the prevalent 1-WL based models is long-standing. Even
though node labeling fundamentally improve the theoretical power, it brings low efficiency in training
and inference process. 2-WL-GNN can resolve both challenges. Free of any labeling, it doesn’t
break the symmetry of the whole graph thereby having a unique speed advantage. Meanwhile, we
theoretically characterize the link discriminating power of different 2-WL variants, and show that
except local 2-WL, all other tests have stronger power than 1-WL. Besides, we further construct
a series of GNNs implementing the 2-WL tests. They follows our proposed 2-WL’s patterns and
successfully exploit their expressive power. Experiments on multiple benchmark datasets show the
effectiveness of 2-WL-GNNs for link prediction. Despite scalability problems for large dataset, our
results shows their impressive performance on small dataset in different tasks. More importantly, we
present a novel paradigm for link prediction with distinctive advantages, producing new direction to
discover.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230,
2003.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. Link prediction using
supervised learning. In SDM06: workshop on link analysis, counter-terrorism and security,
volume 30, pp. 798–805, 2006.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph neural
networks. In International Conference on Learning Representations, 2019a.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019b.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak. Hyperspherical
variational auto-encoders. In Uncertainty in Artificial Intelligence, pp. 856–865. AUAI Press,
2018.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching
in graph neural networks. In Sarit Kraus (ed.), International Joint Conference on Artificial
Intelligence, pp. 2656–2662, 2019.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of
the American society for information science and technology, 58(7):1019–1031, 2007.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive
knowledge graph completion using pair-wise encoding. Advances in Neural Information Processing
Systems, 34, 2021.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

10



Under review as a conference paper at ICLR 2023

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Joint european
conference on machine learning and knowledge discovery in databases, pp. 437–452. Springer,
2011.

Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In Advances in neural
information processing systems, pp. 1257–1264, 2008.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, pp. 4602–4609, 2019.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
Matthias Fey, and Karsten M. Borgwardt. Weisfeiler and leman go machine learning: The story so
far. CoRR, abs/2112.09992, 2021.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine learning, pp. 2014–2023. PMLR, 2016.

Tolutola Oyetunde, Muhan Zhang, Yixin Chen, Yinjie Tang, and Cynthia Lo. Boostgapfill: improving
the fidelity of metabolic network reconstructions through integrated constraint and pattern-based
methods. Bioinformatics, 33(4):608–611, 2017.
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A PROOF OF THEOREM 3.3

Theorem: 2-WLL has the same discriminating power as 1-WL for link prediction.

Proof. We measure the link discriminating power by constructing subtrees. Given an undirected
graph G = (V,E, l), p, q ∈ V , denote edge indicator of (p, q) as 1(p,q) and let TA , TB be mappings
from sets of graph-link tuples

(
G, (p, q)

)
to sets of tree-structured graphs with infinite depth, which

are defined as follows.

For graph G, p, q ∈ G, |G| = n. TA

(
G, (p, q)

)
has a root (p, q) labeled as

(
l(p), l(q), 1(p,q)

)
with

two branches of child nodes {(p, i) : (p, i) ∈ E, i ∈ [n]} and {(j, q) : (j, q) ∈ E, j ∈ [n]} in the left
and right side, respectively. For every child node (r, s), it is labeled as

(
l(r), l(s)

)
. Its child nodes

and their labels are defined in the same way recursively.

TB

(
G, (p, q)

)
has a root

(
p, q, 1(p,q)

)
which is labeled as

(
l(p), l(q)

)
. It has two branches of child

nodes: {i : (p, i) ∈ E, i ∈ [n]} on the left and {j : (j, q) ∈ E, j ∈ [n]} on the right. In the following
layers node k has children {l : (k, l) ∈ E, l ∈ [n]}. Node k is labeled in the graph as l(k).

Then we define an equivalent class across the tree-structured graphs: Denote ET = {(prec, next, br) :
next is the child node of prec in branch br in tree T}. If there is a bijective mapping π from nodes
of a finite-depth tree T1 (denoted by V (T1)) to nodes of a finite-depth tree T2 (denoted by V (T2)) such
that 1) l(i) = l

(
π(i)

)
,∀i ∈ V (T1), 2) (i, j, br) ∈ ET1

⇐⇒
(
π(i), π(j), br

)
∈ ET2

,∀i, j ∈ V (T1),
we say T1 is equivalent to T2, denoted as T1 ≃ T2.

Let T |k refer to the mapping that T |k(G, e) is the first k layers of subtree T (G, e). We define that
two infinite-depth trees T1, T2 satisfy T1 ≃ T2 if and only if T1|k ≃ T2|k,∀k ∈ N.

Given the well defined equivalent class and Definition 2.1, we notice that TA , TB depict the process
of local 2-WL and 1-WL test, that is,(

(p, q), G
)
≃2-WLL

(
(p′, q′), G′) ⇐⇒ TA

(
G, (p, q)

)
≃ TA

(
G′, (p′, q′)

)
(14)(

(p, q), G
)
≃1-WL

(
(p′, q′), G′) ⇐⇒ TB

(
G, (p, q)

)
≃ TB

(
G′, (p′, q′)

)
(15)

Therefore the statement that local 2-WL and 1-WL has equivalent link discriminating power equals
to that ∀(G, e), (G′, e′),

TA (G, e) ≃ TA (G′, e′) ⇐⇒ TB(G, e) ≃ TB(G′, e′). (16)

According to our definition, we need to prove that for ∀k ∈ N,
TA |k(G, e) ≃ TA |k(G′, e′) ⇐⇒ TB|k(G, e) ≃ TB|k(G′, e′), ∀(G, e), (G′, e′) (17)

For k = 0, we have TA |0(G, e) ≃ TA |0(G′, e′) ⇐⇒ l(p) = l(p′), l(q) = l(q′), 1(p,q) =
1(p′,q′) ⇐⇒ TB|0(G, e) ≃ TB|0(G′, e′)

Suppose (15) works for k = L, let’s consider the situation of k = L+ 1:

Denote {i1, i2, ..., inp
}, {j1, j2, ..., jnq

} as neighbors of p, q in G, and {i′1, i′2, ..., i′np′
},

{j′1, j′2, ..., j′nq′
} as neighbors of p′, q′ in G′, respectively. According to the property of local 2-WL

test, if TA |L+1(G, e) ≃ TA |L+1(G
′, e′), we have l(p) = l(p′), l(q) = l(q′), np = np′ , nq = nq′

and w.l.o.g.
TA |L(G, (p, is)) ≃ TA |L(G′, (p′, i′s)), ∀s ∈ [np] (18)

TA |L(G, (jt, q)) ≃ TA |L(G′, (j′t, q
′)), ∀t ∈ [nq] (19)

Since (15) works for k = L, we have
TB|L

(
G, (p, is)

)
≃ TB|L(G′, (p′, i′s)), ∀s ∈ [np] (20)

TB|L
(
G, (jt, q)

)
≃ TB|L

(
G′, (j′t, q

′)
)
, ∀t ∈ [nq] (21)

According to property of 1-WL test, (18), (19) mean TB|L+1

(
G, (p, q)

)
and TB|L+1

(
G′, (p′, q′)

)
have m + n correspondingly isomorphic L-depth branches. Plus l(p) = l(p′), l(q) = l(q′) we
conclude TB|L+1

(
G, (p, q)

)
≃ TB|L+1

(
G′, (p′, q′)

)
. The other direction can be similarly proved.

Figure 4 gives an illustration.
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Figure 4: Update patterns of 2-WLL and 1-WL test, and their corresponding mappings from (G, e)
to subtrees in our proof. We can build a one-to-one mapping between subtrees of 2-WLL and 1-WL.
We show only part of subtrees.

B PROOF OF THEOREM 3.2 AND THEOREM 3.4

Theorem: 2-FWL has stronger link discriminating power than 2-WL.

Proof. Let TC , TD be mappings from sets of graph-link tuples to sets of tree-structured graphs with
infinite depth.

For graph G = (V,E, l), p, q ∈ V , |G| = n. TC

(
G, (p, q)

)
has a root (p, q) labeled as(

l(p), l(q), 1(p,q)
)

with two branches of child nodes
{
(p, i) : i ∈ [n]

}
and

{
(j, q) : j ∈ [n]

}
on the left and right side, respectively. For every child node (r, s), its child nodes are defined in the
same way recursively. Node (r, s) is labeled as

(
l(r), l(s), 1(r,s), 1{r=s}

)
.

TD

(
G, (p, q)

)
has root (p, q) labeled as

(
l(p), l(q), 1(p,q)

)
. It has n child nodes

{(
(p, i), (i, q)

)
|i ∈

[n]
}

. Node
(
(p, r), (r, q)

)
is labeled as

(
l(p), l(r), l(q), 1{(p,r)∈E}, 1(r,q), 1{p=r}, 1{r=q}

)
which

has two branches of child nodes
{(

(p, t), (t, r)
)
|t ∈ [n]

}
and

{(
(r, s), (s, q)

)
|s ∈ [n]

}
. Each of

them has its label and child nodes defined in the same way recursively.

Therefore TC and TD depict the process of 2-WL and 2-FWL tests. After defining the equivalent
class of tree-structured graph as in the proof of Theorem 3.3, we have(

G, (p, q)
)
≃2-WL

(
G′, (p′, q′)

)
⇐⇒ TC (G, (p, q)) ≃ TC

(
G′, (p′, q′)

)
(22)(

G, (p, q)
)
≃2-FWL

(
G′, (p′, q′)

)
⇐⇒ TD(G, (p, q)) ≃ TD

(
G′, (p′, q′)

)
(23)

Let T |k refer to the mapping such that T |k(G, e) is the first k layers of subtree T (G, e). We will
prove that for ∀k ∈ N,

TD |k(G, e) ≃ TD |k(G′, e′) ⇒ TC |k(G, e) ≃ TC |k(G′, e′), ∀(G, e), (G′, e′) (24)

Fix (G, e), (G′, e′), G = (V,E, l), G′ = (V ′, E′, l′). Let n = |V |, n′ = |V ′|. When k = 0,
TD |0(G, e) ≃ TD |0(G′, e′) ⇒ l(p) = l(p′), l(q) = l(q′), 1(p,q) = 1(p′,q′) ⇒ TC |0(G, e) ≃
TC |0(G′, e′)

Suppose (24) is true for k = L,L ≥ 0. Let’s consider the situation of k = L + 1. According to
the property of 2-FWL test, if TD |L+1(G, e) ≃ TD |L+1(G

′, e′), we immediately have n = n′ and
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A

F

E

C

B

D

A′

F’

E′

C′

B′

D′

Figure 5: This figure contains two counterexample. First, links (A,B) and (A′, E′) cannot be
distinguished by plain 2-WL but can be distinguished by (local) 2-FWL and 1-WL with 0/1 labeling
trick. In fact due to high node-level symmetry 2-WL cannot detect difference between any connected
link pairs or unconnected link pairs. The labeling trick breaks such symmetry and help 1-WL to
capture the difference of two graph’s structure. If (C,D) and (C ′, D′) are target node pairs, 0/1
labeling trick no longer works. However, 2-FWL and local 2-FWL still work (because (D,E) and
(D′, E′) will have different representations). They can capture triple structure as 3-WL test does.

w.l.o.g.

l(i) = l(i′), ∀i ∈ [n] (25)
1(p,i) = 1(p′,i′), ∀i ∈ [n] (26)

1(i,q) = 1(i′,q′), ∀i ∈ [n] (27)(
TD |L

(
G, (p, i)

)
, TD |L

(
G, (i, q)

))
≃

(
TD |L

(
G′, (p′, i′)

)
, TD |L

(
G′, (i′, q′)

))
, ∀i ∈ [n] (28)

Then we have

TD |L
(
G, (p, i)

)
≃ TD |L

(
G′, (p′, i′)

)
, ∀i ∈ [n] (29)

TD |L
(
G, (j, q)

)
≃ TD |L

(
G′, (j′, q′)

)
, ∀j ∈ [n] (30)

Due to that (24) is true for k = L, we have

TC |L
(
G, (p, i)

)
≃ TC |L

(
G′, (p′, i′)

)
, ∀i ∈ [n] (31)

TC |L
(
G, (j, q)

)
≃ TC |L

(
G′, (j′, q′)

)
, ∀j ∈ [n] (32)

According to (23), (24), (25), (29), (30) and the definition of TC , we have

TC |L+1

(
G, (p, q)

)
≃ TC |L+1

(
G′, (p′, q′)

)
, ∀i ∈ [n] (33)

On the other side the counterexample lies in Figure 5

Theorem: 2-FWLL has stronger link discriminating power than 2-WLL.

Proof. The proof is the same as the proof of Theorem 3.2 except that (23)-(30) works for p, q and
their neighbors instead of all nodes.

C EXTENDED DISCUSSION ON LABELING TRICK

In this section, we compare the link discriminating power between 2-WL tests and 1-WL with
labeling tricks. There are two most classic labeling tricks for link prediction: the 0/1 labeling and
distance-based labeling, the former labels the target nodes pair with one and other nodes with zero. A
classic instance of distance-based labeling is DRNL (Double-Radius Node Labeling) in (Zhang &
Chen, 2018). It constructs an injective function of distances from current node to two target nodes.
Such a technique inherently makes use of the information of all paths to the target nodes within the
extracted subgraph, which itself is a strong heuristic of link prediction. Note that node labeling can
be directly included in label (feature) l.

Here we mainly discuss 0/1 labeling in the following and leave the discussion on distance-based
labeling tricks and more general ones to the future work. Zhang et al. (2021) has discussed the
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theoretical power of 0/1 labeling trick and showed that it enhances 1-WL’s link discriminating power.
We further compare the link discriminating power of 1-WL with labeling trick and 2-WL tests in the
following theorem:
Theorem C.1. For 0/1 labeling trick L, 1-WL test with L and local 2-FWL test both do not have
equal or stronger link discriminating power than the other.

Proof. (C,D), (C ′, D′) in Figure 5 present an example that 2-FWLL can discriminate but 1-WL
with L cannot. On the other hand, let’s consider 4-order magic square graphs. Below are two 4× 4
grid graphs without node features. Each node has a number from {1, 2, 3, 4} on it. Two nodes have
edges if and only if they are 1) in the same row, or 2) in the same column, or 3) holding the same
number. The colored node pair (p, q), (p′, q′) are the target links. Notice that they are both strongly
regular graphs and 2-FWL cannot discriminate the two links because any node pair with edge has
two common neighbors and any node pair without edge also has two common neighbors.

1 2 3 4

2 1 4 3

3

4

4 1 2

3 2 1

p

qr

s
1 2 3 4

2 4 1 3

3

4

1 4 2

3 2 1

p’

q’r’

s’

1-WL with 0/1 labeling can discriminate (p, q), (p′, q′). If not, (r, s), (r′, s′) (or (r, s), (s′, r′)) will
be indistinguishable from each other but distinguishable from other node pairs because they are the
only nodes that have two labeled children. However they can actually be discriminated since (r′, s′)
is connected but (r′, s′) isn’t, which leads to a contradiction.

D MORE DETAILS ON GNN IMPLEMENTATIONS

Four proposed 2-WL variants are implemented in totally different way. First they all need to compute
node embedding by 1-WL-GNN. Then after pairwisely encoding, our model mimic the 2-WL test
pattern to propagate message. Our algorithms engage some tensor operation: given a 2D matrix X , we
denote A = X [i,j] that X expands along ith, jth dimension to 3D tensor A. Given vector v, B = v[k]

denote that v expands along kth dimension to 3D tensor B. Function sum[i](X) means summing
X over its ith dimension, and (sp)mm(A,B) means slice-wise (sparse) matrix multiplication of
A,B on their first and second dimension. “|” denotes concatenation. Below we formally present our
algorithms:

Computing infrastructure. We leverage Pytorch Geometric V2.0.2 and Pytorch V1.10.0 for model
development. We train our models, measure AUROC and the inference time on an A40 GPU with
48GB memory on a Linux server.

Baselines. For AUROC of methods: MF, N2V, VGAE, WLNM, SEAL on non-featured datasets,
we directly use the results in Zhang & Chen (2018). For AUROC of methods: VGAE, S-VGAE,
TLC-GNN, SEAL, NBFNet on citation datasets, we directly use the results in Zhu et al. (2021). For
performance of KGC methods: R-GCN, GraIL, INDIGO on KG datasets, we use the results in Liu
et al. (2021)

Hyperparameter tuning. Hyperparameters are selected based on validation set performance. The
best hyperparameters can be found in our code in the supplement material. Learning rate lr is
chosen from: {5e − 2, 1e − 2, 5e − 3, 1e − 3, 5e − 4}, hidden dimension for 1-WL-GNN h1:
{32, 64, 96, 128}, number of hidden layers for 1-WL-GNN l1: {1, 2, 3}, number of hidden layers
for 2-WL-GNN l2: {1, 2, 3}, hidden dimension for 2-WL-GNN h2 : {16, 24, 32, 64, 96}, dropout
ratio for embedding layer dp1, 1-WL layer dp2, 2-WL layer dp3: {0.1, 0.2, 0.3, 0.4, 0.5}. We use
Optuna (Akiba et al., 2019) to perform random searching for hyperparameters.
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Algorithm 1 2-WL Forward Network
Input: Node embedding: N ∈ Rn×d, Adjacent matrix: A ∈ Rn×n, Number of layers: L, Target

link: (p, q).
1: X(0) = (N [1,3] ⊗ 1

[2]
n )⊙ (N [2,3] ⊗ 1

[1]
n )

2: for l = 0 to L− 1 do
3: X ′ = mlp1,l(X

(l)|A[1,2])

4: X(l+1) = mlp2,l
(
X(l)|sum[1](X ′)[2,3] ⊗ 1

[1]
n |sum[2](X ′)[1,3] ⊗ 1

[2]
n

)
5: end for
6: Yp,q = X

(L)
p,q,: ·X(L)

q,p,:

7: return Yp,q

Algorithm 2 2-WLL Forward Network
Input: Node embedding: N ∈ Rn×d, Number of layers: L, Observed edge index: {(pi, qi)}mi=1

Target links: {(pj , qj)}m+m′

j=m+1.

1: Compute A(1) ∈ [0, 1]n×n s.t. A(1)
ij = 1 ⇐⇒ pi = pj , i ≤ m

2: Compute A(2) ∈ [0, 1]n×n s.t. A(2)
ij = 1 ⇐⇒ qi = qj , i ≤ m

3: for l = 0 to L− 1 do
4: X(l+1) = GCN1,l(X

(l);A(1)) + GCN2,l(X
(l);A(2))

5: end for
6: Y = mlp(X(L))
7: return Ym:m+m′

Algorithm 3 2-FWL Forward Network
Input: Node embedding: N ∈ Rn×d, Adjacent matrix: A ∈ Rn×n, Number of layers: L, Target

link: (p, q).
1: X(0) = (N [1,3] ⊗ 1

[2]
n )⊙ (N [2,3] ⊗ 1

[1]
n )|A[1,2]

2: for l = 0 to L− 1 do
3: X ′ = mlp1,l(X

(l))

4: X ′′ = mlp2,l(X
(l))

5: X(l+1) = mlp3,l(x
(l)|mm(X ′, X ′′))

6: end for
7: Yp,q = X

(L)
p,q,: ·X(L)

q,p,:

8: return Yp,q

Algorithm 4 2-FWLL Forward Network
Input: Node embedding: N ∈ Rn×d, Adjacent matrix: A ∈ Rn×n, Number of layers: L, Observed

edge index: {(pi, qi)}mi=1 Target link: (p, q).
1: Compute sparse matrix: W ∈ Rn×n×d s.t. Wpi,qi = Npi

⊙Nqi

2: X(0) = mlp0(W )
3: for l = 0 to L− 1 do
4: W ′ = mlp1,l(W )

5: X ′ = spmm(X(l),W ′)
6: X(l+1) = mlp2,l(X

′)
7: end for
8: Yp,q = mlp3(X

(L)
p,q,:|Np ⊙Nq)

9: return Yp,q

17


	Introduction
	Link-level Two-dimensional Weisfeiler-Lehman tests
	k-dimensional Weisfeiler-Lehman tests
	Variants of Link-level Weisfeiler-Lehman tests

	The power of 2-WL tests for link prediction
	2-WL and 2-FWL tests have stronger link discriminating power than 1-WL
	The link discriminating power of local 2-WL and local 2-FWL

	Implementation by GNN models
	GNN implementation of 2-WL
	GNN implementation of 2-WLL
	GNN implementation of 2-FWL
	GNN implementation of 2-FWLL

	Related Work
	Experiments
	Homogeneous graph link prediction
	Knowledge graph completion
	Time complexity analysis
	Limitations

	Conclusions
	Proof of Theorem 3.3
	Proof of Theorem 3.2 and Theorem 3.4
	Extended discussion on labeling trick
	More details on GNN implementations

